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Abstract—This paper investigates the robustness of strong structural
controllability for linear time-invariant and linear time-varying directed
networks with respect to structural perturbations, including edge dele-
tions and additions. In this direction, we introduce a new construct
referred to as a perfect graph associated with a network with a given set
of control nodes. The tight upper bounds on the number of edges that can
be added to, or removed from a network, while ensuring strong structural
controllability, are then derived. Moreover, we obtain a characterization
of critical edge-sets, the maximal sets of edges whose any subset can
be respectively added to, or removed from a network, while preserving
strong structural controllability. In addition, procedures for combining
networks to obtain strongly structurally controllable network-of-networks
are proposed. Finally, controllability conditions are proposed for networks
whose edge weights, as well as their structures, can vary over time.

Index Terms—Strong structural controllability; zero-forcing sets; ro-
bustness of controllability; network-of-networks; LTV networks.

I. INTRODUCTION

In recent years, controllability analysis of networks from a graph-
theoretic point of view has become an active area of research
[2], [3]. Among the various approaches adopted to reason about
network controllability, notions of weak structural controllability (ws-
controllability) and strong structural controllability (ss-controllability)
capture two facets of examining controllability for a parameterized
family of linear time-invariant (LTI) systems. For both approaches,
system parameters are classified into parameters that (always) assume
a zero or nonzero value, and the exact value of nonzero parameters
is unknown. In the weak structural framework, controllability results
can be extended to almost all networks with the same structure (see
e.g., [4], [5]), while in the strong structural setting that provides a
stronger notion of controllability, the results hold for all networks
with the same zero-nonzero pattern. Mayeda and Yamada introduced
the notion of ss-controllability for single-input LTI systems [6].
Their results were then extended to multi-input systems in [7].
Subsequently, the notion of ss-controllability was further explored
through such graph-theoretic concepts as cycle families and con-
strained matchings [8], [9]. In particular, [10] provided a necessary
and sufficient condition for ss-controllability of an LTI network in
terms of the notion of a zero forcing set (ZFS); this result was
further extended in [11]–[16]. Other references on ss-controllability
of networks include [17]–[20].

In this paper, using the notion of a ZFS for investigating ss-
controllability, we provide new insights into the robustness of con-
trollability to uncertainties in the network. It should be noted that
the ss-controllability results are typically valid when no edges are
added to, or removed from the network, i.e., the underlying pattern
of zero/nonzero elements remains intact. The only structural changes,
being allowed in some ss-controllability results, include adding or
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removing self-loops [10], [14]. However, since networks may expe-
rience structural perturbations (e.g., cellular biochemical pathways
in biological networks can be altered), robustness analysis for net-
work controllability with respect to both uncertainties in the system
parameters and presence or absence of interconnections becomes
of paramount importance. Examples of such structural perturbations
include loss of interconnections in a power distribution network
caused by link failures (or due to malicious attacks) and failed or
new social ties in a social network. Another case for robustness
analysis with respect to structural perturbations is made when only
an approximate representation of a network has been provided. For
example, it is common to omit edges with small edge weights
in a network. However, the existence of these edges can alter ss-
controllability properties of the network. Recent works on robustness
of ws-controllability of networks against link failures include [21]–
[25]. We note that ws-controllability is not affected by edge additions,
while removal of edges may affect it. On the other hand, both edge
additions and deletions may change ss-controllability. To the best of
our knowledge, [1] is the only work in the literature, investigating
the robustness of ss-controllability with respect to different types of
structural perturbations; the current paper extends the results of [1]
to strongly structurally controllable (SSC) networks-of-networks and
linear time-varying (LTV) networks.

The notion of a ZFS, which is related to a particular coloring of
nodes of a graph, was first introduced in [26] to study the minimum
rank problem for symmetric patterned matrices; the work [27] further
extended these results to directed graphs. In related works, the notion
of zero forcing number of a graph, that is, the minimum cardinality
of its ZFS, has been investigated. In particular, it has been shown that
by deleting exactly one edge from a graph, the difference between
the zero forcing number of the new graph and the old one is between
-1 and 1 [28], [29].

In this paper, by considering a fixed ZFS as a set of control nodes
of a directed network, its ss-controllability is studied. In this regard,
we first focus on LTI networks, and in §III, we introduce a (C, T )-
constructed graph and show that there is a one-to-one correspondence
between SSC networks and (C, T )-constructed graphs. With this in
mind, we propose a procedure for synthesizing networks that are SSC,
which is an extension of the results of [15] to directed networks.
As an extension of the results of [1], we also establish a one-to-
one correspondence between the set of nodes rendering a family
of (C, T )-constructed graphs controllable and sources of chains in
C. In the meantime, by considering the time or iteration by which
any color-change force is performed, a method built upon attributing
successive integers to the nodes of a SSC network is presented that
results in a framework for analyzing ss-controllability. In particular,
our work provides a machinery for studying the robustness of ss-
controllability with respect to structural perturbations; see §IV.

We note that our approach departs from [28] and [29], since in
these works, the effect of removing only one edge of a graph on
the zero forcing number has been explored; while, we consider a
fixed ZFS as the set of control nodes and characterize the maximal
set of edges, the addition of any subset of which, preserves ss-
controllability. In this direction, we introduce the notion of perfect
graphs corresponding to a network with a given set of control nodes.
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Furthermore, we show that if the number of edges added to a network
is greater than a tight bound, ss-controllability of the network will be
compromised. This bound, that is surprisingly independent from the
topology of the network, depends only on the size of the network and
the number of its control nodes, and it can increase by enhancing the
number of control nodes. Similar results are provided for the removal
of edges from a network while ensuring ss-controllability.

In §V, we provide an algorithm for combining SSC networks such
that the resulting network-of-networks is SSC. In [30], controllability
of the Cartesian product of networks (with system matrices restricted
to have a symmetry-preserving property) has been studied. Similarly,
in [31] and [32], methods for combining diffusively coupled networks
for building a larger controllable network are presented. In this paper,
we present a method for combining networks with system matrices
of the same zero/nonzero patterns. Implicit in the proposed method is
the existence of structural uncertainties in the constituent graphs. In
this direction, we determine the maximum number of edges that can
be added between networks while preserving the ss-controllability
of the resulting network-of-networks. Moreover, as an application of
the developed theory, networks with structures described by directed
acyclic graphs are considered, that appear in hierarchical social
networks [33], and networks with causal inferences [34]. Based on
the properties of directed acyclic graphs, a procedure for combing
networks with acyclic graphs is proposed, ensuring the controllability
of the overall network with a single control node. §VI is dedicated
to controllability analysis of a family of LTV networks. The work
[17] has investigated the controllability of a family of LTV networks
whose edge weights vary over time, but the network structure remains
unchanged. In §VI, we generalize the results of [17] to LTV networks
that in addition to their edge weights, have a time-varying structure.
§VII concludes the paper.

