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Set Membership identification of linear systems
with guaranteed simulation accuracy

Marco Lauricella and Lorenzo Fagiano

Abstract—The problem of model identification for linear sys-
tems is considered, using a finite set of sampled data affected
by a bounded measurement noise, with unknown bound. The
objective is to identify one-step-ahead models and their accuracy
in terms of worst-case simulation error bounds. To do so, the Set
Membership identification framework is exploited. Theoretical
results are derived, allowing one to estimate the noise bound and
system decay rate. Then, these quantities and the data are em-
ployed to define the Feasible Parameter Set (FPS), which contains
all possible models compatible with the available information.
Here, the estimated decay rate is used to refine the standard
FPS formulation, by adding constraints that enforce the desired
converging behavior of the models’ impulse response. Moreover,
guaranteed simulation error bounds for an infinite future horizon
are derived, improving over recent results pertaining to finite
simulation horizon only. These bounds are the basis for a result
and method to guarantee asymptotic stability of the identified
model. Finally, the desired one-step-ahead model is identified
by means of numerical optimization, and the related simulation
error bounds are evaluated. Both input-output and state-space
model structures are addressed. The approach is showcased on
a numerical example and on real-world experimental data of the
roll rate dynamics of an autonomous glider.

I. INTRODUCTION

The identification of models with guaranteed simulation
accuracy is of great importance in all applications where
long range predictions and the related error bounds are used
for a robust decision-making task. Examples include resource
planning, operations scheduling, and predictive control. In this
paper, we address this problem for the case of discrete-time,
linear time-invariant systems. Our aim is to obtain, from a
finite data set, a one-step-ahead model of the system and a
measure of its accuracy, in terms of bounds on the simulation
error. We want to derive such bounds point-wise in time, for
a long, possibly infinite, future simulation horizon, under the
action of known future input signals.

The most popular identification procedures are studied in
a stochastic framework, see e.g. [17], where theoretical guar-
antees have been derived assuming that the noise signals are
ruled by a probability distribution function. However, many ap-
plications feature unknown stochastic properties of the noise,
or no sensible statistical hypotheses can be made at all [13].
Motivated by these difficulties, Set Membership identification
approaches have been developed under different hypotheses,
such as bounded noise and uncertainties, pioneered by [24] and

The authors are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Mi-
lano, Italy. E-mail addresses: {marco.lauricella | lorenzo.fagiano }@polimi.it.
This is a preprint of a paper published on the IEEE Transactions on Automatic
Control, DOI: 10.1109/TAC.2020.2970146.

[36]. The Set Membership approach provides a way to identify
models of systems and to measure their quality without any
probabilistic assumptions, referring only to the given data set
and noise bounds [14], [18], [19], [20], [34]. In most of the
existing works, the noise bound is assumed to be known a
priori, which can be a limiting assumption as well. One of
the few exceptions is [2], where the authors propose a way to
estimate the noise bound using a probabilistic reasoning.
Another relevant aspect is the purpose of the identification
process. Models tuned for multi-step prediction give better per-
formance when used for simulation, e.g. in Model Predictive
Control (MPC) schemes, see [11], [15]. Several approaches
address the multi-step-ahead identification problem, see e.g.
[15], [23], [26], [27], mainly in a stochastic framework. These
approaches do not provide a way to quantify the model quality
in terms of bounds on the simulation error, which could be
directly exploited in robust decision making.

In this paper, we resort to the Set Membership framework
and consider linear systems with bounded noise where, con-
trary to most existing works, the bound is a-priori unknown.
These settings are valid in most real-world applications, where
only a rough idea of the noise intensity might be available. We
present new theoretical results that allow one to estimate the
noise bound from data. A preliminary version of these results
has been published in [16]. Here, we extend the findings to
the multiple-input, multiple-output case, and to the case of a
predictor structure derived from a state-space representation.
Moreover, we introduce a new result to estimate the worst-
case simulation error bounds for any simulation horizon,
up to infinity. We derive a clear link between the obtained
infinite-horizon bound and the estimated noise bounds, model
order, system decay rate, and horizon used in the model
identification routine. The identification procedure stemming
from such theoretical results is composed of four steps: 1)
estimation of the noise bound; 2) estimation of the system
order; 3) estimation of the impulse responses’ decay rates;
4) identification of the model parameters. In this process,
the concept of Feasible Parameter Set (FPS) is exploited to
define the guaranteed simulation error bounds for a given
model, and to constrain the parameters to be identified. We
finally prove that the models derived with our procedure are
guaranteed to be asymptotically stable, a property that is
non-trivial to enforce during the identification phase, see [6].
The estimation of the noise bound, of the model order and
decay rate, and the analysis of the properties of the finite-
horizon and infinite-horizon error bounds, together with the
results on the asymptotic stability of the identified models,
are the main novelties of our work with respect to the Set
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Membership literature. We test the proposed procedure both
in a numerical example, where the true quantities are known
and the method can be evaluated in full, and in a real-world
experimental application, pertaining to the roll rate dynamics
of an autonomous glider.

The paper is organized as follows. Section II contains
assumptions and problem formulation. In Section III the new
theoretical results are presented. Section IV deals with the
identification of the predictor parameters. Section V extends
the obtained results to the state-space model structure with
measured state. Section VI presents the numerical and exper-
imental results, and Section VII concludes the paper.

II. WORKING ASSUMPTIONS
AND PROBLEM FORMULATION

A. Assumptions on the system, model structure and order

We consider a discrete time, linear time invariant (LTI)
system in the form:

x(k + 1) = Ax(k) +Bu(k)

z(k) = Cx(k),
(1)

with state x(k) ∈ Rn, input u(k) ∈ Rm and output z(k) ∈ Rq .
Here k ∈ Z denotes the discrete time variable. The output
measurement y(k) ∈ Rq is affected by an additive noise
d(k) ∈ Rq , leading to:

y(k) = z(k) + d(k). (2)

We denote with zi(k), yi(k), di(k), the i-th component of
vectors z(k), y(k), d(k), respectively, where i = 1, . . . , q.

Remark 1. All of the theoretical developments and practical
algorithms have to be applied to each output component
individually. Therefore, for the sake of notational simplicity,
the notation i = 1, . . . , q will be omitted.

Assumption 1. The system (1) is asymptotically stable.

Assumption 2. The measurement noise and the system input
are bounded. In particular:

• |di(k)|≤ d̄0i , ∀k ∈ Z, d̄0 ∈ Rq.
• u(k) ∈ U ⊂ Rm, ∀k ∈ Z, U compact.

Assumption 3. The system (1) is fully observable and reach-
able.

Assumptions 1 and 2 are common in system identification
problems in real-world applications. Assumption 3 is made
for simplicity, as it can be relaxed by considering only the
observable and controllable sub-space of the system state. Un-
der Assumption 3, for any given p ∈ N, the output equations
can be written in auto-regressive form with exogenous input
(ARX):

zi(k + p) = ψip(k)T θ0
ip , (3)

where T denotes the matrix transpose operation, and the
regressor ψip(k) is given by:

ψip(k) =
[
ZTin(k) UTp,n(k)

]T ∈ Rn+m(n+p−1)

Zin(k) = [zi(k) zi(k − 1) . . . zi(k − n+ 1)]
T ∈ Rn

Up,n(k) =
[
u(k + p− 1)T . . .

u(k)T . . . u(k − n+ 1)T
]T ∈ Rm(n+p−1).

(4)
In addition, θ0

ip
∈ Rn+m(n+p−1) is the vector of the true

system parameters, which is given by θ0
ip

=
[
θ0T

ip,z
θ0T

ip,u

]T
,

where θ0
ip,z

consists of the parameters related to past values
of the output zi, and the entries of θ0

ip,u
are the parameters

related to past and future input values. For a discrete time
LTI system of the form (1), if all the eigenvalues of A have
magnitude strictly smaller than 1 (Assumption 1), then, for
any initial condition x0 and for any bounded input u such
that ‖ui(k)‖< M, ∀k, i = 1, . . . ,m, the system outputs are
bounded by

‖zi(k)‖2 ≤ ‖Ci‖2·
∥∥Ak∥∥

2
·‖x0‖2+M ‖Ci‖2·

k−1∑
j=0

∥∥Aj∥∥
2
·‖B‖2 ,

with i = 1, . . . , q, k > 0, and ‖Ak‖< Lρk, where 0 < ρ < 1,
L > 0, see e.g. [37]. Thus, under Assumption 1, the system
parameters are bounded by exponentially decaying trends:∣∣∣θ0,(l)

ip,u

∣∣∣ ≤ Liρd lm ei , l = 1, . . . ,m(n+ p− 1)∣∣∣θ0,(l)
ip,z

∣∣∣ ≤ Liρp+li , l = 1, . . . , n
(5)

where (l) denotes the l-th entry of a vector, d e denotes the
ceiling function, and Li, ρi are scalars that depend on the
system matrices in (1).
The one-step-ahead dynamics of the system output are then
given by (3) with p = 1. For any p > 1, the elements of the
parameter vector θ0

ip
are polynomial functions of the entries

of θ0
i1

, i.e.:
θ0
ip = hp,n(θ0

i1). (6)

The explicit expressions of the polynomial functions
hp,n : Rn(m+1) → Rn+m(n+p−1) can be readily obtained by
recursion of (3) with p = 1 and are omitted here for simplicity.

We consider a model structure given by q one-step-ahead
predictors, one for each output signal, written in the ARX form
as:

ẑi(k + 1) = ϕi1(k)T θi1 , (7)

where the regressor ϕip(k) is given by:

ϕip(k) =
[
Y Tio (k) UTp,o(k)

]T ∈ Ro+m(o+p−1)

Yio(k) = [yi(k) yi(k − 1) . . . yi(k − o+ 1)]
T ∈ Ro

Up,o(k) =
[
u(k + p− 1)T . . .

u(k)T . . . u(k − o+ 1)T
]T ∈ Rm(o+p−1).

