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On Synchronization of Dynamical Systems over
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Abstract—In this paper, we aim to investigate the synchroniza-
tion problem of dynamical systems, which can be of generic linear
or Lipschitz nonlinear type, communicating over directed switch-
ing network topologies. A mild connectivity assumption on the
switching topologies is imposed, which allows them to be directed
and jointly connected. We propose a novel analysis framework
from both algebraic and geometric perspectives to justify the
attractiveness of the synchronization manifold. Specifically, it
is proven that the complementary space of the synchronization
manifold can be spanned by certain subspaces. These subspaces
can be the eigenspaces of the nonzero eigenvalues of Laplacian
matrices in linear case. They can also be subspaces in which the
projection of the nonlinear self-dynamics still retains the Lips-
chitz property. This allows to project the states of the dynamical
systems into these subspaces and transform the synchronization
problem under consideration equivalently into a convergence one
of the projected states in each subspace. Then, assuming the
joint connectivity condition on the communication topologies,
we are able to work out a simple yet effective and unified
convergence analysis for both types of dynamical systems. More
specifically, for partial-state coupled generic linear systems, it is
proven that synchronization can be reached if an extra condition,
which is easy to verify in several cases, on the system dynamics
is satisfied. For Lipschitz-type nonlinear systems with positive-
definite inner coupling matrix, synchronization is realized if the
coupling strength is strong enough to stabilize the evolution of
the projected states in each subspace under certain conditions.
The above claims generalize the existing results concerning both
types of dynamical systems to so far the most general framework.
Some illustrative examples are provided to verify our theoretical
findings.

Index Terms—Synchronization control, directed switching
topology, linear generic system, Lipschitz-type nonlinear system.

I. INTRODUCTION

Over the last couple of years, consensus and synchronization
problems have been popular subjects in systems and control
[8], [10], [12], inspired by their applications in physics, social
sciences, biology, and engineering [4], [5], [9]. The essence
of these kinds of problems is the collective objective to
reach agreement about some variables of interest [6], [7],
[11], [12]. A widely used control protocol to achieve the
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above-mentioned goal is the linear controller using nearest
neighbors’ information [25]. In determining the collective
behavior using the distributed linear controller, three different
factors are fundamental, namely, the self-dynamics, the cou-
pling configuration (e.g., type and strength of couplings), and
the coupling topology [3], [10]. To date, intensive analyses
on such issues as how these factors influence the collective
behaviors of networked systems has been conducted and
fruitful conclusions have been obtained. Synchronization over
switching communication topology is one of these issues and
is attracting great attentions. So far, necessary and/or sufficient
connectivity conditions to achieve consensus for first-order
dynamics have been very well developed, e.g., [1], [8], [13],
[22], [30], [36], [37]. Unfortunately, when it comes to higher-
order linear systems or nonlinear systems with complex self-
dynamics and coupling configuration, there are still many
open problems. We aim to further address synchronization of
dynamical systems over switching topology driven by static
controller in this work.

For inter-connected generic linear systems and nonlinear
systems, (common/multiple) Lyapunov method is commonly
adopted to perform synchronization analysis [15], [21]. The
Lyapunov function is appropriately designed such that the
factors as coupling topology are involved [18]. The difficulty
of applying Lyapunov method is each switched sub-system
may not be a convergent one (because the Laplacian matrix
has multiple zero eigenvalues). To overcome this difficulty, it
is usually required that the communication graph has a well
connectivity property [18], [19], [21]. Specifically, in [21]
synchronization among partial-state coupled identical linear
systems (viz., input matrix is not invertible) using dynamic
controller is investigated, where the communication topology
is assumed to have a well-defined average that is connected. In
[18], the authors seek synchronization via multiple Lyapunov
function approach assuming that the communication graph is
frequently connected, that is, the graph is connected over at
least one sub-interval for a period of time. Matrix inequalities
are proposed with respect to system matrix and Laplacian ma-
trix to guarantee practical synchronization [20] in the presence
of input disturbance, where the communication graph remains
connected all the time. Very recently, a dynamic controller is
designed in [19] to address the bounded synchronization for
uncertain linear systems which communicate over frequently
connected undirected graphs.

The contraction analysis [14], [15] is another approach to
dealing with synchronization problem over switching topology.
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This approach focuses on deriving the contraction property of
synchronization error/disagreement vector. In particular, it is
aimed to show that the synchronization error decreases strictly
over sufficiently long time, usually with mild connectivity
condition at the cost of additional constraints on system
model [14] or stringent sufficient algebraic condition [15].
Specifically, ref. [14] considers the synchronization problem
among nonlinear system dynamics, which satisfies Lipschitz
condition. By considering the contraction of the norm of the
state deviation, the factors related to nonlinear system dynam-
ics, switching communication graph that is jointly strongly
connected, and coupling strength are implicitly involved in the
sufficient condition taking algebraic form. In ref. [15], similar
technique to that used in [14] is applied to derive synchro-
nization condition with relaxed joint connectivity condition.
However, from the sufficient algebraic condition provided
therein, one may not figure out how the switching scheme,
the coupling topology as well as the coupling strength influ-
ence the synchronization behavior, which is one of the most
fundamental issues in examining the collective behavior of
dynamical systems. Although ref. [17] succeeds in addressing
this issue by working on the networks of linear systems under
mild constraint on communication topology, it is, however,
assumed that the input matrix is invertible.

In this paper, we propose a novel analysis framework,
which is totally different from most existing works, from
an unified algebraic and geometric perspective to revisit the
synchronization problems for both generic linear systems
and Lipschitz-type nonlinear systems over switching directed
topologies. It is interesting to observe that the complementary
space of the synchronization manifold can be spanned by
certain subspaces. These subspaces can be the eigenspaces
of the nonzero eigenvalues of Laplacian matrices induced
from communication topologies in linear case. They can also
be subspaces in which the projection of the nonlinear self-
dynamics still retains the Lipschitz property. This allows us
to project the states of the systems onto these subspaces.
Subsequently, to guarantee synchronization, it suffices to show
that the states of the systems vanish along each of these
subspaces by employing techniques developed from matrix
analysis and stability theory. To the best of our knowledge, no
approach has been developed so far that can simultaneously
deal with the synchronization analysis of both generic linear
and Lipschitz-type nonlinear systems.

We are able to, with the above analysis framework, tackle
the difficulty confronted by the approach in [27], [28] and [31]
that the associated Laplacian matrices may have eigenvalue
zero with algebraic multiplicity larger than one and cannot
apply Lyapunov function method to the cases with directed
and disconnected topologies. Moreover, different from [15]
and [18] where the contraction analysis is performed directly
with respect to state deviation, we analyze the contraction in
the subspaces in which the projection of nonlinear system dy-
namics still retains Lipschitz property. Hence, the contraction
property, which is guaranteed in [15], [18] by an algebraic
condition, follows easily with strong couplings.

With these observations, we are able to work out the fol-
lowing contributions under a mild joint connectivity condition.

1) It is proven that synchronization for linear partial-state
coupled systems can be achieved if an algebraic con-
dition with regard to system dynamics and Laplacian
matrix is satisfied. This generalizes the results in [27]
and [31] from undirected communication topologies to
the directed case. As a byproduct of the observation
that eigenvalue zero of the graph Laplacian matrix is
semisimple, we show that if the communication graph
switches slowly, then synchronization can be achieved for
a class of marginally stable and positive linear systems
under the joint connectivity condition. A lower bound of
the dwell time is also explicitly specified to guarantee the
synchronization.

2) For Lipschitz-type nonlinear systems, it is found that
with sufficiently strong couplings to ensure the decay
of the projected states onto the subspaces in which the
Lipschitz property of nonlinear system still holds, the
synchronization can be guaranteed. This reveals that the
desynchronization coming from self-dynamics should be
dominated by the synchronization contributed by the
jointly connected communication graph provided a cer-
tain geometric property of the subspaces holds. Although
sufficient conditions that are required to synchronize the
Lipschitz-type nonlinear systems have also been devel-
oped, e.g., in refs. [15] and [18], no such information as
how the self-dynamics, the coupling strength and/or cou-
pling topologies influence the synchronization behavior
have been revealed intuitively and explicitly.

The remainder of the paper is arranged as follows. In Sec-
tion II, we introduce the relevant graph notions and formulate
the problem. Some technical lemmas are provided in Section
III. The evolution analysis of the projection state in a fixed
interval is provided in Section IV, followed by Section V where
we provide the main results on synchronization by invoking
the joint connectivity condition. Some technical analyses of
the main results are presented in Section VI. The paper is
concluded at last in Section VII

Notations: Let ‖x‖ denote the Euclidean norm of a finite
dimensional vector x. Denote by In the identity matrix (if
the subscript is dropped, I denotes the identity matrix of
compatible dimension) and by 0n×n the zero matrix in Rn×n.
Let diag{a1, . . . , aq} denote the diagonal matrix with ai being
the i-th diagonal element. Let Ker(L) and Ran(L) denote the
kernel and range space of a square matrix L, respectively.

II. GRAPH THEORY AND PROBLEM FORMULATION

A. Graph and Matrix Theory Notions

The interaction topology of a collection of systems is repre-
sented by the directed graph G(t) = (V , E(t),W(t)) of order
N with a finite nonempty set of nodes V = {1, 2, . . . , N} , a
set of edges E(t)⊂ V × V , and a weighted adjacency matrix
W(t) =

[
aij(t)

]
∈ RN×N , where aij(t) is the weight, also

called coupling strength in this work, of the directed edge (j, i)
satisfying aij(t) > 0 if (j, i) is an edge of G(t) and aij(t) = 0
otherwise. Moreover, we assume aii(t) ≡ 0 for all i ∈ V .
The Laplacian matrix L(G(t)) of G(t) = (V , E(t),W(t)) is
defined as L(t) = diag{∆1(t), . . . , ∆N(t)} −W(t), where
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∆i(t) = ∑N
j=1 aij(t), i = 1, . . . , N [2]. An important fact

of L(t) is that 1N is a right eigenvector associated with
eigenvalue 0 [2]. A directed path is a sequence of edges in
a directed graph of the form (i1,i2), (i2,i3), . . . , (iq−1, iq). A
digraph has a directed spanning tree if there exists at least
one node, called the root, having a directed path to every other
node.

For simplicity, let {Gk|k ∈ P} denote the set of all possible
interaction graphs, each associated with the Laplacian Lk for
k ∈ P . Herein P = {1, . . . , Q} with Q > 1 being an integer.
Consider an infinite sequence of nonempty, bounded, and con-
tiguous time intervals [tk, tk+1), k = 0, 1, · · · , with t0 = 0 and
tk+1− tk ≤ Tmax where Tmax > 0. In each interval [tk, tk+1),
there is a sequence of non-overlapping subintervals [tk0 , tk1),
[tk1 , tk2), · · · , [tkmk−1 , tkmk

) with tk0 = tk, tkmk
= tk+1

satisfying tkj+1
− tkj

≥ Tmin, 0 ≤ j ≤ mk − 1, for an integer
mk ≥ 1 and a positive constant Tmin which is also coined as
the dwell time in the literature. The digraph G(t) remains
unchanged during each subinterval [tkl

, tkl+1
) and switches

at tkl+1
. In particular, define a right continuous switching

signal σ(t) : [0,+∞) → {1, . . . , Q} and the dynamically
changing digraph is denoted by Gσ(t) = (V , Eσ(t), [a

σ(t)
ij ])

(with Laplacian matrix Lσ(t)).

