
1

Actuator Security Indices Based on Perfect Undetectability:
Computation, Robustness, and Sensor Placement

Jezdimir Milošević1, André Teixeira2, Karl H. Johansson1, and Henrik Sandberg1

Abstract—This paper proposes an actuator security index
based on the definition of perfect undetectability. This index can
help a control system operator to localize the most vulnerable
actuators in a networked control system, which can then be
secured. Particularly, the security index of an actuator equals
the minimum number of sensors and actuators that needs to be
compromised, such that a perfectly undetectable attack against
that actuator can be conducted. A method for computing the
index for small scale networked control systems is derived, and
it is shown that the index can potentially be increased by placing
additional sensors. The difficulties that appear once the system is
of a large scale are then outlined: the problem of calculating the
index is NP–hard, the index is vulnerable to system variations,
and it is based on the assumption that the attacker knows the
entire model of the system. To overcome these difficulties, a robust
security index is introduced. The robust index can be calculated
in polynomial time, it is unaffected by the system variations,
and it can be related to both limited and full model knowl-
edge attackers. Additionally, we analyze two sensor placement
problems with the objective to increase the robust indices. We
show that both of these problems have submodular structures, so
their suboptimal solutions with performance guarantees can be
obtained in polynomial time. Finally, the theoretical developments
are illustrated through numerical examples.

I. INTRODUCTION

Actuators are one of the most vital components of net-
worked control systems. Through them, we ensure that im-
portant physical processes such as power production or water
distribution behave in a desired way. Actuators can also be
expensive, so it is important to carefully choose where to
place them. To solve this important problem of cost–efficient
allocation of actuators, number of approaches have been
developed [1]–[4]. However, an issue with these approaches is
that they do not take security aspects into consideration. This
could be dangerous, since control systems can easily become
a target of malicious adversaries [5]–[7]. For this reason, it
is essential to be able to check if these efficient actuator
placements are at the same time secure.

Motivated by this issue, we introduce novel actuator security
indices δ and δr. As we shall see, these indices can be used for
both localization of vulnerable actuators, and for development
of defense strategies. The security index δ(ui) is defined for
every actuator ui, and it is equal to the minimum number
of sensors and actuators that needs to be compromised by
an attacker to conduct a perfectly undetectable attack against
ui. Perfectly undetectable attacks are dangerous, since they
do not leave any trace in the sensor measurements [8], [9].
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Therefore, an actuator with a small value of δ is potentially
very vulnerable. Since δ cannot be straightforwardly used in
large scale networked systems, as explained in this paper, we
introduce the robust security index δr as its replacement in
these systems. We then outline favorable properties of δr,
and propose possible strategies for increasing δr. Finally, we
remark that due to the properties of perfectly undetectable
attacks, sensor security indices can in general be derived from
actuator security indices. Hence, the focus of the paper is
exclusively on actuator indices.

Literature Review. It has been recognized within the control
community that cyber-attacks require new techniques to be
handled [10]. For instance, cyber-attacks impose fundamental
limitations for state estimation [11], [12], detection [13], and
for consensus computation [14], [15]. The most troublesome
attacks are those that can inflict considerable damage, while
remaining unnoticed by the system operator. Examples include
stealthy false-data injection attacks [16], undetectable (zero-
dynamics) attacks [13], [17], perfectly undetectable attacks [8],
[9], covert attacks [18], optimal linear attacks [19], and replay
attacks [20]. To characterize the vulnerability of the system
and protect it against these attacks, many different approaches
have been proposed [21]–[23].

In this work, we focus on so–called security indices. The
first security index was introduced in [24]. In this work, a
static linear system was used as a network model, and the
static security index α was defined for each sensor. The main
purpose of this index is to help the operator to localize the most
vulnerable sensors in a power network, which are those with
low values of α. Once these sensors are localized, the operator
can allocate additional security measures to protect them.
Furthermore, to choose the most beneficial combination of
security measures, he/she can again use security indices [25].

A major challenge is to compute α once the power network
is large. In fact, it was shown that the problem of calculating α
is NP–hard in general [26]. However, α can be efficiently com-
puted in some cases [26]–[30]. For instance, [27] proposes an
upper bound on α. This bound can be obtained in polynomial
time by solving the minimum s–t cut problem, and proves to
be tight in several cases of interest.

Although α proved to be a useful tool for both vulnera-
bility analysis and development of defense strategies, security
indices that can be used for more general dynamical systems
have been considered only by few works [31], [32]. The index
in [31] considerably differs from α, since it characterizes
vulnerability of the entire system. On the other hand, in [32],
the definition of undetectability [13] was used to define a
security index similar to α to characterize vulnerability of
sensors and actuators within the system. However, this work
neither addresses the problems that appear in large scale
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systems, nor explains how this index can be used for defense
purposes. In this paper, we introduce novel actuator security
indices suitable for dynamical systems, tackle the challenges
that appear once the system is of a large scale, and propose
defense strategies based on these indices.

Contributions. The contributions of this manuscript are as
follows. Firstly, we propose a novel type of actuator security
index δ. In contrast to the dynamical index proposed in [32],
our index is based on the definition of perfect undetectabil-
ity [8], [9]. To calculate δ when the number of sensors
and actuators is small, we derive a sufficient and necessary
condition that a set of compromised components needs to
satisfy in order for a solution of the security index problem
to exist (Proposition 1). To prove Proposition 1, we use an
algebraic condition for existence of perfectly undetectable
attacks derived in [8], [9]. We also show that δ can potentially
be increased by placing additional sensors, and that placement
of additional actuators may decrease δ (Proposition 2). We
then identify the three issues that appear once the system is
of a large scale: (1) The problem of computing δ is NP–hard
(Theorem 1); (2) δ is fragile to system variations, which are
expected in large systems; (3) δ is based on the assumption
that the attacker knows the entire model of the system, which
can be a conservative assumption in this case.

To overcome these deficiencies, we introduce the robust se-
curity index δr, which is our second contribution. To define δr,
we use a structural model of the system [33], and the notion
of vertex separators that was used to characterize existence
of perfectly undetectable attacks in [9]. Particularly, we first
show how vertex separators can be used to upper bound the
index δ (Theorem 2), and then define δr to be the best upper
bound based on vertex separators.

Thirdly, we show that δr does not suffer from the afore-
mentioned deficiencies of δ. Namely, δr can be calculated
efficiently by solving the minimum s–t cut problem in a
graph (Proposition 3). We remark that Proposition 3 extends
the previous work on the static index α [26]–[29], where
the minimum s–t cut problem was also used for calculat-
ing/approximating α. Additionally, δr is unaffected by the
system variations, since it is based on the structural model of
the system [33]. Moreover, δr can be related to both full and
limited model knowledge attackers. In the context of the full
model knowledge attacker, δr(ui) characterizes the minimum
amount of resources for conducting a perfectly undetectable
attack against ui in any possible realization of the system
(Proposition 4). We then introduce an attacker with resources
limited to a local model and measurements, and prove that
he/she can also conduct a perfectly undetectable attack against
ui by compromising a right combination of δr(ui) components
(Proposition 5). We also analyze an attacker that knows
only the structural model of the system. In this case, δr(ui)
lower bounds the number of components this attacker needs
to compromise to ensure that the attack against ui remains
perfectly undetectable (Proposition 6).

Since the previous results imply that actuators with small
value of δr are potentially very vulnerable, we propose sensor
placement strategies to increase δr, which we outline as our
fourth contribution. We firstly show that δr is guaranteed to in-

crease if sensors are placed to suitable locations in the system
(Thereom 3). Based on this result, we formulate two sensor
placement problems with the objective to increase δr, and
show that these problems have suitable submodular structures
(Proposition 7–8). This enables us to find suboptimal solutions
of these problems with guaranteed performance efficiently,
even in large scale networked control systems. Finally, we
illustrate the theoretical results through numerical examples.

The preliminary version of the paper appeared in [34]. This
work differs from [34] in the following aspects: (1) We prove
that δ is NP–hard to calculate (Theorem 1); (2) The connection
of δr with the full/limited model knowledge attacker is derived
(Propositions 4–6); (3) We prove that both δ and δr can
be increased by placing additional sensors (Proposition 2,
Theorem 3); (4) A new section on increasing δr is added
(Section VI); (5) More detailed proofs of the results that
appeared in [34] are included (Proofs of Propositions 1 and 3,
and Theorem 2); (6) The section with examples is extended.

Organization. The remainder of the paper is organized as
follows. In Section II, we introduce the system model, the
attacker model, and the security index δ. In Section III, we
investigate properties of δ. In Section IV, we derive an upper
bound on δ, and based on it, define the robust index δr. In
Section V, we outline properties of δr. In Section VI, we dis-
cuss strategies for increasing δr. In Section VII, we illustrate
the theoretical findings through examples. In Section VIII, we
conclude. Appendix contains the proofs of the results.

II. SECURITY INDEX δ

In this section, we introduce the model setup and formulate
the problem of calculating the actuator security index δ.
We remark that although we consider discrete time systems,
the analysis presented in the paper can also be extended to
continuous time systems.

A. Model Setup

The plant of a networked control system is modeled by

x(k + 1) = Ax(k) +Bu(k) +Baa(k),

y(k) = Cx(k) +Daa(k),
(1)

where x(k)∈Rnx is the system state at time step k∈Z≥0,
u(k)∈Rnu is the control input, y(k)∈Rny+ne is the mea-
surement vector, and a(k)∈Rnu+ny is the attack vector. For
the analysis that follows, it is convenient to assume that
the system is in a steady state x(0)=0 and u=01. Due to
linearity, this assumptions is without loss of generality for
most results in the paper. The exceptions are clearly outlined.
We also allow the last ne≥0 elements of y to be protected,
so the attacker cannot manipulate them. The protection can be
achieved by implementing encryption/authentication schemes,
and/or improving physical protection [25].