(8)
In practice, ϕi1(k) is the counterpart of ψi1(k) with order o
(model order) instead of n (system order), and corrupted by
noise (compare (4) and (8)), while θi1 ∈ Ro(m+1) denotes the
vector of model parameters to be identified from data.
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Assumption 4. The user-selected model order o is such that
o ≥ n.

This assumption is needed to derive part of our theoretical
results. In practice, one can initially choose a very large order
to make sure that Assumption 4 is satisfied, and then use our
Theorem 1 and the related Procedure 2 (both presented in the
next section) to obtain a tighter upper-estimate of n.

B. Multi-step predictors and assumption on data

In our method, we resort to the concept of multi-step
predictors. For a LTI system, the multi-step predictor of the
i-th system output, pertaining to a given horizon p > 1, has
the following general form:

ẑi(k + p) = ϕip(k)T θip , (9)

We refer to p equivalently as the prediction horizon or sim-
ulation horizon in this paper. If the multi-step predictor is
obtained by iteration of the one-step-ahead model (7), then,
similarly to (6), the elements of the parameter vector θip are
polynomial functions of the entries of θi1 , denoted as:

hp,o : Ro(m+1) → Ro+m(o+p−1), p ≥ 1 (10)

and obtained by recursion of (9) with p = 1.
Let us now denote with ψipo (k) the noise-free version

of ϕip(k) (8), i.e. using variable zi instead of yi. Under
Assumptions 1-2, it follows that:

ψipo (k) ∈ Ψipo
, Ψipo

compact, ∀p ∈ N, ∀k ∈ Z.

Moreover, also the regressor ϕip(k) belongs to a compact set,
indicated as Φip :

ϕip(k) ∈ Φip = Ψipo
⊕ Dip , ∀p ∈ N, ∀k ∈ Z, (11)

where F ⊕M = {f +m : f ∈ F, m ∈M} is the Minkowski
sum of sets F , M , and Dip ⊂ Ro+m(o+p−1),

Dip
.
=

{[
d

(1)
i , . . . , d

(o)
i , 0, . . . , 0

]T
:
∣∣∣d(l)
i

∣∣∣ ≤ d̄0i , l = 1, . . . , o

}
.

(12)
Namely, Dip is the set of all possible noise realizations that
can affect the system output values in ϕip .

We assume that a finite number of measured pairs
(ỹ(k), ũ(k)) is available for the model identification task,
where ·̃ is used to denote a sample of a given variable. For
each simulation horizon p, these data form the following set
of sampled regressors and corresponding output values:

Ṽ N
ip

.
=

{
ṽip(k) =

[
ϕ̃ip(k)
ỹip(k)

]
, k = 1, . . . , N

}
,

where Ṽ N
ip
⊂ R1+o+m(o+p−1) and ỹip(k)

.
= ỹi(k + p). Here,

for simplicity and without loss of generality, we consider that
the number of sampled regressors N is the same for any
considered value of p. The set Ṽ N

ip
can be seen as a countable,

sampled version of its continuous counterpart, Vip :

Vip
.
=

{
vip =

[
ϕip
yip

]
, yip ∈ Yip(ϕip), ∀ϕip ∈ Φip

}
,

where Vip ⊂ R1+o+m(o+p−1), and Yip(ϕip) ⊂ R represents
the compact set of all the possible output values corresponding

to each regressor ϕip ∈ Φip and to every possible noise
realization di : |di|≤ d̄0i .

Let us define the distance between Ṽ N
ip

and Vip as:

d2

(
Vip , Ṽ

N
ip

)
.
= max
v1∈Vip

min
v2∈Ṽ N

ip

‖v2 − v1‖2

We consider the following assumption on the data set:

Assumption 5. For any β > 0, there exists a value of N <∞
such that d2

(
Vip , Ṽ

N
ip

)
≤ β.

Assumption 5 pertains to the informative content of the sam-
pled data set. It means that, by adding more points to Ṽ N

ip
, the

set of all the system trajectories of interest is densely covered.
This can be seen as a persistence of excitation condition
combined with a bound-exploring property of the noise signal
d.

C. Problem formulation

We are now in position to formalize the problem addressed
in this paper.

Problem 1. Under Assumptions 1-5, use the available data
sets Ṽ N

ip
to:

1) Estimate the noise bounds d̄0i ;
2) Select the model order o ≈ n;
3) Estimate the parameters Li, ρi defining the system’s

decaying trend (5);
4) Identify the model parameters θi1 exploiting the knowl-

edge of the estimated quantities;
5) For the model parameters θi1 obtained from the previ-

ous step, estimate worst-case bounds on the simulation
error z(k + p)− ẑi(k + p) for p ∈ [0,∞).

III. ESTIMATION OF THE NOISE BOUND, MODEL ORDER,
DECAY TREND, AND SIMULATION ERROR BOUNDS

The key to address points 1)-4) of Problem 1 is the analysis
of the multi-step predictors of the form (9). At first, we will
consider the multi-step predictor for each simulation horizon
p as an independent function, neglecting the fact that the true
system (3) (and the wanted model (7)) define implicitly multi-
step predictors, whose parameters are linked by polynomial
functions hp,n(·) (6) (and hp,o(·) (10)). We will introduce such
links later on, as constraints in the identification procedures
of Section IV.
The starting base for our new results are the findings described
in [30], briefly recalled next.

A. Preliminary results

Under Assumptions 1-2, the error between the true p-steps-
ahead system output and its prediction (9) is bounded for any
finite p: ∣∣∣yi(k + p)− ϕTipθip

∣∣∣ ≤ ε̄ip(θip) + d̄i,

where d̄i ≥ 0 denotes an estimate of the true noise bound
d̄0i , and ε̄ip(θip) represents the global error bound related to
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given multi-step model parameters θip , i.e. it holds for all the
possible values of ϕip in Φip . Theoretically, the global error
bound ε̄ip(θip) is the solution to the following optimization
problem:

ε̄ip(θip) = min
ε∈R+

ε

subject to∣∣∣yip − ϕTipθip ∣∣∣ ≤ ε+ d̄i, ∀
(
ϕip , yip

)
:

[
ϕip
yip

]
∈ Vip .

(13)

Moreover, among all possible parameter values, one is inter-
ested in those that minimize the corresponding global error
bound:

ε̄0
ip = min

θip∈Ωp
ε̄ip(θip), (14)

where the set Ωp is a compact approximation of Ro+m(o+p−1)

(e.g. an hypercube defined by ‖θip‖∞≤ 10100) introduced to
technically replace inf and sup operators with min and max,
respectively.
Problems (13)-(14) are intractable. Using the available finite
set of data points, one can however compute an estimate λip ≈
ε̄0
ip

solving the following Linear Program (LP):

λip = min
θip∈Ωp, λ∈R+

λ

subject to∣∣∣ỹip − ϕ̃Tipθip ∣∣∣ ≤ λ+ d̄i, ∀
(
ϕ̃ip , ỹip

)
:

[
ϕ̃ip
ỹip

]
∈ Ṽ N

ip
.

(15)
Under Assumptions 2-5, the following properties hold (see
[30] for the derivation):

λip ≤ ε̄
0
ip (16a)

∀η ∈ (0, ε̄0
ip ], ∃N <∞ : λip ≥ ε̄

0
ip − η (16b)

i.e. the estimated bound λip converges to ε̄0
ip

from below.

B. Theoretical properties of the multi-step error bound

In [30], the results (16) are exploited to build a FPS for
any finite value of p and to estimate the worst-case error
of a given multi-step predictor, again for a finite simulation
horizon. However, no result and/or systematic procedure to
fulfill the assumptions on the noise bound (supposed to be
known in [30]) and the model order were provided. These
aspects limit the applicability of the approach, since in practice
the true values of d̄0i and n are often unknown and one has
to resort to heuristics to choose d̄i and o. We now introduce
two new results that solve this issue, allowing one to derive
a convergent estimate d̄i ≈ d̄0i , as well as estimates of the
system order and, additionally, of the impulse response decay
trend. The main conceptual innovation with respect to the
preliminary results of [30] is to analyze not only each value of
λip separately, but also the course of this quantity as a function
of the horizon p.

Theorem 1. If Assumptions 2-5 hold, then, for any arbitrarily
small η > 0, ∃N <∞ such that(

d̄0i − d̄i
)
− η ≤ lim

p→∞
λip ≤

(
d̄0i − d̄i

)
. (17)

Proof. See the Appendix. �

Corollary 1. If Assumptions 2-5 hold, and if the estimated
noise bound is correctly chosen as d̄i = d̄0i , then, for any
arbitrarily small η > 0, ∃N <∞ such that

λip =
∥∥∥θ0
ip

∥∥∥
1
d̄0i − η ≤ nd̄0iLiρ

p+1
i .

Proof. See the Appendix. �

Remark 2. Theorem 1 and Corollary 1 imply three conse-
quences useful to estimate the noise bound and system order:

1) With a large enough data set, the estimated bound λip
(15) converges, as p increases, to the difference between
the true noise bound, d̄0i , and the estimated one, d̄i. We
will use this result to estimate d̄0i ;

2) When d̄i = d̄0i and o < n (i.e. Assumption 4 is not
met), then λip converges (besides a quantity η that can
be made arbitrarily small with a larger data set) to a
non-zero value as p→∞, due to model order mismatch
(see the proof of Theorem 1 for more details). We will
exploit this property to estimate the system order;

3) Assuming the noise bound is chosen as d̄i ' d̄0i ,
then the estimated bound λip converges to zero as
p → ∞ with the same decay trend as that of the
true system parameters, dictated by the system dominant
eigenvalues. We will exploit this property to estimate the
system decay rate.

