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Abstract—We propose a general approach to directly imple-
ment rate constraints on the discretization mesh for all collocation
methods, for both state and input variables. Unlike conventional
approaches that may lead to singular control arcs, the solution
of this on-mesh implementation has better properties. Moreover,
computational speedups of more than 30% can be achieved
by exploiting the properties of the resulting linear constraint
equations.

Index Terms—optimal control, direct collocation method, rate
constraints, singular control

I. INTRODUCTION

Optimization-based control strategies, such as model predic-

tive control (MPC), can be seen in an increasing number of

applications. For many engineering problems, constraints may

need to be imposed on the rate of changes for the state and/or

input variables, to account for physical actuation limitations

(e.g. the maximum rotation rate of flight control surfaces on

aircraft) or to fulfill certain ride comfort requirements (e.g. the

maximum longitudinal and lateral accelerations experienced

by passengers).

In optimal control, the underlying optimization problem can

often be formulated and implemented in a number of different

ways. Under a linear framework, many implementations are

computationally comparable, thus straightforward approaches

are often used. For example, rate constraints on input variables

are generally implemented through additional dynamic equa-

tions [1], [2], and rate constraints on state variables are com-

monly addressed with additional path constraints [3]. However,

under a nonlinear framework, this way of implementing input

rate constraints are known to result in numerical difficulties

and introducing fluctuations and ringing phenomena in the

solution due to singular control [4]. To improve the solution

quality, additional regularization terms may be added to the

optimal control problem (OCP) formulation [5]; however, this

practice often leads to computational challenges by needing to

solve the problem repetitively with appropriate weightings.

In our previous work, we proposed implementing rate

constraints directly on the discretization mesh with linear con-

straints [6]. In this paper, we present a more in-depth analysis

of this method. We demonstrate that the proposed method
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will not introduce singular arcs to the problem, resulting in

solutions of higher accuracy than the conventional approach.

The computational comparisons with the conventional im-

plementation as well as the regularization approach are also

notably expanded with further insights.

Sections II–III aim at providing a brief introduction on

solving OCPs with direct collocation methods. Following this,

different approaches for implementing rate constraints in the

OCP are introduced and analysed in Section IV. This is

followed by two classical examples of different complexity in

Section V, where the pros and cons of each implementation are

demonstrated. In Section VI, we provide concluding remarks

and some guidelines for implementation.

II. OPTIMAL CONTROL PROBLEM

Generally speaking, optimization-based control requires the

solution of optimal control problems with the objective func-

tional expressed in the general Bolza form:

min
x,u,p,t0,tf

Φ(x(t0), t0, x(tf ), tf , p) +

∫ tf

t0

L(x(t), u(t), t, p)dt

(1a)

subject to

ẋ(t) = f(x(t), u(t), t, p), ∀t ∈ [t0, tf ] (1b)

c(x(t), u(t), t, p) ≤ 0, ∀t ∈ [t0, tf ] (1c)

φ(x(t0), t0, x(tf ), tf , p) = 0, (1d)

with x : R → R
n is the state trajectory of the system, u : R →

R
m is the control input trajectory, p ∈ R

s are static parameters,

t0 ∈ R and tf ∈ R are the initial and terminal time. Φ is the

Mayer cost functional (Φ: Rn×R×R
n×R×R

s → R), L is

the Lagrange cost functional (L : Rn×R
m×R×R

s → R), f

is the dynamic constraint (f : Rn×R
m×R×R

s → R
n), c is

the path constraint (c : Rn × R
m × R× R

s → R
ng ) and φ is

the boundary condition (φ : Rn ×R×R
n ×R×R

s → R
nq ).

III. DIRECT COLLOCATION METHOD

Most optimal control problems need to be solved with

numerical discretization schemes in practice. With a direct

method, the OCP is first discretized through a transcription

process, after which the resulting nonlinear programming

(NLP) problem is numerically solved. Thanks to its simplicity

in implementation, direct methods have become the de facto

standard for solving practical optimal control problems [7].