II. NOTATION AND PRELIMINARIES

In this section, we present the notation and relevant background
and constructs for our subsequent discussion.

Notation: We denote by R and Z, respectively, the set of real
numbers and integer numbers. For a matrix M ∈ Rp×q , Mij is the
entry of M on its ith row and jth column. The n×n identity matrix
is given by In, and ej represents its jth column. The cardinality of
a set S is given by |S|. For a, b ∈ Z with b ≥ a, we define [a, b] ,
{x ∈ Z : a ≤ x ≤ b}. Note that [a, a] = {a}. Also, for t1, t2 ∈ R
with t2 ≥ t1, we define [t1, t2]R = {x ∈ R : t1 ≤ x ≤ t2}.

A graph is denoted by G = (V (G), E(G)), where V (G) =
{1, . . . , n} and E(G) ⊆ V (G) × V (G) are, respectively, the node
set and the edge set of G. Also, |V (G)| is the size of G. If
(i, j) ∈ E(G), the node j (resp., i) is an out-neighbor (resp., in-
neighbor) of i (resp., j). Any edge (i, i) ∈ E(G), 1 ≤ i ≤ n, is a
self-loop on node i. Given graphs G and G′, we say that G ⊆ G′

if V (G) = V (G′) and E(G) ⊆ E(G′). For a graph G and a set
of edges E′ ⊂ V (G) × V (G), let G + E′ (resp., G − E′) be a
graph with the node set V (G) and the edge set E(G) ∪ E′ (resp.,
E(G) \ E′).

A chain C is a directed path graph, whose start node (resp., end
node) with no in-neighbor (resp., out-neighbor) is called the source
(resp., sink). For a node v ∈ V (C) which is not a sink of C, v + 1
denotes the out-neighbor of v.

A qualitative class of G is a set of patterned matrices defined as
Q(G) = {A ∈ Rn×n : for i 6= j, Aij 6= 0⇔ (j, i) ∈ E(G)}. Note
that the diagonal entries of A ∈ Q(G) can have any real value.

A. Problem setup

Consider an LTV network with the following dynamics

ẋ(t) = A(t)x(t) +Bu(t), (1)

where x(t) = [x1(t), . . . , xn(t)]T is the vector of node states, and
u(t) = [u1(t), . . . , um(t)]T is the vector of input signals. Moreover,
B ∈ Rn×m is a constant matrix, called the input matrix, defined as
B = [ej1 , . . . , ejm ], where for i = 1, . . . ,m, ji ∈ {1, ..., n}. For i =
1, . . . ,m, the node ji into which the input signal i is directly injected
is called a control node. The set of control nodes is represented by
VC = {j1, . . . , jm}. In addition, the time-varying matrix A(t) ∈
Rn×n, for every t ∈ R, is a piecewise-continuous function of time,
and is called the system matrix. For an LTV system, if u(t) = 0,
for all t ≥ t0, one can write the unique solution of (1) as x(t) =
Φ(t, t0)x(t0), where the n × n matrix Φ(t, t0) is referred to as the
transition matrix at (t, t0) and can be written via the Peano-Baker
series [35] as,

Φ(t, t0) = In +

∫ t

t0

A(s1)ds1 +

∫ t

t0

A(s1)

∫ s1

t0

A(s2)ds1ds2

+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)

∫ s2

t0

A(s3)ds3ds2ds1 + . . .

(2)

When A(t) in (1) is constant, we have an LTI system ẋ(t) =
Ax(t) + Bu(t). This LTI system, or equivalently the pair (A,B),
is controllable if there is a suitable input, steering the states of the
system between any initial and final values within a finite time.

Definition 1: Given an LTI system and a graph G, the correspond-
ing LTI network (on G) is called strongly structurally controllable
(SSC) if for all A ∈ Q(G), the pair (A,B) is controllable.1

An LTV system (1) is said to be controllable on an interval [t0, t1]
if there is a suitable input that can derive the system from any initial
state at time t0 to any final state at time t1 [17], [36]. The next result
presents a controllability condition for an LTV system.

Proposition 1 ( [17]): Let t0, t1 ∈ R, t0 < t1, and ν ∈ Rn. The
system (1) is controllable on [t0, t1] if and only if νT Φ(t1, τ)B = 0,
for almost every τ ∈ [t0, t1], implies that ν = 0.

In this paper, first we consider an LTI network that is SSC,
and investigate the preservation of ss-controllability under structural
perturbations and combination of networks. More precisely, we aim to
find sets of edges with the maximum size, adding/deleting any subset
of which to/from a network, does not disturb its ss-controllability
property. Moreover, we propose methods for combining SSC net-
works so that the resulting network is SSC. Finally, we propose
controllability conditions for a family of LTV networks whose zero-
nonzero pattern can also vary over time.

III. ZERO FORCING SETS

In this section, zero forcing sets that characterize a set of control
nodes, rendering a network SSC, are introduced. We first review a
useful coloring process on the nodes of a graph [26].

Consider a graph G whose nodes are colored either black or white.
The color of the nodes can be changed according to a color change-
rule: If a black node v ∈ V (G) has only one white out-neighbor
u ∈ V (G), it forces this node to become black; we designate this
by v → u. The process of repeatedly applying the color-change rule
until no more changes are possible is called a forcing process.

Now, let S ⊂ V (G) be the set of initially black nodes of G. The
set of final black nodes obtained by performing the forcing process
is called the derived set of S and is denoted by D(S). Given a

1Note that an LTI network with graph G remains SSC when any self-loop
is added to or removed from G.



set of initially black nodes Z ⊂ V (G), if D(Z) = V (G), Z is
referred to as a zero forcing set (ZFS). Considering a forcing process,
a chronological list of forces, or simply a list of forces F , is defined
as a record of the forces in the order in which they are performed.
Finally, given a list of forces F , a sequence of nodes (v1, . . . , vk) is
a forcing chain if for i = 1, . . . , k−1, vi → vi+1. This forcing chain
is maximal if v1 ∈ Z, and vk does not force any node of the graph
during the forcing process. Note that the maximal forcing chains are
node-disjoint in the sense that they do not have any common node.
In fact, every node of a graph can force at most one other node and
can be forced by at most one other node. With this in mind, there are
|Z| maximal forcing chains in a graph G (covering all of its nodes)
[29]. There is a one-to-one correspondence between control nodes
rendering a network SSC and the ZFS’s.

Theorem 1 ( [10]): An LTI network with the graph G is SSC if
and only if VC is a ZFS of G.

A. SSC networks and (C, T )-constructed graphs

Given a set of control nodes, our first contribution is a method
for synthesizing directed networks that are SSC. We then present
an algorithm for robustness analysis of ss-controllability under edge
additions and deletions. First, we review some relevant definitions.