Definition 1 (Union of Graphs [8]). The union of a collection
of graphs {Gi}

p
i=1, each of order N, is a graph with node

set given by V(Gi), ∀i and edge set given by ∪p
i=1E(Gi). The

union graph across any time interval [tk, tk+1) is defined by
Guni = ∪t∈[tk ,tk+1)

Gσ(t).

Definition 2 (Generalized Eigenvector [32]). If A is an n× n
matrix, a generalized eigenvector of A corresponding to the
eigenvalue λ is a nonzero vector v satisfying (A− λI)pv =
0, for some positive integer p. Equivalently, it is a nonzero
element of the nullspace of (A− λI)p. Specifically, if p = 1,
then the generalized eigenvector becomes the eigenvector.

B. System Model and Problem of Interest

Consider the following partial-state coupled linear systems

ẋi = Axi + φBK
N

∑
j=1

aσ(t)
ij (xj − xi), (1)

while the inter-connected nonlinear systems are described by

ẋi = f (xi) + φ
N

∑
j=1

aσ(t)
ij Γ(xj − xi), (2)

for i = 1, . . . , N, where xi denotes the state of the i-th agent,
A ∈ Rn×n, B ∈ Rn×m, K ∈ Rm×n is the feedback matrix to
be designed, f : Rn → Rn is a continuous function, Γ is a
positive diagonal matrix, and φ > 0 is the coupling strength.

Our objective in this paper is to analyze under what kind
of conditions synchronization can be achieved for (1) and
(2) under the joint connectivity condition, which is stated as
follows.

Assumption 1. There exists a positive constant T such that the
union graph across any time interval with length T contains

a directed spanning tree, i.e., ∪t∈[t0,t0+T)Gσ(t) contains a
directed spanning tree for any t0 ≥ 0.

In view of Assumption 1, assume throughout this paper,
without loss of generality, that the union of communication
graphs over [tk, tk+1) contains a directed spanning tree, that is,
∪t∈[tk ,tk+1)

Gσ(t) contains a directed spanning tree. Besides, our
results to be established also base on the following technical
assumptions.

Assumption 2. The matrix pair (A, B) is stabilizable, i.e.,
there exists a compatible matrix K such that A − BK is
Hurwitz.

Assumption 3. The nonlinear function f (·) satisfies Lipschitz
condition with Lipschitz constant being ρ > 0, i.e., ‖ f (x)−
f (y)‖ ≤ ρ‖x− y‖, ∀x, y ∈ Rn.

Remark 1. Assumption 1 imposes a joint connectivity as-
sumption on switching communication graph, which is milder
than those considered in existing works for synchronization
of linear or Lipschitz-type nonlinear systems [18], [28]. It
is worth pointing out that Assumption 1 is not the weakest
connectivity condition. Weaker constraints on connectivity
include infinite joint-connectivity [36] and extensible joint-
connectivity [37]. Assumption 2 is a necessary condition for
consensusability of linear systems via state-feedback controller
[29], while Assumption 3 is satisfied by many well-known
systems, such as Lorenz systems [18].

III. TECHNICAL LEMMAS

In this section, we shall present several useful results. They
lay the foundation of the analysis framework to be developed
and enlighten the proof of our main results. Please refer to
the Appendix for the proofs of all the lemmas proposed in
this paper.

The following is a result on spectral property of non-
symmetric Laplacian matrix which has been proved earlier
by [26]1.

Lemma 1. Given any Laplacian matrix of a non-negatively
weighted graph, its zero eigenvalue is semi-simple, that is,
the algebraic multiplicity of the zero eigenvalue equals to the
geometric multiplicity.

Lemma 2. Given a collection of non-negatively weighted
graphs {Gi}

p
i=1, each of order N, if ∪p

j=1Gj contains a
directed graph, then 1) ∩p

j=1Ker(Lj) = span{1N} and
2) span{Ran(L1) ∪ · · · ∪ Ran(Lp)} ⊕ span {1N} = RN ,
where Lj is the Laplacian matrix of Gj for j = 1, . . . , p.

Example 1 (An Illustrative Example of Lemmas 1 and 2).
Consider two Laplacian matrices La and Lb which are re-
spectively defined as

La =


0 0 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 , Lb =


0 0 0 0
0 0 0 0
−1 0 1 0
0 0 −1 1

 .

1The result on symmetric Laplacian matrix can be found in [25].
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Fig. 1. Two illustrative graphs Ga and Gb. The union of Ga and Gb contains
a directed spanning tree.
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Fig. 2. Sub-figure (a) depicts the evolution of the system states when the
initial value is chosen to be [0, 0, 0.7071,−0.7071]T, which lies in the range
space of Lb. Sub-figure (b) shows the evolution of the system states when the
initial value is chosen to be [0, 1, 0, 1], which is contained in the kernel space
of Lb.

It is easy to know that Ker(La) is spanned by the vec-
tors v1 = [0, 0, 1, 0]T, v2 = [0, 0, 0, 1]T, and v3 =
[0.7071, 0.7071, 0, 0]T. While Ker(Lb) is spanned by u1 =
[0, 1, 0, 0]T and u2 = [0.5774, 0, 0.5774, 0.5774]T. More-
over Ran(La) is spanned by [0, 1, 0, 0]T, and Ran(Lb) is
spanned by [0, 0, 1, 0]T and [0, 0, 0, 1]T. It is easily verified that
Ker(La) ∩Ker(Lb) = span{1N} and that span{Ran(La) ∪
Ran(Lb)} ⊕ span{1N} = RN .

Lemma 3. Given any linear time-invariant system ẋ =
Hx, x(0) = x0 with H ∈ Rn×n, the following two
propositions hold.

1) Provided there exists a direct sum such that ⊕p
j=1Sj =

Rn with Si being of dimension ni and being invariant with
respect to the linear mapping H. Construct the transformation
matrix

T =

[
v1, . . . , vn1︸ ︷︷ ︸

S1

, . . . , . . .︸ ︷︷ ︸
......

, vn−np+1, . . . , vn︸ ︷︷ ︸
Sp

]
,

where vi is chosen as the basis vector of the invariant subspace
Si, i = 1, . . . , p. Then, ξ̇i = H̃iξi describes the evolution
of PrjSi

(x) 2 with ξi defined by ξ = [ξT
1 , . . . , ξT

p ]
T =

T−1x and H̃i being the sub-matrix of H̃ = T−1HT =
diag

{
H̃1, . . . , H̃p

}
.

2) For any decomposition x = x1 + x2 + · · ·+ xp, where
xi ∈ Si, which is of dimension ni, and ⊕p

j=1Sj = Rn,

2PrjSi
(x) denotes the projection of x into Si . That ξ̇i = H̃iξi describes the

evolution of PrjSi
(x) means ‖ξi(t)‖ = ‖PrjSi

(x(t))‖.

i) if ‖xi(t)‖ ≤ ψ exp{γit}‖xi(0)‖ for each i = 1, . . . , p,
then there exists a positive constant ΘRn(ψ) such that

‖x(t)‖ ≤ ΘRn(ψ) exp{max
i

γit}‖x(0)‖;

ii) if ‖x(t)‖ ≤ ψ exp{γt}‖x0‖, then for each i = 1, . . . , p
and some positive constant ΦSi (ψ) depending on ψ, the
decomposition of Rn, and the state, one has

‖xi(t)‖ ≤ ΦSi (ψ) exp{γt}‖xUB
i (0)‖,

where ‖xUB
i (0)‖ > 0 is a upper bound of ‖xi(0)‖;

iii) given a different decompositions x = y1 + . . . + yq,
where yi ∈ S̄i, which is of dimension n̄i, and ⊕q

j=1S̄j = Rn,
if ‖xi(t)‖ ≤ ψ exp{γit}‖xi(0)‖, then

‖yi(t)‖ ≤ ΦS̄i
(ΘS(ψ)) exp{max

i
γit}‖yi(0)‖,

where S denotes the space of a direct sum of a subset of
{S1, . . . , Sp} that contains S̄i. The subscripts of Θ and Φ
indicate the space with where the corresponding variable
evolves.

It is worth pointing out that the conclusion drawn in 2)
of Lemma 3 can also be applied to an autonomous nonlinear
system. The following remark specifies how to obtain ΦSi (ψ).

Remark 2. ΦSi (ψ) in Proposition ii) of 2) can be
obtained as follows: Let T = [v1, . . . , vn], then
ΦSi (ψ) can be chosen in such a way that ΦSi (ψ) =
maxi σmax(MiT−1)/σmin(T−1)ψ · maxi ‖x0‖/‖xUB

i (0)‖.
Here, Mi is a diagonal matrix having ni 1’s from the
(∑i−1

j=1 nj + 1)-th to the (∑i
j=1 nj)-th entry. σmax(·) and

σmin(·) denote the maximum and the minimum singular value
of a matrix, respectively. It is worth pointing out that ΦSi (·)
relies on the decomposition of Rn and the initial choice of
the upper bound ‖xUB

i (0)‖ to avoid the case xi(t0) = 0,
which is illustrated in the following example.

Example 2. See Fig. 3 for an example where v1 and v2 are
assumed to be the projection states onto two eigenvectors of
H ∈ R2×2. Let u1, u2 be the projection state onto another pair
of basis vectors. Suppose u1 = αv1 + βv2 with α, β ∈ R.
The increase of the norm of projection state onto vi is
described by ‖vi(t)‖ ≤ ψi exp{λi(t − t1)}‖vi(t1)‖ with
ψi, λi > 0 for i = 1, 2. Then, the evolution of u1 can be
given by ‖u1(t)‖ ≤ maxi ψi exp{maxi λi(t− t1)}‖u1(t1)‖
if α and β are nonnegative scalars. Here, ΦSi (ψ) is bounded,
uniformly with respect to the initial value of u1(t). However, if
α > 0, β < 0 and λ1 > λ2, ΦSi (ψ) is not uniformly bounded.
Moreover, it is possible that αv1 + βv2 = 0 in this case. This
is why we choose an upper bound in ii) of proposition 2).

Lemma 4. Given subspaces S1, . . . , Sp, there exists a direct
sum of S̄1, . . . , S̄p̄ such that ⊕ p̄

j=1S̄j = span{∪p
j=1Sj} and

S̄j ⊂ Sk for some k.
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Example 3 (A Demonstration of Lemma 4). Consider the
following two Laplacian matrices:

La =


0 0 0 0
−1 1 0 0
0 0 0 0
−1 0 0 1

 , Lb =


0 0 0 0
0 0 0 0
−1 0 1 0
0 0 −1 1

 .

Ran(La) is spanned by v1 = [0, 1, 0, 0]T and v2 =
[0, 0, 0, 1]T. While Ran(Lb) is spanned by u1 = [0, 0, 1, 0]T

and u2 = [0, 0, 0, 1]T. It is easy to verify that Ran(La) ∩
Ran(Lb) = span{[0, 0, 0, 1]T}. One then obtains S1 =
span{[0, 1, 0, 0]T}, S2 = span{[0, 0, 0, 1]T}, and S3 =
span{[0, 0, 1, 0]T}.

