
Asynchronous Gradient-Push

Mahmoud Assran and Michael Rabbat∗

March 3, 2020

Abstract

We consider a multi-agent framework for distributed optimization where each agent has ac-
cess to a local smooth strongly convex function, and the collective goal is to achieve consensus
on the parameters that minimize the sum of the agents’ local functions. We propose an algo-
rithm wherein each agent operates asynchronously and independently of the other agents. When
the local functions are strongly-convex with Lipschitz-continuous gradients, we show that the
iterates at each agent converge to a neighborhood of the global minimum, where the neighbor-
hood size depends on the degree of asynchrony in the multi-agent network. When the agents
work at the same rate, convergence to the global minimizer is achieved. Numerical experiments
demonstrate that Asynchronous Gradient-Push can minimize the global objective faster than
state-of-the-art synchronous first-order methods, is more robust to failing or stalling agents, and
scales better with the network size.

1 Introduction

We propose and analyze an asynchronous distributed algorithm to solve the optimization problem

minimizex∈Rd F (x) :=
∑n

i=1 fi(x) (1)

where each fi : Rd → R is smooth and strongly convex. We focus on the multi-agent setting, in
which there are n agents and information about the function fi is only available at the ith agent.
Specifically, only the ith agent can evaluate fi and gradients of fi. Consequently, the agents must
cooperate to find a minimizer of F .

Many multi-agent optimization algorithms have been proposed, motivated by a variety of ap-
plications including distributed sensing systems, the internet of things, the smart grid, multi-robot
systems, and large-scale machine learning. In general, there have been significant advances in the
development of distributed methods with theoretical convergence guarantees in a variety of chal-
lenging scenarios such as time-varying and directed graphs (see [30] for a recent survey). However,
the vast majority of this literature has focused on synchronous methods, where all agents perform
updates at the same rate.

This paper studies asynchronous distributed algorithms for multi-agent optimization. Our inter-
est in this setting comes from applications of multi-agent methods to solve large-scale optimization
problems arising in the context of machine learning, where each agent may be running on a differ-
ent server and the agents communicate over a wired network. Hence, agents may receive multiple
messages from their neighbours at any given time instant, and may perform a drastically different

∗The authors are with Facebook AI Research, Montréal, Québec, Canada, and the Department of Electrical
and Computer Engineering, McGill University, Montréal, Québec, Canada. Email: mahmoud.assran@mail.mcgill.ca,
mikerabbat@fb.com.

1

ar
X

iv
:1

80
3.

08
95

0v
3

 [
cs

.M
A

]
 2

 M
ar

 2
02

0

Algorithm 1 Asynchronous Gradient-Push (Pseudocode) for agent vi

1: Initialize xi ∈ Rd . Push-sum numerator
2: Initialize yi ← 1 . Push-sum weight
3: Initialize αi > 0 . Step-size
4: Nout

i ← number of out-neighbours of vi
5: while stopping criterion not satisfied do
6: Begin: Local Computation
7: zi ← xi/yi . De-biased consensus estimate
8: xi ← xi − αi∇fi(zi)
9: Update step-size αi

10: Begin: Asynchronous Gossip
11: Copy message (xi/N

out
i , yi/N

out
i) to local send-buffer

12: xi ← xi/N
out
i +

∑
(x′,y′)∈receive-buffer x

′

13: yi ← yi/N
out
i +

∑
(x′,y′)∈receive-buffer y

′

14: end while

number of gradient steps over any time interval. In distributed computing systems, communication
delays may be unpredictable; communication links may be unreliable; and each processor may be
shared for other tasks while at the same time cooperating with other processors in the context of
some computational task [6]. High performance computing clusters fit this model of distributed
computing quite nicely [36], especially since node and link failures may be expected in such sys-
tems [11,21,37]. When a synchronous algorithm is run in such a setting, the rate of progress of the
entire system is hampered by the slowest node or communication link; asynchronous algorithms
are largely immune to such issues [2, 4, 6, 9, 19,22,25,33,42].

1.1 Asynchronous Gradient-Push

Practical implementations of multi-agent communication—using the Message Passing Interface
(MPI) [15] or other message passing standards—often have the notion of a send-buffer and a
receive-buffer. A send-buffer is a data structure containing the messages sent by an agent, but not
yet physically transmitted by the underlying communication system. A receive-buffer is a data
structure containing the messages received by an agent, but not yet processed by the application.

Using this notion of send- and receive-buffers, the individual-agent pseudocode for running
the asynchronous gradient-push method is shown in Algorithm 1. The method repeats a two-
step procedure consisting of Local Computation followed by Asynchronous Gossip. During
the Local Computation phase, agents update their estimate of the minimizer by performing
a local (sub)gradient-descent step. During the Asynchronous Gossip phase, agents copy all
outgoing messages into their local send-buffer and subsequently process (sum) all messages received
(buffered) in their local receive-buffer while the agent was busy performing the preceding Local
Computation. The underlying communication system begins transmitting the messages in the
local send-buffer once they are copied there; thereby freeing the agent to proceed to the next step
of the algorithm without waiting for the messages to reach their destination.

Fig. 1a illustrates the agent update procedure in the synchronous case: agents must wait for
all network communications to be completed before moving-on to the next iteration, and, as a
result, some agents may experience idling periods. Fig. 1b illustrates the agent update procedure

2

k=1 k=2

itr.1 itr.2

itr.1 itr.2

itr.1

start

start

start

start itr.2

Synchronous Subgradient-Push

Agent 1

Agent 2

Agent 3

Time

processing delay

transmission delay

idling

(a)

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9k=8 k=10 k=11

start itr.1 itr.2 itr.3

start itr.1 itr.2

start itr.1

itr.3

itr.2 itr.3

itr.4

itr.4

Agent 1

Agent 2

Agent 3

Time

Asynchronous Subgradient-Push processing delay

transmission delay

(b)

Figure 1: Example of agent updates in synchronous and asynchronous Gradient-Push implementa-
tions. Processing delays correspond to the time required to perform a local iteration. Transmission
delays correspond to the time required for all outgoing message to arrive at their destination buffers.
Even though a message arrives at a destination agent’s receive-buffer after some real (non-integer
valued) delay, that message is only processed when the destination agents performs its next update.

in the asynchronous case: at the beginning of each local iteration, agents make use of their message
buffers by copying all outgoing messages into their local send-buffers, and by retrieving all messages
from their local receive-buffers. The underlying communication systems subsequently transmit the
messages in the send-buffers while the agents proceed with their computations.

1.2 Related Work

Most multi-agent optimization methods are built on distributed averaging algorithms [32]. For syn-
chronous methods operating over static, undirected networks, it is possible to use doubly stochastic
averaging matrices. However, it turns out that averaging protocols which rely on doubly stochastic
matrices may be undesirable for a variety of reasons [37]. The Push-Sum approach to distributed
averaging, introduced in [21], eliminates the need for doubly stochastic consensus matrices. The
seminal work on Push-Sum [21] analyzed convergence for complete network topologies (all pairs of
agents may communicate directly). The analysis was extended in [5] for general connected graphs.

3

Further work has provided convergence guarantees in the face of the other practical issues, such
as communication delays and dropped messages [10, 16]. In general, Push-Sum is attractive for
implementations because it can easily handle directed communication topologies, and thus avoids
incidents of deadlock that may occur in practice when using undirected communication topolo-
gies [37].

Multi-Agent Optimization with Column Stochastic Consensus Matrices

The first multi-agent optimization algorithm using Push-Sum for distributed averaging was pro-
posed in [38]. Nedić and Olshevsky [29] continue this line of work by introducing and analyzing the
Subgradient-Push method; the analysis in [29] focuses on minimizing (weakly) convex, Lipschitz
functions, for which diminishing step-sizes are required to obtain convergence. Xi and Khan [43]
propose DEXTRA and Zeng and Yin [44] propose Extra-Push, both of which use the Push-Sum pro-
tocol in conjunction with gradient tracking to achieve geometric convergence for smooth, strongly
convex objectives over directed graphs. Nedić, Olshevsky, and Shi [31] propose the Push-DIGing
algorithm, which achieves a geometric convergence rate over directed and time-varying commu-
nication graphs. Push-DIGing and DEXTRA/Extra-Push are considered to be state-of-the-art
synchronous methods, and the Subgradient-Push algorithm is a multi-agent analog of classical
gradient descent. It should be noted that all of these algorithms are synchronous in nature.

Asynchronous Multi-Agent Optimization

The seminal work on asynchronous distributed optimization of Tsitsiklis et al. [39] considers the
case where each agent holds one component of the optimization variable (or the entire optimiza-
tion variable), and can locally evaluate a descent direction with respect to the global objective.
Convergence is proved for a distributed gradient algorithm in that setting. However that setting
is inherently different from the proposed problem formulation in which each agent does not nec-
essarily have access to the global objective. Li and Basar [24] study distributed asynchronous
algorithms and prove convergence and asymptotic agreement in a stochastic setting, but assume a
similar computation model to that of Tsitsiklis et al. [39] in which each agent updates a portion
of the parameter vector using an operator which produces contractions with respect to the global
objective.

Recently, several asynchronous multi-agent optimization methods have been proposed, such
as: [42], which requires doubly-stochastic consensus over undirected graphs; [14, 25], which require
push-pull consensus over undirected graphs; and [27], which assumes a model of asynchrony in
which agents become activated according to a Poisson point process, and an active agent finishes
its update before the next agent becomes activated. In general, many of the asynchronous multi-
agent optimization algorithms in the literature make restrictive assumptions regarding the nature
of the agent updates (e.g., sparse Poisson point process [27], randomized single activation [8, 12],
randomized multi-activation [7, 20,28,40]).

1.3 Contributions and Paper Organization

We study an asynchronous implementation of the Subgradient-Push algorithm. Since we focus
on problems with continuously differentiable objectives, we refer to the method as asynchronous
Gradient-Push (AGP). This paper draws motivation from our previous work [2] in which we empir-
ically studied AGP and observed that it converges faster than state-of-the-art synchronous multi-
agent algorithms. In this paper we provide theoretical convergence guarantees: when the local

4

objective functions are strongly convex with Lipschitz-continuous gradients, we show that the it-
erates at each agent achieve consensus and converge to a neighborhood of the global minimum,
where the size of the neighborhood depends on the degree of asynchrony. We consider a model of
asynchrony which allows for heterogenous, bounded computation delays and communication delays.
When the agents work at the same rate, convergence to the global minimizer is achieved. Moreover,
if agents have knowledge of one another’s potentially time-varying update rates, then they can set
their step-sizes to achieve convergence to the global minimizer. In general, we relate the asymptotic
worst-case error to the degree of asynchrony, as quantified by a bound on the delay. Agents do not
need to know the delay bounds to execute the algorithm; the bounds only appear in the analysis.

