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Boundary delayed observer-controller design for

reaction-diffusion systems
Rami Katz, Emilia Fridman, Fellow, IEEE and Anton Selivanov

Abstract—We consider delayed boundary stabilization of a 1D
reaction-diffusion equation under boundary delayed measure-
ments. We design an observer-based control law via the modal
decomposition approach. The observer is governed by a PDE
which leads to separation of the observer and the controller
design. We suggest a network-based implementation of the con-
troller in the presence of two networks: from sensor to controller,
and from the controller to actuator. To reduce the workload of
the second network, we suggest a novel switching-based dynamic
event-triggering mechanism. We extend the results to the vector
case and illustrate their efficiency by a numerical example.

I. INTRODUCTION

Sampled-data and delayed control of PDEs is becoming

an active research area. General results on sampled-data con-

trol of PDEs were presented in [1]. Constructive conditions

in terms of linear matrix inequalities (LMIs) for sampled-

data and delayed control of PDEs that are applicable to the

performance (e.g. exponential decay rate) analysis have been

initiated in [2]–[5]. However, these results are confined to

distributed control of parabolic PDEs.

Boundary controllers for PDEs may be designed by modal

decomposition technique [6] or by backstepping approach [7].

Sampled-data and delayed implementation of such controllers

is a challenging direction. For linear systems of conservation

laws, event-triggered boundary control was suggested in [8].

State-feedback sampled-data boundary controllers for 1-D

linear transport and heat equations were introduced recently

in [9] and [10]. In [11], modal decomposition technique was

combined with a predictor to compensate a constant delay

in the boundary state-feedback controller for heat equation.

However, the existing results on boundary sampled-data or

delayed control are confined to state-feedback case.

In the present paper we introduce an observer-based bound-

ary control of 1D reaction-diffusion equation under boundary

measurements in the presence of input and output time-

varying delay (that may include data sampling). We develop

modal decomposition approach. Note that finite-dimensional

boundary observer for such systems that is applicable under

boundary Dirichlet actuation was recently constructed in [12].

Differently from [12] we consider PDE observer that allows

for separation of the observer and controller design, and we

study a general Robin actuation.
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We study a network-based implementation of the controller

in the presence of two networks: from sensor to controller,

and from the controller to actuator. To reduce the workload of

the second network, we suggest a novel event-triggering (ET)

mechanism. There exist two main approaches to ET design:

static ET (see e.g. [13]) and dynamic ET (see e.g. [8], [14]).

Both approaches may lead to Zeno behaviour. To avoid this,

a static switching-based ET approach was introduced in [15].

In this paper, we propose a novel dynamic switching-based

ET mechanism that avoids Zeno behaviour. Furthermore, we

present an extension of the results to the vector case.

A conference version of the present paper (see [16]) was

focused on the network-based controller design for scalar

systems. Here we consider a more general case of time-varying

delays, where we have only weak solutions, and we need more

involved proofs. Moreover, we present a vector extension of

the results with a vector example from [17].

II. NOTATIONS AND PRELIMINARIES

Throughout the paper R
n denotes the n dimensional Eu-

clidean space with the vector norm |v| for v ∈ R
n, Rn×m is

the set of all n×m real matrices, and the notation P >0, for

P ∈ R
n×n means that P is symmetric and positive definite,

whereas |v|2P := vTPv.

We denote by Hk(0, 1) the Sobolev space of index k with

the norm ‖f‖Hk(0,1) :=
√

∑k
j=0

∥

∥f (j)
∥

∥

2

L2(0,1)
.

Lemma 1: [18] (Wirtinger’s inequality) If f ∈ H1(0, 1)
satisfies f(0) = 0 or f(1) = 0, then

‖f‖L2(0,1) ≤
2

π
‖f ′‖L2(0,1). (1)

Lemma 2: [18] (Sobolev’s inequality) If f ∈ H1(0, 1), then

for some constant M > 0

max
x∈[0,1]

|f(x)| ≤M ||f ||H1(0,1) . (2)

Recall that for a regular Stürm-Liouville eigenvalue problem

φ′′ + λφ = 0, 0 < x < 1, (3)

φ′(0) = 0, γ1φ(1) + γ2φ
′(1) = 0,

with

|γ1|+ |γ2| > 0 (4)

there exists a sequence of eigenvalues {λn}
∞
n=1 with corre-

sponding eigenfunctions {φn}
∞
n=1. Moreover, the eigenvalues

form an unbounded, monotone increasing sequence and the

eigenfunctions are a complete orthonormal system in L2(0, 1)
(see [19]). Throughout this paper we assume that (4) is valid.
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III. DELAYED OBSERVER-CONTROLLER DESIGN

A. Problem formulation and well-posedness.

Consider the reaction-diffusion system

zt = zxx + qz, t ≥ 0, (5)

zx(0, t) = 0, γ1z(1, t) + γ2zx(1, t) = u(t− τu(t)),

where x ∈ (0, 1), γ21 + γ22 6= 0. Here z(x, t) ∈ R is the

state, u(t) ∈ R is the control input, τu(t) is the input delay

and q ∈ R is the reaction coefficient. We assume u ≡ 0 for

t− τu(t) < 0. We consider the boundary measurements

y(t) = z(0, t− τy(t)), t ≥ 0 (6)

with the measurement delay τy(t), and assume y ≡ 0 for

t− τy(t) < 0.