One approach in direct methods is to solve the dynamics

equations, the path constraints and the boundary conditions

http://arxiv.org/abs/1903.05508v2


2

altogether on a discretization mesh. This is often referred to

as direct collocation methods. Moreover, it can be further cat-

egorized into fixed-order h methods (e.g. Euler, Trapezoidal,

Hermite-Simpson (H-S) and the Runge-Kutta (RK) family)

[4], and variable higher-order p/hp methods [8], [9]. Here,

we aim to provide a high level overview, which is valid for

both h and p/hp methods.

With a mesh of size N =
∑K

1 N (k), the states can be

approximated as

x(k)(τ) ≈ x̄(k)(τ) :=

N(k)
∑

j=1

X
(k)
j B

(k)
j (τ), (2)

with mesh interval k ∈ {1, . . ., K}, N (k) denoting the

number of collocation points for interval k, and B
(k)
j (·) are

basis functions. For classical h methods, τ ∈ R
N takes on

values in the interval [0, 1] representing [t0, tf ], and B
(k)
j (·)

are chosen to be elementary B-splines of various orders. For

p/hp methods, B
(k)
j (·) are Lagrange interpolating polynomials

over the normalized time interval τ ∈ [−1, 1]. We use X
(k)
j

and U
(k)
j to represent the approximated states and inputs at

collocation points, e.g. X
(k)
j = x̄(k)(τ

(k)
j ) ∈ R

n, where τ
(k)
j

is the j th collocation point in mesh interval k.

Consequently, the optimal control problem (1) can be ap-

proximated by

min
X,U,p,t0,tf

Φ(X
(1)
1 , t0, X

(K)
f , tf , p)

+
K
∑

k=1

N(k)
∑

i=1

w
(k)
i L(X

(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) (3a)

subject to, for i = 1, . . . , N (k) and k = 1, . . . ,K ,

N(k)
∑

j=1

A
(k)
ij X

(k)
j +D

(k)
i f(X

(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) =0 (3b)

c(X
(k)
i , U

(k)
i , τ

(k)
i , t0, tf , p) ≤0 (3c)

φ(X
(1)
1 , t0, X

(K)
f , tf , p) =0 (3d)

where w
(k)
j are the quadrature weights for the respective dis-

cretization method chosen, A is the numerical differentiation

matrix with Aij the element (i, j) of the matrix, and D a

constant matrix. The discretized problem can then be solved

with off-the-shelf NLP solvers, such as interior point solver

IPOPT [10].

The NLP solver outputs a discretized solution Z :=
(X,U, p, τ, t0, tf ) as sampled data points, however it does not

necessarily indicate that the solution is a discrete-time control

sequence. In-between the sampled points, interpolating splines

can be used to construct an approximation of the continuous-

time optimal trajectory t 7→ Z̃(t) := (x̃(t), ũ(t), t, p) in

accordance to the discretization method employed. The quality

of the interpolated solution needs to be assured through error

analysis. If necessary, modifications must be made accordingly

to the discretization mesh, until the solutions obtained with

the new mesh fulfills all predefined error tolerance levels (e.g.

the absolute local error ηtol and the absolute local constraint

violation εctol ). This process is known as mesh refinement.

IV. IMPLEMENTATIONS OF RATE CONSTRAINTS

In many problems, constraints of the form

u̇L ≤
du

dt
(t) ≤ u̇U

ẋL ≤
dx

dt
(t) ≤ ẋU

may need to be implemented to restrict the rate of change for

the state and/or input variables.

A. Conventional Implementation

For input variables, a common approach is to introduce u

as an additional state variable, and ν as the new input with a

simple bound through the dynamic equation

u̇(t) = ν(t) with u̇L ≤ ν(t) ≤ u̇U . (4)

For rate constraints on the state variable x, additional path

constraints are needed:

ẋL ≤ f(x(t), u(t), t, p) ≤ ẋU . (5)

For simplicity, we refer to (4) as the add-state implementation,

and (5) as the add-path constraint implementation.

Unfortunately these conventional implementations exhibit

many shortcomings. These are mainly:

1) The number of state variables and constraint equations

are increased, resulting in a larger NLP. In addition, the

index of the DAE (differential-algebraic equations) of

the transcribed problem may also increase, leading to a

problem that is often more difficult to solve numerically.