Our analysis is based on several novel aspects: whereas previous work has used graph aug-
mentation to model communication delays in consensus algorithms, here we augment with virtual
nodes to model the effects of both communication and computation delays on message passing
in optimization algorithms. Combining the graph augmentation with a (possibly time-varying)
binary-valued activation function that is unique to each agent and directly multiplies its step-size,
we are able to model the effect of heterogeneous update rates on the optimization procedure. In
contrast to previous work that makes additional assumptions on the agents’ update rates, our prob-
lem formulation only assumes that the time-interval between an agents’ consecutive activations is
bounded. Specifically, this formulation readily allows us to characterize the limit point as a deter-
ministic function of the agents’ update rates, and to bound the rate of convergence when running
AGP with constant or diminishing step-sizes. Since synchronous gradient-push is a special case of
AGP (with zero communication delay and unit computation delays), we obtain the first theoretical
convergence guarantees for gradient-push with constant step-size.

We also develop peripheral results concerning an asynchronous version of the Push-Sum pro-
tocol used for consensus averaging that may be of independent interest. In particular, we show
that agents running the Push-Sum protocol asynchronously converge to the average of the network
geometrically fast, even in the presence of exogenous perturbations at each agent, where the con-
stant of geometric convergence depends on the consensus-matrices’ degree of ergodicity [18] and a
measure of asynchrony in the network.

In Sec. 2 we describe the model of asynchrony considered in this paper. In Sec. 3 we expound
the Asynchronous Perturbed Push-Sum consensus averaging protocol and give the associated con-
vergence results. In Sec. 4 we formally describe the AGP optimization algorithm and present our
main convergence results for both the constant and diminishing step-size cases. Sec. 5 is devoted to
the proof of the main results, and in Sec. 6 we report numerical experiments on a high performance
computing cluster. Finally, in Sec. 7, we conclude and discuss extensions for future work.

2 System Model

2.1 Communication

The multi-agent communication topology is represented by a directed graph G(V, E), where

V := {vi | i = 1, . . . , n} ,
E := {(vj ← vi) | vi can send messages to vj} ,

are the set of agents and edges respectively. We refer to G(V, E) as the reference graph for reasons
that will become apparent when we augment the graph with virtual agents. Let

N in
j := card ({vi | (vj ← vi) ∈ E})

Nout
j := card ({vi | (vi ← vj) ∈ E})

5

denote the cardinality of the in-neighbor set and out-neighbor set of agent vj , respectively; we
adopt the convention that (vi ← vi) ∈ E for all i, i.e., every agent can send messages to itself.

2.2 Discrete event sequence

Without any loss of generality we can describe and analyze asynchronous algorithms as discrete
sequences since all events of interest, such as message transmissions/receptions and local variable
updates, may be indexed by a discrete-time variable [39]. We adopt notation and terminology for an-
alyzing asynchronous algorithms similar to that developed in [39]. Let t[0] ∈ R+ denote the time at
which the agents begin optimization. We assume that there is a set of times T = {t[1], t[2], t[3], . . . , }
at which one or more agents become activated ; i.e., completes a Local Computation and begins
Asynchronous Gossip. Let Ti ⊆ T denote the subset of times at which agent vi in particular
becomes activated. Let A[k] := {vi | t[k] ∈ Ti} denote the activation set at time-index k ∈ N, which
is the set of agents that are activated at time t[k]. For convenience, we also define the functions
πi(k) := max {k′ ∈ N | k′ < k, vi ∈ A[k′]} for all i, which return the most recent time-index — up
to, but not including, time-index k — when agent vi was in the activation set.1

2.3 Delays

Recall that t[k] ∈ Ti denotes a time at which agent vi becomes activated : it completes a Local
Computation (i.e., performs an update) and begins Asynchronous Gossip (i.e., sends a message
to its neighbours by copying the outgoing message into its local send-buffer). For analysis purposes,
messages are sent with an effective delay such that they arrive right when the agent is ready to
process the messages. That is, a message that is sent at time t[k] and processed by the receiving
agent at time t[k′], where k′ > k, is treated as having experienced a time delay t[k′] − t[k] for the
purpose of analysis, or equivalently a time-index delay k′ − k, even if the message actually arrives
before t[k′] and waits in the receive-buffer.

Let τproc
i [k] := k− πi(k) (defined for all k such that t[k] ∈ Ti) denote the time-index processing

delay experienced by agent vi at time t[k]. In words, if agent vi performs an update at some time
t[k], then it performed its last update at time t[k−τproc

i [k]]. We assume that there exists a constant
τproc <∞ independent of i and k such that 1 ≤ τproc

i [k] ≤ τproc.
Similarly, let τmsg

ji [k] (defined for all k such that t[k] ∈ Tj) denote the time-index message
delay experienced by a message sent from agent vi to agent vj at time t[k]. In words, if agent
vi sends a message to agent vj at time t[k], then agent vj will begin processing that message at
time t[k + τmsg

ji [k]]. We assume that there exists a constant τmsg < ∞ independent of i, j, and
k, such that τmsg

ji [k] ≤ τmsg. In addition, we use the convention that τmsg
ii [k] = 0 for all i and

k ∈ N, meaning that agents always have immediate access to their most recent local variables.
Thus 0 ≤ τmsg

ji [k] ≤ τmsg.
Since all agents enter the activation set (i.e., complete an update and initiate a message trans-

mission to all their out-neighbors) at least once every τproc−1 time-indices, and because all messages
are processed within at most τmsg time-indices from when they are sent, it follows that each agent is
guaranteed to process at least one message from each of its in-neighbors every τ := τmsg + τproc−1
time-indices.

1To handle the corner-case at k = 1, we let πi(1) equal 0 for all i.

6

v1

v4 v2

v3

v
(1)
1v

(2)
1

v
(1)
2

v
(2)
2

v
(1)
3 v

(2)
3

v
(1)
4

v
(2)
4

Figure 2: Sample augmented graph of a 4-agent reference network with a maximum time-index
message transmission delay of τmsg = 2 time-indices. Solid lines correspond to non-virtual agents
and edges. Dashed lines correspond to virtual agents and edges.

2.4 Augmented Graph

To analyze the AGP optimization algorithm we augment the reference graph by adding τmsg vir-
tual agents for each non-virtual agent. Similar graph augmentations have been used in [10, 16]
for synchronous averaging with transmission delays. One novel aspect of the augmentation de-
scribed here is the use of virtual agents to model the effects of computation delays on message
passing. To state the procedure concisely: for each non-virtual agent, vj , we add τmsg virtual

agents, v
(1)
j , v

(2)
j , . . . , v

(τmsg)
j , where each v

(r)
j contains the messages to be received by agent vj in r

time-indices. As an aside, we may interchangeably refer to the non-virtual agents, vj , as v
(0)
j for the

purpose of notational consistency. The virtual agents associated with agent vj are daisy-chained

together with edges (v
(r−1)
j ← v

(r)
j), such that at each time-index k, and for all r = 1, 2, . . . , τmsg,

agent v
(r)
j forwards its summed messages to agent v

(r−1)
j . In addition, for each edge (v

(0)
j ← v

(0)
i)

in the reference graph (where j 6= i), we add the edges (v
(r)
j ← v

(0)
i) in the augmented graph.

This augmented model simplifies the subsequent analysis by enabling agent vi to send a message

to agent v
(r)
j with delay zero, rather than send a message to agent vj with delay r.2 See Fig. 2 for

an example.
To adapt the augmented graph model for optimization we formulate the equivalent optimization

2It is worth pointing out that we have not changed our definitions for the edge and vertex sets E and V respectively;
they are still solely defined in-terms of the non-virtual agents.

7

problem

minimize F (x) :=
τmsg∑
r=0

n∑
i=1

f
(r)
i (x), (2)

where

f
(r)
i (x) =

{
fi(x) if r = 0,

0 otherwise.

In words, each of the non-virtual agents, v
(0)
i , maintains its original objective function fi(·), and all

the virtual agents are simply given the zero objective. Clearly F (x) defined in (2) is equal to F (x)
defined in (1). We denote the state of a variable x at time t[k] with an augmented state matrix
x[k] ∈ Rn(τmsg+1)×d

x[k] :=

x(0)[k]

x(1)[k]
...

x(τmsg)[k]

 , (3)

where each x(r)[k] ∈ Rn×d is a block matrix that holds the copy of the variable x at all the delay-r

agents in the augmented graph at time-index k.3 More specifically, x
(r)
i [k] ∈ Rd, the ith row of

x(r)[k], is the local copy of the variable x held locally at agent v
(r)
i at time-index k; below we

generalize this notation for other variables as well.
For ease of exposition, we assume that the reference-graph is static and strongly-connected. The

strongly-connected property of the directed graph is necessary to ensure that all agents are capable
of influencing each other’s values, and in Sec. 7 we describe how one can extend our analysis to
account for time-varying directed communication-topologies.

3 Asynchronous Perturbed Push-Sum

Consensus-averaging is a fundamental building block of the proposed AGP algorithm. In this sub-
section we consider an asynchronous version of the synchronous Perturbed Push-Sum Protocol [29].
If we omit the gradient update in line 8 of Algorithm 1, then we recover the pseudocode for an
asynchronous formulation of the Push-Sum consensus averaging protocol. Alternatively, if we re-
place the gradient term in line 8 of Algorithm 1 with a general perturbation term, then we recover
an asynchronous formulation of the Perturbed Push-Sum consensus averaging protocol.

3.1 Formulation of Asynchronous (Perturbed) Push-Sum

We describe the Asynchronous Perturbed Push-Sum algorithm in matrix form (which will facilitate
analysis below) by stacking all of the agents’ parameters at every update time into a parameter
matrix using a similar notation to that in (3). The entire Asynchronous Gossip procedure can
then be represented by multiplying the parameter-matrix by a so-called consensus-matrix that
conforms to the graph structure of the communication topology. The consensus matrices P [k] ∈

3In keeping with this notation, the block matrix x(0)[k] corresponds to the non-virtual agents in the network.