We shall explain in Sections IV and V how to employ
Lemmas 1 to 4 to conduct the analysis. Note that under
joint connectivity condition, Lemmas 2 and 4 tell us that the
space complementary to the synchronization manifold can be
written into the direct sum of subspaces (see an illustration
in Fig. 3). These subspaces can be the eigenspaces of the
nonzero eigenvalues of Laplacian matrices in linear case. They
can also be subspaces in which the projection of the nonlinear
self-dynamics still retains the Lipschitz property. Although the
underlying topology might be disconnected at any time, in
the subspaces mentioned above, the convergence property can
be guaranteed. Then, one can invoke Lemma 4 to extend the
above convergence property to the complementary space of
the synchronization manifold.

S1

S2 v

v1

v2

Fig. 3. Suppose we have two subspaces s1 (the blue one) and s2 (the red one),
whose direct sum is the complementary space of synchronization manifold.
Suppose from [t0, t1), the norm of the projected state onto s1 decreases while
that of the projected state onto s2 may increase. Then, from [t1, t2), the norm
of the projected state onto s2 decreases while that of the projected state onto
s1 may increase. With this process continuing, it is possible to finally draw
the conclusion that the projected state converges to zero if the decrease of the
norm dominates its increase.

Lemma 5. The matrix pair (C, A) is observable if and only
if (C, A−ΠC) is observable for any compatible matrix Π.

Finally, we introduce a useful result on how to construct the
eigenvectors of zero eigenvalues of a Laplacian matrix. The
following notations and definitions are needed: Let R(j) be
the set containing j and all other nodes i such that there exists
a directed path from j to i. A set R of nodes in a graph will be
called a reach if it is a maximal reachable set; in other words,
R is a reach if R = R(i) for some i and there is no j such that
R(i) ⊂ R(j) (properly). For each reach Ri of a graph, define

the exclusive part of Ri to be the set Hi = Ri \ (∪j 6=iRj).
Likewise, define the common part of Ri to be Ci = Ri \ Hi.

Lemma 6 (cf. [26]). Suppose M = D − DS, where D is
a nonnegative N × N diagonal matrix and S is stochastic.
Suppose G has k reaches, denoted by R1, . . . , Rk, where we
denote the exclusive and common parts of each Ri by Hi
and Ci, respectively. Then the nullspace of M has a basis
v1, v2, . . . , vk in RN whose elements satisfy: 1) vi(s) = 0 for
s /∈ Ri; 2) vi(s) = 1 for s ∈ Hi; 3) vi(s) ∈ (0, 1) for s ∈ Ci;
and 4) ∑j vj = 1N .

Remark 3. It is obvious that M is actually a Laplacian
matrix of some non-negatively weighted digraph G. To better
understand Lemma 6, we write Mi, the Laplacian matrix of
the i-th reach Ri, into the Frobenius normal form [6]:

Mi =


Mi

11 0 · · · 0
Mi

21 Mi
22 · · · 0

... · · · . . .
...

Mi
ni ,1

· · · · · · Mi
ni ,ni


where Mi

ss corresponds to the subgraph G i,s of G that is
strongly connected for s = 1, . . . , ni. Moreover, V(G i,1), the
node set of G i,1, belongs to the exclusive part of Ri for
i = 1, . . . , k. Otherwise, any node in G i,s can be reached by
the node outside, which contradicts the fact that Ri is a reach.
We call the nodes in V(G i,1) non-reachable nodes.

IV. EVOLUTION OF SYSTEMS OVER INTERVALS WITHOUT
CONNECTIVITY REQUIREMENT

In this section, with the help of the established results in
Section III, we will illustrate how the linear or Lipschitz-type
nonlinear system evolves no matter how the communication
graph is structured. To this aim, we first find the subspaces
which can be the eigenspaces of the nonzero eigenvalues of
Laplacian matrices in linear case and can also be subspaces
in which the projection of the nonlinear self-dynamics still
retains the Lipschitz property. Then, the analysis is performed
with respect to these subspaces

The following analysis is performed in regard to the evo-
lution of synchronization error. We start this section by the
derivation of error system dynamics. For brevity, hereafter,
we assume that σ(t) is a periodic signal, which implies that
tk − tk−1 = tk+1 − tk = T and σ(t) = σ(t + T). However,
all the results obtained in this paper can be easily extended to
the case that σ(t) is not periodic.

A. Error System Dynamics and State Space Decomposition of
Linear System

Now, consider the commonly used synchronization error

e = (∆̄⊗ In)x = [(x1 − x2)
T, . . . , (x1 − xN)

T]T, (3)

where ∆̄ =
[
1N−1 −IN−1

]
. It is obvious that if e = 0, then

xi = xj for i, j = 1, . . . , N.
Now consider the time interval [tk, tk+1), which contains mk

subintervals [tk0 , tk1), . . . , [tkmk−1 , tkmk
). Moreover, the union

of communication graph over [tk, tk+1) contains a directed
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spanning tree. For the subinterval [tkj
, tkj+1

), 0 ≤ j ≤ mk − 1,
the compact form of the error system dynamics is

ė =
(

I ⊗ A− φL̃σ(tkj
) ⊗ BK

)
e, (4)

where L̃σ(tkj
) is the submatrix of ∆Lσ(tkj

)∆ =

[
0 ∗
0 L̃σ(tkj

)

]
with ∆ = [[1, 0N−1]

T, ∆̄T]T satisfying ∆∆ = IN and ∗
being an unspecified row vector. To perform our analysis, the
following fact is important.

Lemma 7. If the corresponding nonnegatively weighted graph
of the Laplacian matrix ∑mk−1

j=0 Lσ(tkj
) contains a directed

spanning tree, then

∩mk−1
j=0 Eig

(
L̃σ(tkj

)

)
= {0},

where Eig(·) denotes the space spanned by the generalized
eigenvectors associated with eigenvalue 0.

From Lemma 7, it can be known that
span{∪mk−1

j=0 Ran(L̃σ(tkj
))} = Rn(N−1). By Lemma 4,

construct d subspaces Si, i = 1, . . . , d such that

⊕d
j=1Sj = span

{
∪mk−1

j=0 Ran(L̃σ(tkj
))

}
.

Note that each Si ⊂ Ran(L̃σ(tkj
) ⊗ In) for some j. Now, the

synchronization error e can be decomposed in such a way that
e = e1 + · · ·+ ed, where ei ∈ Si for i = 1, . . . , d. It suffices to
show that ei, i = 1, . . . , d vanish as times approaches infinity
in the following analysis to prove synchronization.

B. Error System Dynamics and State Space Decomposition of
Nonlinear System

We discard the synchronization error e used in the linear
case due to the difficulty to maintain the Lipschitz property of
the projection of nonlinear system dynamics onto Ker(Lσ(t)×
In) or Ran(Lσ(t) × In). Instead, in order to capture the
property of the evolution of system state in a certain subspace
of RnN , we construct a series of suitable error variables that
evolve in subspaces where the projection of the nonlinear
self-dynamics still retains the Lipschitz property. These error
variables turn out to serve as the synchronization error in the
sense that if all of them equal zero, then synchronization is
realized. The convergence analysis can then be performed with
respect to each error variable.

We first write Lσ(t) into the Frobenius normal form (5):

Lσ(t) =

[
La

σ(t) 0
Lc

σ(t) Ld
σ(t)

]
, (5)

where La
σ(t) = diag

{
Lσ(t),11, . . . , Lσ(t),χσ(t)χσ(t)

}
,

Lc
σ(t) =


Lσ(t),χσ(t)+1,1 · · · Lσ(t),χσ(t)+1,χσ(t)

...
. . .

...
Lσ(t),q1 · · · Lσ(t),q,χσ(t)

 ,

and

Ld
σ(t) =


Lσ(t),χσ(t)+1,χσ(t)+1 · · · Lσ(t),χσ(t)+1,q

...
. . .

...
Lσ(t),q,χσ(t)+1 · · · Lσ(t),qq

 .

Note that fix χσ(t) < i ≤ q, there exists at least one 1 ≤
j ≤ i such that Lσ(t),ij 6= 0. Lσ(t),ii(t) in (5) corresponds
to a subgraph G i

σ(t) of Gσ(t) that is strongly connected for
i = 1, . . . , q and V(G i

σ(t)), the node set in G i
σ(t), belongs to

the exclusive part of the i-th reach Rσ(t),i for i = 1, . . . , χσ(t).
With the concept provided in Lemma 6, we consider the

following error variable

δσ(t)(t) = x(t)−
χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)
x(t). (6)

In (6), γσ(t),j = [γ1
σ(t),j, . . . , γN

σ(t),j]
T is the right eigenvector

of Lσ(t) associated with eigenvalue zero corresponding to
the reach Rσ(t),j (see Lemma 6). Moreover, βσ(t),j is de-
fined such that βσ(t),j = [0, . . . , 0, vT

σ(t),j, 0, . . . , 0]T where

vσ(t),j = [v1
σ(t),j, . . . , v

nj
σ(t),j]

T, nj denotes the number of

nodes in V(Gj
σ(t)), and vσ(t),j satisfies vT

σ(t),jLσ(t),jj = 0 and
vT

σ(t),j1nj = 1. Hence, βT
σ(t),jLσ(t) = 0.

There are two important properties of δσ(t). First, for j =

1, . . . , χσ(t),
(

βT
σ(t),j ⊗ In

)
δσ(t) = 0. Second, span{δσ(t)} ⊕

span{γσ(t),j ⊗ In, j = 1, . . . , χσ(t)} = RnN . This is true
because dim(span{γσ(t),j ⊗ In, j = 1, . . . , χσ(t)}) = nχσ(t)
and dim(span{δσ(t)}) = nN − nχσ(t). The latter can be
known from the fact that[χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j

)]2

=

χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j

)
.

The following lemma shows that if δσ(t) = 0 for any t
under joint connectivity condition, then xi = xj for i 6= j.

Lemma 8. Consider a collection of graphs {Gi}
p
i=1, each of

order N, whose union contains a directed spanning tree. Then,
∩p

j=1span({x|δj = 0}) = span{1N ⊗ u, u ∈ Rn}.

The compact form of the error system dynamics is given by

δ̇σ(t) = ẋ−
χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)
ẋ

= F(x)− φ(Lσ(t) ⊗ Γ)x−
χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)
×
[
F(x)− φ(Lσ(t) ⊗ Γ)x

]
=

[
I −

χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)]
F(x)− φ(Lσ(t) ⊗ Γ)

×
[

x−
χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)
x

]
=Mσ(t)F(x)− φ(Lσ(t) ⊗ Γ)δσ(t), (7)
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where F(x) = [ f T(x1), . . . , f T(xN)]
T and Mσ(t) = (I −

∑
χσ(t)
j=1 (γσ(t),jβ

T
σ(t),j ⊗ In)). The third equality is obtained by

the observation that

(Lσ(t) ⊗ Γ)

[χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)]
= 0

and βT
σ(t),jLσ(t) = 0. It is easy to verify that Mσ(t)x(t) =

δσ(t).