C. Estimation of noise bound, system order and decay trend

We propose three procedures to estimate the noise bound,
system order and the decay trend, respectively. This infor-
mation will be used in Section III-D to define the FPS for
any finite p and the guaranteed simulation error bound of any
predictor up to a finite p.
We start by estimating d̄0i resorting to Theorem 1 (see also
point 1) of Remark 2):

Procedure 1 Estimation of d̄0

Choose a large value as initial guess of o. Then, for all i =
1, . . . , q, carry out the following steps:

1) Initialize d̄i with a value small enough to ensure d̄i <
d̄0i (e.g. d̄i ' 0);

2) Compute λip (15) for increasing p values, until it con-
verges to a constant quantity edi ' (d̄0i−d̄i) as p→∞;

3) Correct the initial guess of d̄i by adding edi ;
4) Verify that λip

p→∞−−−→ 0 with the new value of d̄i;
Take the resulting vector d̄ = [d̄1, . . . , d̄q]

T as estimate of the
true one, d̄0.

This addresses point 1) of Problem 1. After completing
Procedure 1, we can compute a finite simulation horizon value
p̄i such that:

p̄i = min
p̄∈N

p̄

subject to
λip < δ, ∀p ≥ p̄

(18)

where δ ≈ 0 is a suitable tolerance, e.g. 10−8, to account for
the asymptotic behavior of λip (see Theorem 1). This tolerance
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can be used to check the convergence of λip in step 5 of
Procedure 1, i.e. to verify that ∃p̃ : λip < δ ∀p > p̃
Exploiting the values of p̄i, we can then estimate the system
order resorting to the observation of point 2) of Remark 2:

Procedure 2 Estimation of n
1) Set d̄i to the values resulting from Procedure 1, and

compute p̄i as in (18);
2) Set a large starting value of o;
3) Gradually decrease o, recalculating all the λip , until a

value of o is found, such that ∃p > p̄i : λip > δ, with δ
used in (18). Denote as o such a value.

4) Set the model order as o = o+ 1.

This addresses point 2) of Problem 1. At the end of Pro-
cedure 2, one shall choose the largest value of o among all
i = 1, . . . , q. Finally, we estimate the system decay trend
from that of λip , exploiting observation 3) of Remark 2, thus
addressing also point 3) of Problem 1.

Procedure 3 Estimation of Li and ρi
1) Take d̄i, p̄i, and o resulting from Procedures 1-2;
2) Compute two scalars, L′i, ρ̂i as:

[L′i, ρ̂i] =arg min
L′i,ρ̂i

∥∥∥f iλ − giLρ∥∥∥2

2

subject to
giLρ � f iλ
L′i > 0

0 < ρ̂i < 1

(19)

where f iλ
.
= [λi1 · · · λip̄i

]T , giLρ
.
=

[giLρ(1) · · · giLρ(p̄i)]
T , giLρ(p) = L′iρ̂

p+1
i , and

� denotes element-wise inequalities.
3) Compute L̂i as (from Corollary 1):

L̂i =
L′i
od̄i

, (20)

4) Set L̂i, ρ̂i as estimates of Li and ρi, respectively.

Problem (19) is always feasible, since one can always choose
large-enough values of L′i to satisfy its constraints. Moreover,
the cost function results to be convex inside the feasible set,
as it can be shown by computing its curvature and checking
that it is positive for feasible (L′i, ρ̂i) pairs.

D. Feasible Parameter Sets and finite-horizon simulation error
bound

The quantities estimated so far are instrumental to build the
Feasible Parameter Set (FPS) for any finite simulation horizon
p. Namely, such sets contain all possible multi-step predictor
parameters θip that are consistent with the available data set,
up to the tolerance given by the global error bound ε̄0

ip
and

noise bound d̄0i , and the other available information on the
system at hand. Since the computed bound λip is lower than
ε̄0
ip

, due to the use of a finite data set (property (16a)), it is

customary to employ a scaling factor α > 1 to estimate the
global error bound:

ˆ̄εip = αλip , α > 1. (21)

We can now define, for the p-steps-ahead predictor of the i-
th system output, the set Θip of parameter values that are
consistent with the measured data, and with the estimated
noise bound and global error bound. Several works in the Set
Membership literature prefer to lower the computational effort
resorting to outer approximation of the FPS, e.g. via intervals
[29], ellipsoid [3], [9], [12], parallelotopes [7], [32], zonotopes
[1], [4], [8], [35], or constrained zonotopes [25]. [33] proposes
a recursive exact polytopic representation, able to cope also
with time-varying systems. Here, we decided to adopt an exact
description of the FPS by defining it as a polytope using an
inequality description (H-representation):

Θip
.
=

{
θip :

∣∣∣ỹip − ϕ̃Tipθip ∣∣∣ ≤ ˆ̄εip + d̄i,

∀
(
ϕ̃ip , ỹip

)
:

[
ϕ̃ip
ỹip

]
∈ Ṽ N

ip

}
.

The set Θip , if bounded, is a polytope with at most 2N
facets. If Θip is unbounded, then this indicates that the data
collected from the system are not informative enough, and
new data should be acquired. In [30], the set Θip was taken
as FPS for the predictors pertaining to the horizon p. Here, we
provide a further refinement by adding the constraints on the
estimated decay trend obtained in Section III-C. Let us define
the polytope:

Γip
.
=

{
θip :

∣∣∣θ(l)
ip,z

∣∣∣ ≤ L̂iρ̂p+li , l ∈ [1, o],

∧
∣∣∣θ(l)
ip,u

∣∣∣ ≤ L̂iρ̂d lm ei , l ∈ [1,m(o+ p− 1)]

}
.

Then, we define the Feasible Parameter Sets as:

ΘLρ
ip

.
= Θip ∩ Γip . (22)

Note that this new FPS is always compact, since Γip is. The
FPS is used to derive the worst-case simulation error bound
obtained by a given predictor with parameters θip :

τip(θip) = max
ϕip∈Φip

max
θ∈ΘLρip

∣∣∣ϕTip (θ − θip)∣∣∣+ ˆ̄εip . (23)

Namely, this bound is the worst-case absolute difference
between the output ẑi(k+p) = ϕTip(k)θip , predicted using the
parameters θip , and the one predicted by any other parameter
vector in the FPS, plus the worst-case prediction error ˆ̄εip
related to all θip ∈ ΘLρ

ip
. In a way similar to ε̄0

ip
, it is not

possible to exactly compute the bound (23) using a finite data
set. Thus, we introduce an estimate τ̂ip(θip), which, under
Assumption 5, converges to τip(θip) from below as the number
of data points increases, see [30]. Such an estimate is then
inflated by a scalar γ > 1 to account for the uncertainty due
to the usage of a finite data set:

τ̂ip(θip) = γ

(
max

ϕ̃ip∈Ṽ N
ip

max
θ∈ΘLρip

∣∣∣ϕ̃Tip (θ − θip)∣∣∣
)

+ ˆ̄εip , γ > 1.

(24)
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The estimation of the bound defined by (24), corresponding
to point 5) of Problem 1, will then be performed on the
models identified using the approaches proposed in Section
IV. Note that (24) can be recast as an LP, after the preliminary
solution of 2N LPs which can be parallelized. If the estimated
error bounds ˆ̄εip and τ̂ip(θip) are larger than the correspond-
ing theoretical values ε̄0

ip
and τip(θip), respectively, and the

estimated decay rate parameters are such that ρ̂ ∈ [ρ, 1) and
L̂i ≥ Li, then it is easy to show that the multi-step predictor
θ0
ip

, obtained from the true system and possibly appropriately
padded with zero entries if o > n, belongs to the FPS ΘLρ

ip
.

In this case, by construction, the bound τ̂ip(θip) is such that:

|zi(k + p)− ẑi(k + p)| ≤ τ̂ip(θip) (25a)
|yi(k + p)− ẑi(k + p)| ≤ τ̂ip(θip) + d̄i (25b)

i.e. it is the desired simulation error bound for the considered
finite horizon p.

The parameters α in (21) and γ in (24) essentially express
how much we are confident in the informative content of
the data set. A “large” value of α might produce an overly
conservative error bound ˆ̄εip and, consequently, larger FPSs,
while a choice of α close to 1 might produce an error bound
that could be invalidated by future data, if the available data
set has a poor informative content. Similarly, a “large” γ
might give a conservative bound τ̂ip .

Remark 3. In a real application, one will never know whether
the scaling factors α, γ are too conservative. Conversely, it
is easy to understand when these factors are too small, by
checking whether the FPS is empty for any p. If this happens,
for example if one chooses a too small α value, then the prior
assumptions and/or estimated bounds are invalidated by data.
Thus, verifying that all the FPSs are non-empty (which is an
easy task since they are all polytopes) is a way to check the
informative content of our data set and the choice of parameter
α. This check can be carried out using new data collected in a
validation experiment, or in real-time if the FPSs and system
model are to be updated on-line. A similar reasoning applies
to the bound τ̂ip(θip) and scalar γ: conservativeness can be
evaluated by checking the bound against new measured data
and evaluating whether the simulation error magnitude ever
violates τ̂ip(θip) by more than d̄i (see (25b)).

E. Infinite-horizon simulation error bound

The error bound (24) requires the computation of the FPSs
for each horizon p of interest, potentially up to a very large
value. Since each FPS is a polytope whose complexity gener-
ally grows with the number of available data, the computation
of a large number of bounds τ̂ip can become impractical. To
solve this problem, in this section we present new results
that allow one to estimate the simulation error bound for any
future horizon, beyond a (sufficiently large) finite value p̄.
In particular, we propose an iterative expression to compute
the simulation error bound for p > p̄, based on the previous
computation of the bounds τ̂ip for p = 1, . . . , p̄. Furthermore,
we provide results indicating how the value of p̄ should

be chosen in order to keep the computational effort at a
minimum, and obtain a bound which is non-divergent with
p and not excessively conservative. Before proceeding further,
the following remark is in order.