8

Algorithm 2 Asynchronous Perturbed Push-Sum Averaging

for k = 0, 1, 2, . . . to termination do

x[k + 1] = P [k] (x[k] + η[k]) (6)

y[k + 1] = P [k]y[k] (7)

z[k + 1] = diag(y[k + 1])−1x[k + 1] (8)

Rn(τmsg+1)×n(τmsg+1) for the augmented state model are defined as

P [k] :=

P̃0 [k] In×n 0 · · · 0

P̃1 [k] 0 In×n · · · 0

...
...

...
. . .

...

P̃τ−1 [k] 0 0 · · · In×n
P̃
τmsg [k] 0 0 · · · 0

, (4)

where each P̃r [k] ∈ Rn×n is a block matrix defined as

[
P̃r [k]

]
ji

:=

1

Nout
i
, vi ∈ A[k], (j, i) ∈ E , and τmsg

ji [k] = r,

1, vi /∈ A[k], r = 0, j = i,

0, otherwise.

(5)

In words, when a non-virtual agent is in the activation set, it sends a message to each of its out-
neighbours in the reference graph with some arbitrary, but bounded, delay r. When a non-virtual
agent is not in the activation set, it keeps its value and does not gossip. Furthermore, since we
have chosen a convention in which messages between agents are sent with some effective message
delay, τmsg

ji [k], it follows that non-virtual agents do not receive any new messages while outside the
activation set. Virtual agents, on the other hand, simply forward all of their messages to the next
agent in the delay chain at all time-indices k, and so there is no notion of virtual agents belonging
to (or not belonging to) the activation set. The activation set is exclusively a construct for the
non-virtual agents. Observe that, by definition, the matrices P [k] are column stochastic at all
time-indices k.

To analyze the Asynchronous Perturbed Push-Sum averaging algorithm from a global perspec-
tive, we use the matrix-based formulation provided in Algorithm 2, where η[k] ∈ Rn(τmsg+1)×d is a
perturbation term, and the matrices P [k] are as defined in (4) for the augmented state, and x[k],
y[k], and z[k] are also defined with respect to the augmented state. At all time-indices k, each agent

v
(r)
i locally maintains the variables x

(r)
i [k], z

(r)
i [k],∈ Rd, and y

(r)
i [k] ∈ R. The non-virtual agent ini-

tializations are x
(0)
i [0] ∈ Rd, and y

(0)
i [0] = 1. The virtual agent initializations are x

(r)
i [0] = 0, and

y
(r)
i [0] = 0 (for all r 6= 0).4 This matrix-based formulation describes how the agents’ values evolve

at those times t[k + 1] ∈ T = {t[1], t[2], t[3], . . . , } when one or more agents complete an update,
which in this case consists of summing received messages. The time-varying consensus-matrices
P [·] capture the asynchronous delay-prone communication dynamics.

4Note, given the initializations, the virtual agents could potentially have z
(r)
i [k + 1] = 0/0 (division by zero) in

update equation (11), but this is a non-issue since z
(r)
i (for all r 6= 0) is never used.

9

3.2 Main Results for Asynchronous (Perturbed) Push-Sum

In this subsection we present the main convergence results for the Asynchronous (Perturbed) Push-
Sum consensus averaging protocol. We briefly describe some notation in order to state the main
results. Let Nout

max := max1≤j≤nN
out
j represent the maximum number of out-neighbors associated

to any non-virtual agent. Let x[k] := 1>x[k]/n be the mutual time-wise average of the variable x
at time-index k. Let the scalar ψ represent the number of possible types (zero/non-zero structures)
that an n(τmsg + 1)×n(τmsg + 1) stochastic, indecomposable, and aperiodic (SIA) matrix can take

(hence ψ < 2(n(τmsg+1))2
).5 Let the scalar λ > 0 represent the maximum Hajnal Coefficient of

Ergodicity [18] taken over the product of all possible (τ + 1)(ψ + 1) consecutive consensus-matrix
products:

λ := max
A

(
1−min

j1,j2

∑
i

min
{

[A]i,j1 , [A]i,j2

})
,

such that
A ∈

{
P [k + (τ + 1)(ψ + 1)] · · ·P [k + 2]P [k + 1]

∣∣ k ≥ 0
}
,

where τ := τmsg + τproc − 1. We prove that λ is strictly less than 1 and guaranteed to exist. Let
δmin represent a lower bound on the entries in the first n-rows of the product of n(τ + 1) or more
consecutive consensus-matrices (rows only corresponding to the non-virtual agents):

δmin := min
i,j,k,`

[
P [k + `] · · ·P [k + 2]P [k + 1]

]
i,j
,

where the min is taken over all i = 1, 2, . . . , n, j = 1, 2, . . . , n(τproc +1), k ≥ 0, and ` ≥ n(τproc +1).

Assumption 1 (Communicability). All agents influence each other’s values sufficiently often, in
particular:

1. The reference graph G(V, E) is static and strongly connected.

2. The communication and computation delays are bounded: τmsg <∞ and τproc <∞.

Theorem 1 (Convergence Rate of Asynchronous Perturbed Push-Sum Averaging). Suppose that
Assumption 1 is satisfied. Then it holds for all i = 1, 2, . . . , n, and k ≥ 0, that

∥∥∥z(0)
i [k]− x[k]

∥∥∥
1
≤Cqk

∥∥∥x(0)
i [0]

∥∥∥
1

+ C

k∑
s=0

qk−s ‖ηi[s]‖1 ,

where q ∈ (0, 1) and C > 0 are given by

q = λ
1

(ψ+1)(τ+1) , and C <
2

λ
ψ+2
ψ+1 δmin

≈ 2

λδmin
,

and δmin =
(

1
Nout
max

)n(τ+1)
.

Remark. To adapt the proof to B-strongly connected time-varying directed graphs, one would
instead define λ as the maximum Hajnal Coefficient of Ergodicity [18] taken over the product of all
possible (τ + 1 + B)(ψ + 1) consecutive matrix products (instead of all (τ + 1)(ψ + 1) consecutive
matrix products). A sufficient assumption in order to prove that λ < 1 is that a message in transit
does not get dropped when the graph topology changes.

5See [41] for a definition of SIA matrices.

10

Corollary 1.1 (Convergence to a Neighbourhood for Non-Diminishing Perturbation). Suppose
that the perturbation term is bounded for all i = 1, 2, . . . , n; i.e., there exists a positive constant
L <∞ such that

‖ηi[k]‖1 ≤ L, for all i = 1, 2, . . . , n.

Then, for all i = 1, 2, . . . , n,

lim
k→∞

∥∥∥z(0)
i [k]− x[k]

∥∥∥
1
≤ CL

1− q
.

Remark 1. From [34, Lemma 3.1] we know that if q ∈ (0, 1), and lims→∞ α[s] = 0, then

lim
k→∞

k∑
s=0

qk−sα[s] = 0.

Corollary 1.2 (Exact Convergence for Vanishing Perturbation). Suppose that the perturbation
term vanishes as k (the time-index) tends to infinity, i.e.,

lim
k→∞

‖η[k]‖1 = 0,

then from the result of Theorem 1 and Remark 1, it holds for all i = 1, 2, . . . , n that

lim
k→∞

∥∥∥z(0)
i [k]− x[k]

∥∥∥
1

= 0.

Corollary 1.3 (Geometric Convergence of Asynchronous (Unperturbed) Push-Sum Averaging).
Suppose that for all i = 1, 2, . . . , n, and k ≥ 0, it holds that ηi[k] = 0. Then from the result of
Theorem 1, it holds for all i = 1, 2, . . . , n, and k ≥ 0 that∥∥∥z(0)

i [k]− x[0]
∥∥∥

1
≤ Cqk

∥∥∥x(0)
i [0]

∥∥∥
1
.

The proof of Theorem 1 is omitted and can be found in [1]. In brief, the asymptotic prod-
uct of the asynchronous consensus-matrices, P [k] · · ·P [1]P [0] (for sufficiently large k) is SIA, and
furthermore, the entries in the first n rows of the asymptotic product (corresponding to the non-
virtual agents) are bounded below by a strictly positive quantity. Applying standard tools from
the literature concerning SIA matrices [41] we show that the columns of the asymptotic product of
consensus-matrices weakly converge to a stochastic vector sequence at a geometric rate. Substitut-
ing this geometric bound into the definition of the asynchronous perturbed Push-Sum updates in
Algorithm 2, and after algebraic manipulation similar to that in [29] (which analyzes synchronous
delay-free Perturbed Push-Sum), we obtain the desired result.

4 Asynchronous Gradient-Push

In this section we expound the proposed AGP optimization and present our main convergence
results. Our model of asynchrony implies that agents may gossip at different rates, may commu-
nicate with arbitrary transmission delays, and may perform gradient steps with stale (outdated)
information.

11

Algorithm 3 Asynchronous Gradient Push Optimization

for k = 0, 1, 2, . . . to termination do

x[k + 1] = P [k]
(
x[k]−∇F [k]

)
(9)

y[k + 1] = P [k]y[k] (10)

z[k + 1] = diag(y[k + 1])−1x[k + 1] (11)

4.1 Formulation of Asynchronous Gradient-Push

To analyze the AGP optimization algorithm from a global perspective, we use the matrix-based

formulation provided in Algorithm 3. At all time-indices k, each agent v
(r)
i locally maintains the

variables x
(r)
i [k], z

(r)
i [k] ∈ Rd, and y

(r)
i [k] ∈ R+. The non-virtual agents initialize these to z

(0)
i [0] =

x
(0)
i [0] ∈ Rd, and y

(0)
i [0] = 1. The virtual agents’ variables are initialized to z

(r)
i [0] = x

(r)
i [0] = 0,

and y
(r)
i [0] = 0 for all r 6= 0. This matrix-based formulation describes how the agents’ values

evolve at those times t[k+ 1] ∈ T = {t[1], t[2], t[3], . . . , } when one or more agent becomes activated
(completes an update). The asynchronous delay-prone communication dynamics are accounted for
in the consensus-matrices P [·], and the matrix-valued function ∇F [k+ 1] ∈ Rn(τmsg+1)×d is defined
as

∇F [k + 1] :=

∇f (0)(z(0)[k + 1])

0
...
0

 ,
where ∇f (0)(z(0)[k + 1]) ∈ Rn×d denotes a block matrix with its ith row equal to

αi[k + 1]δi[k + 1]∇f (0)
i (z

(0)
i [k + 1]).