Consider a set of node-disjoint chains, denoted as C =
{C1, . . . , Cm}, where Ci = (V (Ci), E(Ci)) is a chain of size
ni, i = 1, . . . ,m. Let V =

⋃m
i=1 V (Ci), and n = Σm

i=1ni. The
sources of C are the union of sources of Ci, i = 1, . . . ,m. Now,
for γ = n −m + 1, let us define the time function T : V → [1, γ]
as a function that assigns any node v ∈ V an integer number T (v),
satisfying the following conditions: 1) If for some Ci, i = 1, . . . ,m,
v is a source, T (v) = 1, 2) For any two nodes u, v ∈ V , none of
which is a source, one has T (u) 6= T (v), 3) For every v ∈ V (Ci)
that is not a sink (1 ≤ i ≤ m), we have T (v) < T (v + 1).

Now, consider a node v ∈ V . Let us define another function Tmax :
V → [1, γ] in the following way: If v is a sink of some Ci, i =
1, . . . ,m, define Tmax(v) = γ; otherwise, Tmax(v) = T (v+ 1)− 1.

For example, the set of chains C = {C1, C2} and the time interval
[T (v), Tmax(v)] for every node v are illustrated in Fig. 1 (a). Then,
one can see that T (v1) = T (u1) = 1, T (v2) = 2, T (u2) = 3, and
T (v3) = 4. Moreover, Tmax(v1) = 1, Tmax(u1) = 2, Tmax(v2) = 3,
Tmax(u2) = 4, and Tmax(v3) = 4.

Definition 2: For a given set of node-disjoint chains C and a time
function T , a class of (C, T )-constructed graphs, denoted by GC,T ,
includes any graph G, satisfying the following properties: 1) V (G) =⋃m

i=1 V (Ci), 2)
⋃m

i=1E(Ci) ⊆ E(G), 3) For any u, v ∈ V (G) that
(u, v) /∈

⋃m
i=1E(Ci), we have (u, v) /∈ E(G) if Tmax(u) < T (v).

The sources of a (C, T )-constructed graph are the sources of C.

v1

[1, 1]

v2

[2, 3]

v3

[4, 4]

(a)

u1

[1, 2]

u2

[3, 4]

v1

[1, 1]

v2 v3

[4, 4]

(b)

[2, 3]

u1

[1, 2]

u2

[3, 4]

Fig. 1: a) Set of node-disjoint chains C and time interval
[T (v), Tmax(v)], b) (C, T )-constructed graph.

In Fig. 1 (b), the solid directed lines, that is, the union of edges of
C1 and C2, denote edges which should exist in a (C, T )-constructed
graph. Moreover, dotted lines show edges that can exist in this graph.

The next result demonstrates that by synthesizing a (C, T )-
constructed graph and choosing its sources as control nodes, a SSC
network is provided.

Theorem 2: The set of sources of a (C, T )-constructed graph is a
ZFS of this graph.

Proof: Let G ∈ GC,T , and Z be the set of its sources, but suppose
Z is not a ZFS, i.e., D(Z) 6= V (G). For i = 1, . . . ,m, let ui

L be a
node in Ci ∩D(Z) such that ui

L + 1 is white. In other words, ui
L is

the terminating node in Ci that is colored black. Let θiL = Tmax(ui
L).

Without loss of generality, assume that θ1L = min1≤i≤mθ
i
L. Since

u1
L does not force any node to become black, it has at least two white

out-neighbors, one of which is in C1. Let s ∈ Cj , for some 1 < j ≤
m, be its other white out-neighbor. Then, T (s) > θjL ≥ θ1L. Thus,
Tmax(u1

L) < T (s), and based on Definition 2, (u1
L, s) /∈ E(G),

which is a contradiction. �
Now, in a reverse direction, we show that every SSC network corre-

sponds to a (C, T )-constructed graph. Consider a chronological list of
forces F in an LTI SSC network. We will show that the robustness
analysis of ss-controllability can be facilitated by considering the
time or the iteration index in which any node is forced. Note that in
every iteration of the forcing process, there may be more than one
potential force that can be independently performed at the same time.
For example, in [37], [38], the propagation time of a ZFS, that is,
the minimum number of iterations for simultaneous application of the
color-change rule until the termination of the forcing process has been
studied. However, to the purpose of this paper, we allow only one
node to be colored black at each step of the forcing process. In this
direction, Algorithm 1 shows how every node v of a SSC network can
be assigned a forcing time T (v). Indeed, T (v) is the iteration index
in which v becomes black. Note that the computational complexity
of Algorithm 1 is O(n2), since it is the same as the computational
complexity of coloring a graph through a forcing process [39].

Algorithm 1:
Given Z

For every v ∈ Z

T (v) = 1;
γ = 1;

while the color change rule is possible, do
Among nodes that can force their out-neighbors,
choose exactly one node w, and let w → u.
T (u) = γ + 1.
γ = γ + 1;

end while

Fig. 2: An algorithm that endows nodes of a graph with successive
integers with respect to a given ZFS.

Theorem 3: Consider an LTI SSC network with the graph G and the
set of control nodes Z. Then, there is a time function T : V (G)→
[1, γ] and a set of node-disjoint chains C with the sources Z such
that G ∈ GC,T .

Proof: Consider a list of forces F associated with Z, and let |Z| =
m. Define C = {C1, . . . , Cm} as the set of maximal forcing chains
associated with F . Also, let T (.) be a function that assigns every node
v a forcing time T (v), as provided by Algorithm 1. Now, suppose
that G /∈ GC,T . Then, either (1) for some i 6= j, there are some
u ∈ V (Ci) and v ∈ V (Cj) such that Tmax(u) < T (v), and (u, v) ∈
E(G), or (2) there are some u, v ∈ V (Ck) such that Tmax(u) <
T (v) and (u, v) /∈ E(Ck), but (u, v) ∈ E(G). In both cases, note
that u is the last black node of Ci in time Tmax(u), since the node
u + 1 is forced in the time Tmax(u) + 1. However, u has another



white out-neighbor v which will become black in time T (v), and
note that Tmax(u) < T (v). Hence, u has two white out-neighbors
in time Tmax(u), and the color change rule cannot be performed in
this step, establishing a contradiction. �

For an LTI SSC network with the graph G, consider a list of forces
F , and let C and T be, respectively, a set of node-disjoint chains and
a time function associated with F such that G ∈ GC,T . Then, for
every v ∈ V (G), T (v) is the time step in which the node v is
colored black. Let for some 1 ≤ i ≤ m, v ∈ Ci. Then, Tmax(v) + 1
is the time step when v forces v + 1 ∈ Ci to be black. One can see
that node v is the last black node of the chain Ci during the time
interval T(v) = [T (v), Tmax(v)]. Accordingly, we can have (u, v)
as an edge of the network without disturbing the ss-controllability if
v is forced before u forces, or equivalently, if Tmax(u) ≥ T (v). For
any u, v ∈ V (G) for which T(u) ∩ T(v) 6= ∅, (u, v) and (v, u) can
simultaneously exist in a SSC network. Otherwise, either Tmax(u) >
T (v) or Tmax(v) > T (u). Thereby, For any (u, v) ∈ V (G)×V (G),
if the network with structure G+ {(u, v)} is no longer SSC, then a
network with the graph G+ {(v, u)} would be SSC.