In this paper we treat two classes of input and output

delays: absolutely continuous delays and sawtooth delays that

correspond to network-based control. We assume that the

delays τy and τu are known and are upper-bounded by τM :

τu(t) ≤ τM , τy(t) ≤ τM ∀t ≥ 0.

For the case of absolutely continuous delays, we assume

that τu(t) and τy(t) are lower bounded by τm > 0. This

assumption is employed for well-posedness only. As in [20],

we assume that there exists a unique t∗ ∈ [τm, τM ] such that

t− τ(t) < 0, t < t∗, t− τ(t) ≥ 0, t ≥ t∗,

for any τ(t) ∈ {τu(t), τy(t)}.

In the case of sawtooth delays, we consider a network-

based control in the presence of two networks: from sensor

to controller and from controller to actuator (see Figure 1).

Denote the observer updating instances by sk, where 0 =
s0 < s1 < s2 < s3 < · · · , limk→∞ sk = ∞. Let ρk, k ≥ 0
be the transmission delays between the sensor and the con-

troller. Similarly, denote the controller updating instances by

tk, k = 0, 1, . . . , where 0 = t0 < t1 < t2 < t3 < · · · ,

limk→∞ tk = ∞. Let µk, k = 0, 1. . . . be the transmission

delays between the controller and the actuator. We allow the

transmission delays to be larger than the corresponding sam-

pling intervals provided that the updating sequences {sk + ρk}
and {tk + µk} remain increasing. Moreover, we assume that

sk+1 − sk, tk+1 − tk ≤ MATI, k = 0, 1, . . . , where MATI is

maximum allowable transmission interval. Similarly, ρk, µk ≤
MAD, k = 0, 1, . . . , where MAD is maximum allowable

delay. The resulting NCS has a piecewise-constant control

input implemented by zero-order hold device. By using the

time-delay approach to NCSs [21], [22], the resulting control

input can be modeled as a delayed one with τu(t) = t−tk, t ∈
[tk+µk, tk+1+µk+1) and u(t−τu(t)) = 0 for t ∈ [0, t0+µ0).
Similarly, the measurements on the controller side are modeled

using τy(t) = t − sk, t ∈ [sk + ρk, sk+1 + ρk+1) with

y(t) = 0 for t ∈ [0, s0 + ρ0]. The resulting delays τy and τu
are upper-bounded by τM :=MATI +MAD.

We assume that the sampling instances as well as trans-

mission delays are known, and there are no packet dropouts.

The assumption about known ρk is valid e.g. when the

measurements are sent together with the time-stamps. The

assumption about known µk is less realistic, but it may be

Fig. 1. Network-based control.

reasonable e.g. in the case of constant µk ≡ µ. Note that

unknown delays do not allow separation of the controller and

observer design, which is crucial in our approach.

For well-posedness, we start with sawtooth delays. Assume

z0 ∈ L2(0, 1). By [23, Theorem 1], there exists a unique weak

solution z ∈ C([0, t0+µ0], L
2(0, 1)) to (5) with u(t−τu(t)) =

0 for t ∈ [0, t0 + µ0]. For t ∈ [t0 + µ0, t1 + µ1], let

w(x, t) = z(x, t)− r(x)u(t0), (7)

where r(x) is a quadratic polynomial satisfying r′(0) = 0 and

γ1r(1) + γ2r
′(1) = 1. Then

wt = wxx + qw + f(x, t),
wx(0, t) = 0, γ1w(1, t) + γ2wx(1, t) = 0,
f(x, t) = r′′(x)u(t0) + qr(x)u(t0).

(8)

Since f ∈ L1([t0 + µ0, t1 + µ1], L
2(0, 1)), [23, Theorem 1]

implies that there exists a unique weak solution w ∈ C([t0 +
µ0, t1+µ1], L

2(0, 1)) of (8) such that w(·, t0+µ0) = z(·, t0+
µ0)−ru(t0) ∈ L2(0, 1) with z(·, t0+µ0) obtained on [0, t0+
µ0]. Then z = w+ ru(t0) ∈ C([t0 +µ0, t1 +µ1], L

2(0, 1)) is

the weak solution of (5) on [t0+µ0, t1+µ1]. Using the same

argument step by step on [tk+µk, tk+1+µk+1] (k = 1, 2, . . . )
with the initial condition z(·, tk + µk) ∈ L2(0, 1) obtained on

the previous interval, we establish the existence of a unique

weak solution z ∈ C([0,∞), L2(0, 1)) for z0 ∈ L2(0, 1). Be-

low, we take z0 ∈ H2(0, 1), which implies z(·, t) ∈ H2(0, 1)
for t ≥ 0 (see, e.g [24]).

For the case of absolutely continuous delays, the existence

of a unique weak solution z ∈ C([0,∞), L2(0, 1)) can be ob-

tained using similar arguments provided u(t) is an absolutely

continuous function. The control law proposed hereafter will

result in absolutely continuous u(t).
Our objective is stabilization of (5) by using observer-

based controller. In this paper we will develop a modal

decomposition approach for observer-controller design (for

the state-feedback sampled-data control, this approach was

introduced in [24]).