The scalar αi[k+ 1] denotes node vi’s local step-size. The scalar δi[·] is equal to 1 when agent vi is
activated, and equal to 0 otherwise. Recall that agents can only update their local step-sizes when
they are activated (i.e., they complete a local gradient step, cf. Algorithm 1). Therefore, if agent
vi is not activated at time-index k, then αi[k] is equal to αi[πi(k)], the agent’s most recently used
step-size.6

4.2 Main results for Asynchronous Gradient-Push

In this subsection we present the main convergence results for the AGP algorithm.

Assumption 2 (Existence, Convexity, and Smoothness). Assume that:

1. A minimizer of (1) exists; i.e., argminx F (x) 6= ∅.

2. Each function fi(x) : Rd → R is µi-strongly convex, and has Mi-Lipschitz continuous gradi-
ents.

6Note: if an agent is not activated at time-index k, then its step-size at that time does have any effect on the
execution of the algorithm. We introduce this convention here simply so that the step-size value is well-defined at all
times.

12

Let M := maxiMi and µ := mini µi denote the global Lipschitz constant and modulus of
strong convexity, respectively. Let x? := argminF (x) denote the global minimizer, and let x?i :=
argmin fi(x) denote the minimizer of node vi’s local objective.

Assumption 3 (Step-Size Bound). Assume that for all agents vi, the terms in the step-size se-
quence {αi[k]} satisfy

αi[k] ≤ µ

2M2

(
1

Nout
max

)n(τ+1)

∀k ∈ N.

Theorem 2 (Bounded Iterates and Gradients). Suppose Assumptions 2 and 3 are satisfied. Then
there exist finite constants L,D > 0 such that,

sup
k
‖∇fi(zi[k])‖ ≤ L, sup

k
‖x[k]‖ < D.

The proof of Theorem 2 appears in [1]. Next we state our main results, the proofs of which all
appear in Sec. 5. When nodes run asynchronously and at different rates, AGP may not converge
precisely to the solution x? of (1).

Definition 1 (Re-weighted objective). Suppose Algorithm 1 is run from time t[0] up to time t[K]
for some integer K > 0. For all i ∈ [n], let

p
(K)
i :=

K−1∑
k=0

αi[k]δi[k], and p
(K)
i :=

p
(K)
i∑n

i=1 p
(K)
i

. (12)

Define the re-weighted objective

FK(·) :=

n∑
i=1

p
(K)
i fi(·), (13)

and let x?K denote the minimizer of FK(·).

We can characterize how far x?K may be from x?. Let κ := M/µ denote the condition number
of the global objective F (x), let x?i denote the minimizer of fi(x), let Si := ‖x?i − x?‖, let Si,j :=∥∥∥x?i − x?j∥∥∥ denote the pairwise distance of agent vi’s minimizer to agent vj ’s minimizer, and let

S := maxi∈[n] minj∈[n](Si,j + Sj).

Theorem 3 (Bound on Distance of Minimizers). Suppose Algorithm 1 is run from time t[0] up to
time t[K], for some integer K > 0. Let

∆(K) :=

√√√√ n∑
i=1

∣∣∣∣ 1n − p(K)
i

∣∣∣∣.
If Assumption 2 holds, then

‖x?K − x?‖ ≤
S
√
κ ∆(K)

√
2

,

where p
(K)
i ∈ (0, 1) and x?K are defined in Definition 1, and x? is the minimizer of (1).

13

Theorem 3 bounds the distance between the minimizer of the re-weighted objective (Definition 1)
and the minimizer of the original (unbiased) objective (1). The bound depends on the condition
number of the global objective, the pairwise distance between agents’ local minimizers, the distance
between agents’ local minimizers and the global (unbiased) minimizer, and the degree of asynchrony
in the network. In particular, the quantity ∆(K) denotes the bias introduced from the processing
delays. If agents work at roughly the same rate, then ∆(K) is close to 0. On the other hand, if
there is a large disparity between agents’ update rates, then ∆(K) is close to

√
2.

Assumption 4 (Constant Step-Size). Suppose Algorithm 1 is run from time t[0] up to time t[K],
for some integer K > 0. For a given θ ∈ (0, 1), assume that there exist constants B > 0 and wi ≥ 1,
for all i ∈ [n], such that each agent vi sets its local step-size as

αi[k] := αi =
wiB

Kθ
.

Note that Assumption 4 prescribes a constant step-size. It reads: first fix the total number of
iterations K, and then use K to inform the choice of a constant step-size.7

Theorem 4 (Convergence of Asynchronous Gradient Push for Constant Step-Size). Suppose Al-
gorithm 1 is run from time t[0] up to time t[K], for some integer K > 0, and suppose that As-
sumptions 1, 2, 3, and 4 hold. Then there exist finite positive constants A1, A2, and A3 such
that

1

K

K−1∑
k=0

‖x[k]− x?K‖
2 ≤ 1

Kθ

(
n(A1 +A3)

2µB

)
+

1

K

(
nA2

2µB

)

+
1

K1−θ

n
(
‖x[0]− x?K‖

2
)

2µB

 ,

where θ ∈ (0, 1) is defined in Assumption 4, and x?K is the minimizer of the re-weighted objective
defined in Definition 1.

Explicit expressions for A1, A2, and A3 are given in Lemma 4 below. Both A2 and A3 depend
on C and q, and hence on the delay bound τ .

Corollary 4.1 (Convergence of Semi-Synchronous Gradient Push for Constant Step-Size). Suppose
the assumptions made in Theorem 4 hold, and suppose that τproc = 1 and each agent vi sets its
local step-size scaling factor wi = 1. Then

1

K

K−1∑
k=0

‖x[k]− x?‖2 ≤ 1

Kθ

(
n(A1 +A3)

2µB

)
+

1

K

(
nA2

2µB

)

+
1

K1−θ

n
(
‖x[0]− x?‖2

)
2µB

 ,

where x? is the minimizer of (1).

7In practice it may be difficult to determine K ahead of time, since K is the total number of iterations/updates
performed across the entire network. However in some implementations it may be possible to maintain a (possibly
approximate) global count of the number of iterations performed (e.g., by running a separate consensus algorithm in
parallel) and use this as a stopping criterion.

14

Corollary 4.1 states that if the agents perform gradient updates at the same rate, then they
converge to the unbiased global minimizer, even in the presence of persistent, but bounded, message
delays.

Definition 2 (Local iteration counter). For each agent vi, and all integers k ≥ 0, define the local
iteration counter

ci[k] :=
k∑
`=0

δi[`]

to be the number of updates performed by agent vi in the time-interval (t[0], t[k]]. By convention,
for all i ∈ [n], we take δi[0] := 1, and thus ci[0] = 1.

Corollary 4.2 (Convergence of Asynchronous Gradient Push for Known Update Rates). Suppose
the assumptions made in Theorem 4 hold, and suppose that each agent vi has prior knowledge of
ci[K − 1], the number of local iterations it will have completed before time t[K]. If each agent vi
sets its local step-size scaling factor

wi :=
K

ci[K − 1]
≥ 1,

then

1

K

K−1∑
k=0

‖x[k]− x?‖2 ≤+
1

Kθ

(
n(A1 +A3)

2µB

)
+

1

K

(
nA2

2µB

)

+
1

K1−θ

n
(
‖x[0]− x?‖2

)
2µB

 ,

where x? is the minimizer of (1).

Corollary 4.2 states that if the agents know one another’s update rates, then they can set their
step-sizes to guarantee convergence to the unbiased global minimizer, even in the presence of per-
sistent, but bounded, processing and message delays. In particular, slower agents can simply scale
up their step-size to compensate for their slower update rates.

We also provide guarantees for a version of the algorithm using diminishing step sizes.

Assumption 5 (Step-Size Decay). For a given θ ∈ (0.5, 1), assume that there exist constants
B > 0 and wi ≥ 1, for all i ∈ [n], such that each agent vi sets its local step-size as

αi[k] :=
wiB

(ci[k])θ
.

Remark 2. Note that if Assumption 5 holds, then

B

n(k + 1)θ
≤ 1

n

n∑
i=1

αi[k]δi[k] ≤
(1
n

∑n
i=1wi)B(τproc)θ

(k + τproc)θ
,

where θ ∈ (0.5, 1) is defined in Assumption 5

15

Theorem 5 (Convergence of Asynchronous Gradient Push for Diminishing Step-Size). Suppose
Algorithm 1 is run from time t[0] up to time t[K], for some integer K > 0. If Assumptions 1, 2, 3,
and 5 hold, then there exists a finite positive constant A such that

1

K

K−1∑
k=0

‖x[k]− x?K‖
2 ≤ 1

K1−θ

n
(
‖x[0]− x?K‖

2 +A
)

2µB

 ,

where θ ∈ (0.5, 1) is defined in Assumption 5, and x?K is the minimizer of the re-weighted objective
defined in Definition 1.

Theorem 5 states that in the presence of persistent, but bounded, message and processing
delays, the agents converge to the minimizer of a re-weighted version of the original problem, where
the re-weighting values are completely determined by the agents’ respective cumulative step-sizes
during the execution of the algorithm. The constant A depends on the delay bound τ ; see Lemma 5
below for more details.

Corollary 5.1 (Exact Consensus for Asynchronous Gradient Push). Suppose the assumptions
made in Theorem 5 hold. Then, for all i ∈ [n],

lim
k→∞

‖zi[k]− x[k]‖ = 0.

Proof. Notice that the Asynchronous Gradient Push updates in Algorithm (3) can be regarded as
Asynchronous Perturbed Push-Sum updates, with perturbation η[k] given by −∇F [k]. Since the
gradients remain bounded by Theorem 2, and the local step-sizes go to zero by Assumption 5, the
conditions for Corollary 1.3 are satisfied, and it follows that limk→∞ ‖zi[k]− x[k]‖ = 0. �

Corollary 5.1 states that if all agents use a diminishing step-size, then they will achieve consen-
sus, even in the presence of persistent, but bounded, processing and message delays.

Corollary 5.2 (Convergence of Semi-Synchronous Gradient Push for Diminishing Step-Size). Sup-
pose the assumptions made in Theorem 5 hold. If τproc = 1 and each agent vi sets its local step-size
scaling factor wi = 1, then

1

K

K−1∑
k=0

‖x[k]− x?‖2 ≤ 1

K1−θ

n
(
‖x[0]− x?‖2 +A

)
2µB

 ,

where x? is the minimizer of (1).

Corollary 5.2 states that if the agents perform gradient updates at the same rate, then they
converge to the (unbiased) global minimizer, even in the presence of persistent, but bounded,
message delays.