We now introduce the attacker model. The first nu elements
of a model attacks against the actuators, while the last ny

1For a signal s : Z≥0 → Rns , s=0 means that s(k)=0 for all k∈Z≥0,
while s 6=0 means s(k)6=0 for at least one k∈Z≥0.
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model attacks against the unprotected sensors. The matrices
Ba and Da are therefore given by

Ba =
[
B 0nx×ny

]
, Da =

[
0ny×nu

Iny

0ne×nu
0ne×ny

]
,

and B is assumed to have a full column rank. This is needed
to exclude degenerate cases in which the attacks trivially
cancel each-other, or cases where an actuator does not affect
the system. We denote by I={1, . . . , nu + ny} the indices
of elements of a, and by a(Ia)(k) the vector consisting of
the elements of a(k) with indices from Ia⊆I. The set I is
also used to denote the joint set of actuators and unprotected
sensors in the first part of the paper. We adopt the following
common assumption about the attacker.

Assumption 1: The attacker: (1) Can read and change the
values of attacked control signals and measurements Ia⊆I
arbitrarily; (2) Knows A,B,C.

Further, we assume that the attacker’s goal is to conduct
an attack while ensuring the attack remains undetected by
the system operator. To model this goal, we need a suitable
definition of undetectability. In this paper, we use the definition
of perfect undetectability [8], [9].

Definition 1: Let x(0)=0 and u=0. The attack signal a6=0
is perfectly undetectable if y=0.

In other words, the attack is perfectly undetectable if it
does not leave any trace in the sensor measurements. For this
reason, these attacks are potentially very dangerous.

B. Security Index δ: Problem Formulation

We now introduce an actuator security index δ. The security
index δ(i) is defined for every actuator i ∈ I. The index
is equal to the minimum number of sensors and actuators
that need to be compromised by the attacker, such as to
conduct a perfectly undetectable attack. Additionally, i has
to be actively used in the attack, which models a goal or
intent by the attacker. Naturally, actuators with small values
of δ are more vulnerable than those with large values. In the
worst case, δ(i)=1. This implies that an attacker can attack i
and stay perfectly undetectable without compromising any
other component. Let ||a||0 = | ∪k∈Z≥0

supp(a(k))|, where
supp(a(k)) = {i ∈ I : a(i)(k) 6= 0}. Based on the previous
discussion, δ(i) can be formally defined as follows.

Problem 1: Calculating δ

minimize
a

δ(i) = ||a||0
subject to x(k + 1) = Ax(k) +Baa(k), (C1)

0 = Cx(k) +Daa(k), (C2)
x(0) = 0, (C3)

a(i) 6= 0. (C4)

The objective function reflects our desire to find the mini-
mum number of sensors and actuators to conduct a perfectly
undetectable attack (sparsest signal a : Z≥0 → Rnu+ny ). The
constraints: (C1) and (C2) ensure that the attack signal satisfies
physical dynamics of the system; (C2) and (C3) constraint the
attack to be perfectly undetectable; (C4) ensures that actuator
i is actively used in the attack.

Before we start analyzing δ, we point out several properties
of Problem 1. Firstly, this problem is not necessarily feasible
for every actuator i. Absence of a solution implies that the
attacker cannot attack i while staying perfectly undetectable.
Thus, we adopt δ(i)=+∞ in this case. Secondly, if we remove
(C3) and include x(0) to be an optimization variable, we
recover the security index problem based on undetectable
attacks [32]. Thirdly, Problem 1 can also be used for finding
security indices of unprotected sensors. However, to conduct
a perfectly undetectable attack, at least one actuator must be
attacked to make the attack signal against a sensor active.
Thus, the problem of finding δ(i) of sensor i ∈ I can in
general be reduced to the problem of finding an actuator with
the minimum δ that excites sensor i. Finally, the problem
can also be extended to capture the case where sensors and
actuators are not equally hard to attack.

III. PROPERTIES OF δ

We now analyze properties of δ. We show how δ can be
computed once I has small cardinality, and that δ can be
increased by placing additional sensors. We then outline dif-
ficulties that appear in large scale networked control systems:
Problem 1 is NP–hard, δ can be quite vulnerable to system
variations, and Assumption 1.(2) may be conservative in this
case. Overall, δ is more appropriate for small scale systems,
while a replacement is required for large scale systems. Proofs
of the results from this section are available in Appendix A.

A. Calculating δ Using Brute Force Search

We first derive a sufficient and necessary condition that the
set of attacked components Ia needs to satisfy, so that we can
construct an attack signal a feasible for Problem 1. We then
explain how this condition can be used for finding δ. Prior to
that, we introduce some terminology and notation. The transfer
function from a to y is denoted by G, and the normal rank of
G is defined as normrank G = max{rank G(z)|z ∈ C}. With
G(Ia), we denote the transfer function matrix that contains the
columns of G from Ia ⊆ I.

Proposition 1: A perfectly undetectable attack conducted
with components Ia⊆I in which component i∈Ia is actively
used exists if and only if

normrank G(Ia) = normrank G(Ia\i). (2)

There are two important consequences of this result. Firstly,
we can use (2) to calculate δ(i) of actuator i in small scale
systems in the following way. We form all the combinations
of sensors and actuators Ia ⊆ I, i ∈ Ia, of cardinality p. The
initial value of p is set to 1. For each combination, we check
if (2) is satisfied, which can be done efficiently (e.g. by using
the Matlab function tzero). If we find a combination that
satisfies (2), we stop the search. The value of δ(i) is then p.
If (2) is not satisfied for any of the combinations of cardinality
p, we increase p by 1, and repeat the process.

Secondly, as shown in the proof, the attacker can perfectly
cover an arbitrarily large attack signal injected in i once (2)
holds. Additionally, he/she can construct this attack off-line
using only the model knowledge, which makes the attack
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decoupled from x(0) and u. Thus, the attack remains perfectly
undetectable for any choice of x(0) and u, and the assumption
x(0) = 0 and u = 0 is without lose of generality in this case.
However, the attack is implemented in a feedforward manner,
which makes it fragile in respect of modeling errors [35]. We
further discuss these properties in Section VII.

B. Increasing δ

We now investigate how the deployment of new sensors and
actuators affects δ.

Proposition 2: Assume that a new component j (sensor or
actuator) is deployed. Let δ(i) and δ′(i) be respectively the
security indices of an arbitrary actuator i before and after
the deployment. Then: (1) δ(i)≤δ′(i)≤δ(i) + 1 if j is an
unprotected sensor; (2) δ(i) ≤ δ′(i) if j is a protected sensor;
(3) δ(i) ≥ δ′(i) if j is an actuator.

Proposition 2 has two interesting consequences. Firstly, it
implies that we can increase δ by placing additional sensors to
monitor the system. Furthermore, δ can be used to determine
which sensor placement is the most beneficial. For example,
one optimality criterion can be to select the placement such
that the minimum value of δ is as large as possible. If the
system is of a small scale, and if a small number of sensors is
being placed, we can simply go through all the combinations
of sensors and pick the best. Secondly, Proposition 2 illustrates
an interesting trade-off between security and safety. On the one
hand, to make the system easier to control and more resilient to
actuator faults, more actuators should be placed in the system.
On the other, this may also decrease the security indices, so
the actuators become easier to attack.

C. δ and Large Scale Networked Control Systems

We now outline difficulties that appear once a networked
control system is of a large scale.

1) NP Hardness of Problem 1: We showed earlier that δ
can in general be obtained by using the brute force search.
However, this method is computationally intense, and it is
inapplicable for large scale networked systems. In fact, Theo-
rem 1 that we introduce next establishes that Problem 1 is NP-
hard. Thus, there are no known polynomial time algorithms
that can be used to solve this problem.

Theorem 1: Problem 1 is NP-hard.
2) Fragility of δ: Large scale networked control systems are

complex systems that can change configuration over time. For
example, in the power grids, micro-grids can detach from the
grid [36], some of the power lines may be turned–off [37], or
some measurements may become unavailable due to unreliable
communication [38]. Unfortunately, the security index can
be quite fragile with respect to changes in realization of the
system matrices A,B,C, as shown in the following example.

Example 1: Let the realization of the system be

A =

[
0.1 0
0.01 0.1

]
, B =

[
1
0

]
, C =

[
0 1

]
,

and assume that the sensor is protected. Then any input influ-
ences the output which is protected, so δ(1)=+∞. However,

if A(2, 1)=0, the transfer function from the actuator to the
sensor is 0, which implies δ(1)=1.

Lack of robustness of δ has two consequences. Namely, an
actuator that appears to be secure in one realization of the
system, may be vulnerable in another. Thus, to find actuators
that are vulnerable, one should calculate δ for different real-
izations of A,B,C. Due to NP–hardness, this cannot be done
for large scale networked control systems. Additionally, even
if we are able to go through all the realizations of matrices
A,B,C and calculate indices, ensuring that δ of every actuator
is large enough for every realization may require a significant
security budget. Naturally, we may first focus on defending
those actuators that are vulnerable in any realization of the
system. However, the question to answer is if we can find
these actuators efficiently.

Remark 1: We assume that system variations occur infre-
quently compared to the time scale of the perfectly unde-
tectable attacks. Hence, to the attacker, the system is linear
and time-invariant.

3) Full Model Knowledge Attacker: The third issue arises
due to Assumption 1.(2). If the system is of a large scale, the
assumption that the attacker possesses the exact knowledge
of the entire realization A,B,C may be unrealistic. Lack of
the full model knowledge represents a serious disadvantage
for the attacker. Even if the attacker’s knowledge is slightly
inaccurate, he/she can get detected [35]. For this reason, As-
sumption 1.(2) can result in the index being too conservative,
and lead to unnecessary spending of security budget.

4) Replacement of δ: Due to the aforementioned three
deficiencies, δ is not practical to be used in large scale
networked control systems. Therefore, in the next section,
we introduce a robust security index δr that is based on a
structural model of the system. We then argue in Section V that
δr represents a good candidate for replacing δ in large scale
systems. Particularly, δr can be calculated efficiently and it is
robust with respect to system variations. Furthermore, having
a small value of δr indicates that an actuator is vulnerable in
any realization of the system, both in respect of the attacker
with the full model knowledge and the one with limited.