Example 4. We will show the structure of Mσ(t)F(x) using
a simple yet illustrative example. Consider a given communi-
cation graph in Fig. 4. There are two reaches R1 = {1, 3}
and R2 = {2, 3}. Moreover, Hi = {3}, i = 1, 2. Hence,
γ1 = [1, 0, 0.5]T, β1 = [1, 0, 0]T, γ2 = [0, 1, 0.5]T, and
β2 = [0, 1, 0]T. One can then obtain that

Mσ(t)F(x) =

 f (x1)− f (x1)
f (x2)− f (x2)

0.5( f (x3)− f (x1)) + 0.5( f (x3)− f (x2))

 .

21 3
0.5 0.5

Fig. 4. Directed graph with two reaches that share a common node.

By Lemma 4 and Lemma 8, find d subspaces Si of
span{δσ(t)} for t ∈ [tk, tk+1) such that

⊕d
j=1Si ⊕ span{1N ⊗ u, u ∈ Rn} = RnN .

Hence, one has x = x1 + . . . + xd+1 with xi ∈ Si for
i = 1, . . . , d and xd+1 ∈ span{1N ⊗ u, u ∈ Rn}. With
respect to this decomposition, in the following proof, to guar-
antee synchronization, it suffices to show that ‖x1(tk+1) +
· · ·+ xd(tk+1)‖ < r‖x1(tk) + · · ·+ xd(tk)‖ with 0 < r < 1
independent of k.

C. Evolution Property of the Projection of System State

The following analysis is performed with respect
to [tkj

, tkj+1
) without loss of generality. Recall that

[tk, tk+1) is supposed to contain mk sub-intervals, namely,
[tk0 , tk1), . . . , [tkmk−1 , tmk ) with tk0 = tk and tmk = tk+1, over
each of which the communication graph remains unchanged.

1) Linear System: In this part, we analyze how e(t) evolves
within the fixed interval [tkj

, tkj+1
). By Lemma 3, construct

the transformation matrix Tσ(t) whose column vectors are the
generalized eigenvectors of L̃σ(t), and define ξ = (T−1

σ(t) ⊗
In)e. It then follows that

ξ̇1 =
(

I ⊗ A− φL̂σ(t) ⊗ BK
)

ξ1, (8)

where ξ1-dynamics describes the evolution of e restricted to
the eigenspace of nonzero eigenvalues of L̃σ(t) and L̂σ(t) is

a Hurwitz matrix. One can then obtain from (8) that for t ∈
[tkj

, tkj+1
)

ξ1(t) = exp
{

H1
σ(t)

(
t− tkj

)}
ξ1(tkj

), (9)

with the matrix H1
σ(t) given by H1

σ(t) = I ⊗ A − φL̂σ(t) ⊗
BK. Similarly, the evolution of ξ2, which represents that of e
restricted to the kernel of L̃σ(t) during t ∈ [tkj

, tkj+1
), is

ξ̇2 = (I ⊗ A)ξ2, (10)

which in turn yields

ξ2(t) = exp
{

H2
σ(t)(t− tkj

)
}

ξ2(tkj
), (11)

where H2
σ(t) = I ⊗ A.

2) Lipschitz-Type Nonlinear System: In this part, we an-
alyze the evolution of x(t) is the subspaces constructed
in Section IV-B. When the evolution of x is restricted to
span{δσ(t)}, consider the Lyapunov function candidate

V = δT
σ(t)

(
Ξσ(t) ⊗ In

)
δσ(t)

for (7), where the diagonal positive definite matrix Ξσ(t) is
defined such that for a positive constant α

δT
σ(t)

[(
Ξσ(t)Lσ(t) + LT

σ(t)Ξσ(t)

)
⊗ In

]
δσ(t)

> αδT
σ(t)

[
Ξσ(t) ⊗ Γ

]
δσ(t).

(12)

The inequality (12) holds according to [Lemma 1, [6]] 3 and
(βT

σ(t),j ⊗ In)δσ(t) = 0. α is well defined because σ(t) takes
finite values. The derivative of V along (7) then gives

V̇ =2δT
σ(t)(Ξσ(t) ⊗ In)

(
Mσ(t)F(x)− φ(Lσ(t) ⊗ Γ)δσ(t)

)
=2δT

σ(t)(Ξσ(t) ⊗ In)Mσ(t)F(x)

−φδT
σ(t)

[(
Ξσ(t)Lσ(t) + LT

σ(t)Ξσ(t)

)
⊗ Γ

]
δσ(t).

Consider the first term δT
σ(t)(Ξσ(t) ⊗ In)Mσ(t)F(x). Since

the inequality ‖Mσ(t)F(x)‖ ≤ ρ̄‖Mσ(t)x‖ holds and
Mσ(t)x(t) = δσ(t), one has ‖Mσ(t)F(x)‖ ≤ ρ̄‖δσ(t)‖.

With the above discussion, the derivative of V along (7)
turns into

V̇ ≤− φαδT
σ(t)

[
Ξσ(t) ⊗ Γ

]
δσ(t) + 2ρ̄λmax(Ξσ(t))

∥∥∥δσ(t)

∥∥∥2

≤ (−φαλmin(Γ) + 2ρ̄c)V,

where c = maxt
λmax(Ξσ(t))

λmin(Ξσ(t))
. c is well defined since σ(t) has

finite values. Through simple manipulations, one has

‖δσ(t)(t)‖

≤c1/2 exp
{(
−φα

2
λmin(Γ) + ρ̄c

)(
t− tkj

)} ∥∥∥δσ(t)(tkj
)
∥∥∥ ,

(13)

3The existence of positive constant α is guaranteed by the fact(
βT

σ(t),j ⊗ In

)
δσ(t) = 0. The details of how to calculate α are referred to

[6] and omitted here for brevity.
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for t ∈ [tkj
, tkj+1

).
On the other hand, one has the following

ẋ(t) = F(x(t))− φ(Lσ(t) ⊗ Γ)x(t). (14)

Consider again the Lyapunov function V = xT(Ξσ(t) ⊗
In)x. The derivative of V along (14) yields

V̇ = 2xT(Ξσ(t) ⊗ In)
(

F(x)− φ(Lσ(t) ⊗ Γ)x
)

≤ 2
[
ρλmax(Ξσ(t)) + φλmax(Ξσ(t)Lσ(t) ⊗ Γ)

]
‖x(t)‖2

≤ 2(ρc + c
′
)V,

where c
′

is defined by c
′

=

maxt
λmax(Ξσ(t)Lσ(t)⊗Γ+LT

σ(t)Ξσ(t)⊗Γ)

λmin(Ξσ(t))
. Since σ(t) takes finite

values, c
′
, λmax(Ξσ(t)), and λmax(Lσ(t) ⊗ Γ) are well

defined. It is then obtained that

‖x(t)‖ ≤ c1/2 exp
{(

ρc + c
′) (

t− tkj

)}
×
∥∥∥x(tkj

)
∥∥∥ .

(15)

One can then determine the evolution of x restricted to
span{γσ(t),j, j = 1, . . . , χσ(t)} according to Lemma 3, which
will be shown in the next section.

V. SYNCHRONIZATION UNDER JOINT CONNECTIVITY
CONDITION

We illustrate in this section how the synchronization prob-
lem formulated in Section II-B can be solved for linear system
(1) and Lipschitz-type nonlinear system (2) communicating
over switching topology which is jointly connected.

General results are established in this section first, which
provide sufficient algebraic conditions. Then, the applications
of the newly-established results to some special cases to gain
more insights are discussed.

A. Inter-Connected Linear Systems

Before introducing our first main result, we claim some
notations. h̄i

σ(t)(·) = Φσ1(t)(·) if Si ⊂ Ran(Lσ(t) ⊗ In);
otherwise h̄i

σ(t)(·) = Φσ2(t)(Θσ3(t)(·)), where Φσ2(t) and
Θσ1(t) are given in Lemma 3 and Remark 2. σ1(t) indicates
the decomposition of Ran(Lσ(t)⊗ In) which includes Si as
a subspace. σ2(t) and σ3(t) represent the decompositions of
the complementary space of synchronization manifold, which
include Si and Ker(Lσ(t) ⊗ In) as subspaces, respectively.
Moreover, we write∥∥∥exp

{
H ID

σ(t)

}∥∥∥ ≤ υID
σ(t) exp

{
ξ ID

σ(t)

}
where ID = 1, 2. If ID = 1, then H1

σ(t) = I ⊗ A− φL̂σ(t) ⊗
BK and L̂σ(t) is Hurwitz which is defined in the same way as
H̃i in Lemma 3 corresponding to Ran(L̃σ(t)); if ID = 2, then
H2

σ(t) = I ⊗ A. Furthermore, let ψi
σ(t) = υ1

σ(t) and λi
σ(t) =

ξ1
σ(t) if Si ∈ Ran(L̃σ(t)⊗ In); ψi

σ(t) = υ2
σ(t) and λi

σ(t) = ξ2
σ(t)

otherwise.

Theorem 1. Considering the linear inter-connected system
(1), under Assumptions 1 and 2, synchronization is reached if
there exists a sufficiently small γ ∈ (0, 1) such that

mk−1

∑
j=0

[
ln
(

h̄i
σ(tkj

)

(
ψi

σ(tkj
)

))
+ λi

σ(tkj
)

(
tkj+1
− tkj

)]
< ln γ

(16)

holds for any k = 1, 2, . . . and any 1 ≤ i ≤ d.

Proof: Bearing (9) and (11) in mind, when Si ⊂
Ran{L̃σ(t)}, one has

‖ei(t)‖ ≤ h̄i
σ(t)

(
ψi

σ(t)

)
exp

{
λi−

σ(t)

(
t− tkj

)}
× ‖eUB

i (tkj
)‖,

(17)

where h̄i
σ(t)(ψ

i
σ(t)) is given right before Theorem 1 and

‖eUB
i (tkj

)‖ is an upper bound of ‖ei(tkj
)‖ at tkj

. Here
‖eUB

i (tk)‖ can be chosen as

max
i

σmax(MiT−1)/σmin(T−1)‖e(tk)‖

according to Lemma 3 and Remark 2 (T and Mi are also
defined according to the lemma and the remark). Moreover,
we use λi+

σ(t) (λi−
σ(t)) to denote that λi

σ(t) > 0 (λi
σ(t) < 0) in

order to indicate the sign of λi
σ(t). Note that λi−

σ(t) < 0 can be
guaranteed by choosing appropriate feedback matrix K such
that H1

σ(t) is Hurwitz. The choice of K is feasible since L̂σ(t)
is Hurwitz.

Using Lemma 3 when Si 6⊂ Ran(L̃σ(t)), the following
inequality holds

‖ei(t)‖ ≤ h̄i
σ(t)

(
ψi

σ(t)

)
exp

{
λi+

σ(t)

(
t− tkj

)}
× ‖eUB

i (tkj
)‖.