Corollary 5.3 (Convergence of Asynchronous Gradient Push for Known Update Rates). Suppose
the assumptions made in Theorem 5 hold, and suppose that each agent vi has prior knowledge of
ci[K − 1], the number of local iterations it will have completed before time t[K]. If each agent vi
sets its local step-size scaling factor

wi :=

(∑K−1
k=0

1
(k+1)θ

)
(∑ci[K−1]−1

k=0
1

(k+1)θ

) ≥ 1

16

for some θ ∈ (0.5, 1) (as per Assumption 5), then

1

K

K−1∑
k=0

‖x[k]− x?‖2 ≤ 1

K1−θ

n
(
‖x[0]− x?‖2 +A

)
2µB

 ,

where x? is the minimizer of (1).

Corollary 5.3 states that if the agents know one another’s update rates, then they can set
their step-sizes to guarantee convergence to the ubiased global minimizer, even in the presence of
persistent, but bounded, processing and message delays. In particular, slower agents can simply
scale up their step-size to compensate for their slower update rates.

5 Analysis

5.1 Proof of Theorem 3

Using the strong convexity of the global objective, we have

‖x?K − x?‖
2 ≤ 2

µ

n∑
i=1

1

n
(fi(x

?
K)− fi(x?)), (14)

and

‖x?K − x?‖
2 ≤ 2

µ

n∑
i=1

p
(K)
i (fi(x

?)− fi(x?K)). (15)

Summing (14) and (15) and multiplying through by 1/2, we obtain that

‖x?K − x?‖
2 ≤ 1

µ

n∑
i=1

(
(fi(x

?
K)− fi(x?))

(
1

n
− p(K)

i

))
.

Adding and subtracting 1
µfi(x

?
i), we have

‖x?K − x?‖
2 ≤ 1

µ

n∑
i=1

(fi(x
?
K)− fi(x?i))

(
1

n
− p(K)

i

)

− 1

µ

n∑
i=1

(fi(x
?)− fi(x?i))

(
1

n
− p(K)

i

)
.

(16)

Define the index set I := {i ∈ [n]| 1n − p
(K)
i ≥ 0}, and its complement IC := {i ∈ [n]| 1n − p

(K)
i < 0}.

We can further bound (16) as

‖x?K − x?‖
2 ≤ 1

µ

∑
i∈I

(fi(x
?
K)− fi(x?i))

∣∣∣∣ 1n − p(K)
i

∣∣∣∣
+

1

µ

∑
i∈IC

(fi(x
?)− fi(x?i))

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ . (17)

Using the smoothness of the global objective, we can bound the terms in the first summation
in (17),

1

µ
(fi(x

?
K)− fi(x?i))

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ ≤ κ

2
‖x?K − x?i ‖

2

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ , (18)

17

and similarly for the terms in the second summation in (17),

1

µ
(fi(x

?)− fi(x?i))
∣∣∣∣ 1n − p(K)

i

∣∣∣∣ ≤ κ

2
‖x? − x?i ‖

2

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ . (19)

Substituting (18) and (19) back into (17), we have

‖x?K − x?‖
2 ≤κ

2

∑
i∈I
‖x?K − x?i ‖

2

∣∣∣∣ 1n − p(K)
i

∣∣∣∣
+
κ

2

∑
i∈IC
‖x? − x?i ‖

2

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ . (20)

Note that there exists an index j ∈ [n] such that
∥∥∥x?K − x?j∥∥∥ ≤ ∥∥∥x? − x?j∥∥∥. To see this, suppose for

the sake of a contradiction that
∥∥∥x?K − x?j∥∥∥ > ∥∥∥x? − x?j∥∥∥ for all j ∈ [n]. Since the local objectives

are strongly convex, this implies that there exists a point x? such that fj(x
?) < fj(x

?
K) for all

j ∈ [n]. Therefore, FK(x?) < FK(x?K), which contradicts the definition of x?K . Hence there exists
j ∈ [n] such that ∥∥x?K − x?j∥∥ ≤ ∥∥x? − x?j∥∥ . (21)

Using the triangle inequality and (21)

‖x?K − x?i ‖ ≤ S.

Similarly, using the triangle inequality

‖x?i − x?‖ ≤ S.

Therefore, we can simplify (20) as

‖x?K − x?‖
2 ≤S

2
κ

2

n∑
i=1

∣∣∣∣ 1n − p(K)
i

∣∣∣∣ . (22)

Taking the square-root on each side of (22) gives the desired result. �

5.2 Preliminaries

Before proceeding to the proofs of Theorems 4 and 5, we derive some preliminary results here.
Then we give the proof of Theorem 4 followed by the proof of Theorem 5 in the remainder of this
section.

Lemma 1. Suppose Assumptions 2 and 3 are satisfied. Then for all k ≥ 0,

‖x[k]− x?K‖ ≤
L

µ
,

where L is defined in Theorem 2, and x?K is the minimizer of the re-weighted objective defined in
Definition 1.

18

Proof. Using the strong convexity of the global objective and the fact that x?K is the minimizer of

the re-weighted objective
∑n

i=1 p
(K)
i fi(·), we have that

‖x[k]− x?K‖ ≤
1

µ

∥∥∥∥∥
n∑
i=1

p
(K)
i ∇fi(x[k])

∥∥∥∥∥ .
Using the convexity of the norm and substituting the gradient upper bound from Theorem 2 gives
the desired result. �

Lemma 2. Suppose Assumptions 2 and 3 are satisfied. Define

γi[k] :=κLC ‖xi[0]‖1 q
k

χi[k] :=κL2C
k∑
s=0

qk−sαi[s]δi[s]

where q ∈ (0, 1) and C > 0 are defined in Theorem 1. Then for all i = 1, . . . , n it holds that

〈∇fi(zi[k]), x[k]− x?K〉 ≥ µ ‖x[k]− x?K‖
2

− γi[k]− χi[k]

+ 〈∇fi(x?K), x[k]− x?K〉.

Proof. Begin by re-writing the inner product

〈∇fi(zi[k]), x[k]− x?K〉
=〈∇fi(zi[k])−∇fi(x[k]), x[k]− x?K〉

+ 〈∇fi(x[k]), x[k]− x?K〉.
(23)

Using the Lipschitz-smoothness of the objectives, we have

〈∇fi(zi[k])−∇fi(x[k]), x[k]− x?K〉
≥ −M ‖zi[k]− x[k]‖ ‖x[k]− x?K‖ .

(24)

Making use of Lemma 1, we can simplify (24) as

〈∇fi(zi[k])−∇fi(x[k]), x[k]− x?K〉
≥ − κL ‖zi[k]− x[k]‖ .

(25)

Applying the result of Theorem 1 in (25), and substituting the gradient bounds from Theorem 2,
we have

〈∇fi(zi[k])−∇fi(x[k]), x[k]− x?K〉

≥ − (κLC)

(
‖xi[0]‖1 q

k + L
k∑
s=0

qk−sαi[s]δi[s]

)
,

thereby bounding the first term in (23). Using the strong-convexity of the objectives, we can bound
the second term in (23) as

〈∇fi(x[k]), x[k]− x?K〉 ≥ 〈∇fi(x?K), x[k]− x?K〉
+ µ ‖x[k]− x?K‖

2 .
(26)

�

19

Lemma 3. Suppose Assumptions 2 and 3 are satisfied. For any integer K > 0, it holds that

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[k]− x?K〉 ≥ 0,

where x?K is the minimizer of the re-weighted objective defined in Definition 1.

Proof. Begin by re-writing the inner product

〈∇fi(x?K), x[k]− x?K〉 =〈∇fi(x?K), x[K]− x?K〉
+ 〈∇fi(x?K), x[k]− x[K]〉.

(27)

From Lemma 1, we have

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[K]− x?K〉

≥ −L
µ

∥∥∥∥∥ 1

nK

n∑
i=1

∇fi(x?K)

(
K−1∑
k=0

αi[k]δi[k]

)∥∥∥∥∥ .
(28)

Recalling that p
(K)
i :=

∑K−1
k=0 αi[k]δi[k], and that x?K is the minimizer of the re-weighted objective∑n

i=1 fi(·)p
(K)
i , it follows that the right-hand-side of (28) vanishes, and

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[K]− x?K〉 ≥ 0. (29)

Now turning our attention to the second term on the right-hand side of (27), we have

〈∇fi(x?K), x[k]− x[K]〉

=

〈
∇fi(x?K),

K−1∑
`=k

1

n

n∑
i=1

αi[`]δi[`]∇fi(zi[`])

〉
.

Define the positive integer k′ as

k′ := argmin
k∈{0,1,...,K−1}

〈
∇fi(x?K),

K−1∑
`=k

1

n

n∑
i=1

αi[`]δi[`]∇fi(zi[`])

〉
,

and the corresponding vector, vK ∈ Rd,

vK :=
K−1∑
`=k′

1

n

n∑
i=1

αi[`]δi[`]∇fi(zi[`]).

It holds for all k = 0, 1, . . . ,K − 1 that

〈∇fi(x?K), x[k]− x[K]〉 ≥ 〈∇fi(x?K), vK〉.

20

Therefore,

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[k]− x?[K]〉

≥ −‖vK‖
K

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x?K)

(
K−1∑
k=0

αi[k]δi[k]

)∥∥∥∥∥ .
(30)

Note that, from Theorem 2, we have

‖vK‖ ≤ KL
1

n

n∑
i=1

αi[0]. (31)

Substituting (31) into (30), gives

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[k]− x?[K]〉

≥ −

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x?K)

(
K−1∑
k=0

αi[k]δi[k]

)∥∥∥∥∥ Ln
n∑
i=1

αi[0].

(32)

Recalling that p
(K)
i :=

∑K−1
k=0 αi[k]δi[k], and that x?K is the minimizer of the re-weighted objective∑n

i=1 fi(·)p
(K)
i , it follows that the right-hand side of (32) vanishes, and

1

nK

K−1∑
k=0

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[k]− x[K]〉 ≥ 0. (33)

Summing (33) and (29) together gives the desired result. �

Lemma 4. Suppose Assumptions 2, 3, and 4 are satisfied. Define

b1[K] := L

K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]

)2

b2[K] := 2L
K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]γi[k]

)

b3[K] := 2L
K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]χi[k]

)
,

where γi[k] and χi[k] are given in Lemma 2. There exist finite constants A1, A2, A3 > 0, such that,

b1[K] ≤ A1

K2θ−1
, b2[K] ≤ A2

Kθ
, b3[K] ≤ A3

K2θ−1
.