Remark 4. The results presented in the remainder of this
section are derived considering model parameters that satisfy
the conditions hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄]. Later on, in
Section IV, we will include explicitly such conditions in the
identification procedure, so that the computed models will
always enjoy this property. This establishes a connection
between the derived theoretical results and the proposed
computational methods to identify a model.

Given the multi-step predictors described by (9), and hav-
ing computed the error bounds defined by (24) up to p̄, if
hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄], the simulation error at horizon
p̄+ j, j > 1, is such that:

|zi(k + p̄+ j)− ẑi(k + p̄+ j)| ≤

τ̂ip̄(θip̄) +
min{j,o}∑
m=1

(
τ̂ij−m+1(θij−m+1) + d̄i

)
L̂iρ̂

p̄+m
i .

(26)
See the Appendix for a derivation. Then, considering
that L̂iρ̂

p̄+1
i > L̂iρ̂

p̄+2
i > . . . > L̂iρ̂

p̄+o
i , and that

min{j,o}∑
m=1

L̂iρ̂
p̄+m
i ≤ oL̂iρ̂

p̄+1
i , we can derive an over-estimate

of the simulation error bound τ̂ip̄+j as:

|zi(k + p̄+ j)− ẑi(k + p̄+ j)| ≤ τ̂ip̄+j
(θip̄+j

)

≤ τ̂ip̄(θip̄) +
(
τ̂imax{j,o} + d̄i

)
oL̂iρ̂

p̄+1
i ,

(27)

where τ̂imax{j,o} = max{τ̂ij−o(θij−o), . . . , τ̂ij (θij )}.
Note that, if j ≥ p̄+1, the term τ̂ij (θij ) is not computed using
(24), but resorting to (27). For example, when j ∈ (p̄, 2p̄], the
simulation error bound τ̂ip̄+j (θip̄+j ) is bounded as:

τ̂ ip̄+j
(θip̄+j

) ≤ τ̂ip̄(θip̄) +
(
τ̂imax{j,o} + d̄i

)
oL̂iρ̂

p̄+1
i ≤ τ̂ip̄(θip̄)

+
(
τ̂ip̄(θip̄) +

(
τ̂imax{l,2o} + d̄i

)
oL̂iρ̂

p̄+1
i + d̄i

)
oL̂iρ̂

p̄+1
i ,

(28)
where l = j − p̄.
Thus, we can derive the following iterative expression to
compute an over-estimate of the simulation error bound, where
the considered horizon is denoted by p = `p̄+j, with `, j ∈ N
and j ∈ [1, p̄):

τ̂i`p̄+j
(θi`p̄+j

) ≤ τ̂ip̄(θip̄)
(
1 + χi,p̄ + χ2

i,p̄ + . . .+ χ`−1
i,p̄

)
+

+ d̄i
(
χi,p̄ + χ2

i,p̄ + . . .+ χ`i,p̄
)

+ τimax{j,`o}χ
`
i,p̄

(29)
where χi,p̄ = oL̂iρ̂

p̄+1
i , and τimax{j,`o} =

max{τ̂ij−`o(θij−`o), . . . , τ̂ij (θij )}.
In general, the over-estimate (29) may diverge as ` in-

creases. The next result provides a condition on o, L̂i, ρ̂i, and
p̄i to guarantee convergence:

Theorem 2. Consider any θi1 such that hp,o(θi1) ∈ Γip , ∀p ∈
[2, p̄]. Define τ̂i∞ as:

τ̂i∞(θip̄)
.
= τ̂ip̄(θip̄)

(
1

1− χi,p̄

)
+ d̄i

(
χi,p̄

1− χi,p̄

)
. (30)
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Then,
τ̂ip

p→∞−−−→ τ̂i∞ ⇐⇒ oL̂iρ̂
p̄+1
i < 1 (31)

Proof. See the Appendix. �

Remark 5. The convergence condition of Theorem 2 depends
on o, L̂i and ρ̂i, obtained using Procedures 1-3, which in
turn depend on the system at hand, on the collected data, and
on p̄, which is chosen by the user during the identification
procedure. Therefore, for given values of o, L̂i, ρ̂i, the value
of p̄ should be chosen large enough to satisfy (31).

Assuming that condition (31) is met, then the quantity τ̂i∞
(30) is the wanted infinite-horizon simulation error bound. The
next results provide further insight on the bound (30) and, in
particular, on whether convergence of τ̂ip to τ̂i∞ is from above
or below.

If condition (31) holds, we can compute the difference
τ̂i∞(θip̄) − τ̂i`p̄+j

(θi`p̄+j
) by means of truncated geometric

series, leading to:

τ̂i∞(θip̄)− τ̂i`p̄+j
(θi`p̄+j

) =

= τ̂ip̄(θip̄)

(
χ`i,p̄

1− χi,p̄

)
+ d̄i

(
χ`+1
i,p̄

1− χi,p̄

)
− τimax{j,`o}χ

`
i,p̄.

(32)
The terms multiplying τ̂ip̄ and d̄i converge to their limit (see
(30)) from below, while the term τimax{j,`o}χ

`
i,p̄ converges to

zero from above as `→∞. Thus, in general it is possible that
τ̂i`p̄+j

> τ̂i∞ for some ` and j. The next Lemma is concerned
with this aspect.

Lemma 1. Let τimax be defined as:

τimax = max{τ̂i1(θi1), . . . , τ̂ip̄(θip̄)}.

If hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄], and if

τimax <
τ̂ip̄ + d̄iχi,p̄

1− χi,p̄
, (33)

then τ̂i`p̄+j
(θi`p̄+j

) ≤ τ̂i∞(θip̄), ∀`, j. Otherwise, there could
exist at least a pair (`, j) such that τ̂i`p̄+j

(θi`p̄+j
) > τ̂i∞(θip̄).

Proof. See the Appendix. �

Note that the condition (33) of Lemma 1 is in a sense
adverse to the convergence condition (31) of Theorem 2. Since
ρ̂i < 1 by definition, there exists always a value of p̄ large
enough to satisfy (31). On the other hand, the right-hand
side of (33) decreases as p̄ increases, while τimax is only
weakly dependent on p̄. Thus, Lemma 1 suggests to pick a
“small” value of p̄, while Theorem 2 is generally satisfied with
“large” p̄. If one is interested in finding a finite simulation time
such that, for any larger horizon, the simulation error bound
converges from below to the infinite-horizon value, then the
following result can be exploited.

Remark 6. Assume condition (33) is not satisfied, and take
a small increase on the value of the asymptotic error bound,
e.g. given by δi = 10−2 · τ̂i∞(θip̄). Define ¯̀ as:

¯̀= min
`
`

subject to∣∣∣ τ̂ip̄+d̄iχi,p̄
1−χi,p̄ − τimax

∣∣∣χ¯̀
i,p̄ < δi

Then, as a straightforward consequence of Lemma 1, the
following result holds:

τ̂i`p̄+j
(θi`p̄+j

) ≤ τ̂i∞(θip̄) + δi, ∀` ≥ ¯̀, ∀j

Finally, we show that Theorem 2 is also instrumental to
derive a sufficient condition for the parameter vector θ1 to
yield an asymptotically stable model.

Theorem 3. Let Assumptions 2-5 hold, and further assume
that the chosen value of p̄ satisfies (31). Consider a generic
parameter vector θi1 ∈ Ro(m+1). If

hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄],

then the corresponding ARX model (7) is asymptotically stable.

Proof. See the Appendix. �

Summing up, the findings and procedures described so far
address points 1)-3) and 5) of Problem 1. In the next section,
we present two approaches to identify the one-step-ahead
model (7) exploiting these results, thus dealing also with point
4) of Problem 1.

IV. PREDICTOR IDENTIFICATION

A. Method I

In this first approach, the parameters are estimated as:

θ̂i1 = arg min
θi1

‖τ i(θ)‖∞ (34a)

subject to
hp,o(θi1) ∈ ΘLρ

ip
, ∀p ∈ [1, p̄] (34b)

where τ i =
[
τ̂i1(θ) τ̂i2(θ) . . . τ̂ip̄(θ)

]T
, τ̂ip(θ) is defined as

in (24). Namely, we thus aim to minimize the worst global
error bound among all the simulation steps of interest, while
ensuring that the resulting multi-step predictors comply with
the derived FPSs. Problem (34) is equivalent to:

θ̂i1 =arg min
θi1

(
max
p∈[1,p̄]

max
k=1,...,N

max
θ∈ΘLρip

∣∣ϕ̃ip(k)T (θ − θip)
∣∣+ ˆ̄εip

)
subject to

hp,o(θi1) ∈ ΘLρ
ip
, ∀p ∈ [1, p̄]

(35)
This can be reformulated into a simpler optimization problem.
The first step is to split the absolute value in the cost function
of (35) into two terms, by introducing the following quantities:

ϕ̌ip(k) =

{
ϕ̃ip(k) if k ≤ N
−ϕ̃ip(k −N) if k > N

for k = 1, . . . , 2N.

Then, let us define:

cikp
.
= max
θ∈ΘLρip

ϕ̌ip(k)T θ, k = 1, . . . , 2N, p = 1, . . . , p̄.

(36)
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The values of cikp are computed by solving 2Np̄ linear
programs (LPs). Then, (35) can be reformulated as:

θ̂i1 = arg min
θi1 ,ζ

ζ (37a)

subject to
cikp − ϕ̌ip(k)Thp,o(θi1) ≤ ζ, ∀k ∈ [1, 2N ], ∀p ∈ [1, p̄] (37b)

θi1 ∈ ΘLρ
i1

(37c)

hp,o(θi1) ∈ ΘLρ
ip
, ∀p ∈ [2, p̄] (37d)

(37) is a nonlinear optimization program (NLP) with linear
cost (37a), 2Np̄ nonlinear constraints (37b) (that require
the preliminary solution of the 2Np̄ LPs (36)), 2N linear
constraints (37c), finally 2N(p̄ − 1) nonlinear constraints
(37d). All nonlinear constraints are polynomial, thus Jacobian
and Hessians can be efficiently computed analytically and
exploited in the numerical solver.