IV. ROBUST SECURITY INDEX δr

In this section, we introduce an upper bound on the security
index δ. Based on this bound, we define the robust security
index δr. Prior to that, we introduce some graph theory
preliminaries and a structural model of the system. Proofs of
the results from this section are available in Appendix B.

A. Graph Theory

Let G = (V, E) be a directed graph, with the set of nodes
V = {v1, . . . , vn}, and the set of directed edges E ⊆ V×V . We
denote by N in

vi = {vj ∈ V : (vj , vi) ∈ E} the in–neighborhood
of vi. We say that two nodes vj and vk are non-adjacent if
there exists no edge in between them. Otherwise, we say they
are adjacent. A directed path from vj1 to vjl is a sequence
of nodes vj1 , vj2 , . . . , vjl , where (vjk , vjk+1

) ∈ E for 1 ≤
k < l. A directed path that does not contain repeated nodes
is called a simple directed path. A vertex separator (resp. an
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edge separator) of non-adjacent nodes va and vb is a subset
of nodes V ′ ⊆ V \ (va ∪ vb) (resp. edges E ′ ⊆ E) whose
removal deletes all the directed paths from va to vb. If each
edge (vi, vj) is assigned with weight wvivj , the cost of edge
separator E ′ is defined as

∑
(vi,vj)∈E′ wvivj .

B. Structural Model

The upper bound and the robust index we introduce in this
section are based on a structural model [A], [B], [C] of the sys-
tem [33]. The structural matrix [A] ∈ Rnx×nx has only binary
elements. If [A](i, j)=0, then A(i, j)=0 for every realization
A. If [A](i, j)=1, A(i, j) can take any value from R. Same
holds for matrices [B] ∈ Rnx×nu and [C] ∈ R(ny+ne)×nx . On
the one hand, this model is less informative, since it does not
use the exact values of the coefficients. On the other hand,
this also makes it more robust to system variations, which are
to be expected in large scale networked systems.

We restrict our attention to a special case of matrices [B]
and [C]. We assume that each actuator directly influences only
one state, and each sensor measures only one state. These
are commonly adopted simplifying assumptions in sensor and
actuator placement problems for large scale networked control
systems [2], [3], [39]. Additionally, to ensure that every B has
a full column rank, we assume that [B] has a full column rank
and exclude realizations of [B] where an actuator is idle (it
does not influence any state).

Assumption 2: Let ei be the i-th vector of the canonical basis
of appropriate size. We assume: (1) [B]=[ei1 . . . einu

]; (2) [B]
has a full column rank; (3) If [B](i, j)= 1, then B(i, j) 6= 0
for every realization B; (4) [C] = [ej1 . . . ejny+ne

]T .
Assumptions 2.(1)–2.(3) are necessary for derivation of the

results that follow. Assumption 2.(4) is introduced to simplify
the presentation, and the results can be generalized to the case
when this assumption does not hold.

We now introduce a graph G = {V, E} of the structural
model [A], [B], [C]. The set of nodes is V = X ∪U∪Y , where
X = {x1, . . . , xnx} is the set of states, U = {u1, . . . , unu} is
the set of actuators, and Y = {y1, . . . , yny+ne} is the set of
sensors. 2 The set of edges is E = Eux∪Exx∪Exy , where Eux =
{(uj , xi) : [B](i, j) 6= 0} are the edges from the actuators to
the states, Exx = {(xj , xi) : [A](i, j) 6= 0} are the edges in
between the states, and Exy = {(xj , yi) : [C](i, j) 6= 0} are
the edges from the states to the sensors. The extended graph is
given by Gt = {V ∪ t, Et}, where Et = E ∪{(yi, t) : ∀yi ∈ Y}.
In what follows, we use Gt to derive an upper bound on δ.
We first clarify how this graph is constructed on an example.

Example 2: Let the structural matrices be given by

[A] =

0 1 0
1 0 1
0 1 0

 , [B] =

1 0
0 1
0 0

 , [C] =

[
1 0 0
0 0 1

]
.

The extended graph Gt is shown in Fig. 1.

2In the remainder of the paper, we substitute the joint set of components
I with the sets of actuators U and sensors Y .

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

𝑦𝑦1

𝑦𝑦2 𝑢𝑢1 𝑡𝑡 

𝑢𝑢2 

Fig. 1. The extended graph Gt (Example 2).

C. Upper Bound on δ

We now introduce Theorem 2, where we derive an upper
bound on δ using Gt and vertex separators. Theorem 2 is
inspired by [9], where the connection between the existence
of perfectly undetectable attacks and the size of the minimum
vertex separator was introduced.

Theorem 2: Let Gt be the extended graph, Ua and Ya be
the attacked actuators and sensors, respectively, ui∈Ua, and

Xa = {xj ∈ X : (uk, xj) ∈ Eux, uk ∈ Ua \ ui}. (3)

If Xa ∪Ya is a vertex separator of ui and t in graph Gt, then
δ(ui) ≤ |Ua|+ |Ya| for any realization of matrices A,B,C.

The intuition behind Theorem 2 is the following. An attack
against ui can be thought of as the attacker injecting a flow
into the network through ui. To stay perfectly undetectable,
he/she wants to prevent the flow reaching the operator modeled
by t. The attacker uses a simple strategy where he/she injects
negative flows into the states Xa using the actuators Ua \ ui,
and cancels out the flows going through these states. The same
strategy is applied in the case of Ya. If Xa∪Ya is a vertex
separator of ui and t, then the flow is successfully canceled
out, so the attack remains perfectly undetectable. Furthermore,
this strategy can be applied for any realization A,B,C.

Example 3: Let Gt be as shown in Fig. 1, u1 be the actuator
for which we are calculating the upper bound, and assume
Ua={u1, u2} and Ya={y1}. Then Xa={x2}. One can notice
that by removing Xa∪Ya={x2, y1}, we delete all the directed
paths from u1 to t. Thus, Xa∪Ya is a vertex separator of u1
and t, so δ(u1)≤|Ua|+|Ya|=3 in any realization of the system.

D. Robust Security Index δr: Problem Formulation

We now use Theorem 2 to introduce the robust security
index δr(ui) for every ui ∈ U . Essentially, δr(ui) is the best
possible upper bound from Theorem 2.

Problem 2: Calculating δr

minimize
Ua,Ya

δr(ui) = |Ua|+ |Ya|

subject to Xa is given by (3), (C1)
Ya are not protected, (C2)
Xa ∪ Ya is a vertex separator of ui and t, (C3)
ui ∈ Ua. (C4)

The objective reflects our goal to find an upper bound with
the smallest possible value. The constraints: (C1) and (C2)
ensure that the separator consists only of the states Xa for
which there exists an actuator from Ua \ ui adjacent to them,
and unprotected sensors Ya; (C3) ensures that Xa ∪ Ya is a
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vertex separator of ui and t; (C4) ensures that ui is included
in the attacked components.

Remark 2: Just as Problem 1, Problem 2 does not have to
be solvable. This occurs when there exists a directed path in
between ui and a protected measurement, which cannot be
intersected by a vertex separator. In that case, the attacker
cannot in general use the previously introduced strategy, so
we adopt δr(ui) = +∞. Additional interpretations of δr being
equal to +∞ are provided in Section V.

Remark 3: In the structural systems theory, it is common to
use the structural model to derive results that hold for almost
any realization of the system [33]. We depart from this type
of analysis, that is, the robust security index δr is in general
not equal to δ in almost any realization (see Section VII).

In the next section, we argue that δr is a good candidate
to replace δ in large scale systems. Particularly, we show that
δr can be efficiently calculated by solving the minimum s–t
cut problem. Additionally, the fact that δr is derived based on
the structural model of the system makes it robust to system
variations. Finally, δr can also be related to different types of
limited model knowledge attackers.

V. PROPERTIES OF δr

We now outline properties of δr. Before we move to the
analysis, we revisit the minimum s–t cut problem. Proofs of
the results from this section are available in Appendix C.

A. Minimum s–t Cut Problem

Let G(V, E) be a directed graph, the source s and the
sink t be the elements of V , and assume that weight wvivj

is associated to each edge (vi, vj) ∈ E . A partition of V into
Vs and Vt = V \ Vs, such that s ∈ Vs and t ∈ Vt, is called an
s–t cut. We define the cut capacity as

C(Vs) =
∑

{(vi,vj)∈E:vi∈Vs,vj∈Vt}

wvivj .

The minimum cut problem can then be formulated as

minimize
Vs

C(Vs) subject to Vs,Vt is an s–t cut. (4)

The minimum s–t cut problem can also be interpreted as the
problem of finding a minimum cost edge separator of s and t.
Once (4) is solved, this separator can be recovered from Vs as
Ec = {(vi, vj) ∈ E : vi ∈ Vs, vj ∈ Vt}, and its cost is C(Vs).

B. Efficient Computation

In contrast to δ that is NP–hard to calculate, the exact value
of δr can be obtained efficiently. Particularly, the optimal value
of Problem 2 can be calculated by solving the minimum s–t
cut problem (Proposition 3), which can be done in polynomial
time using well established algorithms such as [40]. We remark
that Proposition 3 extends the previous findings on the static
security index [27], where an upper bound was also obtained
by solving the minimum s–t cut problem.

The first step towards proving Proposition 3 is to transform
Gt to a convenient graph Gui

= (Vui
, Eui

), with an additional

𝑥𝑥1 𝑥𝑥2𝑖𝑖𝑖𝑖 𝑥𝑥2𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥3 𝑢𝑢1 

1 +∞ 

𝑡𝑡 

1 

+∞ 

+∞ 

+∞ 

+∞ 

+∞ 

Fig. 2. The graph Gu1 (Example 4).

set of edge weights Wui . This graph is dependent on actuator
ui for which we are calculating δr(ui). In what follows,
we explain how Gui

is constructed. We use the following
terminology: xj ∈ X is said to be of Type 1, if it is adjacent
to uk ∈ U \ ui. Otherwise, xj is of Type 2.