B. Boundary observer design.

We construct an observer in the form of a PDE

ẑt = ẑxx +qẑ − L(x) [y(t)− ẑ(0, t− τy(t))] , t ≥ 0,

ẑx(0, t) = 0, γ1ẑ(1, t) + γ2ẑx(1, t) = u(t− τu(t)), (9)

where ẑ(x, t) = 0 for t ≤ 0 and L(x) is given by

L(x) :=

N
∑

n=1

lnφn(x), (10)
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with φn satisfying (3) and some scalar gains {ln}
N
n=1. For the

estimation error e(x, t) := z(x, t)−ẑ(x, t), we obtain the PDE

et(x, t) = exx(x, t) + qe(x, t) + L(x)e(0, t− τy(t)), t ≥ 0,

ex(0, t) = 0, γ1e(1, t) + γ2ex(1, t) = 0 (11)

with initial condition e(x, 0) = z0(x). The PDE (11) doesn’t

depend on the control law. This leads to separation of the

observer and controller design. Note that the finite-dimensional

observer suggested in [12] for the case of homogeneous

boundary conditions does not allow such separation in the

case of boundary control. The existence of a unique weak

solution of (11) is established by the same arguments used for

well-posendess of (5).

The solution to (11) can be presented as

e(·, t) =

∞
∑

n=1

en(t)φn(·), (12)

where en(t) = 〈e(·, t), φn〉. By differentiating under the

integral sign and substituting (11) we obtain

ėn(t) =

∫ 1

0

et(x, t)φn(x)dx (13)

= [ex(1, t)φn(1)− e(1, t)φ′n(1)]− (λn − q)en(t)

+ e(0, t− τy(t))

N
∑

k=1

lk

∫ 1

0

φk(x)φn(x)dx.

Since both φn(x) and e(x, t) satisfy homogeneous boundary

conditions for x = 1, the following holds:

ex(1, t)φn(1)− e(1, t)φ′n(1) = det

[

φn(1) φ′n(1)
e(1, t) ex(1, t)

]

= 0.

(14)

Moreover, by orthonormality of {φn}
∞
n=1,

N
∑

k=1

lk

∫ 1

0

φk(x)φn(x)dx = ln ·

{

1, n ≤ N,

0, otherwise.
(15)

Combining (15) and (14) we obtain the following ODEs

ėn(t) = −(λn − q)en(t) + lne(0, t− τy(t)) , n ≤ N

ėn(t) = −(λn − q)en(t) , n > N. (16)

Let δ > 0 be a desired decay rate. Since limn→∞ λn = +∞,

there exists N ∈ N such that

−λn + q < −δ , ∀n > N. (17)

The required value of N can be estimated using equations

(18) and (19) in [25]. For the case of Neumann or Dirichlet

boundary condition, the eigenvalues and the corresponding N

can be obtained explicitly.

Define

ζ(x, t) :=

∞
∑

n=N+1

en(t)φn(x), t ≥ 0. (18)

By Parseval’s equality, (17) and (11),

‖ζ(·, t)‖2L2(0,1) =
∞
∑

n=N+1

e2(−λn+q)t |en(0)|
2

≤ e−2δt ||z0||
2
H2(0,1) , t ≥ 0. (19)

For n ≤ N , we rewrite the ODEs in (16) as a system

ėN (t) = AeN (t) + LCeN (t− τy(t)) + Lζ0(t− τy(t)),

eN (t) =
[

e1(t) ... eN (t)
]T
, (20)

where

A = diag (−λ1 + q, ...,−λN + q) ∈ R
N×N ,

L =
[

l1 ... lN
]T

∈ R
N×1, C =

[

φ1(0) ... φN (0)
]

,

ζ0(t) = e(0, t)−
∑N
n=1 en(t)φn(0).

(21)

It can be verified that φj(0) 6= 0 for all j ∈ N and all values

of γ1, γ2 ∈ R. Therefore, since A is diagonal with non-zero

diagonal entries, the pair (A,C) is observable by the Hautus

lemma. Thus, for any δ > 0, a vector L can be chosen such that

there exists P ∈ R
N×N , P > 0 which satisfies the Lyapunov

inequality

P (A+ LC) + (A+ LC)TP < −2δP. (22)

In order to prove exponential convergence of the error equation

(11), we will show that ζ0(t−τy(t)) decays exponentially with

a decay rate δ. The proof suggested in [12] can be applied only

to the case of Dirichlet boundary condition on x = 1, where

z0 ∈ H1(0, 1) with z0(1) = 0. For the case of Robin boundary

condition on x = 1, the proof in [12] cannot be applied since

the eigenfunctions of (3) do not vanish on the boundaries.