2) When (4) is used, singular arcs may occur and affect

the solution quality. This can occur if the original control

input u appears nonlinearly in the Lagrange cost or other

system dynamics and the new control ν appears linearly

instead.

Detailed justification for the first point can be found in [4].

Here, we focus the discussions on the issue of singular arcs,

which also falls with a much larger concern regarding the

quality of the solution.

Generally speaking, a singular arc is an interval in the OCP

solution where the optimality conditions yield no information

about the optimal control function. Precise mathematical def-

initions and an analysis of singular arcs can be found in [11]

and [12]. For ease of demonstration, consider the following

OCP, which is simplified but still sufficiently general, with

x1 ∈ R the state variable, and u1 ∈ R the control input. As per

the conventional approach, the rate constraint on the original

control input is implemented with a new control input ν1 ∈ R:

min
x1,u,ν

∫ tf

0

g1(x1(t)) + g2(x1(t), u1(t))dt (6a)

subject to

ẋ1(t) = g3(x1(t), u1(t)) ∀t ∈ [t0, tf ] (6b)

u̇1(t) = ν1(t) ∀t ∈ [t0, tf ] (6c)

u̇1L ≤ ν1(t) ≤ u̇1U ∀t ∈ [t0, tf ]. (6d)

Here we follow the same hypotheses as in [13]: g1, g2 and g3
are continuous, continuously differentiable for all u1 ∈ U , and
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Lipschitz in x1. Also, the admissible control set U is assumed

to be a bounded set in some Euclidean space.

Proposition 1. If the OCP (6) has a linear objective and

dynamics with respect to the original control input u1, i.e. if g2
and g3 are both functions that only have strictly linear input

(i.e. in the form of gι(x1(t), u1(t)) = g̃ι(x1(t)) + cstu1(t),
with cst a constant), the resulting optimal control ν∗1 will not

contain a singular arc. However, if u1 appears nonlinearly in

the objective and/or dynamics, i.e. if g2 and/or g3 are arbitrary

nonlinear functions, there exists problems where singular arcs

will occur for some intervals of the solution.

Proof. First, we formulate the Hamiltonian of the system,

with λ(t) the costate of the dynamics

H(x1(t), u1(t), λx1(t), λu1 (t), ν1(t)) := g1(x1(t))

+ g2(x1(t), u1(t)) + λx1(t)g3(x1(t), u1(t)) + λu1 (t)ν1(t).
(7)

From Pontryagin’s minimum principle, we know that if the

state and costate are optimal, the optimal control ν∗1 minimizes

the Hamiltonian, i.e.

ν∗1 (t) ∈ argmin
v

H(x∗

1(t), u
∗

1(t), λ
∗

x1
(t), λ∗

u1
(t), v). (8)

Substituting the Hamiltonian (7) in (8) yields the optimal

control

ν∗1 (t) =











u̇1U if λ∗
u1
(t) < 0

? if λ∗
u1
(t) = 0

u̇1L if λ∗
u1
(t) > 0

(9)

We first show that this implementation yields a singular arc

free solutions with linear OCPs. From the first order necessary

conditions for optimality we have λ̇u1(t) = − ∂H
∂u1

. Thus,

if both g2 and g3 only contain input terms in the form of

cstu1(t), λ̇u1(t) will then be constant and λu1(t) will be a

linear straight line. Relating this to (9) we can see that the

optimal control will exhibit bang-bang behaviour with at most

one switch depending on the crossing of λu1(t) with the x

axis. Therefore, the solution is free of singular arcs if the

objective and dynamics with respect to the original control

input u1 are all linear. This is the reason why in linear optimal

control problems, the conventional implementation can be used

without issues.

To show that this implementation will suffer from singular

arc problems when nonlinear OCPs are considered, we assume

that g2 and/or g3 are now arbitrary nonlinear functions. Thus,

λu1(t) can be a function of any shape and the optimal control

will not be uniquely defined on intervals where λu1(t) = 0,

a.k.a. the singular arc. The problem in Section V-A is an

example where such an issue arises.