Remark 4: In [9], it was explained how to construct a graph
for finding a minimum vertex separator. However, in our case,
not all the states can be removed, and protected sensors are
possible, so the graph needs to be adjusted accordingly.

The set Vui
contains the following nodes: (1) ui and t (the

source and the sink node); (2) xjin and xjout
for every xj of

Type 1; (3) Every xj of Type 2. The sets Eui
and Wui

are
constructed according to the following rules.
(1) If (ui, xj) ∈ Eux, then (ui, xj) ∈ Eui

and wuixj
= +∞.

(2) For every (xj , xk) ∈ Exx, xj 6= xk, we add an edge of
the weight +∞ to Eui subject to the following rules:
- If xj is Type 1 and xk is Type 1, (xjout , xkin) ∈ Eui ;
- If xj is Type 1 and xk is Type 2, (xjout

, xk) ∈ Eui
;

- If xj is Type 2 and xk is Type 1, (xj , xkin
) ∈ Eui

;
- If xj is Type 2 and xk is Type 2, (xj , xk) ∈ Eui

.
(3) For every xjin and xjout that correspond to the state xj

of Type 1, (xjin , xjout) ∈ Eui and wxjin
xjout

= 1.
(4) For every xj of Type 1 (resp. Type 2) that is measured,

we add (xjout
, t) (resp. (xj , t)) to Eui

. If any of the
sensors measuring xj is protected, we set the edge weight
to +∞. Otherwise, the edge weight equals to the number
of unprotected sensors measuring xj .

Example 4: Assume the same structural matrices as in
Example 2. Let the first sensor be unprotected, and the second
one protected. The graph Gu1 constructed for the purpose of
solving Problem 2 for actuator u1 is shown in Fig. 2.

We now introduce Proposition 3, which tells us that we
can calculate the optimal value of Problem 2 by solving the
minimum ui–t cut problem in Gui .

Proposition 3: Let δr(ui) be the optimal value of Prob-
lem 2, and δ∗ be the optimal value of the minimum ui–t cut
problem in Gui

. If Problem 2 is solvable, then δr(ui)=δ
∗ + 1

(Statement 1). Otherwise, δr(ui)=δ
∗=+∞ (Statement 2).

C. Robustness

The second important property of δr is its robustness to
system variations. Mainly, δr is derived based on the structural
model [A], [B], [C], which does not use the exact values of
the system parameters. Hence, δr has the same value for any
realization A,B,C, which is not the case with δ.

D. Relation of δr to Different Types of Attackers

We now explain how δr is related to the full model
knowledge attacker. We also introduce two new attacker types
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without the full model knowledge, and discuss their relation to
δr. To distinguish between the different attacker types, in the
remainder of the paper we refer to the full model knowledge
attacker as the Type 1 attacker, and to the new attackers as the
Type 2 and the Type 3 attackers.

1) Type 1 Attacker: Recall that δr(ui)≥δ(ui) holds for
any ui∈U and any realization A,B,C. Thus, a small δr(ui)
indicates serious vulnerability in respect of the Type 1 attacker.
Particularly, not just that this attacker can conduct a perfectly
undetectable attack against ui using a small number of com-
ponents, but he/she can do that in any realization.

Unfortunately, as it will be shown in Section VII, δr(ui) is
not a tight upper bound of δ(ui). Thus, a large δr(ui) does not
mean that ui is secured from the Type 1 attacker. For instance,
although a solution of Problem 2 is Ua∪Ya = {ui, yj , yk}, it
may exist a realization in which ui and yj are sufficient to
conduct a perfectly undetectable attack against ui. However,
the Type 1 attacker then needs to be sure that this realization is
present. If the realization occurs rarely, the attacker may need
to wait for a long time, which increases his/her chances to be
discovered in between. To avoid this, the Type 1 attacker may
want to compromise the sensors and actuators which would
allow him/her to conduct a perfectly undetectable against
ui for any realization A,B,C. Interestingly, the minimum
number of sensors and actuators that enables this is δr(ui).

Proposition 4: Let Ua and Ya be attacked actuators and
sensors, respectively. If the Type 1 attacker can conduct
a perfectly undetectable that actively uses ui∈Ua for any
realization of [A], [B], [C], then |Ua|+|Ya|≥δr(ui) must hold.

Proposition 4 tells us that having large δr(ui) prevents the
Type 1 attacker to easily gather resources that allow him/her
to attack ui in any system realization. The following corollary
directly follows from the proof of Proposition 4.

Corollary 1: If δr(ui) = +∞, then there exist realizations
of [A], [B], [C] in which δ(ui) = +∞.

2) Type 2 Attacker: We now show that having δr(ui) small
implies that ui is vulnerable even if the attacker does not know
the entire realization A,B,C. Particularly, we introduce the
Type 2 attacker with resources limited to a local model knowl-
edge and measurements. We then prove that if this attacker
compromises the right combination of δr(ui) components,
he/she can attack ui and remain perfectly undetectable.

Assumption 3: The Type 2 attacker: (1) Can read and change
the values for attacked control signals Ua and measurements
Ya arbitrarily; (2) Possesses the knowledge of [A], [B], [C] and
of the rows A(j, :), B(j, :) that correspond to every state xj
that is adjacent to an actuator from Ua; (3) Knows for every k:
xj(k) for any xj that is adjacent to an actuator from Ua, and
xl(k) for any xl ∈ N in

xj
; (4) Wants to ensure an attack remains

perfectly undetectable.
The Type 2 attacker’s knowledge is limited to the struc-

tural model and the rows of A and B that correspond to
actuators Ua. Thus, this attacker does now know the entire
realization A,B,C. The attacker is also assumed to know
the values of the states adjacent to Ua and their in-neighbors.
The attacker can obtain these values by deploying additional
sensors, but can also get this information for free. Namely,
control algorithms sometimes base decision on the neighboring

and local state to achieve better performance [41]. Hence, if the
attacker remains undetected, nodes may continue sending the
state information to the compromised actuators, not knowing
that these actuators are controlled by the attacker.

Proposition 5 that we introduce next relates the Type 2
attacker to δr. Before we proceed to the proposition, we point
out that the assumption x(0)=0, u=0 is not without loss of
generality for this result to hold, as explained later.

Proposition 5: Let Ua and Ya be attacked actuators and
sensors, respectively, ui ∈ Ua, and Xa be defined as in (3). The
Type 2 attacker can conduct a perfectly undetectable attack in
which ui is actively used in any realization of [A], [B], [C] if
and only if Xa ∪ Ya is a vertex separator of ui and t in Gt.

The result has two consequences. Firstly, recall that δr(ui)
equals the minimum number of components that ensures
Xa∪Ya is a vertex separator of ui and t, with ui∈Ua. This
implies that the Type 2 attacker with the right combination of
δr(ui) components can conduct a perfectly undetectable attack
against ui in any system realization. Particularly, it follows
from the proof that the Type 2 attacker can then use a strategy
similar to the one introduced to prove Theorem 2. Yet, the
strategy is implemented on-line and in a feedback fashion,
based on the knowledge of local states and measurements.
This is the reason why a steady state assumption is required.
For instance, if u starts changing during the attack, the Type 2
attacker can be revealed (see Section VII). Secondly, same as
for the Type 1 attacker, δr(ui) is the minimum number of
components that allows the Type 2 attacker to conduct a per-
fectly undetectable attack against ui in any system realization.
Overall, a small δr(ui) implies ui is vulnerable even though
the attacker does not posses the full model knowledge.

3) Type 3 Attacker: While the previous two propositions
show that a small value of δr(ui) implies that ui is vulnerable,
a perhaps more interesting question to answer is if a large
δr(ui) implies that ui is secured. Unfortunately, we cannot
make such a claim. Namely, both the Type 1 and the Type 2
attackers may be able to conduct a perfectly undetectable
attack against ui with less than δr(ui) components in some
realizations. However, we do argue that having a large value
of δr(ui) provides a reasonable level of security. Intuitively,
having large δr(ui) implies that an attack against ui can trigger
a large number of sensors. To avoid being detected from these
sensors, an attacker should make a synchronized attack using
other components to cancel out the effect of the attack. Thus,
the attacker should then either ensure he/she has a very precise
model and use other actuators to cancel the effect of the attack,
or he/she needs to compromise a large number of sensors. To
illustrate this point, we introduce the Type 3 attacker.

Assumption 4: The Type 3 attacker: (1) Can read and change
the values for attacked control signals Ua and measurements
Ya arbitrarily; (2) Knows [A], [B], [C]; (3) Wants to ensure an
attack remains perfectly undetectable.

The Type 3 attacker knows only [A],[B],[C]. Hence, this
attacker cannot constructively use other actuators to cover an
attack against ui, since he/she does not know which attack
signals to inject in these actuators. However, if the system
is in a steady state, the Type 3 attacker can use the Replay
attack strategy [20] to conduct a perfectly undetectable attack
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against ui. In this strategy, the attacker covers an attack against
ui by compromising sufficiently many sensors, and repli-
cating steady state values from these sensors. Proposition 6
establishes the connection between the number of sensors the
Type 3 attacker needs to compromise and δr(ui).

Proposition 6: Let ui and Ya be the attacked actuator and
sensors, respectively. If the Type 3 attacker can attack ui
and ensure the attack remains perfectly undetectable, then
|Ya|≥δr(ui)−1. If δr(ui)=+∞, the Type 3 attacker cannot
attack ui and ensure the attack remains perfectly undetectable.

In other words, if the Type 3 attacker wants to ensure the
attack against ui remains perfectly undetectable, then he/she
needs to compromise at least δr(ui)−1 sensors. Thus, a large
value of δr(ui) makes an attack against ui more difficult, and
the Type 3 attacker is expected to avoid such actuators. We
clarify the result further in the following example.

Example 5: Let the structural matrices be given by

[A] =

[
0 0
1 1

]
, [B] =

[
1
0

]
, [C] =

[
0 1

]
,

and assume the Type 3 attacker only controls actuator u1. It
can be verified that the robust security index of this actuator is
δr(u1)=2. Thus, according to Proposition 6, the attacker needs
to compromise at least δr(u1)−1=1 sensor to ensure that an
attack against u1 remains perfectly undetectable. Indeed, let
the realization of the system be

A =

[
0 0
a21 a22

]
, B =

[
1
0

]
, C =

[
0 1

]
.