Lemma 3: Assume that z(·, 0) := z0(·) ∈ H2(0, 1) satisfies

∂xz0(0) = γ1z0(1) + γ2∂xz0(1) = 0. (23)

Then there exists a constant Mζ > 0 such that

|ζ0(t− τy(t))| ≤Mζ exp(−δt) ||z0||H2(0,1) , t > 0. (24)

Proof: We first show that ζ(·, t) ∈ H2(0, 1), t > 0, where

ζ is given by (18). Let

g(x, t) := −

∞
∑

n=N+1

λnen(t)φn(x) , t > 0. (25)

Since z0 ∈ H2(0, 1) satisfies (23) we obtain

||g(·, t)||
2
L2(0,1) =

∞
∑

n=N+1

λ2n exp(2(−λn + q)t) |en(0)|
2

≤ exp(−2δt) ||z′′0 ||
2
L2(0,1) ≤ exp(−2δt) ||z0||

2
H2(0,1) . (26)

Therefore, g(·, t) ∈ L2(0, 1) for all t > 0. Let v ∈ C∞
0 (0, 1)

be a smooth, compactly supported function. After integrating

by parts we find for any m > N + 1

∫ 1

0

(

m
∑

n=N+1

en(t)φn(x)

)

v′′(x)dx (27)

=

∫ 1

0

(

−

m
∑

n=N+1

λnen(t)φn(x)

)

v(x)dx.

Taking N → ∞, using the dominated convergence theorem,

(18), (25) and (27) we find that ζ(·, t) ∈ H2(0, 1) and

ζxx(·, t) = g(·, t) , t > 0.
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Since φ′n(0) = 0, we have |φ′n(x)| ≤ λ
1

2

n . Moreover, π2(n−
1)2 ≤ λn ≤ π2n2 [25]. Then for some M > 0

|
∞
∑

n=N+1

en(t)φ
′
n(x)| ≤M

∞
∑

n=N+1

exp(−λnt)λ
1

2

n <∞,

where the last inequality follows from the root test. Thus, (18)

can be differentiated term by term in x (for each t > 0),

leading to ζx(0, t) = 0. By Wirtinger’s inequality and (26)

||ζx(·, t)||
2
L2(0,1) ≤

4

π2
e−2δt ||z0||

2
H2(0,1) , t > 0. (28)

By the Sobolev inequality (2),

|ζ0(t)|
2
= |ζ(0, t)|

2
≤M2 ||ζ(·, t)||

2
H1(0,1) . (29)

By combining (29), (28) and (19) we obtain the result in the

case τy(t) ≡ 0. For τy(t) ≥ 0, we have

|ζ0(t− τy(t))| ≤M1 exp(δτM ) exp(−δt) ||z0||H2(0,1) , t > 0,

which implies (24) with Mζ =M1 exp(δτM ).
Remark 1: For the case of u ≡ 0, the finite-dimensional

observer of [12] can be used for Robin boundary conditions

provided z0 ∈ H2(0, 1).
Proposition 1: Consider the error system (11). Given δ > 0,

let N satisfy (17), L =
[

l1 ... lN
]T

∈ R
N×1 satisfy (22),

z0(·) ∈ H2(0, 1) satisfy (23) and L(x) be defined by (10). Let

there exist matrices P2, P3, G ∈ R
N×N and positive-definite

matrices P, S,R ∈ R
N×N such that

Φ < 0 and

[

R G

∗ R

]

≥ 0,

where Φ = {Φij} is the symmetric matrix composed from

Φ11 = ATP2 + PT2 A+ 2δP + S − e−2δτMR,

Φ12 = P − PT2 +ATP3 , Φ13 = e−2δτM (R−G) + PT2 LC

Φ14 = e−2δτMG , Φ22 = −P3 − PT3 + τ2MR

Φ23 = PT3 LC , Φ24 = 0 , Φ33 = −e−2δτM (2R−G−GT )

Φ34 = e−2δτM (R−G) , Φ44 = −e−2δτM (S +R) (30)

with A,C from (21). Then there exists Me > 0 such that

||e(·, t)||L2(0,1) ≤Me exp(−δt) ||z0||H2(0,1) , t ≥ 0,
∣

∣eN (t)
∣

∣ ≤Me exp(−δt) ||z0||H2(0,1) , (31)

where eN is defined in (20).

Proof: The proof is similar to proof of Theorem 1 in [12].

For n ≤ N , the LMIs (30) guarantee ISS stability of (20) with

respect to input ζ0 (cf. Proposition 4.3 of [21]). Together with

(24) this implies the second inequality of (31).

For n ≥ N + 1 (16) gives

en(t) = exp(− (λn − q) t)en(0).

By using Parseval’s equality and (17), we find

∞
∑

n=N+1

|en(t)|
2
≤ M̃e exp(−2δt) ||z0||

2
H2(0,1) .

By combining both bounds, we obtain the result.

C. Control law design.

For the exponential stabilization of (5) by using observer

(9), it is sufficient to achieve ISS of the observer PDE

ẑt = ẑxx + qẑ − L(x)e(0, t− τy(t)), t ≥ 0,

ẑx(0, t) = 0, γ1ẑ(1, t) + γ2ẑx(1, t) = u(t− τu(t)), (32)

where ẑ(x, 0) = 0, x ∈ [0, 1] and the input e(0, t− τy(t)) is

exponentially decaying:

|e(0, t− τy(t))| = |CeN (t− τy(t)) + ζ0(t− τy(t))|

≤M exp(−δ̃t) ||z0||
2
H2(0,1) ∀t ≥ 0, δ̃ > δ. (33)

Here M and δ̃ are some constants. Inequality (33) follows from

Lemma 3 and Proposition 1, where (due to strict inequalities

in LMIs) (33) holds with some δ̃ > δ.