For a direct collocation method to yield the correct solution

for singular control problems, one might have to use a multi-

phase formulation and additionally impose the singular arc

condition specifically on the phases with singular control. For

example, if one takes the same approach (as in the proof)

for the example problem in Section V-A, the condition for

singular control to occur is when λx2 = 0. Repetitively taking

time derivatives of this equation would yield the singular arc

condition u(t) = x1(t). We again note that this approach

requires analytical derivations and would become increasingly

challenging for complex real-world problems.

An ad-hoc method sometimes used in practice for dealing

with the singular arc is to augment the original objective

with an additional regularization term (e.g. in [5]), often in

the form of ρ||ν||L1 or ρ||ν||2
L2

. With relatively large values

of the penalty weight ρ, the fluctuations on the singular arc

can be suppressed, but at the cost of obtaining sub-optimal

trajectories. To get closer to the optimal from this point, the

problem may need to be repetitively solved with the penalty

weight gradually reduced.

B. On-mesh Implementation

To mitigate the above-mentioned shortcomings, a method is

proposed to directly impose algebraic rate constraints for input

variables on the discretization grid. Based on previous work

[4], we generalize this on-mesh approach for all collocation

methods (h, p and hp type), as well as for state variables.

Since the treatment for state variables x and input variables

u are similar, for simplicity we will use z to represent the

variable on which the rate constraints are imposed. If Zi

represents the discretized version of z at time instance i, then

the numerical differentiation of z at that grid point (Z ′
i) can be

calculated using s-point finite difference approximations, with

s the number of data points in the interval (including end-

points). See Table I for the formulations of some of the most

commonly used discretization methods, with ∆τi = τi+1− τi,

∆t = tf −t0, and ALGR is the Legendre-Gauss-Radau (LGR)

differentiation matrix. Details on the determination of the

numerical differentiation equations are available in [14].

Note that for p/hp methods, the numerical differentiation

for all grid points on the polynomial (i = 1, . . . , N (k)) are ob-

tained altogether. It is also worth mentioning that if Legendre-

Gauss-Radau (LGR) collocation is used, the end-point value

for the control (U
(K)
N+1) may need to be approximated.

It is then straightforward to implement the rate constraints

as linear constraints

żL − Z ′

i ≤ 0 (10a)

Z ′

i − żU ≤ 0 (10b)

for all possible values of i. This approach will be referred to

as the on-mesh implementation.

TABLE I: Numerical differentiation schemes

Method
No. of Data

Numerical Differentiation
Points (r)

Trapezoidal 2
Z′

i =
Zi+1−Zi

∆t∆τi(h) (equal spaced)

Z′

i =
−3Zi+4Zi+1/2−Zi+1

∆t∆τi

Hermite 3
Z′

i+1/2
=

Zi+1−Zi

∆t∆τiSimpson (h) (equal spaced)

Z′

i+1 =
Zi−4Zi+1/2+3Zi+1

∆t∆τi

LGR N+1
Z′

1:N+1
= 2

∆t
ALGRZ1:N+1(p/hp) (LGR bases)
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TABLE II: Contribution to the NLP dimensions with an N -

point mesh for different rate constraint implementations on

input variables

add-state on-mesh

2 point, N linear 2N linear
collocated inequality constraints inequality constraints

(Trapezoidal) (defect constraints) (pre-computed)

3 point, 2N − 1 linear 4N − 4 linear
collocated inequality constraints inequality constraints

(H-S) (defect constraints) (pre-computed)

p point, p(N − 1) linear 2p(N − 1) linear
collocated inequality constraints inequality constraints

(LGR) (defect constraints) (pre-computed)

The on-mesh implementation of rate constraints has several

benefits in comparison to the conventional add-state and add-

path constraint approaches. Firstly, we compare the solution

quality in terms of singular arcs. A challenge arises here,

since the singular arc problem is commonly analyzed with

the original OCP (1), but (10) is a discretized formulation

that does not have the continuous form. Therefore, we do not

yet have a mathematically rigorous proof that the on-mesh

implementation will be singular-arc free using Pontryagin’s

minimum principle. However, one would observe that, without

introducing a dynamic constraint in the form of u̇(t) = ν(t),
the singular control situation as described in Proposition 1 will

not occur, at least not in the same way. In addition, in our

computational experience, we had not encountered a single

case where the on-mesh implementation causes a singular-

arc free problem to become singular. In contrast, the on-mesh

rate constraint method was able to convert many well-known

singular control problems to be singular arc free ones, with

one example demonstrated in Section V-A.