(18)

Invoking again Lemma 3 and (11), λi+
σ(t) = λi+ (independent

of switching) is determined by the matrix I ⊗ A.
Then, by recursion, one arrives at that

‖ei(tk+1)‖ ≤ exp

{
mk−1

∑
j=0

ln
(

h̄i
σ(t)

(
ψi

σ(tkj
)

))

+ λi
σ(tkj

)

(
tkj+1
− tkj

)}
‖eUB

i (tk)‖. (19)

Hence, there exists a positive constant γ̄ < 1 such that

‖e(tk+1)‖ ≤ γ̄‖e(tk)‖

if the following inequality holds
mk−1

∑
j=0

[
ln
(

h̄i
σ(t)

(
ψi

σ(tkj
)

))
+ λi

σ(tkj
)

(
tkj+1
− tkj

)]
< ln γ,

(20)

where γ < 1
N maxi σmax(MiT−1)/σmin(T−1)

. This completes the
proof by the observation that any e can be written as e =
e1 + . . . + ei + . . . + ed with ei ∈ Si.

In regard to the condition (16), we have provided Algorithm
1 such that one can justify whether it is satisfied. The crucial
step is to determine the function h̄i

σ(t), which requires the
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Algorithm 1 Justification of the Convergence Condition (16)
Input: The switching scheme of the communication graph,

the system dynamics, and the initial state.
Output: Whether condition (16) holds or not.

1: Design K such that I ⊗ A − L̂σ(t) ⊗ BK is a Hurwitz
matrix.

2: Calculate υID
σ(t), ξ ID

σ(t) for ID = 1, 2 according to

exp
{

I ⊗ A− L̂σ(t) ⊗ BK
}
≤ υ1

σ(t) exp
{

ξ1
σ(t)

}
and

exp
{

I ⊗ A
}
≤ υ2

σ(t) exp
{

ξ2
σ(t)

}
.

3: Determine ψi
σ(t) in such a way that ψi

σ(t) = υ1
σ(t) and

λi
σ(t) = ξ1

σ(t) if Si ∈ Ran(L̃σ(t)); ψi
σ(t) = υ2

σ(t) and
λi

σ(t) = ξ2
σ(t) otherwise.

4: Calculate h̄i
σ(t)(ψ

i
σ(t)) for i = 1, . . . , d according to

the following criteria: h̄i
σ(t)(·) = Φσ1(t)(·) if Si ∈

Ran(Lσ(t)⊗ In); otherwise h̄i
σ(t)(·) = Φσ2(t)(Θσ3(t)(·)),

where Φσ2(t) and Θσ1(t) are given in Lemma 3
and Remark 2. σ1(t) indicates the decomposition of
Ran(Lσ(t)⊗ In) which includes Si as a subspace. σ2(t)
and σ3(t) represent the decompositions of Rn(N−1) which
include Si and Ker(Lσ(t)⊗ In), respectively.

5: Verify the inequality

∑mk−1
j=0

[
ln h̄i

σ(tkj
)(ψ

i
σ(tkj

)))+λi
σ(tkj

)(tkj+1
− tkj

)
]
< ln γ

where γ < 1
N maxi σmax(MiT−1)/σmin(T−1)

.

information of system state according to the calculation of
Φσi(t)(·), i = 1, 2 by Remark 2. However, in some cases, we
do not need the knowledge of system state and can execute
Algorithm 1 in an easy way:
• Collect all the basis vectors in eigenspaces of nonzero

eigenvalues of the matrix Lσ(t) ⊗ In, t ≥ 0. If any
two basis vectors have a nonnegative inner product and
the inner products of the system state x(t) and all the
basis vectors have the same sign, then h̄i

σ(t) is bounded
for any time (see Example 2 for a simple illustration).
This is because the projected state onto any one of the
basis vectors has a linear bounded growth or decrease.
Moreover, all these projections have the same sign. It is
then clear that h̄i

σ(t)(·) is uniformly bounded.
In the following case, the above constraints on basis vectors

and the system state can be satisfied.
• If the linear inter-connected system (1) is a positive sys-

tem [38], then choose the initial state such that its entries
are nonnegative. Since the linear inter-connected system
(1) is a positive system, one can find the basis vectors,
which have nonnegative entries, in the range space of
Lσ(t)⊗ In. In this case, h̄i

σ(t)(ψ
i
σ(t)) = maxt ψi

σ(t), which
is clearly upper bounded (see Example 2 for a simple
illustration). Please note that in the above case, ‖eUB

i (tk)‖
is chosen to be ‖ei(tk)‖.
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Fig. 5. Two graphs (graphs a and b) of a set of six nodes. The union of
graphs a and b is a graph containing a directed spanning tree.
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Fig. 6. Two graphs (graphs a and b) of a set of six nodes. The union of
graphs a and b is a graph containing a directed spanning tree.

Although the above constraints seem strict, as will be observed
from Example 5, there is no simple criterion that can determine
the collective behavior of the inter-connected linear system
(1). For example, even if the system matrix A is marginally
stable and K is designed such that A − BK is Hurwitz,
synchronization cannot be attained no matter how strong the
coupling strength is and how long the dwell time is.

Example 5. The communication network switches between the
two graphs Ga and Gb shown in Fig. 6. Ga (Gb) consists of four
nodes and the union of Ga and Gb contains a directed spanning
tree. The Laplacian matrices of Ga and Gb are respectively
given as follows

La =


0 0 0 0
−1.2 1.2 0 0

0 0 0 0
0 −0.7 0 0.7

 , Lb =


0 0 0 0
0 0 0 0
−0.5 0 0.5 0

0 0 −1.3 1.3

 .

For illustration, choose the following linear system and
design the feedback matrix as

A =

0 1 0
1 0 0
0 0 −2

, B =

1 0
0 1
0 0

, K =

[
1 0 0
0 1 0

]
Obviously, (A, B) is stabilizable. K is designed to satisfy that
A − BK is Hurwitz and that the linear system is a positive
one (because the off-diagonal entries of I ⊗ A− Lσ(t) ⊗ BK
is non-negative). Let the initial states be randomly chosen from
[0, 50]× [0, 50]× [0, 50] ⊂ R3. Moreover, let T = 1s be the
dwell time of each communication graph.
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Fig. 7. Evolution trajectories of system state with coupling strength φ = 50.

It is known from La and Lb that the basis vectors in
the eigenspaces of zero eigenvalue of them can be set as
v1 = [1, 0, 0, 0]T, v2 = [0, 1, 0, 0]T, and v3 = [0, 0, 1, 0]T.
By calculation, it is obtained that maxi ψi < 1.4. Moreover,
λi

σ(t0)
= 0, i = 1, 2, λ2

σ(t0)
= −3.29, and λ2

σ(t1)
= −2.19. Ac-

cording to Example 2, let h̄i
σ(t)(ψ

i
σ(t))(= maxt ψi

σ(t)) = 1.4.
It is easy to verify that condition (20) is satisfied with γ < 1.
It can be observed from Fig. 8 that synchronization is achieved
asymptotically. Moreover, the increase of the coupling strength
improve the convergence speed, which is shown in Fig. 9.

Suppose we consider the two graphs provided in Fig. 5 and
choose the initial state from [0, 50]× [0, 50]× [0, 50] ⊂ R3.
Moreover set

A =

−1 1 0
1 −1 0
0 0 −2

 , B =

1 0
0 0
0 0

 , K =

[
1 1 0
0 1 0

]
.

Although the union of the two graphs contains a directed
spanning tree, A is marginally stable, and A− BK is Hurwitz,
no matter how strong the coupling strength is or how long the
dwell time is, synchronization cannot be achieved as shown in
Fig. 7. This is possibly because there are no basis vectors with
nonnegative entries in the eigenspace of nonzero eigenvalues
of the Laplacian matrices La and Lb. Hence, h̄i

σ(t)(·) might
not be bounded.

It is observed from (20) that, the terms ln(h̄i
σ(t)(ψ

i
σ(t))),

λi
σ(t), and (tkj+1

− tkj
) are crucial for the convergence of

(4). Notice that λi
σ(t) < 0 by choosing appropriate K if the

evolution of e(t) is restricted to Ran(L̃σ(t)), while ln(ψi
σ(t))

is sign indefinite. There are two ways to address the issue that
how to guarantee condition (20). The first one is to seek a
smaller λi

σ(t) < 0 to guarantee condition (20). The second one,
on the other hand, is to permit a long dwell time, i.e., Tmin is
large enough. The following result illustrates the second case.

Before proceeding, according to Lemma 3, Remark 2, and
the above discussions, we make an additional assumption to
facilitate the analysis.
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Fig. 8. Evolution trajectories of synchronization error with coupling strength
φ = 5.
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Fig. 9. Convergence speed of synchronization error with φ = 0.5 and φ = 1,
respectively.

Assumption 4. Φσ1(t)(·) and Φσ2(t)(·) are uniformly
bounded.

Theorem 2. Considering the linear inter-connected system
(1), suppose Assumptions 1, 2, and 4 are satisfied and more-
over A is marginally stable 4. Then, synchronization is reached
if the dwell time is long enough, that is, Tmin is sufficiently
large.

Intuitively, to satisfy (20) and hence guarantee the syn-
chronization of linear system (1), a large Tmin is sufficient
if λi

σ(t) ≤ 0, which holds because A is marginally stable and

h̄i
σ(t) is uniformly bounded in Theorem 2.
Moreover, if A is marginally stable and the communication

graph is undirected, one can then conclude that the system
state is non-increasing and bounded, so does the projection
of the system state onto any eigenvector. Hence, Assump-
tion 4 can be removed. Recalling the system dynamics (1),

4A matrix is said to be marginally stable if all its eigenvalues have non-
positive real part and those with zero real part are semi-simple.
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the following theorem illustrates that with mild restraint on
system matrix A and input matrix B, synchronization can
be realized asymptotically for (1) over undirected networks.
Similar results have been established in [27] and [31]. We
provide a different yet simple and intuitive method based on
our methodology. Moreover, our proof can easily be applied
to arbitrary switching scheme (of undirected connected com-
munication graph) discussed in [28].

We first record the closely related results on consensus over
dynamic undirected topologies [27], [28].

Lemma 9 (cf. [27], [28]). Consider the linear inter-connected
system (1). Suppose (A, B) is stabilizable. 1) If Gσ(t) is jointly
connected, and K is designed as K = BTP with P given by{

ATP + PA ≤ 0, (21)
ATP + PA− 2βPBBTP + βI < 0, (22)

where β > 0 is determined by the communication graph, then
leader-following consensus can be realized. 2) Assume Gσ(t)
is connected all the time, and without loss of generality,

A =

[
Au

As

]
, B =

[
Bu

Bs

]
,

where As is Hurwitz and Au is a matrix with all its eigen-
values located in the closed right half-plane. Let (s) =
sd−1 + αd−2sd−2 + · · · + α1s + α0 be an arbitrary Hurwitz
polynomial of degree d − 1 and Ku = kdK̄u with K̄u =
[α0 · · · αd−1 1]. Then, there exists kd > 0 such that consensus
can be realized asymptotically under arbitrary switching and
K = [Ku, 0].

Now, we introduce the following technical assumption
which is more relaxed than (28) and (29) in Lemma 9.

Assumption 5 (cf. [31]). There exists a positive definite matrix
P such that

ATP + PA ≤ 0, (23)

and moreover (BTP, A) is observable.