Next, we define a new family of matrices, associated with a
class of (C, T )-constructed graphs, whose zero-nonzero pattern is not
necessarily the same.

Definition 3: A qualitative class corresponding to GC,T is defined as
P(GC,T ) = {A ∈ Rn×n : A ∈ Q(G), for some G ∈ GC,T }.

The next theorem provides a necessary and sufficient controllability
condition for every LTI network whose system matrix is in P(GC,T ).

Theorem 4: Any LTI system with A ∈ P(GC,T ) is controllable if
and only if VC is any set that includes the set of sources of C.

Proof: Let S be the set of sources of C. Consider a graph G, where
E(G) =

⋃m
i=1E(Ci), and note that G ∈ GC,T . From Theorem 1, if

an LTI system with A ∈ Q(G) is SSC, VC is a ZFS of G. Then, since
any ZFS of G should include S, the necessary condition is proved.
Moreover, since S is a ZFS of any G ∈ GC,T , Theorem 1 implies
that for VC = S, any LTI system with A ∈ Q(G) is controllable. �

In the next section, we study the maximum number of edges that
can be added to a network while the ss-controllability is preserved.

IV. ROBUSTNESS OF SS-CONTROLLABILITY

Strong structural controllability captures network controllability
with implicit robustness guarantees against variations in the edge
weights. In this context, however, no edges are allowed to be added
to, or removed from the network. We address this shortcoming next.
In this regard, we introduce the notion of a critical additive (resp.,
subtractive) edge-set, a set of edges of the maximum cardinality
whose any subset can be added to (resp., removed from) a network
with a given set of control nodes, while the ss-controllability is
preserved. Some intermediate notions are first introduced.

For a graph G with a given ZFS, consider a list of forces F and
the associated set of node-disjoint chains C. Then, provide a time
function T : V → [1, γ] according to Algorithm 1 in Fig 2.

Definition 4: A (C, T )-constructed graph G is called perfect if
Tmax(u) ≥ T (v) implies that (u, v) ∈ E(G), for any u, v ∈ V (G).
We denote a perfect (C, T )-constructed graph and its edge set
respectively by GC,Tperf and Eperf .

For example, the graph in Fig. 1 (b), with all dotted and solid lines
as its edges, represents a perfect (C, T )-constructed graph.

Remark 1: Note that with a set of node-disjoint chains C and a
time function T , only a unique GC,Tperf can be defined. However, if
| ∪m

i=1 E(Ci)| = q, and |Eperf | = l, then there are 2l−q graphs, all
of which are (C, T )-constructed.

Proposition 2: If G = GC,Tperf , then for every set of node-disjoint
chains C′ and any time function T ′ that G ∈ GC

′,T ′ , we have T ′(v) =
T (v), for all v ∈ V (G).

Proof: Since G = GC,Tperf , one of its associated time function is
T . Now, we claim that in every iteration k, 1 < k ≤ γ, there is
exactly one white node that can be forced to be black. The proof
follows by contradiction. Assume that the iteration i, 1 < i ≤ γ,
is the first iteration in which there are at least two different white
nodes v1 and v2 that can be forced by two black nodes u1 and u2.
Note that we should have u1 6= u2; since any node can force at
most one white node. Now, let v1 ∈ V (G) be a node such that
T (v1) = i. Since T (v1) = i, u2 remains as the last black node of
its chain in the iteration i, and then Tmax(u2) ≥ i. Thus, (u2, v1) ∈
E(G), implying that u2 has two white out-neighbors v1 and v2 in the
iteration i; hence, it cannot force v2 in this iteration, which contradicts
the assumption. �

A graph G with a given ZFS is said to have a perfect graph G′,
if for a set of node-disjoint chains C with the set of sources ZFS
and a time function T , G′ = GC,Tperf , and G is a (C, T )-constructed
graph. Note that since in every step of Algorithm 1, exactly one node
is chosen from among the nodes having one white out-neighbor, the
resulting set of chains C and the time function T are not unique in
general. Then, a graph may have different perfect graphs. However,
with the aid of Proposition 2, one can see that if for some C and T ,
G = GC,Tperf , then it has a unique perfect graph.

Assume that there is an edge, which when added to a SSC network,
the ss-controllability is preserved. Next, we show that this edge
belongs to the edge set of one of the associated perfect graphs.

Lemma 1: Consider an LTI SSC network with the graph G. Let
(u, v) ∈ V (G)×V (G), and (u, v) /∈ E(G). If the network with the
graph G′ = G+{(u, v)} and control nodes VC is SSC, then one can
find a time function T and a set of node-disjoint chains C with the
set of sources VC , such that G and G′ are both (C, T )-constructed
graphs.

Proof: It suffices to show that there is a list of forces F for both
G and G′, in which u 9 v. In other words, we should prove
that (u, v) /∈ E(C), where C is the set of maximal forcing chains
associated with F . Consider a list of forces F∗ with the set of node-
disjoint chains C∗ = {C∗1 , . . . , C∗m} and the time function T ∗ such
that G ∈ GC

∗,T∗ . Apply the forces of F∗ in G′ until the iteration
T ∗max(u), and let B1 be the set of black nodes until this iteration. If v
is forced before u forces, then u→ v is not in the list of forces F∗,
and thus, one can define F = F∗. Now, assume that in the iteration
T ∗max(u), v is white, that is, T ∗max(u) < T ∗(v). Let u ∈ C∗k , for
some 1 ≤ k ≤ m. Note that u is not the sink of C∗k ; otherwise,
T ∗max(u) = γ and T ∗max(u) ≥ T ∗(z), for every z ∈ V (G). Now,
suppose that u has another white out-neighbor in C∗k , say w. Then,
in the iteration T ∗max(u), u has two white out-neighbors v and w
in G′. Thus, at least one of these neighbors should be forced by
another node of the graph. If v is forced by another node except u,
then a list of forces can be found in which the force u→ v does not
appear, and the proof is complete. Now, suppose that w is forced by
another node of G′ other than u. Then, after the iteration Tmax(u),
a subsequence of forces as F1 = (z1 → z2, . . . , zq → w) can be
found in G′, which causes w to become black. Note that none of
zi’s, 1 ≤ i ≤ q, equals to u or v. Now, consider a list of forces in
G after the iteration in which u forces w until the iteration in which
v becomes black. In this direction, for yi ∈ V (G), 1 ≤ i ≤ p, let
F∗1 = (y1 → y2, y2 → y3, . . . , yp → v), which includes the forces
from the iteration T ∗(w)+1 until the iteration T ∗(v). Then, none of
yi’s is the same as the node u. Now, we claim that after w becomes
black in G′, the sequence of forces F∗1 can be performed in G′ as
well. Assume that the claim is not true, and let k, 1 ≤ k ≤ p, be
the smallest index, where the force yk → yk+1 cannot be performed
in G′. It implies that yk has at least two white out-neighbors in G′.
Note that the only node in G′ that has a new out-neighbor is u, and