Another major advantage in comparison to the conven-

tional implementation is regarding the computational cost. For

systems with nonlinear dynamics, rate constraints on state

variables implemented through (5) will be nonlinear path

constraints relating different state variables at the same time

instance. Thus their Jacobian and Hessian contributions can

make the solution of the OCP computationally demanding. In

contrast, on-mesh implementation of rate constraints with (10)

are linear constraints, with no contribution to the Hessian.

In addition, note that the rate constraints (10) only de-

pend on the numerical differentiation schemes. Thus, once

a discretization scheme for the OCP has been chosen, and

the corresponding discretization mesh has been determined,

the Jacobian contributions of the rate constraint equations can

be pre-computed during the transcription process. Therefore,

although the NLP dimension increases more rapidly with the

on-mesh implementation as shown in Table II and III, the com-

putational complexity for obtaining the derivative information

with respect to the rate constraint equations is actually lower

than the conventional approach. Altogether, the computational

advantages can be rather significant, as demonstrated with the

example problem.

A remark is appropriate when comparing the on-mesh

implementation in Table III to Table II: For Hermite-Simpson

discretization, specifically, the increase in the size of the NLP

TABLE III: Contribution to the NLP dimensions with an N -

point mesh for different rate constraint implementations on

state variables

add-path constraint on-mesh

2 point, 2N nonlinear 2N linear
collocated inequality constraints inequality constraints

(Trapezoidal) (path constraints) (pre-computed)

3 point, 4N − 2 nonlinear 6N − 6 linear
collocated inequality constraints inequality constraints

(H-S) (path constraints) (pre-computed)

p point, 2p(N − 1) nonlinear 2p(N − 1) linear
collocated inequality constraints inequality constraints

(LGR) (path constraints) (pre-computed)

for implementation on input variables is less than that on state

variables. This is because, when the control u is discretized

as a quadratic function of time, the rate of change w.r.t. time

(u̇) is linear, thus extreme values only occur at the end-points

of each interval (Ui and Ui+1). In this special case only, the

rate constraints relating to the middle points (U ′

i+1/2) can be

neglected.

V. EXAMPLE PROBLEMS

The problem of singular arcs is often demonstrated with

toy problems in the literature (e.g. the first example), as they

are much more illustrative and free from influence of other

factors. However, this common practice often results in it

being neglected by engineers working on complex problems.

To show that it really matters, a second real-world example

is also presented here to demonstrate the acclaimed benefits

of the on-mesh rate constraint implementation in terms of

solution quality and computational efficiency.

A. Second order singular regulator

First, we consider a simple regulator problem originally

presented in [15]. This can be considered as regulation con-

trol of a double integrator system, with a constraint on the

acceleration.

min
x1,x2,u

∫ 5

0

x2
1(t) + x2

2(t)dt

subject to

ẋ1(t) = x2(t), ẋ2(t) = u(t) ∈ [−1, 1] ∀t ∈ [0, 5].

In this original OCP formulation, the optimal control is in

the form of bang-singular. Figure 1 shows that a numerical

implementation of this OCP using direct collocation would

yield fluctuations and ringing phenomena for solutions at

collocation points, as well as for the trajectories in-between.