A possible alternative is to use a quadratic cost in (34),
e.g. τ i(θ)TQτ i(θ) where Q is a symmetric positive definite
weighting matrix. This would penalize a weighted average of
the simulation error bounds over the considered horizon p̄,
instead of its worst-case as done in (34). In this case, a similar
reformulation can be carried out, resulting in an NLP with
quadratic cost and linear and polynomial constraints.

B. Method II

In the second approach, we search the one-step-ahead model
that minimizes a standard simulation error criterion, while
enforcing membership to the FPS ΘLρ

i1
and the exponentially

decaying behavior of the iterated predictors parameters for
p > 1 up to p̄. The corresponding NLP is:

θ̂i1 = arg min
θi1∈ΘLρi1

∥∥∥Ỹ i − Ẑi(θi1)
∥∥∥2

2
(38a)

subject to
hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄] (38b)

where

Ỹ i = [ỹi(1) ỹi(2) . . . ỹi(N)]
T

Ẑi(θi1) =
[
ϕ̃i1(0)T θi1 ϕ̃i2(0)Th2,o(θi1) . . . ϕ̃iN (0)ThN,o(θi1)

]T
.

Problem (38) is a NLP with polynomial cost function, 2N
linear constraints and 2(p̄ − 1) polynomial constraints. Also
in this method, Jacobian and Hessians can be efficiently
computed analytically.

Remark 7. The optimization problems of Methods I and II are
always feasible by construction. The inclusion of constraints
(34b) and (38b) guarantees consistency with the results of Sec-
tion III, including asymptotic stability of the derived models,
as shown by Theorem 3. It is also possible to adopt variations,
e.g. by adding more constraints to Method II, like θip ∈ ΘLρ

ip
for some selected p ∈ [1, pmax].

C. Computational aspects

Computational effort is often the main drawback in Set
Membership identification. The optimization problems (37)
and (38) are constrained Nonlinear Programs (NLP), thus they

are not convex in general. Finding a feasible point for this class
of problems can be computationally hard, even when this point
is guaranteed to exist like in our case. In our tests in Section
VI, the NLPs are solved resorting to Sequential Quadratic
Programming (SQP) algorithms (MatLab’s fmincon). In the
literature (e.g., [21]) the guaranteed global convergence of
SQP to a local minimizer has been proven, under rather mild
assumptions. Yet, in applications these assumptions are not
easy to verify. What we can however observe are the practical
performance obtained with such a well-established numerical
approach. Given the non-convex nature of the NLPs, for each
problem instance we ran the solver several times, each one
with a different initialization value, to evaluate whether it gave
consistent results and to choose the best local optimum among
the resulting ones. In particular, in all the runs for either NLPs
(37) or (38) (around 200 for each problem and for both the
numerical example and the real-world application in Section
VI), the SQP algorithm was always able to converge to a
feasible local minimizer.
The complexity of the NLP mainly depends on the FPSs,
which are used to define the constraints and to compute
the simulation error bounds. The FPSs are polytopes whose
number of facets generally grows linearly with the number
of data points, and whose dimensionality grows linearly with
the horizon p in the multi-step approach adopted here. To
reduce complexity, in the literature there are several contribu-
tions proposing to outer-approximate the FPSs, see references
provided in Section III-D. These approaches present different
trade-offs between complexity reduction and conservativeness.
An alternative we prefer in our context, where computational
time is not critical, since the identification is carried out off-
line, is to resort to a redundant constraint removal procedure.
In Method I and II, the set membership constraints are
nonlinear in the optimization variable θi1 . However, for each p
the corresponding FPS features 2N inequalities that are linear
in the entries of θip . Therefore, we can split

hp,o(θi1) ∈ Θip , ∀p,

into
θip ∈ Θip ∧ θip = hp,o(θi1), ∀p,

and then carry out a redundant constraint removal routine on
each set of linear constraints θip ∈ Θip for p ∈ [1, p̄].

In [22], a comparative analysis of different redundant con-
straints identification approaches is presented. We tried in
our tests the one described in [5], which is based on the
minimization of each linear constraint function, subject to the
remaining constraints. Then, if the obtained optimal value is
positive, the constraint is marked as redundant and can be
removed from the set. This method requires the solution of as
many LPs as the number of original constraints, for each FPS.
However, in our tests it consistently reduces the total number
of constraints we are dealing with.

V. STATE-SPACE PREDICTOR FORM

When the state is measurable, we can identify a predictor
model of the form (1), where C is replaced by the identity
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matrix. Therefore, the p-steps-ahead i-th output is:

zi(k+p) = xi(k+p) = CiA
px(k)+Ci

p∑
j=1

Aj−1Bu(k+p−j),

(39)
where Ci is the i-th row of the identity matrix. We form the
regressor ψp ∈ Rn+mp as:

ψp(k) =
[
x(k)T u(k)T u(k + 1)T · · · u(k + p− 1)T

]T
,

and the parameter vector θ0
ip
∈ Rn+mp is:

θ0
ip =

[
CiA

p CiA
p−1B CiA

p−2B . . . CiAB CiB
]T
.

Then, (39) can be written as zi(k + p) = ψp(k)T θ0
i1

.
Note that, differently from the ARX form considered in the
previous sections, the regressor is now the same for all the n
output equations. The noise-corrupted measure of the system
state is y(k) = z(k) + d(k). We define the one-step-ahead
model as:

ẑi(k + 1) = ϕ1(k)T θi1 , (40)

where ϕ1(k) =
[
y(k)T u(k)T

]T ∈ Rn+m, and θi1 =

[CiA CiB]
T ∈ Rn+m. Then, the multi-step predictors are ob-

tained by iteration of (40), and their parameters are polynomial
functions of the parameters of the one-step-ahead predictor,
denoted as θip = hp,n(θi1) ∈ Rn+mp.
Under Assumptions 1-2, the regressor ψp belongs to a compact
set Ψp:

ψp(k) ∈ Ψp ⊂ Rn+mp, Ψp compact, ∀p ∈ N, ∀k ∈ Z,

and ϕp belongs to a compact set Φp:

ϕp(k) ∈ Φp = Ψp ⊕ Dp, ∀p ∈ N, ∀k ∈ Z,

where Dp
.
=
{[
dT , 0, . . . , 0

]T
: |d|≤ d̄0

}
.

The sampled data set is defined as:

Ṽ N
ip

.
=

{
ṽip(k) =

[
ϕ̃p(k)
ỹip(k)

]
, k = 1, . . . , N

}
⊂ R1+n+mp,

with ỹip(k)
.
= ỹi(k + p), and its continuous counterpart is:

Vip
.
=

{
vip =

[
ϕp
yip

]
: yip ∈ Yip(ϕp), ∀ϕp ∈ Φp

}
⊂ R1+n+mp,

where Yip(ϕp) ⊂ R is the compact set of all the possible i-th
output values corresponding to each regressor ϕp ∈ Φp, and
to every possible noise realization di : |di|≤ d̄0i . Assumption
5 and its consequences apply also here, as in Section II-B.
Moreover, all the results presented in Section III can be
straightforwardly extended to the case of the predictor defined
in (40). The main difference is that here the statement of
Corollary 1 becomes λip = d̄T0

∣∣(CiAp)T ∣∣ ≤ ∥∥d̄0

∥∥
1
Liρ

p+1
i ,

and thus (20) becomes L̂i = L′i/‖d̄‖
1
.

Furthermore, also the results presented in Section III-E can
be extended to the predictor model defined by (40). Here,
going through the same reasoning of (26)-(28) leads to:

|zi(k + `p̄+ j)− ẑi(k + `p̄+ j)| ≤ τ̂i`p̄+j
(θi`p̄+j

) ≤

≤ τ̂ip̄(θip̄)

`−1∑
m=0

χmi,p̄ +
∥∥d̄∥∥

1

∑̀
m=1

χmi,p̄ + ‖τ̂j‖1 χ
`
i,p̄,

where τ̂j =
[
τ̂1j (θ1j ), . . . , τ̂nj (θnj )

]T
and χi,p̄ = L̂iρ̂

p̄+1
i .

Theorem 2 and the related Remarks and Lemmas apply
straightforwardly to (40), with minor modifications: the con-
vergence condition of Theorem 2 is here given by |χi,p̄| =∣∣∣L̂iρ̂p̄+1

i

∣∣∣ < 1, and (30) becomes

τ̂i∞(θip̄) = τ̂ip̄(θip̄)

(
1

1− χi,p̄

)
+
∥∥d̄∥∥

1

(
χi,p̄

1− χi,p̄

)
.

Lemma 1 and Remark 6 still apply, but here τimax has to be
replaced with ‖τ̂j‖1.
Finally, θ̂i1 is identified resorting to the methods presented in
Section IV, and the estimated system matrices Â ≈ A and
B̂ ≈ B are built as:

Â =


θ̂

(1:n)
11

...
θ̂

(1:n)
n1

 , B̂ =


θ̂

(n+1:m)
11

...
θ̂

(n+1:m)
n1

 ,
where θ̂(j:l)

i1
denotes the elements of vector θ̂i1 from the j-th

entry to the l-th entry.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation results

We first assess the performance of the proposed identifi-
cation procedure in a numerical example, and compare the
results with those of established identification approaches:
the prediction error method (PEM), and the simulation error
method (SEM). PEM approach identifies the model parameters
by minimizing the squared `2-norm of the one-step-ahead
prediction error. SEM approach is based on the minimization
of the squared `2-norm of the simulation error, where the
simulation of the system output is obtained by iteration of
the prediction model, and corresponds to the unconstrained
version of (38). More details can be found e.g. in [28] or
[31]. The numerical example analyzed here also gives insight
on the procedures proposed in Section III-C.