We represent the solution of (32) as

ẑ(x, t) =

∞
∑

n=1

ẑn(t)φn(x). (34)

By Parseval’s equality

||ẑ(·, t)||
2
L2(0,1) =

N
∑

n=1

|ẑn(t)|
2
+

∞
∑

n=N+1

|ẑn(t)|
2
. (35)

By performing calculations similar to (13) we obtain the

following ODEs for ẑn(t)

˙̂zN (t) = AẑN (t) +Bu(t− τu(t))− Le(0, t− τy(t)),

ẑN (t) =
[

ẑ1(t) ... ẑN (t)
]T

∈ R
N (36)

and

˙̂zn(t) = −(λn − q)ẑn(t) + bnu(t− τu(t))

ẑn(0) = 0, n > N.

Here A is defined in (21), B =
[

b1 ... bN
]T

∈ R
N and

bn = (γ21 + γ22)
−1[γ2φn(1)− γ1φ

′
n(1)], 1 ≤ n ≤ N

are obtained after integration by parts. Note that bn 6= 0 for

1 ≤ n ≤ N , by the uniqueness of solutions to (3).

By the Hautus lemma, the pair (A,B) is controllable.

Therefore, for any δ > 0, we can choose K ∈ R
1×N such

that there exists P c > 0 which satisfies

P c(A+BK) + (A+BK)TP c < −2δP c. (37)

We propose the following controller

u(t− τu(t)) = KẑN (t− τu(t)),

ẑN (t) =
[

〈ẑ(·, t), φ1〉 ... 〈ẑ(·, t), φN 〉
]T

∈ R
N . (38)

The closed-loop system (36) and (38) has the form

˙̂zN (t) = AẑN (t)+BKẑN (t−τu(t))−Le(0, t−τy(t)) (39)

Theorem 1: Assume that conditions of Proposition 1 hold.

Given δ > 0 and K ∈ R
1×N subject to (37), let there exist

matrices P c2 , P
c
3 , G

c ∈ R
N×N and positive-definite matrices

P c, Sc, Rc ∈ R
N×N that satisfy the LMIs (30), where LC

is substituted by BK. Let z(·, 0) = z0 ∈ H2(0, 1). Then the

closed-loop system (9), (11), (38) is exponentially stable with
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a decay rate δ > 0, meaning that (31) holds and there exists

Mẑ > 0 such that

‖ẑ(·, t)‖L2(0,1) ≤Mẑ exp(−δt) ||z0||H2(0,1) , t ≥ 0. (40)

Under the Dirichlet actuation, the result holds for z0 ∈
H1(0, 1), z0(1) = 0 with ||z0||H2(0,1) changed by ||z0||H1(0,1)

in (40).

Proof: The LMIs (30) guarantee ISS of the closed-loop

system (36), (38) with respect to input e(0, t − τy(t)) (cf.

Proposition 4.3 of [21]), implying due to Lemma 3 and the

second inequality (31) the following bound:

|u(t)|2 =
∣

∣KẑN (t)
∣

∣

2
≤Mu exp(−2δt) ||z0||

2
H2(0,1) (41)

for some Mu > 0. By variation of constants formula

ẑn(t) = bn

∫ t

0

exp((λn − q)(s− t))u(s− τu(s))ds, n > N.

Then (41) yields

|ẑn(t)| ≤Mσ |bn|
exp(−δt)

λn − q − δ
||z0||H2(0,1) , n > N

with some Mσ > 0. Hence,

∑∞
n=N+1 |ẑn(t)|

2
≤
∑∞
n=N+1(λn − q − δ)−2 |bn|

2
×

M2
σ exp(−2δt) ||z0||

2
H2(0,1) .

(42)

To continue bounding in (42), we use arguments of Theorem

3.2 in [24], which imply

∞
∑

n=1

(λn − q − δ)−2 |bn|
2
<∞. (43)

By combining the last estimate with (35), (41) and (42) we

obtain (40).

Under the Dirichlet actuation, (24) holds with ||z0||H2(0,1)

changed by ||z0||H1(0,1), which implies the result.

Remark 2: The LMIs of Proposition 1 allow to find ap-

propriate injection gain L. Following [21, Section 5.2], one

can take P3 = υP2, where υ is a tuning parameter, and

use Y = PT2 L as a new decision variable. After solving the

resulting LMIs, the injection gain can be found as L = P−T
2 Y .

A similar design can be applied to find appropriate controller

gain K ∈ R
1×N .

Summarizing, Theorem 1 implies the following observer-

controller design: given (5) and a desired decay rate δ,

1) find the truncation order N according to (17),

2) find the gains L and K (see Remark 2),

3) solve the observer PDE (9) to obtain ẑ(x, t),
4) compute the first N modes of ẑ(x, t) to find ẑN (t),
5) calculate u(t) = KẑN (t).

Moreover, for the exponential stabilization of (5) by using

observer (9), it is sufficient to achieve ”state-feedback” input-

to-state stabilization of the ODE (36). The implementation of

the proposed control law (44) requires numerical approxima-

tion of ODEs (36) and the error PDE (11). If N is very large,

the computational cost can be significant.

Fig. 2. Network-based control with ET from controller to actuator.