However, upon noticing that the second differential equation

is equivalent to the add-state implementation of a rate con-

straint −1 ≤ ẋ2(t) ≤ 1, we can remove that differential equa-

tion from the OCP and use the on-mesh rate constraint method

instead. As illustrated in the figure, this approach successfully

yields a stable and accurate solution in correspondence to

the reference (analytical) optimal input trajectory. In other

words, the proposed on-mesh rate constraint implementation

has successfully converted the classical second order singular

regulator problem into a singular-arc-free formulation.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.5

0

0.5

1

reference solution
original OCP solution
with on-mesh rate constraint

Fig. 1: Comparison of obtained control input trajectories for

the second order singular regulator problem (H-S discretiza-

tion with 199 collocation points (100 mesh nodes), crosses

represent the collocation points)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

500

600

700
minimum altitude

Fig. 2: Solution to the aircraft go-around in the windshear

problem, with input rate constraints

B. Aircraft go-around in the Presence of Windshear

Based on the developments by [16]–[18], a problem is

presented in [4] where the aircraft needs to stay as high above

the ground as possible after encountering a severe windshear

during landing.

Details about the system dynamics, variable simple bounds,

boundary conditions, aerodynamic modelling, as well as static

parameter values, are available in the references above. The

problem has state variables being the horizontal distance d,

the altitude h, the true airspeed V , the flight path angle γ,

and the input variable being the angle of attack α . We also

emphasise that the problem requires the implementation of a

rate constraint |α̇(t)| ≤ 3 deg/s.

To avoid discontinuities and to assist convergence, a static

optimization parameter hmin is introduced to represent the

minimum altitude. The objective can then be expressed as

Φ(x(t0), t0, x(tf ), tf , p) := −hmin together with a new path

constraint h(t) ≥ hmin.

Figure 2 illustrates the solution to the problem using

Hermite-Simpson discretization. All figures presented in this

paper are the outcome of a mesh refinement scheme that

minimizes errors to the tolerance as specified in Table IV.

TABLE IV: Mesh refinement criteria

d h v γ α Path Constraint
[ft] [ft] [ft/s] [deg] [deg] [m]

ηtol 1 0.5 0.1 0.5 0.5 -

εgtol 1 0.5 0.1 0.5 0.5 1× 10
−5

0 5 10 15 20 25 30 35 40
5

10

15

20

17 18 19 20

17.1
17.2
17.3

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

(a) implemented with additional state variable

0 5 10 15 20 25 30 35 40
5

10

15

20

17 18 19 20

17.1
17.2
17.3

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

(b) direct implemention on the mesh

Fig. 3: Control input for the solution to the aircraft go-around

in the windshear problem, with different implementations for

input rate constraints (H-S discretization, circles represent

mesh points)

1) Implementation of Rate Constraints for Input Variables:

Constraint |α̇(t)| ≤ 3 applies directly on the rate of change

for the control input α. Using the conventional approach, α

can be treated as an additional state variable, and ν introduced

as the new control input with the dynamics

α̇(t) = ν(t). (12)

Thus the rate constraints for α can be implemented as simple

bounds on ν: −3 ≤ ν(t) ≤ 3 [deg/s].

As mentioned earlier, due to the fact that the original control

input α appears nonlinearly in the system, whereas the new

input ν appears linearly, singular arc behaviour can occur,

which is shown in Figure 3a, with large fluctuations in the

solution. In contrast, when the rate constraints are directly

implemented on the discretization mesh instead (Figure 3b),

the optimal control input trajectory can be obtained with little

ambiguity.

Comparing the solutions from the two implementations, it

is interesting to observe that, although the integrated values

(i.e. angle of attack) along the singular arc solution at the

collocation points are generally the same, the interpolated

trajectory from the add-state method is actually distorted by

the fluctuations of its rate values.

With the LGR orthogonal collocation method, improve-

ments are relatively minor. Because the end-point value for the
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(a) implemented with additional state variable
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(b) direct implemention on the mesh

Fig. 4: Control input for the solution to the aircraft go-around

in the windshear problem, with different implementations for

input rate constraints (LGR discretization, circles represent

collocation points)

control input is only approximated (not a collocation point),

the errors have distortion effects on all previous points of the

polynomial (Figure 4b). On the other hand, thanks to this extra

level of continuity imposed by higher order polynomials, the

problem of singular arc behaviour is far less pronounced with

the conventional add-states implementation (Figure 4a), when

compared to h type discretization methods.