yk 6= u. Let B2 and B′2 be the set of black nodes respectively in G
and G′ before applying the force yk → yk+1. Then, based on the
previous discussion, one can see that B2 = B1∪{w}∪{y1, . . . , yk}.
In other words, B2 includes the nodes in G that become black
before u forces w, together with node w, and the set of nodes yi’s,
1 ≤ i ≤ k, that become black before yk forces yk+1. Moreover, we
have B′2 = B2 ∪ {z1, . . . , zq}. In fact, one can see that B′2 includes
all nodes of B1, all the nodes zi’s, 1 ≤ i ≤ q, that become black
before w is forced, and node w. Also, since based on the assumption,
for all 1 ≤ i < k, the force yi → yi+1 can be performed in G′, B′2
includes the set of nodes {y1, . . . , yk} as well. Thus, B2 ⊆ B′2, which
implies that all nodes being black in G before applying the force
yk → yk+1 are black in G′ as well. Therefore, the force yk → yk+1

can be performed in G′ as it can be performed in G, contradicting
the assumption. Hence, when w is black, v can be forced by a node
other than u, completing the proof. �

The next theorem is one of our main results and describes networks
that do not remain SSC under any new edge addition.

Theorem 5: Consider an LTI network with the graph G. Let VC

be a ZFS of G. By adding any single edge to G, the new network
is no longer SSC if and only if for a time function T and a set of
node-disjoint chains C with sources VC , G = GC,Tperf .

Proof: Suppose that G is a perfect graph, but for some (u, v) ∈
V (G)×V (G) for which (u, v) /∈ E(G), a network with the same set
of control nodes and the structure G′ = G+ {(u, v)} is SSC. Then
from Lemma 1, one can find a time function T and a set of node-
disjoint chains C such that both G and G′ are (C, T )-constructed.
Hence, we have Tmax(u) ≥ T (v). Moreover, from Proposition 2,
one can see that since G is a perfect graph, for any time function
T ′ and a set of chains C′ that G ∈ GC

′,T ′ , one has T ′(w) = T (w),
∀w ∈ V (G). Thus, since Tmax(u) ≥ T (v), we have (u, v) ∈ E(G),
contradicting the assumption. Now, assume by adding any single edge
to G, the new network is no longer SSC, but there is not any C and
T for which G is a perfect (C, T )-constructed graph. From Theorem
3, there is a set of chains C′ and a time function T ′ such that G ∈
GC
′,T ′ . Let G∗ = GC

′,T ′

perf . Since G 6= G∗, G ⊂ G∗. Then, Edif =
E(G∗) \E(G) 6= ∅. Note that a network with the graph G∗ and the
control nodes VC is SSC. Hence, for any e ∈ Edif , the network with
the graph G+ {e} would be SSC, establishing a contradiction. �

Now, consider a SSC network with the graph G of size n and a
set of control nodes of size m. Next, we show that although G may
not have a unique perfect graph, the cardinality of the edge set of all
of its perfect graphs is the same.

Lemma 2: Consider a graph G of size n with a ZFS of size m.
Any perfect (C, T )-constructed graph of G has an edge set of size
|Eperf | = 1

2
n(n+ 1) + 1

2
m(2n−m− 1).

Proof: One can partition Eperf into two sets of edges E1, E2,
where E1 =

⋃m
i=1E(Ci), and E2 = Eperf \ E1. We have |E1| =

n − m. In addition, (u, v) ∈ E2 if and only if Tmax(u) ≥ T (v).
Note that if u is a sink of some Ci ∈ C, then Tmax(u) = n−m+1,
and there are m chains with m sinks. Then, for any u that is a
sink, we have (u, v) ∈ Eperf , for all v ∈ V (G). Now, consider a
node u that is not a sink. Then, Tmax(u) = T (u + 1) − 1, where
u + 1 is the out-neighbor of u in the same chain. Thus, for any
1 ≤ k ≤ n −m, there is only a single node u that Tmax(u) = k.
Let V ∗u = {v ∈ V (G) : (u, v) ∈ Eperf}. Then, v ∈ V ∗u if and
only if T (v) ≤ k. For any node v in the set of sources of C, we
have T (v) = 1. Moreover, for any 1 < j ≤ k, there is only one
node v′ that T (v′) = j. Thus, |V ∗u | = m + k − 1. Accordingly,
one can write |E2| = mn +

∑n−m
k=1 m + k − 1. Hence, we have

|Eperf | = |E1|+ |E2| = 1
2
n(n+ 1) + 1

2
m(2n−m− 1). �

It is deduced from Lemma 2 that for all sets of chains C and time
functions T , the number of edges of a perfect (C, T )-constructed

graph depends only on the size of the graph and the cardinality
of its ZFS, independent from the choice of C and T . We note that
with a single control node, |Eperf |

n2 converges to 0.5 as n increases.
Moreover, by increasing the number of control nodes, more edges
are available in the corresponding perfect graph.

Lemma 2 also provides a method to check that whether a graph
of size n and a given ZFS of size m is a perfect (C, T )-constructed
graph or not. In fact, if G ∈ GC,T , but G 6= GC,Tperf , then G ⊂ GC,Tperf ,
and accordingly |E(G)| < |Eperf |.

Corollary 1: Consider a graph G of size n and a ZFS of size m.
For a time function T and a set of node-disjoint chains C, G = GC,Tperf

if and only if |E(G)| = |Eperf |.
Now, consider the next definition in an LTI network with graph G.
Definition 5: Consider an LTI SSC network with a set of control

nodes VC . A set of edges, adding (resp., removing) any subset of
which to (resp., from) the network preserves ss-controllability, is
referred to as an additive edge-set (resp., subtractive edge-set). In
other words, a set of edges E∗ ⊂ V (G) × V (G) is an additive
(resp., subtractive) edge-set of G if for any E′ ⊆ E∗, the network
with the graph G+E′ (resp., G−E′) is SSC. The critical additive
number (resp., critical subtractive number) is the maximum of |E∗|
over all additive (resp., subtractive) edge-sets E∗ ⊂ V (G) × V (G)
and is denoted by nc

add(G) (resp., nc
sub(G)). A critical additive

(resp., subtractive) edge-set is an additive (resp., subtractive) edge-
set of the maximum cardinality and is represented by Ec

add(G)
(resp., Ec

sub(G)). Thus, we have |Ec
add(G)| = nc

add(G) (resp.,
|Ec

sub(G)| = nc
sub(G)).