IV. SWITCHING BASED DYNAMIC EVENT-TRIGGERED

CONTROL

In this section we consider a network-based implementation

of the boundary observer-controller design suggested in the

previous section. We consider two networks: one from the

sensor to the controller and another from the controller to

the actuator (see Figure 2). For the first network, we assume

that the sampling intervals on the sensor side are bounded

by maximum allowable transmission interval (MATI) and the

transmission delay is bounded by maximum allowable delay

(MAD). Then, the observer construction in (9) can be applied

with τM =MATI +MAD.

Similarly to (38), we consider a control law of the form

u(t− τu(t)) = KẑN (sk), t ∈ [sk, sk+1), (44)

where the sequence of sampling instants sk that preserves ISS

of (36) will be found on the basis of ET mechanism that aims

to minimize the number of the sent signals. We also denote

βN (t) := ẑN (t)− ẑN (sk). (45)

We will introduce a novel dynamic switching-based ET mech-

anism that avoids Zeno behaviour.

Let the sampling be given by

sk+1 = min
{

t ≥ sk + h |
∣

∣βN (t)
∣

∣

2

Ω
> ǫ2

∣

∣ẑN (t)
∣

∣

2

Ω
+ θη(t)

}

(46)

where h > 0 is a waiting time before proceeding to verify the

ET condition. Here η(t) satisfies

η̇(t) = −αη(t) + ǫ2
∣

∣ẑN (t)
∣

∣

2

Ω
−
∣

∣βN (t)
∣

∣

2

Ω
,

t ∈ [sk + h, sk+1) (47)

and α > 0, θ > 0 are scalar parameters. Note that θ = 0
correponds to static ET. Due to (46)

|βN (t)|2Ω ≤ ǫ2
∣

∣ẑN (t)
∣

∣

2

Ω
+ θη(t), t ∈ [sk + h, sk+1). (48)

During the waiting time, we assume that η(t) satisfies

η̇(t) = −2δ1η(t), t ∈ [sk, sk + h),
η(0) = η0 ≥ 0

(49)

with δ1 > δ. The variations of constants formula and the

positivity of the non-homogeneous term in (47) imply that

η(t) ≥ 0 for t ≥ 0. It can be easily verified that for a

given state x(sk) the next execution time under the dynamic

ET mechanism (46) is not smaller than under static ET (see

Remark 2.4 in [14]).

Clearly the Zeno behavior is avoided since sk+1 − sk ≥ h.

ET mechanism (46) can be viewed as a switching between
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the periodic sampling sk = kh for t ∈ [sk, sk + h) and

the continuous ET (46) for t ∈ [sk + h, sk+1). The resulting

closed-loop system (39) under the ET mechanism (46) subject

to (47) and (49) can be presented as a switching between the

two systems. The first one (for t ∈ [sk, sk + h)) is governed

by

˙̂zN (t) = (A+BK)ẑN (t)− BKβN (t)− Le(0, t− τy(t))
(50)

and (49). The second one (for t ∈ [sk +h, sk+1)) is governed

by (50) and (47) subject to (48).

For the ISS stability analysis of the resulting closed-loop

system, we define the switching Lyapunov functional

V = |ẑN (t)|2P + η(t) (51)

+χk(t)(h− τu(t))

∫ t

t−τu(t)

exp(2δ(s− t))| ˙̂zN (s)|2Uds,

where t ∈ [sk, sk+1), τu(t) = t − sk, P c, U ∈ R
N×N are

positive-definite and

χk(t) =

{

1, t ∈ [sk, sk + h),

0, t ∈ [sk + h, sk+1).

Note that χk(t) = 1 corresponds to periodic control (44),

whereas χk(t) = 0 corresponds to event-triggered control.

Theorem 2: Given δ > 0 such that α > 2δ + θ, let δ1 > δ,

N satisfy (17) and K ∈ R
1×N satisfy (37). Given a tuning

parameter ǫ > 0 let there exist matrices P c2 , P
c
3 , P̃

c
2 , P̃

c
3 ∈

R
N×N , positive-definite matrices P c, U,Ω ∈ R

N×N such that

Φ1 < 0 , Φ2 < 0 , Φ3 < 0, (52)

where

Φ1 =
[

φs P c − (P c

2
)T + (A+ BK)TP c

3

∗ −P c

3
− (P c

3
)T + hU

]

, (53)

Φ2 =

[

φs P c − (P c

2
)T + (A+ BK)TP c

3
−(P c

2
)TBKh

∗ −P c

3
− (P c

3
)T −(P c

3
)TBKh

∗ ∗ −he−2δhU

]

, (54)

Φ3 =

[

ψs P c − P̃ c

2

T
+ (A+ BK)T P̃ c

3
−P̃ c

2

T
BK

∗ −P̃ c

3

T
− P̃ c

3
−P̃ c

3

T
BK

∗ ∗ −2Ω

]

, (55)

φs = (A+BK)TP c2 + (P c2 )
T (A+BK) + 2δP c,

ψs = (A+BK)T P̃ c2 + P̃ c2
T
(A+BK) + 2δP c + 2ǫ2Ω.

Then the closed-loop system (36), (44) under the ET mecha-

nism (46) subject to (47) and (49) with the input that satisfies

(33) is exponentially stable with a decay rate δ > 0.