We consider the following one input, three outputs under-
damped asymptotically stable system in continuous time t:

ẋ(t) =

0 0 −160
1 0 −24
0 1 −10.8

x(t) +

160
0
0

u(t)

y(t) = x(t) + d(t)

(41)

The system eigenvalues are: s1 = −10 and s2,3 = −0.4 ±
i3.98, and the output measurements are affected by uniformly
distributed random noise, with d̄0 = [1 1 0.1]T . The input
takes value in the set {−1; 0; 1} randomly every 4 time
units. The considered data set is composed of 10000 input
and output data points collected with a sampling frequency of
10 samples per time unit. The first half of the data set is used
for the identification phase, while the second half is used for
validation.

To carry out a complete analysis, we consider both the ARX
model formulation and the state-space one. In Procedure 1,
we start with a guess of the noise bound d̄ = [0.7 0.7 0.07]

T ,
and compute the corresponding values of λip , for p ∈ [1, 150],
resorting to (15). The results are depicted in Fig. 1 for the ARX
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Fig. 1. Numerical example: estimated values of λip with d̄ =

[0.7 0.7 0.07]T for the ARX predictor case. Solid line: λ1p
; dashed line:

λ2p
; dotted line: λ3p

.
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0

0.1

0.2
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Step p

0

0.1

0.2
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Step p

0

0.1

0.2

(a)

(b)

(c)

Fig. 2. Numerical example: estimated values of λip with d̄ = [1 1 0.1]T for
the ARX predictor case. Solid line: λ1p

; dashed line: λ2p
; dotted line: λ3p

.
Fig. (a): o = 4; fig. (b): o = 3; fig. (c): o = 2. The dashed vertical lines
indicate the value of p̄ = max

i
p̄i obtained for the chosen d̄, and are used to

set o at the lowest possible value such that all λip = 0, ∀p > p̄.

case; a similar behavior is obtained for the state-space model.
As predicted by Theorem 1, λp converges to [0.3 0.3 0.03]

T ,
which corresponds to d̄0i−d̄i. Then, we set the noise bound to
d̄ = [1 1 0.1]

T , which is indeed consistent with the real one.
Fig. 2 depicts the results of Procedure 2. It correctly indicates
o = 3 as the minimum model order of the ARX predictors.
Then, we carry out Procedure 3 to estimate the parameters
L̂i and ρ̂i of the exponentially decaying trend, see (19) and
(20). For the ARX predictor, the resulting parameters are L̂ =
[3.094 2.162 0.259]

T and ρ̂ = [0.959 0.959 0.959]
T , while for

the state-space case we obtain L̂ = [3.982 0.956 0.092]
T and

ρ̂ = [0.961 0.965 0.961]
T . Fig. 3 shows the estimated decay

bounds over the corresponding values of λip for the ARX
model structure. Similar results are obtained for the state-space
structure. The parameters of the predictors are eventually

0 50 100 150
Step p

0

0.5

1

1.5

2

2.5

3

Fig. 3. Numerical example: estimated values of λip and of the corresponding
bound L̂iρ̂

p
i for the ARX predictor case. Solid line: λ1p

; dashed line: λ2p
;

dotted line: λ3p
. The exponentially decaying bounds are represented with thin

continuous lines which lie over the corresponding λip .
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Fig. 4. Numerical example: guaranteed simulation error bound τ̂2p on ẑ2
for the ARX predictor. Dotted line with ‘+’: Method I; solid line with ‘�’:
Method II; dashed line with ‘�’: SEM approach; dash-dot line with: ‘◦’: PEM
approach.
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Fig. 5. Numerical example: worst-case validation error e2p on ẑ2 for the
ARX predictor. Dotted line with ‘+’: Method I; solid line with ‘�’: Method II;
dashed line with ‘�’: SEM approach; dash-dot line with: ‘◦’: PEM approach.
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TABLE I
NUMERICAL EXAMPLE: GUARANTEED SIMULATION ERROR BOUND AND
WORST-CASE PREDICTION ERROR ON VALIDATION DATA FOR THE ARX

PREDICTOR.

i=1 i=3

p: 1 8 19 27 1 12 35 50

SEM τip 8.11 2.72 8.13 6.10 0.76 1.20 0.45 0.22
eip 4.11 1.90 4.06 3.27 0.46 0.61 0.30 0.19

Method II τip 6.26 5.03 7.36 5.92 0.79 0.91 0.40 0.24
eip 3.15 4.01 4.17 3.40 0.36 0.39 0.24 0.18

TABLE II
NUMERICAL EXAMPLE: GUARANTEED SIMULATION ERROR BOUND AND

WORST-CASE PREDICTION ERROR ON VALIDATION DATA FOR THE
STATE-SPACE PREDICTOR.

i=1 i=3

p: 1 12 35 50 1 8 19 27

SEM τip 9.97 13.9 6.34 3.45 0.27 0.64 0.29 0.31
eip 4.58 8.85 3.21 2.47 0.21 0.38 0.25 0.27

Method II τip 6.45 7.55 3.41 2.21 0.27 0.31 0.16 0.13
eip 3.03 3.54 2.04 1.76 0.18 0.19 0.15 0.13

identified using Methods I and II, and the FPS are defined
as in (22), where ˆ̄εip is obtained from λip with α = 1.2, see
(21). As benchmark, we employ predictors identified using the
PEM and SEM approaches. We compare the performance of
the identified models in terms of guaranteed simulation error
bounds τ̂ip(θip), computed over the identification data set with
γ = 1.1, and of worst-case validation error, defined as:

eip = max
k=1,...,N

|ỹi(k + p)− ẑi(k + p)|

and calculated over the validation data set. Fig. 4 depicts
the obtained guaranteed error bounds related to the output
z2 for the identified ARX models, while Fig. 5 presents the
corresponding observed worst-case validation error. It can be
noted that the model identified with Method I achieves (as
expected from the employed cost criterion) the smallest worst-
case (over p) guaranteed error bound, however at the cost of
a higher guaranteed bound for longer horizon, as compared
to Method II and SEM. Qualitatively similar outcomes are
obtained for the other outputs and for the state-space model
structure. More values of τ̂ip and eip are reported in Tables I
and II. These results indicate that the proposed identification
Method II has comparable, and often better, performance with
respect to the SEM approach, in terms of both error bound
and observed validation error, and overall better performance
than the other two approaches. In particular, we notice that the
predictor identified using Method II has good performance in
long-range simulation, as the SEM approach, but also with
better performance for short horizon values, outperforming
the SEM. In particular, Fig. 5 and Tables I and II show how
the predictor identified using Method II is able to provide
small one-step-ahead prediction error, as the PEM approach,
and small simulation error, as the SEM approach, combining

(a)

4880 4890 4900 4910 4920 4930 4940 4950

Data points number

-5

0

5

(b)

4980 4985 4990 4995 5000

Data points number

-0.1

0

0.1

Fig. 6. Numerical example, Fig. (a): simulated output ẑ2 with the ARX
predictor; Fig. (b): detailed view. Black solid line: measured output ỹ2; red
solid line: real system output z2; dashed line: simulated output with SEM
predictor; dash-dotted line: simulated output with PEM predictor; dotted line:
simulated output with Method II predictor.

the advantages of the two identification approaches. This is
possible thanks to the constraints θi1 ∈ ΘLρ

i1
in (38), which

are able to improve the performance over the SEM approach in
terms of one-step-ahead prediction error. The model identified

(a)
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(b)
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Fig. 7. Numerical example, Fig. (a): one-step prediction of output ẑ2 with
the ARX predictor (p = 1); Fig. (b): simulated output ẑ2 with the ARX
predictor. Black solid line: measured output ỹ2; red solid line: real system
output z2; dashed line: predicted/simulated output with Method II predictor;
thin black lines: Method II predictor error bounds.

using Method I, on the other hand, obtains a lower simulation
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error for short horizon with respect to the other approaches,
at the cost of a higher simulation error for longer horizon.
This stems from the fact that we are minimizing the worst-
case error over the whole horizon. Using a quadratic cost in
(35) in order to minimize the average error, as commented in
Remark 7, could partly improve this issue.

Besides the worst-case performance, Tables III and V
present exemplifying values of the root mean squared error
(RMSE) for the predictors obtained using different identifica-
tion methods, having respectively an ARX and a state-space
formulation. The RMSE is calculated over the validation data
set as:

RMSE =

√√√√∑N
k=1

(
ỹi(k + p)− ẑi(k + p)

)2

N
,

i.e. it considers the p-steps-ahead simulation error. The results
in the tables confirm the good performance of Method II,
since the obtained predictor yields better (for short horizon) or
similar RMSE as compared with SEM. The predictor identified
with Method I has good performance for short simulation
horizons, but its error increases for longer ones.

0 50 100 150 200 250 300 350 400
Step p
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5
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Fig. 8. Numerical example: infinite-horizon error bound τ̂2p for the ARX
predictor identified using Method II. Solid line: bound calculated using (24)
for p ∈ [1, 120]; dotted line with ‘◦’: iterative bound (29) with p̄ = 80;
dashed line with ‘◦’: infinite-horizon bound (30) with p̄ = 80; dotted line
with ‘�’: iterative bound with p̄ = 100; dashed line with ‘�’: infinite-horizon
bound with p̄ = 100.

TABLE III
NUMERICAL EXAMPLE, VALIDATION DATA: ROOT MEAN SQUARE ERROR

FOR p-STEP-AHEAD PREDICTION AND SIMULATION FOR ARX MODELS.