Theorem 6: For an LTI SSC network with the graph G, consider a
set of node-disjoint chains C with the set of sources VC and a time
function T such that G ∈ GC,T . Then, E(GC,Tperf) \E(G) is a critical
additive edge-set. Moreover, nc

add(G) = 1
2
n(n+1)+ 1

2
m(2n−m−

1)− |E(G)|.
Proof: Note that

⋃m
i=1E(Ci) ⊆ E(G) ⊆ Eperf , and let E∗ =

Eperf \E(G). Then, by Definitions 2 and 4, E∗ includes edges which
may or may not exist in a (C, T )-constructed graph. In other words,
by adding any subset of E∗ to the edge set of G, a new (C, T )-
constructed graph is obtained which according to Theorems 1 and
2 is SSC. Moreover, from Theorem 2, by adding any new edge to
a network, it would no longer be SSC if and only if it is a perfect
graph. Lemma 2, then, implies that any network with a perfect graph
of size n and the set of control nodes of size m has an edge set of
size |Eperf | = 1

2
n(n+ 1) + 1

2
m(2n−m− 1). Thus, the maximum

number of edges that can be added to a network without disturbing its
ss-controllability is |Eperf | − |E(G)|. Now, since |E∗| = |Eperf | −
|E(G)|, the proof is complete. �

Note that by adding any set of edges E′ to G with |E′| > nc
add(G),

the network would no longer remain SSC.
In Fig. 3 (a), a graph G with a black ZFS is shown. In

Fig. 3 (b)-(e), different sets of chains C and the time intervals
T(v) = [T (v), Tmax(v)] for every v ∈ V (G) are given, and
the associated perfect graphs are shown (only the bidirectional
edges of the perfect graphs are shown for clarity). By Theorem 6,
nc
add(G) = 16. In Fig. 3 (b), a critical edge-set is Ec

add(G) =
{(v3, v6), (v6, v3), (v4, v6), (v6, v4), (v1, v1), (v2, v2), (v3, v3), (v4,
v4), (v5, v5), (v6, v6), (v3, v1), (v4, v1), (v5, v1), (v4, v2), (v5, v2),
(v5, v3)}.

Next, we study the robustness of ss-controllability of a network
with respect to edge removals and describe a critical subtractive edge-
set. A formula for the critical subtractive number is then presented.

Proposition 3: Consider a network with the graph G and the ZFS
VC . If G ∈ GC,T , for a set of node-disjoint chains C with the set of
sources VC and time function T , then E(G)\

⋃m
i=1E(Ci) is a critical

subtractive edge-set of G. Moreover, nc
sub(G) = |E(G)| − n+m.
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Fig. 3: An example of a network and its critical additive edge-sets.

Proof: By Definition 2, E′ = E(G) \
⋃m

i=1E(Ci) includes edges
which may or may not exist in a (C, T )-constructed graph. Then, if
we remove any subset of E′ from the edge set of G, we obtain a new
(C, T )-constructed graph which is still SSC from Theorems 1 and 2.
Moreover, E′ is the largest set of edges which can be removed from
the edge set of a network so that its ss-controllability is preserved.
Because, by removing more than |E′| edges from the network, a
graph with more than m connected components is obtained, which
cannot be SSC from only m control nodes. Hence, E′ is a critical
subtractive edge-set of G. Moreover, since

∑m
i=1 |E(Ci)| = n−m,

we have nc
sub(G) = |E(G)| − n+m. �

V. NETWORK COMBINATIONS

In this section, methods of combination of networks, resulting in
a SSC network-of-networks are presented.

A. Combining SSC networks

We now present methods for combining SSC networks while
preserving their ss-controllability. We also consider a structural
uncertainty for the networks and propose methods for combining
them such that despite the uncertainty in their respective structures,
the combined network remains SSC.

For any 1 ≤ i ≤ l, consider an LTI network with graph Gi =
(V (Gi), E(Gi)) of size ni, that is SSC. Let V i

C be the set of control
nodes, and |V i

C | = mi. Consider a set of node-disjoint chains Ci =

{Ci
1, . . . , C

i
mi
} and a time function T i such that Gi ∈ GC

i,T i

.
Now, consider a graph G = (V (G), E(G)), defined as G =

comb(
⋃l

i=1Gi, E
∗), which implies that G is a combination of

the graphs G1, . . . , Gl through connecting some of their nodes via
directed edges in E∗. Then, we have V (G) =

⋃l
i=1 V (Gi), and

E(G) =
⋃l

i=1E(Gi)∪E∗, where for any (u, v) ∈ E∗, there is some
1 ≤ k, j ≤ l, such that k 6= j, and u ∈ V (Gk), and v ∈ V (Gj).
Thus, E∗ includes all edges that are between nodes of two different
graphs.

Let us define Gu as the class of all graphs G′ =

comb(
⋃l

i=1G
′
i, E
∗), where G′i ∈ GC

i,T i

, for i = 1, . . . , l. In fact,
one can consider structural uncertainties in any Gi and obtain a graph
in GC

i,T i

; then, by combining these graphs via edges in E∗, a graph
in Gu is provided. It is obvious that G ∈ Gu.

We aim to propose a method to combine graphs G1, . . . , Gl in a
way that: (1) the LTI network with graph G = comb(

⋃l
i=1Gi, E

∗)
is SSC, and (2) all the LTI networks with graphs in Gu are SSC.

Given a time function T i for every graph Gi, i = 1, . . . , l,
Algorithm 2 transcribes an update on T i for the purpose of combining
networks. It is noted that in Algorithm 2, for a sequence S, |S| is
the number of its elements, and S(j) denotes its jth element.

Procedure 1: Consider graphs G1, . . . , Gl, where Gi ∈ GC
i,T i

,
i = 1, . . . , l. Also, let S be a sequence of Gi’s, i = 1, . . . , l,
where every Gi is repeated qi = ni − mi times. The num-
ber of different sequences which can be made in this way is
(
∑l

i=1 qi)!/(q1! . . . ql!). Considering the sequence S, run Algorithm
2 for any of the graphs G1, . . . , Gl (G∗ in Algorithm 2 can be
any of the graphs G1, . . . , Gl), and obtain a new time function
T : V (G) → [1, n − m + 1] for G, where n =

∑l
i=1 ni, and

m =
∑l

i=1mi. Moreover, let C = {C1, . . . , Cl}. Note that the
computational complexity of Algorithm 2 is O(n).

Algorithm 2:
Given a sequence S and the graph G∗ with the time function T ∗;
j=0;
For k = 1 : |S|

If S(k) == G∗

j = j + 1;
For v ∈ V (G∗) that T ∗(v) = j + 1;
T (v) = k + 1;

end for
end if

end for

Fig. 4: An algorithm that with a given sequence S and a time function
T ∗, updates the integer assigned to every node of a graph G∗.