Proof: Note that by definition (51), V does not increase

at the switching instances. This implies that it is sufficient to

verify that

W := V̇ + 2δV − ξ |e(0, t− τy(t)|
2
≤ 0 (56)

along each subsystem of the switched system. Differentiating

V along (50), (49) and following the steps in Section 3.2 in

[26] we obtain

W ≤
h− t+ sk

h
|κ̃|2Ψ1

+
t− sk

h
|κ|2Ψ2

, (57)

where κ̃ =
[

ẑN (t), ˙̂zN (t),−e(0, t− τy(t))
]T

and κ =
[

ẑN (t), ˙̂zN (t), βN (t),−e(0, t− τy(t))
]T

,

Ψ2 =





| (P c

2
)TL

Φ1 | (P c

3
)TL

− − −
∗ | −ξ



 ,Ψ2 =







| (P c

2
)TL

Φ2 | (P c

3
)TL

| 0
− − −
∗ | −ξ






.

Differentiating V along (50) and (47) subject to (48) we

obtain

V̇ = 2(ẑN )TP c ˙̂zN − αη + ǫ2|ẑN |2Ω − |βN |2Ω.

By using the descriptor approach

0 = 2
[

(ẑN )T (P c2 )
T + ( ˙̂zN )T (P c3 )

T
]

× [− ˙̂zN (t) + (A+BK)ẑN (t)−BKβN (t)

− Le(0, t− τy(t))],

we find

W ≤ |κ̂|2Ψ3
+ (−α+ 2δ + θ)η(t), (58)

where κ̂ = col
{

ẑN (t), ˙̂zN (t), βN (t),−e(0, t− τy(t))
}

and

Ψ3 =







| (P̃ c

2
)TL

Φ3 | (P̃ c

3
)TL

| 0
− − −
∗ | −ξ







Since α > 2δ + θ, by using (52) and applying Schur

complement we arrive at Ψi < 0(i = 1, 2, 3) for sufficiently

large ξ > 0. The latter due to (57) and (58) implies the result.

V. AN EXTENSION TO THE VECTOR CASE

Consider the vector PDE

zt = Dzxx +Qz, t ≥ 0, (59)

zx(0, t) = 0, γ1z(1, t) + γ2zx(1, t) = u(t− τu(t)),

where x ∈ (0, 1), z = col{z1, ..., zp} ∈ R
p is the state, γ1 and

γ2 are scalars such that γ21 + γ22 6= 0, D = diag{d1, ..., dp} ∈
R
p×p is the diffusion matrix, Q ∈ R

p×p is the matrix of

reaction term and u(t − τu(t)) ∈ R
p is the control input.

Furthermore, we assume boundary measurements given by (6).

For zj (j = 1, ..., p) consider the Stürm-Liouville problem

djφ
′′+ λφ = 0, 0 < x < 1, j = 1, ..., p,

φ′(0) = 0, γ1φ(1) + γ2φ
′(1) = 0.

It is easy to see that this problem admits the same eigenfunc-

tions as (3) with the corresponding eigenvalues {djλn}
∞
n=1.

The observer is constructed in the form of the vector PDE

ẑt = Dẑxx +Qẑ − L(x) [y(t)− ẑ(0, t− τy(t))] ,

ẑx(0, t) = 0, γ1ẑ(1, t) + γ2ẑx(1, t) = u(t− τy(t)), (60)

where

L(x) =

N
∑

n=1

lnφn(x), ln ∈ R
p×p (61)
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For the error e = z − ẑ = [e1, ..., ep]T we have

et = Dexx + Qe+ L(x)e(0, t− τy(t)), (62)

ex(0, t) = 0, γ1e(1, t) + γ2ex(1, t) = 0.

Given a decay rate δ > 0 there exists N ∈ N such that

−( min
1≤i≤p

di)λn < −(δ + max
1≤i≤p

p
∑

j=1

|qij |) ∀n > N. (63)

By presenting the error as in (12) and performing calculations

similar to (13)-(15), we obtain the ODEs (20) with

eN (t) = [e1(t), . . . , eN (t)]
T
∈ R

pN ,

ej(t) =

∫ 1

0

e(x, t)φj(x)dx ∈ R
p, (64)

A = diag(−λ1D +Q, · · · ,−λND +Q) ∈ R
pN×pN ,

L = [l1, . . . , lN ]T ∈ R
pN×p,

C = [Ipφ1(0), · · · , IpφN (0)] ∈ R
p×pN ,

ζ0(t) = CeN (t)− e(0, t) ∈ R
p,

whereas

ėn(t) = (−λnD +Q)en(t), n > N. (65)

Applying Gershgorin’s circle theorem and (63) we find that

Re(λ) < −δ ∀λ ∈ σ(−λnD +Q), ∀n > N,

where σ(−λnD+Q) is the spectrum of −λnD+Q. This and

(65) yield that for some Me > 0

|en(t)|
2
≤Me exp(−2δt) |en(0)|

2
, n > N. (66)

We assume that the pair (A,C) is observable. This hap-

pens, for instance, if the matrices {−λnD +Q}
N
n=1 have

no common eigenvalues. Then, for any λ ∈ σ(A) we have

rank(A− λIpN ) ≥ p(N − 1). Since φn(j) 6= 0 for n ≥ 1, by

combining this with the definition of C in (64) and applying

the Hautus lemma, we find that the pair (A,C) is observable.