If a21 6=0, any attack against u1 is visible in the sensor mea-
surement. Since the Type 3 attacker knows only the structural
model of the system, he/she does not know the exact value of
a21. Thus, he/she needs to compromise the sensor to ensure
an attack against u1 remains perfectly undetectable.

4) Summary: The main conclusions of this subsection are
as follows. Firstly, a small δr(ui) indicates that ui is vulnerable
with respect to the Type 1 and the Type 2 attackers in any
realization of the system. Secondly, a large δr(ui) does not
indicate security with respect to these attackers, but it does
prevent them from easily gathering resources for attacking
ui in any realization of the system. Finally, a large δr(ui)
indicates security with respect to the Type 3 attacker. For these
reasons, it is useful to derive strategies for increasing δr. We
consider this problem in the next section.

VI. SENSOR PLACEMENT FOR INCREASING δr

In this section, we discus how δr can be increased by placing
additional sensors. We derive sets of suitable positions to place
sensors, and then introduce two sensor placement problems
with the objective to increase the robust indices of actuators.
We show that these problems have convenient submodular
structures, which allow us to efficiently obtain suboptimal
solutions of these problems with guarantees on performance.
Before we move to the analysis, we introduce a necessary
background on submodular optimization. Proofs of the results
from this section are available in Appendix D.

A. Submodular Optimization

We begin by introducing the definitions of submodular and
nondecreasing set functions, and recalling some well known
properties of these functions [42].

Definition 2: Let X={x1, . . . , xn} be a finite non-empty set
and F :2X→R be a set function. We say that F is submod-
ular if F (Xa ∪ x)−F (Xa)≥F (Xb ∪ x)−F (Xb) holds for all
Xa⊆Xb⊆X and x∈X\Xb. We say that F is nondecreasing if
F (Xa) ≤ F (Xb) holds for all Xa⊆Xb⊆ X .

Lemma 1: Let F1, . . . , Fn be submodular and non-
decreasing set functions and c be an arbitrary constant. Then
g1(Xa) =

∑n
i=1 Fi(Xa) and g2(Xa) = min{Fi(Xa), c} are

submodular and nondecreasing set functions.
Submodularity has an important role in combinatorial op-

timization. Particularly, many interesting problems with sub-
modular structure can be approximately solved in polynomial
time with guarantees on performance [43]. In this work, we
are interested in the following two problems

minimize
Xp

|Xp| subject to F (Xp) ≥ Fmax, (5)

maximize
Xp

F ′(Xp) subject to |Xp| ≤ kmax, (6)

where F and F ′ are nondecreasing and submodular set func-
tions that satisfy F (∅)=F ′(∅)=0, Fmax∈Z≥0, and kmax∈Z≥0.
Additionally, F is assumed to be an integer valued function.
Suboptimal solutions for both (5) and (6) can be obtained in
polynomial time with relatively good performance guarantees.

Lemma 2: [44, Theorem 1] Let |X ∗| be the optimal value
of (5), and H(d)=

∑d
i=1

1
i . A suboptimal solution Xg of (5)

that satisfies |Xg|≤ H(maxx∈X F (x))|X ∗| can be obtained in
polynomial time using the algorithm given in [44, Section 2].

Lemma 3: [45, Proposition 4.3] Let F ∗ be the optimal
value of (6). A suboptimal solution Xg of (6) that satisfies
F ′(Xg)≥(1− 1

e )F ∗ can be obtained in polynomial time using
the algorithm given in [45, Section 4].

We remark that the bounds introduced in Lemmas 2 and 3
represent the worst case performance guarantees. The algo-
rithms mentioned in the lemmas can perform better in practice.

B. Suitable Locations to Place Sensors

We now introduce a suitable set of states Xui connected
to each actuator ui. We show that if we place a new sensor
to measure any of the states from Xui

, δr(ui) is guaranteed
to increase. Moreover, if every state adjacent to an actuator is
also adjacent to a sensor, then placing a new sensor to measure
a state from Xui is the only way to increase δr(ui).

Theorem 3: Let Gt be the extended graph, ui be an actuator
with δr(ui)6=+∞, and xk∈X be such that there exists a
directed path ui, xj , . . . , xk in which none of the states is
adjacent to an actuator from U \ ui. Let the set of all such
states be denoted with Xui

. Assume that a new sensor yl is
placed to measure an arbitrary state from Xui

, and let δ′r(ui)
be the robust index of ui after the placement. Then:
(1) δ′r(ui) = +∞ if yl is protected;
(2) δ′r(ui) = δr(ui) + 1 if yl is unprotected.
Furthermore, assume that for every xj ∈ X for which there
exists (uk, xj) ∈ Eux, there also exists (xj , yp) ∈ Exy . Then



9

δr(ui) is increased if and only if a new sensor is placed to
measure a state from Xui .

The sets Xu1 , . . . ,Xunu
introduced in the previous theorem

have two important properties. Firstly, for every ui ∈ U , Xui

can easily be found as follows. We first remove from the graph
Gt all the states that are adjacent to an actuator from U \ui. In
that case, the set Xui

is the set of all the states to which ui is
connected with a directed path. We can then apply the depth
first search algorithm [46] to find these states. Secondly, these
sets are not affected by the placement of new sensors. Thus,
if we place n sensors to monitor the states from Xui

, δr(ui)
is guaranteed to increase by n.

In what follows, we use Theorem 3 to formulate two sensor
placement problems. As we shall see, suboptimal solutions
with performance guarantees can be obtained efficiently for
both of these problems, even in large scale networked systems.

Remark 5: The sensor placement problems we introduce
next are developed for increasing δr, which does not in general
imply that we increase δ at the same time. However, the
placement of new sensors cannot decrease δ (Proposition 2), so
we definitely do not degrade this index. In fact, we illustrate in
Section VII that by increasing δr, we often indirectly increase
δ. Future work will investigate how to preselect some of the
states from the previously introduced sets, such that we know
that δ is increased for at least some classes of realizations.

C. Sensor Placement Problems

1) Placement of Unprotected Sensors: We first discus the
problem of placing unprotected sensors. The goal is to place
these sensors such as to increase δr for every actuator ui
by at least kui

∈Z≥0. We assume unprotected sensors to be
inexpensive, so we do not have a sharp constraint on the
number of sensors we should place. Yet, we still want to place
the minimum number of them to achieve the desired benefit.

Let the set of sensors be Ys = {y1, . . . , yns
}, and xyi

be
the state measured by yi. For every actuator ui, we define
gui

(Yp) = min{
∑

yj∈Yp
|xyj
∩ Xui

|, kui
}, where Yp ⊆ Ys is

the set of newly placed sensors. This function equals kui , if
at least kui sensors from Yp measure the states from Xui . We
then have from Theorem 3 that δr(ui) is increased by at least
kui

. Additionally, if every state adjacent to an actuator is also
adjacent to a sensor, then δr(ui) is increased exactly by kui

.
Let G(Yp) =

∑
ui∈U gui

(Yp) be the total gain achieved by
placement Yp. If G(Yp) ≥

∑
ui∈U kui , then the robust indices

of all the actuators are increased by the desired values. The
problem of placing unprotected sensors is then

minimize
Yp⊆Ys

|Yp| subject to G(Yp) ≥
∑
ui∈U

kui . (7)

The objective function we are minimizing is the number of
deployed sensors. The constraint implies that we continue
placing sensors until the robust indices of all the actuators are
for sure increased by the desired value. The following propo-
sition shows that this problem is an instance of Problem (5),
so we can find a suboptimal solution for it in polynomial time
with guarantees stated in Lemma 2.

Proposition 7: Problem (7) is an instance of Problem (5).

2) Placement of Protected Sensors: One can also consider
the problem of deploying protected sensors. One objective
could be to increase δr to +∞ for as many actuators as
possible, which would prevent the Type 3 attacker of attacking
these actuators. Since protected sensors might be expensive,
we assume that the operator is limited to kmax sensors.

The problem can be formulated as follows. Let Xp ⊆ X
be the subset of states that we want to measure using the
protected sensors. Similar to the previous placement problem,
we first define the function g′ui

(Xp) = min{|Xp∩Xui
|, 1} for

each ui. If g′ui
(Xp) = 1, then there exist a protected sensor

measuring a state from Xui
, and we know from Theorem 3

that δr(ui) = +∞. Otherwise, g′ui
(Xp) = 0.

Let Up ⊆ U be a subset of actuators for which we want
to increase the robust indices to +∞. We can then define
the objective function as G′(Xp) =

∑
ui∈Up g

′
ui

(Xp). The
value of this function equals the number of actuators whose
robust indices are equal to +∞ after placing protected sensors
at locations Xp. Naturally, we want to maximize this gain
function, with no more than kmax deployed sensors. The
problem we want to solve can then be formulated as

maximize
Xp⊆X

G′(Xp) subject to |Xp| ≤ kmax. (8)

We now show that (8) represents an instance of (6). It then
follows from Lemma 3 that a suboptimal solution of (8) with
1− 1

e approximation ratio can be obtained in polynomial time.
Proposition 8: Problem (8) is an instance of Problem (6).

VII. ILLUSTRATIVE EXAMPLES

We now discuss the theoretical developments on illustrative
numerical examples.

A. Comparison of δ and δr

1) Model: We consider the IEEE 14 bus system, shown in
Fig. 3. The system is controlled using 5 generators located at
buses 1,2,3,6, and 8. We modeled the system using linearized
swing equations where the generators were represented by two
states (rotor angle φi and frequency ωi = φ̇i), and load buses
with one state (voltage angle θi) [47]. The parameters given
in [48] were used. The operator has access to phasor measure-
ment units providing measurements of θ1, θ3, θ5, θ7, θ9, θ11,
and θ13. We considered the following system realizations:

• Normal operation, as shown in Fig. 3 (Realization 1);
• Power line (Bus 4,Bus 7) switched–off (Realization 2);
• Micro–grid consisting of Bus 3 and Generator 3 detaches

from the grid (Realization 3);
• Measurement θ1 stops being available (Realization 4).