For example, consider the graphs G1 and G2 in Fig. 5 (a). The time
interval T1(v) = [T 1(v), T 1

max(v)] associated with every node v ∈
V (G1) and the time interval T2(v) = [T 2(v), T 2

max(v)] associated
with every node v ∈ V (G2) are also given. Now, consider a sequence
S of G1 and G2, where Gi (i = 1, 2) is repeated ni − mi = 2
times. For example, let S = (G2, G1, G1, G2). In Fig. 5 (b), the
updated time intervals assigned to the nodes of the combined network,
obtained by running Algorithm 2, are presented.
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Fig. 5: a) Graphs G1 and G2, b) their combination.

Theorem 7: Consider an LTI network with a graph G =

comb(
⋃l

i=1Gi, E
∗), where Gi ∈ GC

i,T i

, for i = 1, . . . , l. Let a
set of node-disjoint chains C and a time function T be provided
by Procedure 1. Then, any network with a graph G ∈ Gu is
SSC if the following condition holds: for all u ∈ V (Gi) and
v ∈ V (Gj) (i 6= j), (u, v) /∈ E∗ if Tmax(u) < T (v). Moreover,
the largest set of edges which can be added between graphs while
preserving the ss-controllability of any network with a graph in Gu
is E∗max = {(u, v) : u ∈ V (Gi), v ∈ V (Gj), 1 ≤ i, j ≤ l, i 6=
j, and Tmax(u) ≥ T (v)}, and |E∗max| = 1

2
n(n + 1) + 1

2
m(2n −

m− 1)−
∑l

i=1

(
1
2
ni(ni + 1) + 1

2
mi(2ni −mi − 1)

)
.



Proof: To show the ss-controllability, it suffices to prove that G is a
(C, T )-constructed graph. By the assumption, if i 6= j and u ∈ V (Gi)
and v ∈ V (Gj), we have (u, v) /∈ E(G) if Tmax(u) < T (v). Then,
we should only prove that for i = 1, . . . , l and for all u, v ∈ V (Gi)

that (u, v) /∈
⋃mi

k=1E(Ci
k), one has (u, v) /∈ E(G) if Tmax(u) <

T (v). Note that since Gi ∈ GC
i,T i

, by Definition 2, (u, v) /∈ E(Gi)
if T i

max(u) < T i(v). Now, we claim that T i
max(u) < T i(v) if and

only if Tmax(u) < T (v). Since T i
max(u) = T i(u + 1) − 1 and

Tmax(u) = T (u + 1) − 1, we should prove that for every w, v ∈
V (Gi), i = 1, . . . ,m, T i(w) ≤ T i(v) if and only if T (w) ≤ T (v).
From Algorithm 2, one can see that if for some u ∈ V (Gi), T i(u) =
j + 1, and T (u) = k + 1, then jth Gi in the sequence S is the
kth element of S. Now, let j1th and j2th Gk in the sequence S
be respectively, its k1th and k2th elements. Then, one can see that
j1 ≤ j2 if and only if k1 ≤ k2. Accordingly, T i(w) ≤ T i(v) if and
only if T (w) ≤ T (v), and G is a (C, T )-constructed graph. From
Theorem 5, a SSC network with graph G has maximum number of
edges when G is a perfect (C, T )-constructed graph. When Gi’s,
i = 1, . . . , l are all perfect, the maximal set of edges which can be
added is E∗max with a cardinality obtained from Lemma 2. �

B. Combination of directed acyclic networks

We now propose a method for combining networks with acyclic
structures such that the corresponding network-of-networks is SSC
with only a single control node. A directed acyclic graph is a directed
graph with no directed cycles. However, if all edges are replaced with
undirected ones, there may be some undirected cycles in the graph.

Definition 6: A topological ordering of a directed graph G is a
linear ordering of the nodes such that for every (u, v) ∈ E(G), v
comes before u in the ordering. Hence, where there is a topological
ordering for a graph G, one can index the nodes in a way such that
for all (i, j) ∈ E(G), i > j.

Lemma 3 ( [40]): A graph has a topological ordering if and only
if it is a directed acyclic graph.

A directed acyclic graph has at least one topological ordering, but
a topological ordering may not be unique. There are some algorithms
computing a topological ordering of a graph. For example, in Kahn’s
algorithm it can be computed in O(|V |+ |E|) [41].

Consider l directed acyclic graphs G1, . . . , Gl. Let ni = |V (Gi)|,
and n =

∑l
i=1 ni. Assume that the nodes of each graph are

indexed by the topological ordering. The following graph composition
procedure can lead to a SSC network with a single control node.

Procedure 2: Arrange G1, . . . , Gl in a sequence S in a way that
for all i = 1, . . . , l, Gi is repeated ni times. Moreover, no two Gi’s
are put beside each other in the sequence. Given the sequence S, for
all i = 1, . . . , l, index Gi’s in S by a superscript, considering their
place in the sequence. More precisely, index the jth Gi in S as Gj

i ,
for j = 1, . . . , ni. For example, assume that l = 3, n1 = 2, n2 = 3,
and n3 = 1. Let S = (G1, G2, G3, G2, G1, G2). Then, we can write
S = (G1

1, G
1
2, G

1
3, G

2
2, G

2
1, G

3
2). Let vi be node v of the graph Gi.

Now, for all k = 1, . . . , n − 1, if S(k) = Gv
i and S(k + 1) = Gu

j ,
for some 1 ≤ i, j ≤ l, 1 ≤ v ≤ ni, and 1 ≤ u ≤ nj , then add an
edge from the node vi to the node uj . Let G be the obtained graph,
that is, a combination of graphs G1, . . . , Gl. Now, if S(k) = Gv

i , let
T (vi) = k, where T is a time function defined on nodes of G.

Proposition 4: Let v be a node that T (v) = 1 and VC = {v}. An
LTI network with graph G, obtained by Procedure 2, is SSC.

Proof: Let C1 be a chain with V (C1) =
⋃l

i=1 V (Gi), and
E(C1) = {(u, v) : T (u) = k, T (v) = k + 1, k = 1 . . . , n − 1}.
Define C = {C}. We claim G is a (C, T )-constructed graph.
Otherwise, for some u, v ∈ V (G) that Tmax(u) < T (v) and
(u, v) /∈ E(C), we have (u, v) ∈ E(G). Then, there is some graph

Gi, where u, v ∈ V (Gi). Moreover, since Tmax(u) < T (v), then
u < v. Thus, by Lemma 3 and Definition 6, there cannot be an edge
of the form (u, v) in Gi, which is a contradiction. Then, G ∈ GC,T ,
and the source of C renders it SSC. �

VI. CONTROLLABILITY OF A FAMILY OF LTV NETWORKS

As shown in previous sections, ss-controllability of an LTI network
can remain intact while there is an uncertainty in the presence or
absence of certain edges. In this section, we present conditions for
ss-controllablity of an LTV network, where not only edge weights
can be time-varying, but also over some time intervals, certain edges
can be removed from, or added to, the network.