Intuitively, inequality (23) guarantees the non-increase of
system state in the subspace associated with the kernel of
the Laplacian matrix, while the observability of (BTP, A) is
imposed to ensure that the system state decreases strictly in
the subspace associated with the range space of the Laplacian
matrix.

Theorem 3. Considering the linear inter-connected system
(1) communicating over undirected switching graph, under
Assumptions 1, 2, and 5, synchronization is realized.

B. Inter-Connected Nonlinear Systems

In this subsection, we extend the above results to the
nonlinear case based on the lemmas and the methodology
esatablished in Section III. First, we introduce our main result
on Lipschitz-type nonlinear system.

Theorem 4. Considering the nonlinear inter-connected system
(2), under Assumptions 1 and 4, and suppose moreover for any
x ∈ RnN and some ρ̄ > 0, it follows that∥∥∥Mσ(t)F(x)

∥∥∥ ≤ ρ̄
∥∥∥Mσ(t)x

∥∥∥ , (24)

then synchronization is reached in an exponential manner if
the coupling strength φ is chosen to be sufficiently large.

Proof: Combining (13) and (15), one arrives at

‖xi(tk+1)‖ ≤ exp

{
Tmax

Tmin
ln
(

h̄i
σ(t)

(
c1/2

))
− 1

2
φ
∫ tk+1

t=tk

ασ(t)dτ

×λmin(Γ) + max
{

ρc + c
′
, ρ̄
}

Tmax

}∥∥∥xUB
i (tk)

∥∥∥,

where h̄i
σ(t)(·) is defined in the same way as that in Theorem

1, ‖xUB
i (tk)‖ is the upper bound of ‖xi(tk)‖ at tk which can

be given by

max
i

σmax(MiT−1)/σmin(T−1)‖x(tk)‖

according to Lemma 3 and Remark 2 (T and Mi are also
defined according to the lemma and the remark). Moreover,
ασ(t) = α > 0 if xi ∈ span{δσ(t)}, ασ(t) = 0 otherwise.
Hence, one can choose a sufficiently large φ such that

Tmax

Tmin
ln
(

h̄i
σ(t)

(
c1/2

))
−1

2
φ
∫ tk+1

t=tk

ασ(t)dτ

×λmin(Γ)Tmin+max
{

ρc + c
′
, ρ̄
}

Tmax < ln γ,

for γ < 1
N maxi σmax(MiT−1)/σmin(T−1)

. This completes the
proof by the observation that any x can be written as x =
x1 + . . . + xi + . . . + xd + xd+1 with xi ∈ Si for i = 1, . . . , d.

We have used Assumption 4 to establish the theorem. Here
is the detailed explanation of this assumption. Collect all the
basis vectors of span{δσ(t)}, t ≥ 0. h̄i

σ(t)(·) is uniformly
bounded if any two basis vectors have a nonnegative inner
product and the initial value x(0) is chosen such that the
inner products of F(x) and all basis vectors have the same
sign. This condition is true for an important class of positive
systems [38].

Suppose the nonlinear inter-connected system (2) is a pos-
itive system, which is true when the entries of f (xi) are
nonnegative as long as those of xi are nonnegative. In this
case, if the initial state is chosen such that all its components
are nonnegative, then so does the system state at any time.
Moreover, according to the properties of δσ(t), the basis
vectors in span{δσ(t)}, t ≥ 0 might be chosen such that
the components are nonnegative with those corresponding to
nodes belonging to a nontrivial Reach (which has at least two
nodes) being zero. That is, the basis vectors can take such
a form [01×(n1+...+nχσ(t)

), ∗]T ∈ RnN with ∗ being a row
vector of nonnegative entries. See the following example for
an illustration. Please note that in the above case, ‖xUB

i (tk)‖
is chosen to be ‖xi(tk)‖.
Example 6. f (xi) can take a lot of forms such that the
entries of f (xi) are nonnegative as long as those of xi are
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nonnegative, for example, all the coefficients of the terms in
f (xi) are positive: f (xi) = 2xi + exp{−xi}. Consider a
simple Laplacian matrix and the associated matrix Mσ(t) takes
the following form

La =


0 0 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 , Mσ(t) =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


The basis vectors can be chosen as v1 = [1, 0, 0, 0]T and
v2 = [0, 1, 0, 0]T. Then, vT

i x ≥ 0, i = 1, 2 for any x ∈ R4

having nonnegative entries.

Mσ(t) in (24) is in fact a projection matrix by the obser-
vation that M2

σ(t) = Mσ(t). It is noted that if f (x) = Ax,
condition (24) holds. Moreover, if the communication graph
is bidirected, condition (24) can also be guaranteed, which will
be shown in the next example and corollary.
‖Mσ(t)F(x)‖ ≤ ρ̄‖Mσ(t)x‖ is imposed to deal with the

influence the nodes of the common part of a reach receive
from the nodes of exclusive parts. In the following corollary,
we consider the special case that no common part exists in
the communication graphs. It can be observed that condition
(24) is automatically satisfied. Note that if the communication
graph is bidirected or undirected, then the common part of any
reach is empty, and condition (24) holds naturally.

Corollary 1. Considering the nonlinear inter-connected sys-
tem (2), under Assumptions 1, 3, and 4, and moreover if the
common part of every reach is empty in each communication
graph, then synchronization is reached in an exponential
manner if the coupling strength φ is chosen to be sufficiently
large.

Example 7. We show the structure of Mσ(t)F(x) for an
undirected graph. Consider a given communication graph
in Fig. 10. There is only one reach R = {1, 2, 3} in
Fig. 11. Hence, H = {1, 2, 3} and γ = [1, 1, 1]T, β =
[1/3, 1/3, 1/3]T. One can then obtain that

‖Mσ(t)F(x)‖ =‖Mσ(t)

[
F(x)− F((I −Mσ(t))x)

]
‖

≤‖Mσ(t)‖

∥∥∥∥∥∥∥∥∥


f (x1)− f

(
1
3 (x1 + x2 + x3)

)
f (x2)− f

(
1
3 (x1 + x2 + x3)

)
f (x3)− f

(
1
3 (x1 + x2 + x3)

)

∥∥∥∥∥∥∥∥∥

≤ρ · ‖Mσ(t)‖ · ‖Mσ(t)x(t)‖.

It is obvious that condition (24) is satisfied.

21 3
0.5 0.5

Fig. 10. Undirected graph with two reaches that share a common node.
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Fig. 11. Evolution trajectories of the states of a collection of four nodes
with φ = 5. It is observed from the trajectories that synchronization is
asymptotically achieved.

Remark 4. If Gσ(t) is bidirected 5 all the time, then condition
(24) can be automatically satisfied. This is because given any
t, the reaches in Gσ(t) have no common part. Hence, the
entry of the eigenvector γσ(t),j is either 1 or 0. One then
knows that each block of Mσ(t)F(x) is zero or takes the
form f (xi) − f (xj). Then, the Lipschitz condition of f (x)
guarantees (24). Ref. [15] also deals with the synchronization
analysis of Lipschitz-type nonlinear systems communicating
over switching graph. It is concluded therein that if the cou-
pling strength φ is sufficiently large, then the synchronization
can be ensured. However, it is observed that Tmax is also
required to be sufficiently small such that φTmax ≤ 1. In
contrast, our result removes the requirement on Tmax.

Example 8. Consider the interacting driving damped Van der
Pol oscillators, for which the underlying coupling topology is
shown in Fig. 6, with Γ = diag{0.5, 0.9} and f (x) being
given by

f (x) =

{
x2 − 1/3x3

1 − x1,
− x1 + sin(t).

It is known that the Van der Pol oscillator is semi-contracting
[33]. The initial states is randomly chosen from [−50, 50]×
[−50, 50] × [−50, 50] ⊂ R3. Let T = 0.5s be the dwell
time of each coupling topology. The switching of the coupling
topology is therefore periodic. It can be observed from Fig. 11
that with φ = 5 synchronization is achieved asymptotically.

Next, a linearized technique will be exploited to reach a
local result concerning the synchronization of inter-connected
nonlinear system (2). Using of linearized method, as shall
be observed later, can also relax the technical assumption
on nonlinear function f (·). Rewrite the i-th element of

5If in a graph, whenever aij 6= 0, there holds that aji 6= 0, then the graph
is said to be bidirected. It is obvious that an undirected graph is bidirected.
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D(Mσ(t)F(x)) as follows

D(Mσ(t)F(x))i = D

[
f (xi)−

χσ(t)

∑
j=1

γi
σ(t),j

(
βT

σ(t),j ⊗ In

)
F(x)

]

=D

[χσ(t)

∑
j=1

γi
σ(t),j

(
βT

σ(t),j ⊗ In

)
[1N ⊗ f (xi)− F(x)]

]

=D f (xi)

χσ(t)

∑
j=1

γi
σ(t),j

(
βT

σ(t),j ⊗ In

) [
1N ⊗ xi − x

]
,

where D represents the Jacobian of Mσ(t)F ∈ RnN . The

second equality above holds by noting that ∑
χσ(t)
j=1 γk

σ(t),j = 1
for ∀k = 1, . . . , N. It thus follows that

D
(

Mσ(t)F
)
= D f δσ(t),

where D f denotes the block diagonal matrix with each block
being Jacobian matrix of the function f at xi(t), i.e., D f =
diag{D f (x1), . . . , D f (xN)}. By the definition of δσ(t), it
follows that the linearized version of (7) is

δ̇σ(t) = D f δσ(t) − φ(Lσ(t) ⊗ Γ)δσ(t), (25)

where we have used the approximation that F(x) = D f x.
To obtain (25), it is required that the initial states are in the
vicinity of a certain value. Then, we have the following result
concerning the stability of (25).

Theorem 5. For the nonlinear inter-connected system (2),
under Assumptions 1, 3, and 4, and moreover if ‖D f ‖ < ρ

for x ∈ RnN , then synchronization is reached locally if the
coupling strength φ is chosen to be sufficiently large.

It has been rigorously proven that there exists a coupling
strength, say φ∗, such that for any coupling strength φ > φ∗,
synchronization for inter-connected Lipschitz-type nonlinear
systems can be ensured under certain conditions. Beyond this
conclusion, one may further wonder whether one can find a
φ∗ such that if φ < φ∗, synchronization cannot be ensured. In
general, it is difficult to analyze the influence of the nonlinear
function f (·) on synchronization, and hence the coupling
strength φ∗. The following result illustrates that φ∗ exists for
nonlinear inter-connected systems with certain properties.

Assumption 6. There exist two positive definite diagonal
matrices Q = diag{q1, . . . , qn} and Σ = diag{δ1, . . . , δn}
such that for every x, y ∈ Rn, the below inequality holds:

(x− y)TQ
(

f (x)− f (y)− Σx + Σy
)
≥ 0. (26)

Inequality (26) in Assumption 6 is a converse version of
the well-known QUAD condition [33]. This condition encodes
the anti-synchronization influence from the nonlinear function

f (·). In addition, (26) holds if ∂ f
∂x + ∂ f

∂x
T

is positive definite.

Theorem 6. Considering the nonlinear inter-connected system
(2), under Assumptions 1 and 6, synchronization cannot be
reached if the coupling strength φ is chosen to be sufficiently
small.