We assumed that every generator and every measurement can
be compromised by the attacker. Furthermore, the attacker is
assumed to be able to attack the network by changing loads
at some buses [49]. Particularly, the loads at buses 2, 5, 9, and
14 were assumed to have considerable effect to the network,
and were modeled as additional actuators.
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Fig. 3. Schematic of IEEE 14 bus system [13].
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Fig. 4. The value of the security index δ and the robust security index δr
of Generators 1–5 for different realizations of the system.

2) Robustness: We first compare δ and δr in terms of
robustness. For this purpose, we calculated the values of δ and
δr of all the generators in the aforementioned four realizations
of the system. The results are shown in Fig. 4.

Firstly, the results confirm that δ depends on realization
of the system. Thus, if the operator decides to use δ as
a security index, it is not sufficient to consider only one
realization. For example, Generator 3 that appears to be the
second most secured in Realization 1, becomes one of the two
most vulnerable in Realization 3. A less evident observation is
that the use of δ can lead to a considerable security allocation
cost. Particularly, we see that the minimum value of δ for all
the generators is quite similar (except for maybe Generator 4).
Therefore, ensuring that each generator has sufficiently large
security index δ for every realization of the system may be
very hard, and would require a large security investment.

Evidently, the values of δr are not dependent on the re-
alization. Therefore, having a small value of δr(ui) implies
that actuator ui is vulnerable in any system realization. For
example, since δr(G2)=2, Generator 2 can be attacked by
the Type 1 and the Type 2 attackers by compromising only
two components in any realization of the system. However,
as it can be seen, δr is not a tight upper bound on δ. Thus,
large δr does not necessarily imply security, which is the main
drawback of δr. For instance, note that δ(G3)=2 in the third
realization. Hence, the Type 1 attacker can conduct a perfectly
undetectable attack against Generator 3 in this realization by
compromising two components, although δr(G3)=6.

3) Computing δ and δr: We now compare the computa-
tional efforts needed to calculate δ and δr. To calculate δ, we
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Fig. 5. Computational time required for finding the exact value of δ and δr
of Generator 4 once the number of sensors vary.
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Fig. 6. Increase of the security index δ for Generator 1 and Generator 2.

used the brute force search method explained in Section III. To
calculate δr, we used the maxflow function that is included
in Matlab R2017. We kept the realization of the system fixed
to Realization 1, and started increasing the number of sensors
by placing new sensors at random locations. We then measured
time needed to calculate δ and δr for Generator G4.

The results are shown in Fig. 5. As expected, the effort for
calculating δ grows exponentially with the number of newly
added sensors. Furthermore, note that this effort scales with
the number of realization for which we want to calculate δ.
The time needed for calculating δr was almost not affected by
placing this relatively small number of sensors, and remained
below 0.01 [s] in all the cases. Additionally, δr is calculated
only once, since it has the same value in any realization.

4) Increasing δ and δr: We now investigate if by increasing
δr we also increase δ. We focus on Generators 1 and 2,
since these generators have the lowest values of δr. Using
Theorem 3, we obtained that suitable locations for placing
additional sensors are XG1 = {φ1, ω1, θ1} for Generator 1
and XG2 = {φ2, ω2} for Generator 2.

We first investigated how the placement of one protected
sensor influences δ. We placed sensor at each of the locations
from XG1 , and measured the increase of δ(G1). While placing
the protected sensor at these locations increases δr(G1) to
+∞, it can be seen from Fig. 6 that δ(G1) did not increase
to +∞ in any of the four realizations we considered. Yet, the
increase of δ(G1) for more than one was achieved in majority
of the cases, which is not possible to achieve by placing an
unprotected sensor (Proposition 2). The experiment was also
conducted for Generator 2. Similarly, δ(G2) did not increase
to +∞ in any of the four realizations. However, the placement
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Fig. 7. The platoon consisting of two autonomous vehicles. Each vehicle can
be controlled by the operator through the signals u1 and u2. The operator
also knows the position of the second vehicle y.

of one protected sensor lead to increase of δ(G2) by at least
three for all the locations from XG2

and all the realizations.
We also considered placing one unprotected sensors at loca-

tions from XG1 , which increases δr(G1) by one. Interestingly,
from Fig. 6, the placement of one unprotected sensor at any
of the locations from XG1

lead to increase of δ(G1) in all the
realizations. The same holds for XG2

and δ(G2).
Overall, the experiment illustrates that by increasing δr we

can also indirectly increase δ. However, from the placement
of protected sensors, we see that we definitely do not achieve
the same level of improvement. This again illustrates that
protecting the system against the advanced Type 1 attacker
may require much more resources than protecting it against
less advanced attackers such as the Type 3 attacker.

B. Properties of Full and Limited Model Knowledge Attackers

1) Model: We now illustrate the limitations of the full and
limited model knowledge attackers considered in the paper.
For this purpose, we consider the system of two autonomous
vehicles shown in Fig. 7. Each vehicle is modeled by a single
state representing its position relative to some moving refer-
ence frame. The operator can control both vehicles through
signals u1 and u2, and he/she also knows the position of the
second vehicle y = x2. The operator’s goal is to keep the
distance between vehicles equal to 10. To study this formation
control problem, we use the model from [8]

x(k + 1) =

[
1− 2α1 α1

α2 1− 2α2

]
x(k) + u(k),

y(k) =
[
0 1

]
x(k),

where α1 = α2 = 0.1. We assume that prior to the attack,
x(0) = [0 10]T and u(0) = [−1 2]T , so that desired behavior
of the platoon is achieved.

We consider the Type 1 attacker and the Type 2 attacker.
Both of the attackers control u1 and y, and have the goal to
disrupt the platoon formation without the operator noticing.
In the following, we discuss in which situations the attackers
can achieve this goal. By ∆yF (resp. ∆yL), we denote the
difference between the measurement expected in the normal
operation and the received measurement in the case of the first
(resp. second) attacker. If the attackers are able to conduct a
perfectly undetectable attack, then ∆yF =∆yL=0 must hold.
We also remark that the properties of the Type 2 attacker we
outline next are the same as for the Type 3 attacker, so we do
not explicitly consider the Type 3 attacker.

2) Case 1: The first case illustrates that both of the at-
tackers can conduct a perfectly undetectable attack once the
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Fig. 8. Differences ∆yF and ∆yL of the expected and attacked sensor
measurements in different cases.

system is in a steady state and u(k) = u(0) during the attack.
The Type 1 attacker applies the following signals

a
(u1)
F (k) = −k,

a
(y)
F (k + 2) = 1.6a

(y)
F (k + 1)− 0.63a

(y)
F (k)− 0.1a

(u1)
F (k),

(9)

which is according to the strategy introduced in the proof of
Proposition 1. The Type 2 attacker applies the signals

a
(u1)
L (k) = −k, a

(y)
L (k) = −x2(k) + y(0), (10)

which is according to the strategy introduced in the proof
of Proposition 5. As we can see from Fig. 8, Case 1,
∆yF =∆yL=0. Hence, both of the attackers remain perfectly
undetectable. Additionally, note that in this case, the strat-
egy (10) reduces to the Replay attack strategy that does not
require any realization knowledge. Thus, the Type 3 attacker
that controls u1 and y can also use the strategy (10), so he/she
would also remain perfectly undetectable in this case.

3) Case 2: The second case is introduced to illustrate the
fragility of the Type 1 attacker with respect to modeling errors.
Assume u(k)=u(0) during the attack, and that the Type 1
attacker believes that α′2=0.11. He/she then applies the signals

a
(u1)
F (k) = −k,

a
(y)
F (k + 2) = 1.58a

(y)
F (k + 1)− 0.613a

(y)
F (k)− 0.11a

(u1)
F (k).

The Type 2 attacker applies the same signals as in the previous
case. From Fig. 8, Case 2, we can see that ∆yF 6=0, so the
Type 1 attacker is revealed. Since ∆yL=0, we see that the
Type 2 attacker remains undetected. In general, the Type 2
attacker can also be vulnerable to modeling errors, since he/she
may require precise local model knowledge to construct the
strategy in some cases. However, the fact that this attacker
uses only a fraction of the model (in this case none), lowers
his/her chances to become detected because of modeling
errors. Evidently, the Type 3 attacker is not affected by this
type of errors, since he/she knows only the system structure.

4) Case 3: Finally, assume the scenario where at k = 2,
the operator increases u2 by 0.1. The attackers apply the
signals (9) and (10). From Fig. 8, Case 3, we can see ∆yL 6=0.
This illustrates that the steady state assumption is in general
required for the Type 2 attacker to remain perfectly unde-
tectable. The reason is that this attacker does not know neither
u2 nor the equation for x2. Thus, once y starts changing, the
attacker cannot distinguish if this is because of the attack or
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TABLE I
THE MAIN PROPERTIES OF THE ATTACKER TYPES WE CONSIDERED

AND THEIR RELATION TO δr .

Attacker Knowledge of
A,B,C / [A], [B], [C]

Steady State
Assumption

Relation
to δr

Type 1 Full / Full Not required Upper bounds
resources

Type 2 Limited / Full Required Upper bounds
resources

Type 3 None / Full Required Lower bounds
resources

a change in u2. The same reasoning applies to the Type 3
attacker. We also see that ∆yF =0. The reason is that the
attack policy (9) can be calculated prior to the attack and
implemented in a feedforward manner. This makes the strategy
completely decoupled from x(0) and u.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced security indices δ and δr. These
indices can be used for localizing vulnerable actuators within
the system and development of defense strategies. We first
analyzed δ, which is more suitable for small scale systems. A
method for computing δ was derived, and it was shown that
δ can potentially be increased by placing additional sensors.
We then showed that δ may not be appropriate index for
large scale networked systems since it is: (1) NP hard to
calculate; (2) Vulnerable to system variations; (3) Based on the
assumption that the attacker knows the entire system model.