For a given graph G, consider a set of time-varying n×n matrices
A(t), where for almost every (a.e.) t ∈ R, A(t) ∈ Q(G). Thus,
for a.e. t ∈ R and i 6= j, we have Aij(t) 6= 0 if and only if
(j, i) ∈ E(G). Note that given an edge (j, i) ∈ E(G), there might
exist some t for which Aij(t) = 0, but the (Lebesgue) measure of
such a set of t’s is zero. That is, there is no time interval over which
Aij(t) = 0. In [17], the following controllability result for such LTV
networks has been presented. In subsequent discussion, let t0, t1 ∈ R,
and t0 < t1.

Theorem 8: An LTV network of the form (1), where for a.e. t ∈ R,
A(t) ∈ Q(G), is controllable on [t0, t1]R if and only if VC is a ZFS
of G.

Now, given a set of node-disjoint chains C = {C1, . . . , Cm} and
a time function T , consider the class of (C, T )-constructed graphs
GC,T . Let A(.) be a piecewise continuous function of t, and for
a.e. t ∈ R, A(t) ∈ P(GC,T ), that is, A(t) ∈ Q(G), for some
G ∈ GC,T . For example, for a time interval [t0, t1]R, we might have
A(t) ∈ Q(G1), and for other time interval [t1, t2]R, A(t) ∈ Q(G2),
where G1, G2 ∈ GC,T . If (j, i) ∈ E(Ci), for some 1 ≤ i ≤ m,
then we have Aij(t) 6= 0, for a.e. t ∈ R. Otherwise, we may have
(j, i) ∈ E(G1), while (j, i) /∈ E(G2), and then for a.e. t ∈ [t0, t1]R,
Aij(t) 6= 0, while for a.e. t ∈ [t1, t2]R, Aij(t) = 0.

For example, consider a chain C with V (C) = {v1, v2, v3}, and
E(C) = {(v1, v2), (v2, v3)}. Define T (vi) = i, 1 ≤ i ≤ 3, and C =
{C}. Now, consider some A(.) that for a.e. t ∈ R, A(t) ∈ P(GC,T ).
Let t0 = 0, and t1 = 10. Thus, for a.e. t ∈ [0, 10]R, we must
have A21(t) 6= 0, A32(t) 6= 0, and A31(t) = 0. Moreover, we may
assume that A11(t) 6= 0, for t ∈ [0, 2]R ∪ [4, 6]R; A12(t) 6= 0, for
t ∈ [1, 3]R; A13(t) 6= 0, for t ∈ [2, 5]R; A22(t) 6= 0, for t ∈ [7, 10]R;
A23(t) 6= 0, for t ∈ [0, 3]R∪ [5, 6]R; and A33(t) 6= 0, for t ∈ [4, 7]R.

In the following, we establish a controllability condition for all
networks with these system matrices.

Theorem 9: Given a class GC,T , any LTV system (1), where for
a.e. t ∈ R, A(t) ∈ P(GC,T ), is controllable on [t0, t1]R if and only
if VC is any set that includes the sources of C.

Proof: Let S be the set of sources of C. First, consider systems
whose system matrix A(t) is constant in time. Then, from Theorem
4, for the controllability of an LTI system with A ∈ P(GC,T ), we
should have S ⊆ VC , and the necessary condition is proved.

Now, assume that VC = S. To prove the sufficiency, consider a
system in this family with system matrix A(t) and the transition
matrix Φ(., .). Since for a.e. t ∈ R, A(t) ∈ P(GC,T ), then for any
(j, i) ∈

⋃m
i=1E(Ci), we have Aji(t) 6= 0, for a.e. t ∈ [t0, t1]R.

Let t0 = t0 and tp = t1. Then, for some p ≥ 1, one can find
a time sequence (t0, t1, . . . , tp), where ti < ti+1, such that the
following property holds for all i, j ∈ {1, . . . , n}: either Aij(t) = 0
or Aij(t) 6= 0, for a.e. t ∈ [ti, ti+1], 1 ≤ i ≤ p. Hence for
a.e. t in any time sub-interval [ti, ti+1], A(t) is of the same zero-
nonzero pattern. Then, there is a graph Gi ∈ GC,T , such that for a.e.
t ∈ [ti, ti+1], we have A(t) ∈ Q(Gi), 0 ≤ i ≤ p− 1. Now, consider
an LTV system with the transition matrix Φ∗(., .) and the system



matrix A∗(t), where for a.e. t ∈ R, A∗(t) ∈ Q(Gi), and assume
that for a.e. t ∈ [ti, ti+1], we have A∗(t) = A(t). From (2), one
can see that the transition matrix Φ(t2, t1) is a function that depends
only on the numerical values of the matrix A(t), for t ∈ [t1, t2].
Thus, for all τ ∈ [ti, ti+1], we have Φ(ti+1, τ) = Φ∗(ti+1, τ). From
Theorem 8, one can see that since Gi is a (C, T )-constructed graph,
and S is a ZFS of Gi, then the LTV network with the system matrix
A∗(t) is controllable on [ti, ti+1]. Thus, based on Proposition 1,
the condition νT Φ∗(ti+1, τ)B = 0, for a.e. τ ∈ [ti, ti+1], implies
that ν = 0. Accordingly, since for all τ ∈ [ti, ti+1], we have
Φ∗(ti+1, τ) = Φ(ti+1, τ), then νT Φ(ti+1, τ)B = 0 implies ν = 0.
Thus, from Proposition 1, for all 1 ≤ i ≤ p − 1, the network with
system matrix A(t) is controllable on [ti, ti+1]. That is, for any
1 ≤ i ≤ p − 1, the state of the system can be driven from any
initial state at time ti to any final state at time ti+1; similarly, from
any initial state at t0 to any final state at t1, completing the proof. �

Hence, we have extended Theorem 8 to the LTV networks, that in
addition to their edge weights, have a time-varying structure.

VII. CONCLUSION

In this paper, we examined the preservation of ss-controllability
of an LTI network under structural perturbations. We then proceeded
to show that if the number of edges added to, or removed from a
network is bigger than certain bounds, ss-controllability is destroyed.
These bounds depend only on the size of the network and the number
of its control nodes. Moreover, we described the maximal sets of
edges, adding or removing any subset of which, do not disturb the
network ss-controllability. Furthermore, we provided combinatorial
algorithms for combining networks in order to ensure a SSC network-
of-networks. Finally, we derived controllability conditions for a
family of LTV networks with time-varying structures.
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