RMSE p = 1 p = 10 p = 20 p = 30 p = 60 sim

y1 5.539 21.42 26.32 27.77 30.27 30.56
PEM y2 0.930 1.287 1.636 1.775 1.923 1.937

y3 0.097 0.179 0.222 0.234 0.246 0.248

y1 1.523 1.651 1.366 0.728 0.620 0.580
SEM y2 1.018 0.935 0.787 0.667 0.661 0.577

y3 0.159 0.185 0.163 0.082 0.065 0.059

y1 0.979 1.661 1.431 1.344 1.403 1.411
Method I y2 0.946 0.987 0.983 1.016 1.148 1.176

y3 0.095 0.101 0.100 0.102 0.109 0.119

y1 1.178 1.278 1.082 0.894 0.898 0.897
Method II y2 0.978 0.941 0.750 0.589 0.577 0.573

y3 0.130 0.134 0.106 0.064 0.060 0.059

Fig. 6 presents an example of time-course of the system out-
put z2, comparing the real, measured and simulated values. In
the detailed view of Fig. 6 (b) it is possible to appreciate how
the simulation obtained using Method II predictor overlaps
the true system output z2. Fig. 7 displays an other example
of time-course of the system output, comparing the real and
measured values with the one-step-ahead prediction, Fig. 7
(a), and with the long-range simulation, Fig. 7 (b), reporting
in both cases the corresponding error bounds. From Fig. 7 (b)
it is possible to notice that the guaranteed error bound for the
long-range simulation case is smaller than the amplitude of the
noise d. Thus, the distance of ỹ2 from z2 is often greater then
the error bound of ẑ2. Fig. 8 depicts the comparison between
the simulation error bound τ̂2p calculated using the definition
(24) for p ∈ [1, 120], the iterative error bound (29) and the
infinite-horizon error bound (30), obtained setting p̄ = 80 and
p̄ = 100, for the case of the predictor having an ARX structure,
identified using Method II. Here, it is possible to notice that
the iterative and the infinite-horizon error bounds become a
tighter upper-bound of τ̂2p , obtained from its definition, as p̄
increases.
Fig. 9 shows the effects of the choice of α in (21) on the
identification performance. Here, different values of α are
used, repeating the identification procedure using Method II,
and computing the simulation error bound τ̂2p for the obtained
models. It is possible to see that for α = 1 the obtained FPS
is too small, resulting in a validation error e2p that violates the
provided error bound, as motivated by Remark 3. Moreover,
we can see that, with a smaller α, the constraint θi1 ∈ ΘLρ

i1
provides a reduced error for short prediction horizons, at the
price of an increase of the error for longer horizons, whereas a
bigger value of α obtains the opposite effect. Table IV presents
the RMSE obtained by models identified using Method II with
different values of α. Here, it is possible to appreciate that a
small increase of α reduces the simulation RMSE, but the
improvements significantly reduce after a certain value (e.g.
α = 1.2 for y1 and y3), making it useless to choose a greater
α, which will only provide an increase in the one-step-ahead
error, as shown from Fig. 9.
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Fig. 9. Numerical example: worst-case validation error e2p and guaranteed
simulation error bound τ̂2p on ẑ2 for the ARX predictor identified using
Method II for different values of α. Solid line: e2p for α = 1.0; dashed
line: e2p for α = 1.1; dotted line: e2p for α = 1.2; light gray area: τ̂2p
for α = 1.0; medium gray area: τ̂2p for α = 1.1; dark gray area: τ̂2p for
α = 1.2.

Finally, Tables VI and VII report a comparison between the
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TABLE IV
NUMERICAL EXAMPLE, VALIDATION DATA: SIMULATION ROOT MEAN

SQUARE ERROR FOR ARX MODELS FOR DIFFERENT VALUES OF α.

RMSE α: 1.0 1.05 1.1 1.15 1.2 1.25 1.3

y1 2.67 1.89 1.70 1.50 1.29 1.27 1.27
Method II y2 0.70 0.57 0.57 0.57 0.57 0.57 0.57

y3 0.14 0.08 0.07 0.07 0.06 0.06 0.06

eigenvalues and the A and B matrices of the discrete-time
system, obtained applying the trapezoid approximation rule to
(41), and those of the model identified with the state-space
predictors, for the various identification approaches.

TABLE V
NUMERICAL EXAMPLE, VALIDATION DATA: ROOT MEAN SQUARE ERROR

FOR p-STEP-AHEAD PREDICTION AND SIMULATION FOR STATE-SPACE
MODELS.

RMSE p = 1 p = 10 p = 20 p = 30 p = 60 sim

y1 1.041 1.437 1.790 1.947 2.181 2.214
PEM y2 0.657 0.673 0.731 0.776 0.821 0.832

y3 0.067 0.067 0.070 0.073 0.078 0.078

y1 1.501 1.342 2.085 1.422 0.747 0.627
SEM y2 0.824 0.907 0.612 0.663 0.604 0.607

y3 0.073 0.099 0.079 0.079 0.075 0.075

y1 1.067 1.110 1.272 1.184 1.242 1.260
Method I y2 0.716 0.646 0.630 0.638 0.647 0.654

y3 0.067 0.065 0.061 0.062 0.063 0.064

y1 1.061 1.069 1.026 0.730 0.604 0.584
Method II y2 0.726 0.620 0.600 0.600 0.582 0.584

y3 0.069 0.065 0.060 0.060 0.059 0.059

TABLE VI
NUMERICAL EXAMPLE: REAL AND IDENTIFIED SYSTEM EIGENVALUES.

Eigenvalues

True system (trapezoid approximation) 0.889± i0.369 , 0.333

PEM (state-space predictor) 0.877± i0.369 , 0.020

SEM (state-space predictor) 0.885± i0.372 , 0.723

Method I (state-space predictor) 0.884± i0.369 , 0.349

Method II (state-space predictor) 0.885± i0.373 , 0.213

B. Experimental case study

Here, we present the results obtained with the proposed
identification approach applied to data acquired from real-
world test flights of a small-scale prototype of an autonomous
tethered aircraft, used for Airborne Wind Energy (AWE)
generation, see Fig. 10 and [10]. We focus on the identification
of a model of the roll-rate dynamics of the aircraft, resorting
to a data set collected during several experiments. The data
acquisition begins right after the take-off phase of each test
flight, when the aircraft starts performing eight-shaped flight
patterns parallel to the ground. The system description, along

TABLE VII
NUMERICAL EXAMPLE: REAL AND IDENTIFIED SYSTEM PARAMETERS.

A B

True system (trapezoid
approximation)

0.979 −0.564 −9.335
0.096 0.895 −1.964
0.004 0.058 0.265

 15.91
0.785
0.021


SEM

(state-space predictor)

1.095 −1.882 3.252
0.090 0.976 −2.819
0.006 0.039 0.422

  15.21
0.817
−0.016


Method II

(state-space predictor)

0.963 −0.448 −10.38
0.111 0.760 −0.647
0.003 0.059 0.261

 16.03
0.557
0.031



Fig. 10. Experimental case study: considered tethered aircraft during an
autonomous take-off maneuver.

with more detail about the measurements and data set acqui-
sition, is available in [10].

As a first approximation, the dynamical equation for the roll
angle of the aircraft is given by:

σ̈(t) = aσσ̇(t) + bσu(t), (42)

where aσ and bσ are parameters to be identified, and u(t) is
the control input for the ailerons. Equation (42) is a reasonable
linear approximation of the nonlinear turning dynamics when
the aircraft flies parallel to the ground, as in the considered
experiments. The aircraft is autonomous, i.e. it features a
feedback controller that manipulates the aileron, rudder, and
front propeller to achieve the desired figure-of-eight patterns,
which are typical of AWE applications. The data set includes
measures of the roll rate and of the ailerons input signal,
acquired with a sampling frequency of 50 Hz, given by ỹ(t) =
x(t) + d(t), where d(t) is the unknown measurement noise,
and ũ(t), respectively. The identification data set is composed
of 11000 samples of each signal, while the validation data set
features 6600 data points.

Since the system state is measurable, we resort to a state-
space form predictor of order 1. We apply Procedures 1
and 3, obtaining d̄ = 0.82, L̂ = 1.31, ρ̂ = 0.995 and
p̄ = 691. Fig. 11 depicts the behavior of the error bound
λp after the estimation of the disturbance bound d̄. Then, we
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resort to Method II to identify the unknown parameters of
(42), obtaining âσ = 0.959 and b̂σ = 0.120, and we test
the predictor performance against PEM and SEM approaches.
Figs. 12 and 13 show a performance comparison in terms of
guaranteed simulation error bound τ̂p and validation error ep,
while Fig. 14 presents an example of time-course of the roll
rate, both measured (validation data) and simulated. Table VIII
shows the RMSE for different horizon lengths. These results
confirm that the predictor identified with Method II represents
a good trade-off between the PEM and the SEM approaches,
combining the one-step-ahead accuracy of the first, with the
simulation accuracy over longer horizons of the latter.
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Fig. 11. Experimental case study: estimated value of λp using a predictor in
the state-space form.
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Fig. 12. Experimental case study: guaranteed simulation error τ̂p. Solid line
with �: Method II; dashed line with �: SEM approach; dash-dotted line with
◦: PEM approach.
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Fig. 13. Experimental case study: validation error ep. Solid line with �:
Method II; dashed line with �: SEM approach; dash-dotted line with ◦: PEM
approach.

TABLE VIII
EXPERIMENTAL CASE STUDY: ROOT MEAN SQUARE ERROR.

RMSE p = 1 p = 2 p = 10 p = 20 p = 30 p = 60 sim

PEM 0.0477 0.0811 0.196 0.251 0.264 0.293 0.324

SEM 0.0481 0.0813 0.188 0.227 0.230 0.231 0.232

Method II 0.0478 0.0810 0.189 0.231 0.234 0.232 0.234

36 37 38 39 40 41 42 43 44 45
Time [s]

-0.9

-0.25

0.4

Fig. 14. Experimental case study: simulated roll rate [rad/s] with the state-
space predictor. Solid line: measured roll rate ỹ; dashed line: simulated roll
rate with SEM predictor; dash-dotted line: simulated roll rate with PEM
predictor; dotted line: simulated roll rate with Method II predictor.