Proof. From Assumption 4, we have

b1[K] ≤ L

(
B

n

n∑
i=1

wi

)2
1

K2θ−1
.

21

Letting A1 :=
(√

LB
n

∑n
i=1wi

)2
, we have b1[K] ≤ A1

K2θ−1 . Now to bound b2[K], note that, given

Assumption 4, we have
K−1∑
k=0

(αi[k]δi[k]) qk ≤ αi
1− q

.

Letting A2 :=
2κL2C‖xi[0]‖(Bn

∑n
i=1 wi)

(1−q) , we have b2[K] ≤ A2

Kθ . Lastly, to bound b3[K], it follows from
Assumption 4, that

K−1∑
k=0

χi[k] (αi[k]δi[k]) ≤ α2
i κL

2C

K−1∑
k=0

k∑
s=0

qk−s ≤ α2
i κL

2CK

1− q
.

Letting A3 :=
2κL3C(Bn

∑n
i=1 wi)

2

(1−q) , we have b3[K] ≤ A3

K2θ−1 . �

Lemma 5. Suppose Assumptions 2, 3, and 5 are satisfied. Define

b1[K] := L
K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]

)2

b2[K] := 2L

K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]γi[k]

)

b3[K] := 2L
K−1∑
k=0

(
1

n

n∑
i=1

αi[k]δi[k]χi[k]

)
,

where γi[k] and χi[k] are given in Lemma 2. There exists a finite constant A > 0, such that for all
K ≥ 0,

b1[K] + b2[K] + b3[K] ≤ A.

Proof. First note that the sequences b1[K], b2[K], and b3[K] are all monotonically increasing with
K. Therefore, if we can show that the sequences are bounded, then it follows that they are also
convergent, and their respective limits serve as upper bounds. From Assumption 5 and Remark 2,
it immediately follows that the sequence b1[K] is bounded, and therefore convergent. Let A′1 :=
limK→∞ b1[K]. Consequently, b1[K] ≤ A′1 for all K ≥ 0. Now to bound b2[K], note that, given
Assumption 5, it holds that

∞∑
k=0

(αi[k]δi[k]) qk ≤ αi[0]

1− q
<∞.

Let A′2 := 2κL2C‖xi[0]‖
1−q

1
n

∑n
i=1 αi[0]. It follows that b2[K] ≤ A′2 for all K ≥ 0. Lastly, to bound

b3[K], it follows from [34, Lemma 3.1] and Assumption 5, that

∞∑
k=0

χi[k] (αi[k]δi[k]) ≤ κL2C

∞∑
k=0

k∑
s=0

qk−s (αi[s]δi[s])
2 <∞.

Therefore, b3[K] is bounded and convergent. Let A′3 := limK→∞ b3[K]. Then b3[K] ≤ A′3 <∞ for
all K ≥ 0. Defining A := A′1 +A′2 +A′3 gives the desired result. �

22

5.3 Proof of Theorem 4

Recall the update equation (9) given by

x[k + 1] = P [k]
(
x[k]−∇F [k]

)
.

Since the matrices P [k] are column stochastic, we can multiply each side of (9) by 1T /n to get

x[k + 1] = x[k]−
n∑
i=1

αi[k]δi[k]

n
∇fi(zi[k]). (34)

Subtracting x?K from each side of (35) and taking the squared norm

‖x[k + 1]− x?K‖
2 ≤ ‖x[k]− x?K‖

2

− 2

n

n∑
i=1

αi[k]δi[k]〈∇fi(zi[k]), x[k]− x?K〉

+

∥∥∥∥∥ 1

n

n∑
i=1

αi[k]δi[k]∇fi(zi[k])

∥∥∥∥∥
2

.

(35)

Note that, from Theorem 2, we have∥∥∥∥∥ 1

n

n∑
i=1

αi[k]δi[k]∇fi(zi[k])

∥∥∥∥∥
2

≤

(
L

n

n∑
i=1

αi[k]δi[k]

)2

,

thereby bounding the last term in (35). Additionally, making use of Lemma 2, it follows that

‖x[k + 1]− x?K‖
2 ≤‖x[k]− x?K‖

2 +

(
L

n

n∑
i=1

αi[k]δi[k]

)2

− 2µ ‖x[k]− x?K‖
2

(
1

n

n∑
i=1

αi[k]δi[k]

)

− 2

n

n∑
i=1

αi[k]δi[k]〈∇fi(x?K), x[k]− x?K〉

+
2

n

n∑
i=1

αi[k]δi[k](γi[k] + χi[k]).

(36)

Rearranging terms, averaging each side of (36) across time indices, and making use of Lemma 3
gives

2µ

K

K−1∑
k=0

‖x[k]− x?K‖
2

(
1

n

n∑
i=1

αi[k]δi[k]

)

≤ 1

K

K−1∑
k=0

(
‖x[k]− x?K‖

2 − ‖x[k + 1]− x?K‖
2
)

+
1

K

K−1∑
k=0

(
2

n

n∑
i=1

αi[k]δi[k] (γi[k] + χi[k])

)

+
1

K

K−1∑
k=0

(
L

n

n∑
i=1

αi[k]δi[k]

)2

.

(37)

23

Noticing that we have a telescoping sum on the right hand side of (37), and making use of Lemma 4
and Assumption 4, it follows that

1

K

K−1∑
k=0

‖x[k]− x?K‖
2 ≤ 1

K1−θ

n
(
‖x[0]− x?K‖

2
)

2µB

+

1

Kθ

(
n(A1 +A3)

2µB

)
+

1

K

(
nA2

2µB

)
where θ ∈ (0, 1) is defined in Assumption 4. �

5.4 Proof of Corollary 4.1

If τproc = 1, then each agent performs a gradient update in each iteration. In particular, δi[k] = 1
for all k ≥ 0 and i = 1, . . . , n. Using the fact that wi = 1 for all i = 1, . . . , n (agents use the

same factor in their local step-sizes), it follows that p
(K)
i = p

(K)
j for all i, j = 1, . . . , n. Hence, the

minimizer of the re-weighted objective reduces to that of the original (unbiased) objective, i.e.,
x?K = x?. Substituting into the result of Theorem 4 gives the desired result. �

5.5 Proof of Corollary 4.2

Note that

p
(K)
i :=

K−1∑
k=0

αi[k]δi[k] =
wiB

Kθ
ci[K − 1].

Given the choice of wi, it follows that

p
(K)
i =

B

Kθ−1
,

and is agnostic of the index i. Therefore, p
(K)
i = p

(K)
j for all i, j = 1, . . . , n. Hence, the minimizer

of the re-weighted objective reduces to that of the original (unbiased) objective, i.e., x?K = x?.
Substituting into the result of Theorem 4 gives the desired result. �

5.6 Proof of Theorem 5

The proof of Theorem 5 is identical to that of Theorem 4 up to (37). Noticing that we have a
telescoping sum on the right hand side of (37), and making use of Lemma 5 and Remark 2, it
follows that

1

K

K−1∑
k=0

‖x[k]− x?K‖
2 ≤ 1

K1−θ

n
(
‖x[0]− x?K‖

2 +A
)

2µB

 ,

where θ ∈ (0.5, 1) is defined in Assumption 5. �

5.7 Proof of Corollary 5.2

If τproc = 1, then each agent performs a gradient update in each iteration. In particular, δi[k] = 1
for all k ≥ 0 and i = 1, . . . , n. Using the fact that wi = 1 for all i = 1, . . . , n (agents use the

same factor in their local step-sizes), it follows that p
(K)
i = p

(K)
j for all i, j = 1, . . . , n. Hence, the

minimizer of the re-weighted objective reduces to that of the original (unbiased) objective, i.e.,
x?K = x?. Substituting into the result of Theorem 5 gives the desired result. �

24

5.8 Proof of Corollary 5.3

Note that

p
(K)
i :=

K−1∑
k=0

αi[k]δi[k] =

ci[K−1]−1∑
k=0

wiB

(k + 1)θ
.

Given the choice of wi, it follows that

p
(K)
i =

K−1∑
k=0

B

(k + 1)θ
,

and is agnostic of the index i. Therefore, p
(K)
i = p

(K)
j for all i, j = 1, . . . , n. Hence, the minimizer

of the re-weighted objective reduces to that of the original (unbiased) objective, i.e., x?K = x?.
Substituting into the result of Theorem 5 gives the desired result. �

6 Experiments

Next, we report experiments on a high performance computing cluster. In these experiments, each
agent is implemented as a process running on a dedicated CPU core, and each agent runs on a
different server. Communication between servers happens over an InfiniBand network. The code to
reproduce these experiments is available online;8 all code is written in Python, and the Open-MPI
distribution is used with Python bindings (mpi4py) for message passing.

We report two sets of experiments. The first set involves solving a least-squares regression
problem using synthetic data. The aim of these experiments is to validate the theory developed
in the sections above for AGP. The second set of experiments involves solving a regularized multi-
nomial logistic regression problem on a real dataset. In these experiments we compare AGP with
three synchronous methods: Push DIGing (PD) [31], Extra Push (EP) [44], and Synchronous
(Sub)Gradient-Push (SGP) [29]. Both PD and EP use gradient tracking to achieve stronger theo-
retical convergence guarantees at the cost of additional communication overhead. We also compare
with Asy-SONATA [35], an asynchronous method that incorporates gradient tracking and which
appeared online during the review process of this paper. Note that all methods that use gradient
tracking (PD, EP, and Asy-SONATA) require additional memory at each agent and also have a
communication overhead per-iteration which is twice that of SGP and AGP.

6.1 Synthetic Dataset

To validate some of the theory developed in previous sections, we first report experiments on a
linear least-squares regression problem using synthetic data. The objective is to minimize, over
parameters w, the function:

F (w) :=
1

D

D∑
`=1

(wTj x
` − y`)2, (38)

where D = 2,560,000 is the number of training instances in the dataset, xl ∈ R50 and yl ∈ R1

correspond to the lth training instance feature and label vectors respectively, and w ∈ R50 are the
model parameters. We generate the data {(x`, y`)}D`=1 using the technique suggested in [23].