The results regarding computation times presented in Fig-

ure 5 and 7 were all obtained on an Intel Core i7-4770

computer, running 64-bit Windows 10 with Matlab 2017a.

The OCPs were transcribed into NLP problems using the

optimal control software ICLOCS2 [19] and solved with the

NLP solver IPOPT compiled with the sparse linear solver

MA57 [20]. The computation times are the averages of 10

independent runs, all starting with a very rough initial guess

obtained using linear interpolation of initial and terminal

conditions.

From Figure 5 it can be seen that, for the computation

time per iteration, the on-mesh implementation saw a slight

advantage in comparison to the conventional approach. This

is because the on-mesh implementation explicitly exploits the

fact that the linear rate constraints have no contribution to the

Hessian, and the contributions to the Jacobian are constants

and can be pre-computed. The scale of the benefit also grows

with the size of the mesh, from about 5% for a coarse mesh

to around 10% for the dense mesh.

Figure 6 presents the computation performance of the

problem when regularized with an additional ρ||ν||2
L2

term.

It can be seen that a relative large penalty weight is required

to suppress the singular arc fluctuations, but with a larger ρ

the result diverges quickly from the optimal. Also note that for

a single solve with regularization, the norm of angle of attack

rate (||α̇∗ − α̇||L2 ) never reaches the accuracy level obtained

by the on-mesh implementation with the same discretization

mesh. Thus, to obtain a good solution, ρ needs to be gradually

reduced, making the process complicated and computationally

inefficient — it is also difficult to guarantee solution quality.

102 103
0

2

4

6

8

102 103

0.05

0.1

0.15

0.2

0.25

h (H-S) conventional (add state)
h (H-S) on mesh
hp (LGR,p=8) conventional (add state)
hp (LGR,p=8) on mesh

Fig. 5: Comparison of computational performance, with input

rate constraints

Fig. 6: Solution of the regularized problem with different

penalty weights. (H-S collocation with 79 collocation points

(40 mesh nodes); reference solution α̇∗ obtained using a very

dense mesh)

2) Implementation of Rate Constraints for State Variables:

We will additionally impose a rate constraint for the velocity

state as −5 ≤ V̇ (t) ≤ 5 [ft/s2]. With this new formulation,

the minimum altitude achievable is slightly lower.

From Figure 7, it is obvious that the two methods are not

computationally comparable. Due to the reasons explained

in the end of Section IV-B, although the increase in NLP

dimension is higher for the on-mesh implementation, the

resulting (larger) NLP problems with linear rate constraints

are actually much easier to solve. Consequently, regardless of

the discretization method, the computation time per iteration

recorded for the on-mesh implementations are all significantly

(more than 30%) lower than the conventional method.

VI. CONCLUSIONS

Through both the mathematical analysis and a computa-

tion example, we demonstrated that mathematically equivalent
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Fig. 7: Comparison of computational performance, with state
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formulations for rate constraints on state and input variables

may not have the same solution quality and computational

complexity in numerical implementations. For all collocation

methods tested, and for both state and input variables, the

proposed approach to directly implement rate constraints on

the discretization mesh appears to be an attractive alternative

for nonlinear optimization based control problems.

In contrast to conventional approaches, the proposed method

is numerically verified to not introduce singular control arcs, a

phenomena which may lead to severe distortions and fluctua-

tions in the optimal control trajectories. Additionally, this on-

mesh implementation replaces the additional dynamic equa-

tions and nonlinear path constraints in conventional implemen-

tations with linear rate equations. Thus, there is no contribution

to the Hessian and the contribution to the Jacobian can be pre-

computed, enabling faster iterations. Based on observations,

the scale of reduction in computation time seems to grow quite

quickly with the increase in mesh size (number of collocation

points), making the method especially suitable for the solution

of large scale problems. A possible downside of the proposed

scheme is that the method cannot be directly implemented

in most of the existing OCP packages through their current

interfaces. However, we believe that this implementation can

be easily added by the authors of the software, and ensure that

all computational benefits are fully realized.
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