VII. CONCLUSIONS

We presented new results pertaining to the identification
of linear systems with guaranteed simulation error bounds,
resorting to a Set Membership framework. The theoretical
findings lead to clear procedures to estimate the noise bound,
model order and system decay trend. Moreover, we derived
a simulation error bound for an infinite simulation horizon,
together with its properties and convergence conditions. This
bound allowed us to demonstrate that it is possible to use the
decay rate constraints to enforce the asymptotic stability of the
identified model. Then, we presented two methods to learn
one-step-ahead prediction models exploiting the estimated
quantities. Numerical simulations illustrate the validity and
the performance of the proposed identification methods, which
we compared to standard PEM and SEM identification ap-
proaches. Furthermore, an experimental case study illustrates
the applicability on real data. Future work will be devoted to
the extension of the proposed identification framework to the
nonlinear case.

APPENDIX

Proof of Theorem 1

From (2), (3), and (11), it follows that:

yip = ψTipθ
0
ip + di =

(
ϕip −∆ip

)T
θ0
ip + di,

where ∆ip ∈ Dip , defined in (12). Thus, (14) can be written as:

ε̄0
ip = min

θip∈Ω
max[ϕip

yip

]
∈Vip

(∣∣∣ϕTip (θ0
ip − θip

)
−∆T

ipθ
0
ip + di

∣∣∣− d̄i) .
(43)
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Since d̄i is a constant, we have:

max[ϕip
yip

]
∈Vip

(∣∣∣ϕTip(θ0
ip − θip)−∆T

ipθ
0
ip + di

∣∣∣− d̄i)
= max[ϕip

yip

]
∈Vip

∣∣∣ϕTip(θ0
ip − θip)−∆T

ipθ
0
ip + di

∣∣∣− d̄i
Then, by defining Σip = ϕTip(θ0

ip−θip)−∆T
ipθ

0
ip +di, we can write:

ε̄0
ip = min

θip∈Ω


max[ϕip

yip

]
∈Vip

(Σip)− d̄i, if Σip ≥ 0

−min[ϕip
yip

]
∈Vip

(Σip)− d̄i, if Σip < 0

By definition, the set Vip always contains at least an occurrence of
ϕ
ip

and y
ip

such that:

ε̄0
ip = min

θip∈Ω

∣∣∣ϕT
ip

(θ0
ip − θip)−∆T

ip
θ0
ip + d̄0i

∣∣∣− d̄i
where

∣∣∣∆ip

∣∣∣ =
[
d̄0i , . . . , d̄0i , 0, . . . , 0

]T . Then, we have that:

max[ϕip
yip

]
∈Vip

(Σip) = ϕT
ip

(θ0
ip − θip) +

∥∥θ0
ip,z

∥∥
1
d̄0i + d̄0i ,

if Σip ≥ 0

min[ϕip
yip

]
∈Vip

(Σip) = ϕT
ip

(θ0
ip − θip)−

∥∥θ0
ip,z

∥∥
1
d̄0i − d̄0i ,

if Σip < 0

where ϕT
ip

(θ0
ip − θip) ≥ 0 if Σip ≥ 0, and ϕT

ip
(θ0
ip − θip) < 0 if

Σip < 0. Thus, under Assumption 4, the optimal choice of θip that
minimizes the resulting ε̄0

ip is such that ϕT
ip

(θ0
ip − θip) = 0. Thus,

given ϕ
ip

, y
ip

, ∆ip
, and the corresponding optimal choice of θip ,

we have:
ε̄0
ip =

∥∥θ0
ip,z

∥∥
1
d̄0i + d̄0i − d̄i (44)

The term
∥∥θ0
ip,z

∥∥
1
d̄0i represents an upper bound of the free response

of the system to an initial condition given by ∆ip
. For an asymptot-

ically stable system,
∥∥θ0
ip,z

∥∥
1

goes to zero with a decay rate which
is upper bounded by ρi, see (5), leading to:∥∥θ0

ip,z

∥∥
1
d̄0i

p→∞−−−→ 0. (45)

Thus, from (44) and (45), it follows that: ε̄0
ip

p→∞−−−→
(
d̄0i − d̄i

)
.

Finally, from (16a) and (16b), it follows that:

lim
p→∞

λip ≤ lim
p→∞

ε̄0
ip =

(
d̄0i − d̄i

)
,

lim
p→∞

λip ≥ lim
p→∞

ε̄0
ip − η =

(
d̄0i − d̄i

)
− η

which proves the result (17). Note that, when d̄i = d̄0i and o < n,
then λip converges (besides a quantity η that can be made arbitrarily
small with a larger data set) to a non-zero value as p → ∞, due to
model order mismatch. The rationale behind this statement is that,
if o < n, there is at least a pair (ϕip , yip) ∈ Vip such that it is
not possible to find a θip that is able to give ϕTip

(
θ0
ip − θip

)
= 0.

This will introduce an additional non-zero term in (44), making ε̄0
ip

converge to a non-zero value as p→∞.

Proof of Corollary 1
From Theorem 1 it follows that, if d̄i = d̄0i , then ε̄0

ip

p→∞−−−→ 0

and λip
p→∞−−−→ 0. From the proof of Theorem 1, we have that,

if d̄i = d̄0i , for the values ϕ
ip

and y
ip

defined previously, (43)

corresponds to ε̄0
ip =

∥∥θ0
ip,z

∥∥
1
d̄0i . From (22), it follows that ε̄0

ip =∥∥θ0
ip,z

∥∥
1
d̄0i ≤ nd̄0iLiρ

p+1
i , which, combined with (16a), yields

λip ≤ ε̄
0
ip − η ≤ nd̄0iLiρ

p+1
i .

Derivation of equation (26)
Let us denote with ẑ(k + j|k) the j-steps ahead prediction of z
obtained using the measured output up to time k. Then, it is possible
to employ the p̄-steps ahead predictor ẑi(k + p̄+ j|k + j) to obtain
the (k + p̄ + j)-steps ahead prediction of the system output, using
only data up to time instant k, according to

ẑi(k + p̄+ j|k) =



ẑi(k + j|k)
...

ẑi(k + j − o+ 1|k)
u(k + p̄+ j)T

...
u(k + j − o+ 1)T



T

θip̄ . (46)

From (25a) we have that |zi(k + p̄)− ẑi(k + p̄|k)| ≤ τ̂ip̄(θip̄). Since
the regressor in (46) features predicted output values in place of the
measured ones, we are introducing an additional prediction error,
which can be expressed as:

min{j,o}∑
m=1

|yi(k+ j −m+ 1)− ẑi(k+ j −m+ 1|k)| θij−m+1 . (47)

Having hp,o(θi1) ∈ Γip , ∀p ∈ [2, p̄], from Assumptions 2, and
equation (25b), it follows that

∣∣θij−m+1

∣∣ ≤ L̂iρ̂
p̄+m
i , and |yi(k +

j−m+ 1)− ẑi(k+ j−m+ 1|k)| ≤ τ̂ij−m+1(θij−m+1) + d̄i. Thus,
(47) can be upper-bounded by

min{j,o}∑
m=1

(
τ̂ij−m+1(θij−m+1) + d̄i

)
L̂iρ̂

p̄+m
i . (48)

Finally, adding (48) to the p̄-steps ahead error bound τ̂ip̄(θip̄) leads
to (26).

Proof of Theorem 2
Equation (29) can be written as τ̂i`p̄+j (θi`p̄+j ) ≤
τ̂ip̄(θip̄)

∑`−1
m=0 χ

m
i,p̄ + d̄i

(∑`
m=0 χ

m
i,p̄ − 1

)
+ τimax{j,`o}χ

`
i,p̄.

The geometric series
`−1∑
m=0

χmi,p̄ converges to 1
1−χi,p̄

as ` → ∞ if

|χi,p̄| < 1. Moreover, τimax{j,`o}χ
`
i,p̄

`→∞−−−→ 0, if |χi,p̄| < 1. This
leads to (30).

Proof of Lemma 1
In (32), the terms multiplying τ̂ip̄ and d̄i are truncated geometric
series, so that τ̂i`p̄+j converges to τ̂i∞ from below as `p̄+ j →∞.
The last term is instead a vanishing element, since χ`i,p̄ is, and it
converges to zero from above as ` → ∞. Thus, it is possible that
τ̂i`p̄+j > τ̂i∞ for some ` and j under which (32) has a negative result.
Since τimax{j,`o} ≤ τimax , by imposing condition (32) > 0, where
τimax{j,`o} is replaced by τimax , one finds (33), which defines the
values of τimax guaranteeing that τ̂i`p̄+j (θi`p̄+j ) ≤ τ̂i∞(θip̄), ∀`, j.

Proof of Theorem 3
Under Assumption 1, system (1) is BIBO stable, meaning that

∃M > 0 : |zi(k)| < M, ∀k ∈ Z, (49)

for any initial conditions and for any bounded input signal. Given an
ARX predictor defined by its parameter vector θi1 , if hp,o(θi1) ∈
Γip , ∀p ∈ [2, p̄] and condition (31) holds, then its infinite-horizon
simulation error is bounded by a finite quantity τ̂i∞ . Moreover, if
condition (31) holds, it is possible to calculate a bound for the
simulation error for any horizon length, resorting to (29), and said
bound is finite. This implies that

∃M > 0 : |zi(k)− ŷik (k|1, θi1)| < M, ∀k ∈ Z. (50)
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From (49) and (50), it follows that ∃M > 0 : |ŷik (k|1, θi1)| <
M, ∀k ∈ Z, meaning that the predictor ŷik (k|1, θi1) is BIBO
stable as well. Since the considered predictor (7) is an ARX model,
it is completely observable and reachable, therefore (7) is also
asymptotically stable.
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