VI. PROOF OF THE MAIN RESULTS

A. Technical Analysis for the Linear Case

Proof of Theorem 2: Since A is marginally stable, it
is easy to know that ‖ξ2(tkj+1

)‖ ≤ ψ‖ξ2(tkj
)‖ for some

constant ψ. Invoking Lemma 3 and observing (9), which has a
negative growth rate λi

σ(t) by choosing suitable K, there exists

a h̄i
σ(t)(ψ) > 0 such that

‖ei(t)‖ ≤ h̄i
σ(t)(ψ)

∥∥∥ei(tkj
)
∥∥∥ ,

when Si 6⊂ Ran(L̃σ(t)). To guarantee (20) it suffices to have

mk−1

∑
j=0

ln
(

h̄i
σ(tkj

)

(
ψi

σ(tkj
)

))
− ln γ ≤ −λi

σ(tki
)Tmin, (27)

for sufficient small 0 < γ < 1 if Si ⊂ Ran(L̃σ(t)) when
t ∈ [tki

, tki+1
). Hence, a lower bound of Tmin is given by

Tmin >

(
mk−1

∑
j=0

ln
(

h̄i
σ(tkj

)

(
ψi

σ(tkj
)

))
− ln γ

)/
− λi

σ(tki
).

The proof is complete since h̄i
σ(t)(·) is uniformly bounded.

Proof of Theorem 3: It is noted that the communication
graph for t ∈ [tkj

, tkj+1
) is Gσ(t). Now, let v1

σ(t), . . . , vN
σ(t) be

the orthogonal eigenvectors of Lσ(t) with vN
σ(t) ∈ span{1N}.

In the following, vi
σ(t) are fixed during [tkj

, tkj+1
). Then,

x can be further decomposed as x = α1
σ(t)v̄

1
σ(t) + · · · +

αN−1
σ(t) v̄N−1

σ(t) + αN
σ(t)v̄

N
σ(t), where αs

σ(t) ∈ R and v̄s
σ(t) = vs

σ(t)⊗
πs

σ(t) for s = 1, . . . , N.
Recall that the linear inter-connected system (1) communi-

cate over Gσ(t) during [tkj
, tkj+1

). The evolution of xs
σ(t)(t) =

αs
σ(t)v̄

s
σ(t)(t) is then described by

ẋs
σ(t) = (IN ⊗ A) xs

σ(t), (28)

for vs
σ(t) ∈ Ker(Lσ(t)), and

ẋs
σ(t) =

[
IN ⊗ (A− φλs

σ(t)BBTP)
]

xs
σ(t), (29)

for vs
σ(t) ∈ Ran(Lσ(t)) by choosing K = BTP. λs

σ(t) is the
nonzero eigenvalue of Lσ(t) associated with vs

σ(t).
Define Vs

σ(t) = xsT
σ(t)(IN ⊗ P)xs

σ(t). Taking the derivative of
Vs

σ(t) along (28) gives

V̇s
σ(t) = xsT

σ(t)

[
IN ⊗

(
ATP + PA

)]
xs

σ(t) ≤ 0,

which implies that ‖(IN ⊗ P
1
2 )xs

σ(t)‖ is non-increasing if
vs

σ(t) ∈ Ker(Lσ(t)). Similarly, the derivative of Vs
σ(t) along

(29) yields

V̇s
σ(t) = xsT

σ(t)

[
IN ⊗

(
ATP + PA− 2φλs

σ(t)PBBTP
)]

xs
σ(t) ≤ 0.

Consider the Lyapunov function candidate for (1) that is the
sum of Vs

σ(t), s = 1, . . . , N:

V(t) = ∑N
s=1 Vs

σ(t) = xT (IN ⊗ P) x,
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where x = ∑N
s=1 xs

σ(t). The derivative of V along (1) yields

V̇ = ∑N
s=1 V̇s

σ(t) ≤ 0. Hence, V(t) is non-increasing and
converges to a nonnegative constant V∗ as time approaches
infinity. Moreover, if Vs

σ(t) = 0 during [tkj
, tkj+1), ∀ 0 ≤

j ≤ mk − 1 with s satisfying vs
σ(t) ∈ Ran(Lσ(t)), then one

obtains that synchronization is achieved for (1) by Lemma
2. Now, we suppose that for some 1 ≤ s ≤ N − 1 satisfying
vs

σ(t) ∈ Ran(Lσ(t)) and 0 ≤ j ≤ mk− 1, Vs
σ(t)(tkj

) ≥ Z∗ > 0
as k→ ∞ and show that contradiction will be incurred in the
following.

Since Vs
σ(t)(tkj

) ≥ Z∗, ‖(I ⊗ P1/2)xs
σ(t)(tkj

)‖ ≥
√

Z∗. In

addition, ‖(I ⊗ P1/2)xs
σ(t)(tkj

)‖ ≥ ‖(I ⊗ P1/2)xs
σ(t)(tkj+1

)‖
according to the negativity of the derivative of Vs

σ(t). Noting
that (BTP, A) is observable, by Lemma 5, it is known that
(BTP, A− φλs

σ(t)BBTP) is also observable. One then has

Vs
σ(t)(tkj+1

)−Vs
σ(t)(tkj

)

≤ −2φλs
σ(t)x

sT
σ(t)

(
tkj

)
×
[ ∫ tkj+1

tkj

exp
{

I ⊗
(

A− φλs
σ(t)BBTP

)
(τ − tkj

)
}T

(I ⊗ PB)

×
(

I ⊗ BTP
)

exp
{

I ⊗
(

A− φλs
σ(t)BBTP

)
(τ − tkj

)
}

dτ

]
× xs

σ(t)

(
tkj

)
≤ −2φλs

σ(t)x
sT
σ(t)

(
tkj

)
Oxs

σ(t)

(
tkj

)
.

The observability of (BTP, A − φλs
σ(t)BBTP) implies that

O exists and is positive definite [35]. Moreover, since
‖xs

σ(t)(tkj
)‖ >

√
Z∗/σmax(P1/2) where σmax(P1/2) de-

notes the maximum singular value of P1/2, Vs
σ(t)(tkj+1

) −
Vs

σ(t)(tkj
) < −a∗ for a sufficiently large tkj

and a positive
constant a∗. This contradicts the fact that V(t) is a Cauchy
sequence. Hence, Vs

σ(t)(tkj
) → 0 as k → ∞, which in turn

guarantees the achievement of synchronization for (1).

B. Technical Analysis in the Nonlinear Case

Proof of Theorem 5: The proof follows that of Theorem
4. We omit the detailed proof for brevity

Proof of Theorem 6: The proof is with respect to
synchronization error e rather than δσ(t). It is easy to obtain
that

ė = f(x)− φ
(

L̃σ(t) ⊗ Γ
)

e, (30)

where f(x) = [( f (x1) − f (x2))
T, . . . , ( f (x1) − f (xN))

T]T.
Consider the Lyapunov function candidate V(t) = eT(Ξ ⊗
Q)e for the error system dynamics (30), where Ξ is a positive
diagonal matrix and Q is defined in Assumption 6. The

derivative of V(t) along (30) gives

V̇(t) =2eT(Ξ⊗Q)
(

f(x)− φ
(

L̃σ(t) ⊗ Γ
)

e
)

= 2
N

∑
j=2

ξ j
(
x1 − xj

)
Q
(

f (x1)− f (xj)
)

− φeT
[(

ΞL̃σ(t) + L̃T
σ(t)Ξ

)
⊗ (QΓ)

]
e.

By Assumption 6, one has(
x1 − xj

)
Q
(

f (x1)− f (xj)
)
≥
(
x1 − xj

)T Σ
(
x1 − xj

)
.

Moreover, one can find a positive constant ασ(t) such that

ΞL̃σ(t) + L̃T
σ(t)Ξ ≤ ασ(t)Ξ.

Therefore, one reaches that

V̇(t) ≥ 2eT (Ξ⊗ Σ) e− φeT
[
ασ(t)Ξ⊗ (QΓ)

]
e

≥ eT
[
Ξ⊗Q

(
2εI − φασ(t)Γ

)]
e,

where ε is chosen such that Σ > εQ. If φ is chosen in such
a way that for i = 1, . . . , n, there holds 2ε− φασ(t)γi > 0,
i.e., φ < 2ε

ασ(t)γi
with γi being the i-th diagonal entry of Γ,

then V̇(t) > 0. By [Theorem 4.3, [23]], it is readily obtained
that synchronization for nonlinear inter-connected system (2)
cannot be realized.

Proof of Corollary 1: Note that since the common part
of every reach is empty and[

I −
χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)]
F

(χσ(t)

∑
j=1

(
γσ(t),jβ

T
σ(t),j ⊗ In

)
x

)
= 0.

Therefore,

Mσ(t)F(x) = Mσ(t)

(
F(x)− F((I −Mσ(t))x)

)
,

which implies that condition (24) holds if Assumption 3 is
satisfied. The following proof follows straightforward that of
Theorem 4. The remove of (24) is at the cost that the common
part of different reaches is required to be empty in each
communication graph.

VII. CONCLUSION

We have investigated the synchronization problem of linear
generic systems and Lipschitz-type nonlinear systems commu-
nicating over directed switching topology with mild connec-
tivity assumption. An analysis framework from both algebraic
and geometric perspective to deal with the attractiveness of
the synchronization manifold has been developed. Specifically,
the synchronization problem is transformed into the one of
evolution of projection system state onto a set of appropriately
selected subspaces. It turns out that the synchronization of
partial-state coupled linear generic systems can be reached
if additional algebraic conditions are satisfied. While for
Lipschitz-type nonlinear systems with positive definite inner
coupling matrix, synchronization can be realized if the cou-
pling strength is strong enough if the subspaces have certain
geometric properties. Two special cases with specific switch-
ing scheme and undirected communication graph have also
been investigated for linear systems, respectively. Illustrative
examples have verified the theoretical findings.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Consider the system dynamics ẋ(t) = −Lx(t),
with L being a Laplacian matrix of a nonnegatively weighted
graph. Take T = [ω1, . . . , ωn1 , . . . , ωN ], where ω1 = 1√

N
1N

and ω1, . . . , ωn1 are chosen to be generalized eigenvectors of
eigenvalue zero. Then, the transformation z = T−1x implies[

ż1
ż2

]
= −

[
H1
∗ H2

] [
z1
z2

]
,

with H1 ∈ Rn1×n1 being Jordan block associated with
eigenvalue 0. Now, suppose H1 is not diagonal. Let x0 be
chosen such that z1 = 1n1 . By z1-dynamics ż1 = −H1z1, one
then has that ‖z1‖ grows unbounded with time approaching
infinity. This contradicts the result obtained in [8], which
requires that ‖z1‖ is bounded. This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: It is obvious that ∩p
j=1Ker(Lj) ⊃ span{1N}.

Now, suppose there exists a nonzero vector w /∈ span{1N}
but Ljw = 0 for j = 1, . . . , p. This in turn implies
that (∑

p
j=1 Lj)w = 0. Since ∪p

j=1Gj contains a directed
spanning tree, the kernel of ∑

p
j=1 Lj is spanned by 1N [8].