The robust security index δr was then introduced as a
replacement of δ. The robust index: (1) Can be calculated
efficiently; (2) Is robust to system variations; (3) Can be related
to both the full and limited model knowledge attackers, as
summarized in Table I. Additionally, two sensor placement
problems for increasing δr were proposed, and it was shown
that suboptimal solutions with performance guarantees of these
problems can be obtained efficiently. Finally, the properties of
δ and δr were illustrated through numerical examples.

The future work will go into the following directions.
Firstly, beside perfectly undetectable attacks, there exist many
other dangerous types of attacks. Therefore, we plan to in-
vestigate if novel types of security indices can be formulated
based on these attack models. Secondly, the sensor placement
problems considered in the paper were formulated without
taking the security index δ into consideration. The future work
will investigate if it is possible to derive sensor placement
strategies for improving δ and δr simultaneously.

APPENDIX

A. Proofs of Section III

Proof of Proposition 1. Before we move to the proof, we
introduce a sufficient and necessary condition for existence of
perfectly undetectable attacks.

Lemma 4: [8, Theorem 1] [9, Theorem 7] A perfectly
undetectable attack conducted using components Ia ⊆ I exists
if and only if normrank G(Ia) < |Ia|.

Proof of Proposition 1: (⇒) Let A be the Z–transform of
a. Assume there exists a perfectly undetectable attack A with
A(i) 6= 0. We split the proof into two cases.

Case 1. Assume first normrank G(Ia\i) = |Ia|−1. Since un-
detectable attacks are possible, then it follows from Lemma 4
that normrank G(Ia) < |Ia|. On the other hand

normrank G(Ia) ≥ normrank G(Ia\i) = |Ia| − 1,

which implies normrank G(Ia) = |Ia| − 1. Thus, (2) holds.
Case 2. Assume now normrank G(Ia\i) < |Ia| − 1. Let

Ib ⊆ Ia \ i be such that:
(i) The columns of G(Ib) span the columns of G(Ia\i);

(ii) normrank G(Ib) = normrank G(Ia\i) = |Ib|.
Since (i) holds, we can find A′ that satisfies G(Ia\i)A(Ia\i) =
G(Ib)A′. From the latter relation and GA = 0, it follows

GA = G(Ia\i)A(Ia\i) +G(i)A(i) = G(Ib)A′ +G(i)A(i) = 0.

This implies that [(A′)T A(i)]T is a perfectly undetectable
attack against [G(Ib) G(i)] with A(i) 6= 0. We then have

normrank[G(Ib) G(i)]
∗
= normrank G(Ib)

∗∗
= normrank G(Ia\i),

(11)

where (*) follows from (ii) and Case 1, and (**) from (ii).
Since G(Ib) spans the columns of G(Ia\i), we have

normrank G(Ia) = normrank[G(Ia\i) G(i)]

= normrank[G(Ib) G(i)].
(12)

From (11) and (12), we conclude that (2) holds.
(⇐) If (2) holds, then there exist real rational functions P

and Q 6= 0, such that G(Ia\i)P +G(i)Q = 0. Thus, any attack
signal A(i) can be masked by applying A(Ia\i) = PA(i)/Q
on the remaining attacked components. �
Proof of Proposition 2. By adding a new sensor to the
system, we introduce additional constraints to Problem 1.
Thus, δ′(i)<δ(i) cannot hold. If a new sensor is not protected,
the attacker can gain control over it. This can be interpreted
as removing the aforementioned constraints from the problem.
Hence, δ′(i) is at most by one larger than δ(i) in this case.
By adding a new actuator, the number of decision variables of
Problem 1 increases, and the number of constraints remains
the same. Therefore, δ′(i) ≤ δ(i) holds. �
Proof of Theorem 1. To prove NP-hardness of Problem 1, it
suffices to show that every instance of an NP–hard problem
can be mapped into Problem 1. For this purpose, we use the
sparse recovery problem

minimize
d

||d||0 subject to Fd = ȳ, (13)

where F ∈ Rp×m and ȳ ∈ Rp are given. This problem is
known to be NP–hard [50]. Let F and ȳ be arbitrary selected.
Set A=0m×m, B=Im, C=[−ȳ F ], D=0p×m, and i = 1. Then
a = au and x(k + 1) = au(k). Hence, Problem 1 becomes

minimize
au

||au||0 subject to Cau(k) = 0, a(1)u 6= 0. (14)

It can be seen that to solve (14) for all k, it suffices to solve
it for a single k. Thus, (14) reduces to

minimize
au(0)

||au(0)||0 subject to Cau(0) = 0, a(1)u (0) = 1,
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where the substitution of a(1)u (0)6=0 with a
(1)
u (0)=1 is with-

out loss of generality. Let au(0)=[1 dT ]T . Then minimiz-
ing ||au(0)||0 is equivalent to minimizing ||d||0, which is
the objective function of (13). Moreover, we also have that
Cau(0) = [−ȳ F ]au(0)=−ȳ+Fd. Thus, Cau(0) = 0 implies
Fd = ȳ, which is the constraint of (13). Therefore, every
instance of the NP–hard problem (13) can be mapped into
Problem 1, which concludes the proof. �

B. Proofs of Section IV

Proof of Theorem 2. Let Xa ∪ Ya be a vertex separator of
ui and t in the graph Gt. To prove the claim, we introduce an
attack strategy that uses the components Ua and Ya. We then
prove that this strategy is actively using ui, and it is perfectly
undetectable in any realization A,B,C.

For actuator ui, the attacker injects an arbitrary signal
a(ui) 6= 0. This ensures that ui is used in the attack actively.
For other actuators uj ∈ Ua \ ui, the attack is

a(uj)(k) = −A(p, :)x(k)/B(p, j), (15)

where A(p, :) is the row of A corresponding to attacked
actuator uj , and B(p, j) is the non-zero element of B mul-
tiplying uj (such element exists for any realization due to
Assumption 2.(3)). For yl ∈ Ya, the attack is

a(yl)(k) = −C(l, :)x(k), (16)

where C(l, :) represents the row of C corresponding to yl. For
the attacker with the full model knowledge, this strategy can
be constructed for any realization. Namely, he/she knows the
values for A(p, :),B(p, j),C(l, :), and can predict the value
of x(k) for any k ∈ Z≥0 based on the model and the
attack signals. We now prove that this strategy is perfectly
undetectable, that is, y = 0.

We first consider attacked sensors. For any yl ∈ Ya and
k ∈ Z≥0, we have yl(k) = C(l, :)x(k) + a(yl)(k)

(16)
= 0. Thus,

the attacked measurements are equal to 0. It remains to be
shown that the non-attacked measurements are also 0.

Consider first the non-attacked sensors measuring the states
from Xa. Let xp ∈ Xa, and let uj ∈ Ua \ui be adjacent to xp.
Then xp(k + 1) = A(p, :)x(k) +B(p, j)a(uj)(k)

(15)
= 0. Thus,

the non-attacked measurements of the states from Xa are 0.
Let now Xb be the set of all the states for which there exists
a directed path from ui that does not contain the states from
Xa. These states cannot be measured using the non attacked
sensors. That would imply that there exists a directed path
in between ui and t not intersected by Xa ∪ Ya, which is in
contradiction with the assumption that Xa ∪ Ya is a vertex
separator of ui and t. Finally, let Xc = X \ (Xb ∪ Xa) be the
set of all the remaining states. Note that the directed edges
(xb, xc), xb ∈ Xb, xc ∈ Xc, cannot exist. That would imply
that there exists a directed path from ui to xc that does not
contain the states from Xa, so xc would belong to Xb. Thus,
the states from Xc cannot be directly influenced by the states
from Xb. Since x(0) = 0, u = 0, and the states Xa are equal
to 0, we conclude that the states Xc also remain equal to
0 during the attack. Thus, the non-attacked measurements of

these states remain 0. With this, we prove that all of the non-
attacked measurements are equal to 0, so the attack strategy
is perfectly undetectable. �

C. Proofs of Section V
Proof of Proposition 3. Statement 1. Let Ua∪Ya be a solution
of Problem 2, and Xa∪Ya be a corresponding vertex separator.
Let Ec ⊆ Eui

be constructed as follows. For each xk ∈ Xa, we
add (xkin

, xkout
) to Ec. For each yj ∈ Ya with (xk, yj) ∈ Exy ,

we add (xkout
, t) (resp. (xk, t)) to Ec if xk is Type 1 (resp.

Type 2). If there exists more than one measurement of xk,
then all of them must belong to Ya. Otherwise, there would
exist a path from ui to t not intersected by Xa ∪ Ya, or yj
would not be a part of an optimal solution. It follows from the
construction of Gui

that the edges added to Ec have the cost
δc =|Ua \ i|+|Ya|= δr(ui) − 1. We now show that Ec is an
edge separator of ui and t in Gui (Claim 1) of the minimum
cost (Claim 2). This implies δr(ui) =δc + 1= δ∗ + 1, and
proves Statement 1.

Claim 1. Assume Ec is not an edge separator. Then there
exists a simple directed path ui, xj1 , . . . , xjn , t (Path 1) in
Gui

, which is not intersected by Ec. By the construction of
Gui

, that implies that there exists a simple directed path
ui, xk1 ,. . ., xkm , yl, t (Path 2) in Gt, obtained from Path 1
by replacing every pair xpin , xpout that corresponds to xp of
Type 1 by xp, and by inserting a measurement yl of xkm

.
Path 2 has to be intersected with Xa ∪ Ya. Then either exists
xp ∈ Xa that belongs to Path 2 or yl ∈Ya. However, then
either (xpin

,xpout
) or (xjn , t) belongs to Ec. This contradicts

existence of Path 1, so Claim 1 holds.
Claim 2. Assume there exist an edge separator E ′c with the

cost δ′ < δc. Let U ′a ∪Y ′a be constructed as follows. For each
(xkin , xkout) from Ec, we add uj to U ′a, where uj is adjacent
to xk. For each edge (xpout

, t) or (xp, t) from Ec, we add
all the measurements of xp to Y ′a. All of these measurements
must be unprotected (otherwise δ′ = +∞ > δc). We add ui to
U ′a. Note that E ′c cannot contain edges of other types, because
their weight is +∞, which would imply δ′ > δc.