The D data samples are partitioned among the n agents. The local objective function fi at agent
vi is similar to that in (38) but the sum over l only involves those training instances assigned to

8https://github.com/MidoAssran/maopy

25

0 10 20 30 40
Rank

0

5

10

15

20

25

30

35

Co
nd

iti
on

 n
um

be
r

Condition Numbers of Local Objectives
Global condition number
Local condition number

Figure 3: Condition numbers of local objective functions for a 40-agent partition of the synthetic
dataset. The dashed line shows the condition number of the global objective.

agent vi. The condition number of the global objective is approximately 2. The condition number
of individual agents’ local objectives is diverse and depends on the data-partition. Figure 3 shows
the local objective conditioning for a 40-agent partition of the dataset. The condition numbers of
the local objectives are approximately uniformly spaced in the interval (3, 37).

During training, agent vi logs the values of zi and the time after every update. Post training,
we analytically compute the minimizer of the re-weighted objective defined in Definition 1. To
validate the bound on the distance between the minimizer of the re-weighted objective and the
original unbiased objective (cf. Theorem 3), we run AGP for different choices of τproc. We control
τproc by forcing an agent to block if it completes τproc iterations while another agent still hasn’t
completed a single iteration in the same time interval; thus, in the worst case scenario, a fast agent
can complete τproc iterations for every iteration completed by a slow agent.9 In Fig. 4 we show the
convergence of AGP for different values of τproc. We use a directed ring network in this example
to examine the worst-case scenario.

Increasing τproc leads to a reduction in the iteration-wise convergence rate, as expected. How-
ever, increasing τproc also reduces the idling time, and thereby leads to an improvement in the
time-wise convergence rate. The dashed blue line in Fig. 4 corresponds to the upper bound on

‖x?K − x?‖ from Theorem 3, where the values p
(K)
i are computed from the experiment correspond-

ing to τproc = 32. The dashed orange line corresponds to the true value of ‖x?K − x?‖, where the

values p
(K)
i are also computed from the experiment corresponding to τproc = 32.

9For the purpose of this experiment, we artificially delay half of the agents in the network by 500 ms each
iteration, and implement τproc programmatically using non-blocking barrier operations (which are a part of the MPI-
3 standard). In particular, each agent tests a non-blocking barrier request at each local iteration. If the test is
passed, then a new non-blocking barrier request object is created. If the test is not passed and more than τproc local
iterations have gone by since the last test was passed, then the agent blocks and waits for the barrier-test to pass.
In this way, no more than τproc iterations can be performed by the network in the time it takes any single agent to
complete one local iteration.

26

0 200 400 600 800 1000
Iterations k

10 4

10 3

10 2

10 1

100

101
x[

k]
x

2
Training Error

((proc) : 32) Thm.[3]
((proc) : 32) xK x 2

((proc) : 1)
((proc) : 4)
((proc) : 8)
((proc) : 16)
((proc) : 32)

0 100 200 300 400 500
Time t[k] (seconds)

10 4

10 3

10 2

10 1

100

101
Training Error

((proc) : 32) Thm.[3]
((proc) : 32) xK x 2

((proc) : 1)
((proc) : 4)
((proc) : 8)
((proc) : 16)
((proc) : 32)

Figure 4: Convergence of Asynchronous Gradient Push for a 40-agent ring-network with various
degrees of asynchrony (quantified by τproc). The dashed blue bar corresponds to the ‖x?K − x?‖
bound from Theorem 3, where the reweighing values {p(K)

i } are computed from the experiment
corresponding to τproc = 32. The dashed orange bar corresponds to the true value of ‖x?K − x?‖
for the experiments corresponding to τproc = 32.

0 5 10 15 20 25 30
(proc)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

x K
x

2

Suboptimality of Re-weighted Minimizer
Thm.[3]
xK x 2

Figure 5: Distance between the minimizer of the re-weighted objective x?K and the original (unbi-
ased) objective for different choices of τproc. The blue points depict the bound in Theorem 3, and
the red points depict the true quantity.

In Fig. 5 we plot the distance between the minimizer of the re-weighted objective and the
original (unbiased) objective for each of the different choices of τproc used in this experiment. As
predicted from Theorem 3, the distance between minimizers decreases as the disparity in agent
update rates decreases.

27

10 20 30 40 50 60
Number of agents

0

200

400

600

800

1000

Ti
m

e
(s

)

(No artificial delay)
Time to training error:0.01

AGP
SGP
PD
EP
Asy-SONATA

(a) No artificial delay

10 20 30 40 50 60
Number of agents

0

200

400

600

800

1000

Ti
m

e
(s

)

(125ms. delay injected at agent v2)
Time to training error:0.01

AGP
SGP
PD
EP
Asy-SONATA

(b) 125ms delay injected at
agent v2

10 20 30 40 50 60
Number of agents

0

200

400

600

800

1000

Ti
m

e
(s

)

(250ms. delay injected at agent v2)
Time to training error:0.01

AGP
SGP
PD
EP
Asy-SONATA

(c) 250ms delay injected at
agent v2

10 20 30 40 50 60
Number of agents

0

200

400

600

800

1000

Ti
m

e
(s

)

(500ms. delay injected at agent v2)
Time to training error:0.01

AGP
SGP
PD
EP
Asy-SONATA

(d) 500ms delay injected at
agent v2

Figure 6: Time t[k] (seconds) at which F (x[k])− F (x?) < 0.01 is satisfied for the first time in the
Covertype experiments. (a) Experiment run under normal operating conditions. (b) An artificial
125ms delay is injected at agent v2 after every local iteration. (b) An artificial 250ms delay is
injected at agent v2 after every local iteration. (c) An artificial 500ms delay is injected at agent v2

after every local iteration; neither EP nor Asy-SONATA obtained a residual error of 10−2 or below
after 1000s for this delay with any network size. AGP reaches the threshold residual error 10−2

faster than all other methods.

6.2 Non-Synthetic Dataset

To facilitate comparisons with existing methods in the literature, a regularized multinomial logistic
regression classifier is trained on the Covertype dataset [26] from the UCI repository [13]. Here the
objective is to minimize, over model parameters w, the negative log-likelihood loss function:

F (w) := −
D∑
l=1

K∑
j=1

log

(
exp(wTj x

l)∑K
j′=1 exp(wTj′x

l)

)ylj
+
λ

2
‖w‖2F , (39)

where D = 581,012 is the number of training instances in the dataset, K = 7 is the number of
classes, xl ∈ R54 and yl ∈ R7 correspond to the lth training instance feature and label vectors
respectively (the label vectors are represented using a 1-hot encoding), w ∈ R7×54 are the model
parameters, and λ > 0 is a regularization parameter. We take λ = 10−4 in the experiments. The
54 features consist of a mix of categorical (binary 1 or 0) features and real numbers. We whiten
the non-categorical features by subtracting the mean and dividing by the standard deviation.

All network topologies are randomly generated using the Erdős-Rényi model where the expected
out-degree of each agent is 4, independent of n; i.e., with an edge probability of min{4/(n− 1), 1}.
To investigate how the algorithms scale with the number of nodes, we consider different values of
n ∈ {4, 8, 16, 32, 64}. In each case, we randomly partition the D training instances evenly across
the n agents. All algorithms use a constant step-size, and we tuned the step-sizes separately for
each algorithm using a simple grid-search over the range α ∈ [10−3, 101]. For all algorithms, the
(constant) step-size α = 1.0 gave the best performance. Since the total number of samples D is
fixed, this problem has a fixed computational workload; as we increase the size of the network, the
number of samples (and hence, the computational load) per agent decreases. The local objective
function fi at agent vi is similar to that in (39) but the sum over l only involves those training
instances assigned to agent vi.

Fig. 6 shows the first time t[k] when the residual error satisfies F (x[k]) − F (x?) < 0.01, as a
function of network size. Fig. 6a shows that, under normal operating conditions, AGP decreases the
residual error for both small and large network sizes faster than the state-of-the art methods and its

28

0 20 40 60 80 100
Time t[k] (s)

10 2

10 1

100

F(
x[

k]
)

F(
x

)

No artificial delay
AGP
SGP
PD
EP
Asy-SONATA

0 25 50 75 100 125 150
Time t[k] (s)

10 2

10 1

100

250ms. delay injected at agent v2

AGP
SGP
PD
EP
Asy-SONATA

(a) 16-agent Erdős-Rényi graph

0 10 20 30
Time t[k] (s)

10 2

10 1

100

F(
x[

k]
)

F(
x

)
No artificial delay

AGP
SGP
PD
Asy-SONATA

0 20 40 60 80 100
Time t[k] (s)

10 2

10 1

100

250ms. delay injected at agent v2

AGP
SGP
PD
Asy-SONATA

(b) 64-agent Erdős-Rényi graph

Figure 7: Multinomial logistic regression training error on the Covertype dataset using large multi-
agent networks. Left subplots in each figure correspond to normal operating conditions. Right
subplots correspond to experiments with an artificial 250ms delay induced at agent v2 at each local
iteration. (EP did not converge over the 64-agent network topology). AGP is more robust than
the synchronous algorithms to failing or stalling nodes.

synchronous counterpart. To study robustness of the methods to delays, we run experiments where
we inject an artificial delay at agent v2 after every local iteration; the results are shown in Fig. 6b,
Fig. 6c, and Fig. 6d for 125 ms, 250 ms, and 500ms delays, respectively. To put the magnitude of
these delays in context, Table 1 reports the average agent update time for various network sizes.
As expected, we observe that asynchronous algorithms (AGP and Asy-SONATA) are more robust
than the synchronous algorithms to slow nodes. However, for the 500 ms delay case, Asy-SONATA
did not achieve a residual error below 0.01 after 1000 seconds. Fig. 6d demonstrates that AGP is
robust to such a large delay.

Fig. 7 shows the residual error curves with respect to wall clock time for different network sizes,
with and without an artificial 250ms delay induced at agent v2 at each iteration. AGP is faster than
the other methods under normal operating conditions (left subplots Fig. 7), and this performance
improvement is especially pronounced when an artificial 250ms delay is injected in the network
(right subplots Fig. 7). In the smaller multi-agent networks, a 250ms delay is a relatively plausible
occurrence. In larger multi-agent networks a 250ms delay is quite extreme since there could be
over 2000 updates performed by the network in the time it takes the artificially delayed agent to
compute a single update. The fact that AGP is still able to converge in this scenario is a testament
to its robustness.