Contradiction arises. The first assertion then holds. Note that
given any x ∈ RN , Lix ∈ Ran(Li). Then, (L1 + . . . +
Lp)x ∈ span{Ran(L1) ∪ · · · ∪ Ran(Lp)}. This implies that
Ran(∑

p
j=1 Lj) ⊂ span{Ran(L1) ∪ · · · ∪ Ran(Lp)}. It is

further concluded that the dimension of span{Ran(L1) ∪
· · · ∪ Ran(Lp)} is at least N − 1. Observe further that
span{Ran(L1) ∪ · · · ∪ Ran(Lp)} ∩ span{1N} = {0}. The
second assertion holds.

APPENDIX C
PROOF OF LEMMA 3

Proof: With ξ = T−1x and in view of the invariance of
Si with respect to H, one has

ξ̇ =

H̃1
. . .

H̃p

 ξ, (31)

where diag{H̃1, . . . , H̃p} = T−1HT. Then, by the observa-
tion that given x ∈ Si, 1 ≤ i ≤ p,

T−1x =

[
0, . . . , 0, ξ∑i−1

j=1 nj+1, . . . , ξ∑i
j=1 nj

, 0, . . . , 0
]

.

The first conclusion follows.
Notice that xi and also x can be written as a linear

combination of a set of basis vectors vk, k = 1, . . . , n such
that

xi = zi
1 + · · ·+ zi

n,

where zi
k is the projection of xi onto vk, k = 1, . . . , n. Hence,

one has

x =
p

∑
j=1

zj =
p

∑
j=1

n

∑
i=1

zj
i ,

where zj = ∑n
i=1 zj

i . Proposition i) in 2) is then straightfor-
ward. It is worth pointing out that

‖T−1xi(0)‖2 ≤ ‖zi
1(0)‖2 + · · ·+ ‖zi

n(0)‖2 = ‖zi(0)‖2

= ‖diag{0, . . . , 0, 1, . . . , 1, 0, . . . , 0}T−1x(0)‖

with T = [v1, . . . , vn] and the diagonal matrix, denoted by Mi
has ni 1’s from the (∑i−1

j=1 nj + 1)-th to the (∑i
j=1 nj)-th entry.

Then, ΘRn(ψ) = maxi σmax(MiT−1)/σmin(T−1)ψ. Next,
we prove the converse. Suppose ‖x‖ ≤ ψ exp{γt}‖x0‖,
by the observation that ‖MiT−1x(0)‖ ≥ ‖T−1xi(0)‖,
it then follows from similar arguments that
xi ≤ ΦSi ψ exp{γt}‖xUB

i (0)‖, where ΦSi (ψ) =
σ(max)(MiTT)/σ(min)(TT)ψ · maxi ‖x0‖/‖xUB

i (0)‖.
Finally, combining the results in i) and ii) gives immediately
iii). This completes the proof.

APPENDIX D
PROOF OF LEMMA 4

Proof: First, let S̄1 = S1 ∩ S2. Then, define S̄2 such that
S̄2 ⊕ S̄1 = S1. Let S̄3 be given in such a way that S̄1 ⊕ S̄2 ⊕
S̄3 = span{∪2

j=1Sj}. Next, one can construct S̄4 = S3 ∩ S̄1,
S̄5 = S3 ∩ S̄2, and S̄6 = S3 ∩ S̄3. With the constructed S̄4,
S̄5, and S̄6, the subspaces S̄1, S̄2, and S̄3 are renewed as the
subspaces S̄∗1 , S̄∗2 , and S̄∗3 , which are given by S̄1 = S̄∗1 ⊕ S̄4,
S̄2 = S̄∗2 ⊕ S̄5, and S̄3 = S̄∗3 ⊕ S̄6, respectively. Finally, define
S̄7 in the same way as S̄3 such that ⊕7

j=1S̄j = span{∪3
j=1Sj}.

By following the preceding procedures, one can similarly
construct S̄8, S̄9, . . . , S̄2p−1. It is worth nothing that S̄k may
be a trivial space, i.e., S̄k = {0} for some k. If S̄k is
trivial, then S̄k is eliminated. Hence, one finally obtains
1 ≤ p̄ ≤ 2p − 1 subspaces whose sum is a direct sum and
equals to span{∪p

j=1Sj}. The latter fact is true by the process
of construction of S̄i, i = 1, . . . , p̄. The proof is therefore
complete.

APPENDIX E
PROOF OF LEMMA 5

Proof: The observability of (C, A) and (C, A − ΠC)
implies that [35]

OA =


C

CA
...

CAn−1

 , OA−ΠC =


C

C(A−ΠC)
...

C(A−ΠC)n−1


are full column rank, respectively. We first show that given
nonzero x ∈ Rn, if OAx 6= 0 then OA−ΠCx 6= 0. This can
be done by induction. Note that if Cx 6= 0, then the above
conclusion is true. Now, suppose CAkx 6= 0, CAjx = 0, ∀0 ≤
j < k. Observe that C(A−ΠC)k contains terms that end with
CAs where 0 ≤ s ≤ k 6. If 0 ≤ s < k, then CAsx = 0 in
view of CAj = 0, ∀0 ≤ j < k. Since CAk is the only left term
of C(A−ΠC)k which satisfies CAkx 6= 0, one obtains that
C(A−ΠC)kx 6= 0. The converse that given nonzero x ∈ Rn,

6For example, with k = 2, C(A−ΠC)2 = CAA− CAΠC− CΠCA +
CΠCΠC.
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if OA−ΠCx 6= 0 then OAx 6= 0, can be proved in the same
way. Therefore, it is known that OA and OA−ΠC has the same
rank. The proof is thus complete.

APPENDIX F
PROOF OF LEMMA 7

Proof: We first show that eigenvalue 0 of L̃σ(tkj
) is semi-

simple. Suppose there exists a vector v /∈ 0 such that v ∈
Eig(L̃σ(tkj

)) is a generalized eigenvector for some j. One can

then find a positive integer nj > 1 for L̃σ(tkj
) such that ṽj =

L̃
nj
σ(tkj

)
v 6= 0 is the eigenvector of L̃σ(tkj

) corresponding to

eigenvalue 0. Construct v̄j = [0, ṽT]T. Then, one has

∆L
nj+1
σ(tkj

)
∆v̄j =

[
∗L̃

nj
σ(t)ṽ, 0

]T
=

[
∗L̃

nj
σ(t) L̃

nj
σ(tkj

)
v, 0
]T

= 0,

which in turn implies that

L
nj+1
σ(tkj

)

(
−
[
0, ṽT

j

]T
)
= 0.

One can then reach the conclusion that Eig(Lσ(tkj
)) contains

a vector [0,−ṽT
j ]

T that is a generalized eigenvector associated
with eigenvalue 0. This implies that the algebraic multiplicity
of eigenvalue 0 is strictly larger than its geometric multiplicity.
This contradicts the result obtained in Lemma 1.

Now, suppose ∩mk−1
j=0 Eig(L̃σ(tkj

)) 6= {0}, which implies

that there exists a vector w 6= 0 such that L̃σ(tkj
)w = 0 for

j = 0, . . . , mk − 1. Hence, ∑mk−1
j=0 L̃σ(tkj

)w = 0. Note that

∑mk−1
j=0 L̃σ(tkj

) is the submatrix of

∆
mk−1

∑
j=0

Lσ(tkj
)∆ =

[
0 ∗
0 ∑mk−1

j=0 L̃σ(tkj
)

]
,

which indicates that ∑mk−1
j=0 L̃σ(tkj

) is of full rank. Contradic-
tion arises. The proof is thus complete.

APPENDIX G
PROOF OF LEMMA 8

Proof: This proof exploits the Frobenius normal form of
a Laplacian matrix. Note that G̃ = ∪p

i=1G i contains a directed
spanning tree. Then, L(G̃) can equivalently be written into the
following Frobenius normal form [6]:

L(G̃) =


L11(G̃)
L21(G̃) L22(G̃)

... · · · . . .
Lq1(G̃) · · · · · · Lqq(G̃)

 .

It is worth noting that given G1 to G p, to show
∩p

j=1span({x|δj = 0}) = span{1N ⊗ u, u ∈ Rn}, the

sequence of appearance of G i is irrelevant. Denote G̃ i the
subgraph of G̃ that corresponds to Lii(G̃), i = 1, . . . , q.
The following proof resorts to contradiction. We assume that

δi = 0, i = 1, . . . , p does not imply that x = α1N for some
α ∈ R.

To proceed, we start from G̃1 and fix x /∈ span{1N} such
that δi = 0, i = 1, . . . , p. Select node m in such a way that
m = arg min{xi, i ∈ G̃1} (if there are many choices, select
one arbitrarily) and there exists at least one node, say, j, such
that xm < xj for j 6= m and j ∈ G̃1 (otherwise, one has
xi = xj for any i, j ∈ G̃1, which completes the first part

of the proof). Since G̃1 is strongly connected, one can find
a directed path from m to m passing every other node once
and only once. The path is denoted by a sequence of edges
(m = j0, j1), (j1, j2), . . . , (jk−1, jk = m). It is worth pointing
out that any link (jk, jk+1) cannot start from one node from the
common part of some reach to another node in the exclusive
part. Starting from m, there exists a 1 ≤ s ≤ k− 1 such that
xjl = xm for l < s while xm < xjs . Recall that δi = 0 implies
that any two nodes in the same exclusive part of a reach in
G i have identical state. Furthermore, it is known that the state
of a node in a common part is a convex combination (with
combination coefficient being positive) of those of the nodes in
exclusive parts of the corresponding reaches by 4) in Lemma
6. Then, it is obvious that xjl > xm for s < l ≤ k. Therefore,
xm < xm, which is impossible. Hence, it is obtained that for
any two nodes in G̃1, their states are identical.

Then, it remains to show that the states of any two nodes
from G̃ i and G̃ j are identical for i 6= j by induction. Given
G̃ i and G̃ j with j = i + 1, suppose any two nodes in G̃ i have
identical state. Then, consider the augmented graph Ḡ j that

consists of G̃ j, a single node i∗ that represents G̃ i, and edges
from the node i∗ to those in G̃ j if and only if there exists an

edge from G̃ i to any of them. Next, select node m ∈ V(G̃ j) in

such a way that m = arg min{xi, i ∈ G̃ j, xi∗} (If xm = xi∗ ,
then select node m in such a way that m = arg max{xi, i ∈
G̃ j, xi∗}). Actually, m cannot be reached by i∗ directly, i.e.,
(i∗, m) /∈ E . Otherwise, there exists a G i such that (i∗, m) ∈
E(G i), which implies that xm will be larger than the smallest
state of the nodes in the corresponding exclusive parts of the
reaches m belongs to. This contradicts the fact that xm ≤ xj
for ∀j 6= m, j ∈ V(G̃ i). Then there exists at least one node
n ∈ V(G̃ j) satisfying xm < xn. This is true by observing that
xm < xi∗ and there exists a node, say, n, such that (i∗, n) ∈
E(G̃ i). By following the arguments developed to prove that
the states of any two nodes in G̃1 are the same, it can be
verified that xm = xn = xi∗ . This completes the proof.
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