This implies that (22) holds for some gain L ∈ R
pN×p. By

employing (66) and the arguments of Lemma 3 we arrive at

the estimate (3).

The controller has a form

u(t− τu(t)) = KẑN (t− τu(t)), K ∈ R
p×pN ,

ẑN (t) = [ẑ1(t), . . . , ẑN (t)]
T
∈ R

pN , (67)

ẑj(t) =

∫ 1

0

ẑ(x, t)φj(x)dx ∈ R
p.

By using (67) and calculations similar to (13) we arrive at

ODE (36) with

B = [b1D · · · , bND]
T
∈ R

pN×p,

bn = (γ21 + γ22)
−1[γ2φn(1)− γ1φ

′
n(1)], n = 1, ..., N.

By the Hautus lemma, the pair (A,B) is controllable under

the assumption that the matrices {−λnD +Q}
N
n=1 have no

common eigenvalues. Then Theorems 1 and 2 hold with

the matrix decision variables from R
pN×pN . Similarly, the

reasoning in Section IV is independent of the dimension of the

ODE (50). Therefore, the proposed switching-based dynamic

ET mechanism can be straightforwardly generalized to the

case of the vector PDE (59).

1 1.5 2 2.5 3 3.5 4
-14

-12

-10

-8

-6

-4

Fig. 3. L2(0, 1)-norms of z and e.

VI. EXAMPLE

Consider network-based control of (59) with z ∈ R
3 and

D =

[

4 0 0
0 5 0
0 0 6

]

, Q =

[

1 2 3
4 5 3
2 5 1

]

(68)

under the Neumann actuation zx(1, t) = u(tk), k =
0, 1, ... and the measurements z(0, sk). The non-delayed state-

feedback control of this system via the backstepping was

suggested in [17]. Let δ = 2.5 be the desired decay rate. In

this case, condition (63) is satisfied for N = 1. The following

observer and controller gains L and K were found by tuning

the parameter υ and increasing τM while verifying that the

LMIs in Remark 2 remain feasible:

L ≈

[

−3.85 −2.59 −3.17
−3.77 −8.26 −4.62
1.95 −5.7 −4.33

]

, K ≈

[

−0.87 −0.49 −0.73
−0.84 −1.59 −0.67
−0.38 0.88 −0.58

]

, (69)

τM = 0.0651, υ = 0.512.

The small value of τM is due to choosing a large δ. We

note that when verifying the LMIs we observed that smaller

values of δ lead to larger τM . Thus, for δ = 1 and δ = 0.5
we obtained feasibility for τM = 0.0822 and τM = 0.1017,

respectively.

For the simulation we choose

z0(x) = (cos(πx) + 1)
[

−x2 + 1, −2x2 + 1, −3x2 + 1
]T
,

x ∈ (0, 1), sk+1 − sk = 0.5τM , whereas ρk ∈ [0.2τM , 0.4τM ]
are selected at random. For the network between controller and

actuator we choose µk = 0 for simplicity and tk+1 − tk =
0.9τM .

The simulation is carried out for the corresponding error

PDE (62), the PDE (59) and the ODE (39) (without ET).

The L2(0, 1) norms of the components of e(x, t), z(x, t) (on

a linear-logarithmic scale) are given in Figure 3 for simu-

lation time tfin = 4. The computed linear fits are given b

lz1(t) ≈ −2.825t−0.3736, lz2(t) ≈ −2.833t−1.11, lz3(t) ≈
−2.62t − 2.54, with similar fits for e(x, t) that confirms the

theoretical results.

Next, we consider event-triggered control of (59) with L

and K given by (69), δ = 2.5, α = 4, θ = 0.6, η0 = 1.4
and δ = 2.501. We compare the number of controller-actuator

transmissions for periodic (no ET), static switching-based ET

and dynamic switching-based ET. Let tfin = 10 be the

simulation time. For each ǫ = i × 10−3 (i ∈
{

0, ..., 103
}

),
we find the maximum h which satisfies LMIs of Theorem 2.
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Periodic Static Dynamic

τM 0.079 0.059 0.0653

ǫ - 0.497 0.512

avg. sent msg. 126.58 82.26 57.34

TABLE I
COMPARISON BETWEEN PERIODIC,STATIC AND DYNAMIC ET CONTROL.

For each pair (ǫ, h) we perform numerical simulations with

several initial conditions

z0(x) =[cos(πx) + 1]
[

−mx2+1, −m
2 x

2+1, −m(x2−1)
]T
,

m ∈ {1, ...20} .

For each pair (ǫ, h) and each initial condition, we solve the

observer PDE (60) and the ODEs (39), (47) and (49) while

checking the ET condition (48) according to switching-based

ET mechanism described in Section IV. We choose the pair

(ǫ, h) which results in the minimum average number of sent

updates (see Table I). It appears that the static switching-based

ET reduces the average number of overall transmissions by

≈ 35%, the dynamic switching-based ET improves this result

by another ≈ 20% with no significant additional computational

cost.

VII. CONCLUSION

A boundary delayed observer-controller design was intro-

duced for 1D heat equation The design was based on the modal

decomposition approach. For the network-based implementa-

tion, a novel switching-based dynamic event-triggered control

was proposed.
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