7 Conclusion

Our analysis of asynchronous Gradient-Push handles communication and computation delays. We
believe our results could be extended to also deal with dropped messages using the approach
described in [17], in which dropped messages appear as additional communication delays, which

29

Table 1: Average time taken by an agent to perform a gradient-based update for the Covertype
experiments.

agents Mean time (s) Max. time (s) Min. time (s)

4 0.362 ±0.00649 0.507 0.348
8 0.0993 ±0.0107 0.139 0.0859
16 0.0488 ±0.00339 0.0598 0.0430
32 0.0207 ±0.00166 0.0284 0.0175
64 0.00849 ±0.000246 0.0123 0.00797

are easily addressed in our analysis framework.
Corollary 5.3 showed that when agents know their relative update rates, then asynchronous

Gradient-Push can be made to converge to the minimizer of f rather than that of the reweighted
objective (13) by appropriately scaling the step-size. After the initial preprint of this work appeared
online [3], a related method was proposed in [45] to estimate and track the update rates in a decen-
tralized manner at the cost of additional communication overhead. Another related method was
proposed in [35] that uses gradient tracking in combination with two sets of robust, asynchronous
averaging updates — one row stochastic, the other column stochastic — to achieve provably ge-
ometric convergence rates at the cost of additional communication overhead and storage at each
agent.

While extending synchronous Gradient-Push to an asynchronous implementation has produced
considerable performance improvements, it remains the case that Gradient-Push is simply a multi-
agent analog of gradient descent, and it would be interesting to explore the possibility of extending
other algorithms to asynchronous operation using singly-stochastic consensus matrices; e.g., explor-
ing methods that use an extrapolation between iterates to accelerate convergence; or quasi-Newton
methods that approximate the Hessian using only first-order information; or Lagrangian-dual meth-
ods that formulate the consensus constrained optimization problems using the Lagrangian, or Aug-
mented Lagrangian, and simultaneously solve for both primal and dual variables. Furthermore, it
would be interesting to establish convergence rates for asynchronous versions of these algorithms.

Lastly, we find that, in practice, agents can asynchronously and independently control the upper
bound on their relative processing delays, τproc, by using non-blocking barrier primitives, such as
those available as part of the MPI-3 standard. It may be interesting to explore treating this as
an algorithm parameter, rather than something dictated by the environment, and decreasing the
delay bound according to some local iteration schedule so that one can realize the speed advantages
of asynchronous methods at the start of training, and obtain the benefits of synchronous methods
as one approaches the minimizer. For example, from Definition 1, it is clear that ‖x?K − x?‖ → 0
when τproc → 0. We believe that this is another interesting direction of future work.

References

[1] M. Assran. Asynchronous subgradient push: Fast, robust, and scalable multi-agent optimiza-
tion. Master’s thesis, McGill University, 2018.

[2] M. Assran and M. Rabbat. An empirical comparison of multi-agent optimization algorithms.
In Proceedings of the IEEE Global Conference on Signal and Information Processing, pages
573–577. IEEE, 2017.

30

[3] M. Assran and M. G. Rabbat. Asynchronous subgradient-push. arXiv preprint
arXiv:1803.08950v1, March 2018.

[4] A. Aytekin. Asynchronous Algorithms for Large-Scale Optimization: Analysis and Implemen-
tation. PhD thesis, KTH Royal Institute of Technology, 2017.

[5] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli. Weighted gossip: Distributed
averaging using non-doubly stochastic matrices. In Proceedings of the IEEE International
Symposium on Information Theory, pages 1753–1757. IEEE, 2010.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[7] P. Bianchi, W. Hachem, and F. Iutzeler. A coordinate descent primal-dual algorithm and ap-
plication to distributed asynchronous optimization. IEEE Transactions on Automatic Control,
61(10):2947–2957, 2016.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE/ACM
Transactions on Networking (TON), 14(SI):2508–2530, 2006.

[9] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. Asynchronous parallel algorithms
for nonconvex big-data optimization. part ii: Complexity and numerical results. arXiv preprint
arXiv:1701.04900, 2017.

[10] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M. Johansson. Distributed
finite-time average consensus in digraphs in the presence of time delays. IEEE Transactions
on Control of Network Systems, 2(4):370–381, 2015.

[11] J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM, 56(2):74–80, 2013.

[12] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione. Gossip algorithms for
distributed signal processing. Proceedings of the IEEE, 98(11):1847–1864, 2010.

[13] D. Dua and C. Graff. UCI machine learning repository, 2017.

[14] M. Eisen, A. Mokhtari, and A. Ribeiro. Decentralized quasi-newton methods. IEEE Transac-
tions on Signal Processing, 65(10):2613–2628, 2017.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the mpi message passing interface standard. Parallel computing, 22(6):789–828, 1996.

[16] C. N. Hadjicostis and T. Charalambous. Average consensus in the presence of delays in directed
graph topologies. IEEE Transactions on Automatic Control, 59(3):763–768, 2014.

[17] C. N. Hadjicostis, N. H. Vaidya, and A. D. Dominguez-Garcia. Robust distributed average con-
sensus via exchange of running sums. IEEE Transactions on Automatic Control, 61(6):1492–
1507, Jun. 2016.

[18] J. Hajnal and M. Bartlett. Weak ergodicity in non-homogeneous markov chains. Mathematical
Proceedings of the Cambridge Philosophical Society, 54(2):233–246, 1958.

[19] M. T. Hale, A. Nedić, and M. Egerstedt. Asynchronous multi-agent primal-dual optimization.
IEEE Transactions on Automatic Control, 62(9):4421–4435, 2017.

31

[20] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem. Asynchronous distributed optimization
using a randomized alternating direction method of multipliers. In Proceedings of the 52nd
IEEE Annual Conference on Decision and Control, pages 3671–3676. IEEE, 2013.

[21] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science., pages
482–491. IEEE, 2003.

[22] S. Kumar, R. Jain, and K. Rajawat. Asynchronous optimization over heterogeneous networks
via consensus admm. IEEE Transactions on Signal and Information Processing over Networks,
3(1):114–129, 2017.

[23] M. L. Lenard and M. Minkoff. Randomly generated test problems for positive definite quadratic
programming. ACM Transactions on Mathematical Software (TOMS), 10(1):86–96, 1984.

[24] S. Li and T. Basar. Asymptotic agreement and convergence of asynchronous stochastic algo-
rithms. IEEE Transactions on Automatic Control, 32(7):612–618, 1987.

[25] X. Lian, W. Zhang, C. Zhang, and J. Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pages 3049–3058, 2018.

[26] M. Lichman. UCI machine learning repository, 2013.

[27] F. Mansoori and E. Wei. Superlinearly convergent asynchronous distributed network newton
method. IEEE 56th Annual Conference on Decision and Control (CDC), pages 2874–2879,
2017.

[28] A. Nedić. Asynchronous broadcast-based convex optimization over a network. IEEE Trans-
actions on Automatic Control, 56(6):1337–1351, 2011.

[29] A. Nedić and A. Olshevsky. Distributed optimization over time-varying directed graphs. IEEE
Transactions on Automatic Control, 60(3):601–615, 2015.

[30] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

[31] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed opti-
mization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

[32] A. Nedić and A. Ozdaglar. On the rate of convergence of distributed subgradient methods
for multi-agent optimization. In Proceedings of the 46th IEEE Conference on Decision and
Control, pages 4711–4716. IEEE, 2007.

[33] M. G. Rabbat and K. I. Tsianos. Asynchronous decentralized optimization in heterogeneous
systems. In Proceedings of the 53rd IEEE Annual Conference on Decision and Control, pages
1125–1130. IEEE, 2014.

[34] S. S. Ram, A. Nedić, and V. V. Veeravalli. Distributed stochastic subgradient projection algo-
rithms for convex optimization. Journal of optimization theory and applications, 147(3):516–
545, 2010.

[35] Y. Tian, Y. Sun, and G. Scutari. Achieving linear convergence in distributed asynchronous
multi-agent optimization. arXiv preprint arxiv:1803.10359, March 2018.

32

[36] K. Tsianos, S. Lawlor, and M. G. Rabbat. Communication/computation tradeoffs in consensus-
based distributed optimization. In Advances in neural information processing systems, pages
1943–1951, 2012.

[37] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Consensus-based distributed optimization: Prac-
tical issues and applications in large-scale machine learning. In Proceedings of the 50th Annual
Allerton Conference on Communication, Control, and Computing, pages 1543–1550. IEEE,
2012.

[38] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Push-sum distributed dual averaging for convex
optimization. In Proceedings of the 51st IEEE Conference on Decision and Control, pages
5453–5458, 2012.

[39] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochas-
tic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):803–812,
1986.

[40] E. Wei and A. Ozdaglar. On the o (1= k) convergence of asynchronous distributed alternating
direction method of multipliers. In Proceedings of the IEEE Global Conference on Signal and
Information Processing, pages 551–554. IEEE, 2013.

[41] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. Proceedings of the
American Mathematical Society, 14(5):733–737, 1963.

[42] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed. Decentralized consensus optimization with
asynchrony and delays. In Proceedings of the 50th Asilomar Conference on Signals, Systems
and Computers, pages 992–996. IEEE, 2016.

[43] C. Xi and U. A. Khan. Dextra: A fast algorithm for optimization over directed graphs. IEEE
Transactions on Automatic Control, 62(10):4980–4993, 2017.

[44] J. Zeng and W. Yin. Extrapush for convex smooth decentralized optimization over directed
networks. Journal of Computational Mathematics, 35(4):383–396, 2017.

[45] J. Zhang and K. You. AsySPA: An exact asynchronous algorithm for convex optimization over
digraphs. arxiv preprint https://arxiv.org/abs/1808.04118, Aug. 2018.

33

	1 Introduction
	1.1 Asynchronous Gradient-Push
	1.2 Related Work
	1.3 Contributions and Paper Organization

	2 System Model
	2.1 Communication
	2.2 Discrete event sequence
	2.3 Delays
	2.4 Augmented Graph

	3 Asynchronous Perturbed Push-Sum
	3.1 Formulation of Asynchronous (Perturbed) Push-Sum
	3.2 Main Results for Asynchronous (Perturbed) Push-Sum

	4 Asynchronous Gradient-Push
	4.1 Formulation of Asynchronous Gradient-Push
	4.2 Main results for Asynchronous Gradient-Push

	5 Analysis
	5.1 Proof of Theorem ??
	5.2 Preliminaries
	5.3 Proof of Theorem ??
	5.4 Proof of Corollary ??
	5.5 Proof of Corollary ??
	5.6 Proof of Theorem ??
	5.7 Proof of Corollary ??
	5.8 Proof of Corollary ??

	6 Experiments
	6.1 Synthetic Dataset
	6.2 Non-Synthetic Dataset

	7 Conclusion