Firstly, we prove that U ′a ∪ Y ′a must be a feasible point
of Problem 2. Assume that is not the case. Since, ui ∈ U ′a
and all the measurements from Y ′a are unprotected, it follows
that there exists a simple directed path ui, xk1

,. . ., xkm
, yl, t

(Path 1’) in Gt, in which none of the states are adjacent to
U ′a \ ui, and yl /∈ Y ′a. That implies that there exists a simple
directed path in Gui obtained from Path 1’ by replacing each
node xp of Type 1 from this path by xpin , xpout , and removing
yl. By the construction of U ′a ∪ Y ′a and Gui

, this path cannot
be intersected by E ′c. This would contradict the assumption
that E ′c is an edge separator, so U ′a ∪ Y ′a has to be a feasible
point of Problem 2. However, then Ua ∪ Ya is not a solution
of Problem 2 because |U ′a∪Y ′a| = δ′+1 < |Ua∪Ya| = δc+1.
Thus, E ′c cannot exist, and Claim 2 holds.

Statement 2. In this case, there has to exist a simple
directed path ui, xj1 ,. . ., xjn , yl, t in Gt that contains only
Type 2 states and protected measurement yl. Then the path
ui, xj1 , . . . , xjn , t exists in Gui

, and the weights of all the
edges from this path are +∞. Any edge separator needs to
cut this path, which implies δ∗ = +∞. �
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Proof of Proposition 4. Let Xa be defined as in (3). We prove
the claim by showing that Xa∪Ya has to be a vertex separator
of ui and t in Gt. Assume this is not the case. Then there exists
at least one simple directed path ui, xi0 , . . . , xin , yl, t (Path 1)
not intersected by Xa ∪ Ya. We now show that this implies
existence of at least one realization of the structural model
[A], [B], [C] in which a perfectly undetectable attacks against
ui cannot be conducted.

Assume the following realization of matrices A and C. For
xi0 from Path 1, A(i0, :) = 0. This ensures that xi0 cannot
be influenced by any state. For any other xik from Path 1,
A(ik, j) 6= 0 (resp. A(ik, j) = 0) if j = ik−1 (resp. j 6= ik−1).
This guarantees that the only state that influences xik is xik−1

.
For edge (xin , yl) ∈ Exy from Path 1, C(l, in) 6= 0. This
ensures that yl(k) 6= 0 once xin(k) 6= 0. We now show that
if this realization is present, a perfectly undetectable attack in
which ui is actively used does not exist.

Let a(ui) 6= 0 be an arbitrary attack signal against ui, and
let k0 be the first time instant for which a(ui)(k0) 6= 0. Since
u = 0 and a(ui) is the only attack signal that can directly
influence xi0 (due to Assumptions 2.(1) and 2.(2)), we have
xi0(k0 + 1) = A(i0, :)x(k0) + B(i0, i)a

(ui)(k0). Given that
A(i0, :) = 0 and B(i0, i) 6= 0 (Assumption 2.(3)), it follows
xi0(k0 +1) 6= 0. We now show xi1(k0 +2) 6= 0. Note that the
only state that influences xi1 is xi0 . Moreover, since xi1 cannot
be influenced by attacked actuators (xi1 /∈ Xa), and u =0, it
follows xi1(k0 + 2) = A(i1, i0)xi0(k0 + 1) 6= 0. By applying
the similar reasoning to all other states from Path 1, it can be
shown that xin(k0+n+1) 6= 0. Thus, yl(k0+n+1) 6= 0, which
implies that the attack is revealed. Since a(ui) was arbitrary
selected, there exists no perfectly undetectable attacks with ui
actively used in this realization.

This contradicts the assumption that the attacker can con-
duct a perfectly undetectable attack against ui in any realiza-
tion of [A], [B], [C] by using Ua and Ya. Thus, Xa ∪ Ya has
to be a vertex separator of ui and t in Gt. Since δr(ui) is
the minimum number of attacked sensors and actuators that
ensures Xa∪Ya is a vertex separator of ui and t with ui ∈ Ua,
the claim of the proposition holds. �
Proof of Proposition 5. (⇒) The proof is by contradiction. If
Xa ∪Ya is not a vertex separator of ui and t in Gt, we know
from the proof of Proposition 4 that we can find at least one
realization in which it is not possible to conduct a perfectly
undetectable attack against ui. Thus, Xa∪Ya has to be a vertex
separator of ui and t.

(⇐) If Xa∪Ya is a vertex separator of ui and t, the attacker
can conduct a perfectly undetectable attack against ui using
the strategy similar to the one in the proof of Theorem 2. For
actuator ui, the attacker injects an arbitrary signal a(ui) 6= 0.
For other actuators uj∈Ua\ui with (uj , xp)∈Eux, the attack
is given by a(uj)(k)=−A(p, :)x(k)/B(p, j). For yl ∈ Ya, the
attacker selects a(yl)(k) to maintain yl(k) = 0.

The Type 2 attacker can construct this attack. Firstly, the
attacker knows the values for A(p, :),B(p, :) that correspond
to actuators uj∈U\ui. Secondly, the attacker can construct
A(p, :)x(k), since he/she knows the values of in-neighbors
of xp, while the elements of A(p, :) that correspond to other
states are equal to 0. Thirdly, the Type 2 attacker can also set

the signals of attacked sensors and actuators to an arbitrary
value, so he/she can maintain yl(k)=0. The proof that y=0 is
then analogous to the proof of Theorem 2. �
Proof of Proposition 6. We prove the claims by showing that
Ya has to be a vertex separator of ui and t in Gt. Namely,
existence of a path from ui to t in Gt implies that there exist
at least one sensor yj that is not compromised by the attacker.
From the proof of Proposition 4, we know that there exists at
least one realization of the system in which the attack against
ui triggers yj . Since the Type 3 attacker has knowledge of
only [A], [B], [C], he/she does not know if the attack against ui
would be visible in yj or not. Thus, the Type 3 attacker needs
to attack yj to ensure being perfectly undetectable. Therefore,
Ya has to form a vertex separator of ui and t. By the definition,
δr(ui)− 1 is the size of the minimum vertex separator of ui
and t in Gt (we subtract 1 from δr(ui) to exclude ui). Hence,
|Ya| ≥ δr(ui)− 1. Finally, if δr(ui) = +∞, then there exists
a path in between ui and a protected sensor. This implies that
Ya cannot be a vertex separator. Hence, the Type 3 attacker
cannot ensure that a perfectly undetectable attack against ui
remains perfectly undetectable, because he/she does not know
if the aforementioned protected sensor would be triggered. �

D. Proofs of Section VI

Proof of Theorem 3. Assume we place yl to monitor any of
the states from Xui . We then introduce at least one additional
directed path ui, xj , . . . , yl, t from ui to t, which does not
contain states adjacent to U \ui. Thus, the only way to remove
this path is by adding yl to a new vertex separator. If yl is
protected, that is not possible, so δ′r(ui) = +∞. Otherwise,
the attacker must attack yl, thus δ′r(ui) = δr(ui) + 1.

We now show that if for every xj∈X for which there exists
(uk, xj)∈Eux, there also exists (xj , yp)∈Exy , then the only
way to improve δr(ui) is by placing sensors within Xui . Let
Ua∪Ya be a solution of Problem 2 for ui. We first form another
optimal solution U ′a∪Y ′a from Ua∪Ya. The set Y ′a is formed
by removing from Ya any yj which measures xk∈X that is
adjacent to ul∈U\ui. As a substitute of yj , we add ul to U ′a.
We then add all the actuators Ua to U ′a. This ensures that for all
the states that are both directly influenced by an actuator and
measured by a sensor, we always select an actuator to belong
to a solution of Problem 2 rather than a sensor. Finally, let X ′a
be defined as in (3) based on U ′a.

Let a sensor be placed to measure xl /∈Xui
. If there are no

directed paths from ui to xl, or if all the paths from ui to
xl are intersected by X ′a∪Y ′a, then U ′a∪Y ′a is still a solution
of Problem 2 and δr(ui) is not increased. Thus, assume there
exist a simple directed path ui, . . . , xl (Path 1) not intersected
by X ′a∪Y ′a. Since xl /∈Xui

, there has to exist at least one state
xp from Path 1 adjacent to an actuator. Then xp has to be also
adjacent to a sensor, which implies existence of a directed path
in between ui and t passing through xp that is not intersected
by X ′a∪Y ′a. This is not possible, since U ′a∪Y ′a is a solution of
Problem 2. Hence, Path 1 cannot exists. Therefore, we cannot
increase δr(ui) by placing sensors outside Xui

. �
Proof of Proposition 7. We first show that gui is submodular,
nondecreasing, and integer-valued. Firstly, wyj

= |xyj
∩ Xui

|
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is a binary integer constant. Thus, gl(Yp) =
∑

yj∈Yp
wyj

is a
linear function, so it is both submodular [43, Section 2] and
nondecreasing (sum of nonnegative numbers). Since we have
gui

(Yp)= min{gl(Yp), kui
}, it follows from Lemma 1 that

gui
is submodular and non-decreasing. Function gui

is also
integer valued, since gl and kui

are integer valued. Thus, it
follows from Lemma 1 that G is submodular, nondecreasing,
and integer valued. We also have G(∅) = 0, which implies
that G has the same properties as the set function from (5).
Thus, the claim of the proposition hold. �
Proof of Proposition 8. The function g′ui

is known to be sub-
modular [43, Section 2]. Additionally, g′ui

is a nondecreasing
function, since |Xp ∩ Xui

| is nondecreasing in Xp. We then
have from Lemma 1 that G′ is submodular and nondecreasing.
In addition, G′(∅) = 0. Hence, G′ has the same properties as
the function from (6), which concludes the proof. �
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