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On Topological Properties of the Set of
Stabilizing Feedback Gains

Jingjing Bu, Afshin Mesbahi, Mehran Mesbahi

Abstract—This work presents a fairly complete account on
various topological and metrical aspects of feedback stabilization
for single-input-single-output (SISO) continuous and discrete
time linear-time-invariant (LTI) systems. In particular, we prove
that the set of stabilizing output feedback gains for a SISO
system with n states has at most ⌈n

2
⌉ connected components.

Furthermore, our analysis yields an algorithm for determining
intervals of stabilizing gains for general continuous and discrete
LIT systems; the proposed algorithm also computes the number
of unstable roots in each unstable interval. Along the way, we
also make a number of observations on the set of stabilizing state
feedback gains for MIMO systems.

Index Terms—Control synthesis; feedback stabilization; topo-
logical and metrical analysis

I. INTRODUCTION

In classical control, topological and metrical properties of
stabilizing feedback gains are of paramount importance for
the stability analysis and stabilization of LIT systems [1]–[4].
Recently, such properties have received renewed interest in
system literature as they have direct implications for adopting
learning algorithms for control design. This is particularly
the case in the so-called direct policy algorithms, where it
is of interest to directly adjust the control gain–without an
explicit system identification step–say, using a gradient step.
The design objectives in these scenarios are typically functions
over direct policies–often desired to be stabilizing feedback
gains. For example, in reinforcement learning, the policy
gradient updates the feedback iteratively to get desired optimal
controller. In this case, the cost functions are defined on the set
of stabilizing controllers (assuming +∞ elsewhere).1 As such,
understanding the topological and metrical properties of this
set provides valuable insights in designing learning algorithms
for dynamic systems. In the meantime, such insights can
also reveal fundamental shortcomings in certain optimization
algorithms. For example, if the set of stabilizing feedback
gains has several path-connected components, the solutions
of gradient-type learning algorithms will be highly dependent
on the initialization process.

It is thus surprising that despite the long historical interest
in characterizing the set of stabilizing feedback gains, research
works on its set-theoretic and topological properties are rather
limited. This is potentially due to significantly more interest
in characterizing the set of “certificates" for stabilizing con-
trollers, e.g., in terms of linear matrix inequalities.

The authors are with the University of Washington; Emails:
bu+amesbahi+mesbahi@uw.edu

1In this paper, we will use “feedback controllers” interchangeably with
static feedback gains as “dynamic” controllers are not considered.

Of particular relevance to our work in directly characterizing
stabilizing feedback gains is that of Ohara and colleagues [3],
who examined its differential geometric structure for multiple-
input-multiple-output (MIMO) systems. In [5] and [6], an
elegant geometric approach has been adopted to parametrize
the set of stabilizing feedback gains; in particular, it has been
shown that for continuous and discrete single-input-single-
output (SISO) and dyadic systems the corresponding sets can
be bounded via two and three hyperplanes. Furthermore, the
work of Ober [7] has shown that the set of stable SISO systems
of order n have n+ 1 connected components in the Euclidean
topology while the set of stable MIMO systems is connected.
The work reported in [8] focuses on the connectedness of this
set for both SISO and MIMO systems. We note that both
works [3] [8] examine continuous-time systems.

This paper discusses the topological, metrical, and geomet-
ric properties of the set of stabilizing controllers for both
continuous and discrete-time LTI systems. We show that the
set of stabilizing state-feedback gains for a continuous SISO
system is regular open, unbounded, in general nonconvex, and
path-connected in the Euclidean topology. In the meantime,
the set of stabilizing output-feedback controllers is shown to
be open but not connected in general, and can be bounded or
unbounded. It recent works, based on the implicit assumption
that stable and unstable intervals of the feedback gain interlace,
it has been stated that the set of stabilizing output feedback
controllers for SISO systems can have at most n (in [8]) and
⌈n
2
⌉ (in [9]) connected components. If this assumption does

not hold, however, the line of reasoning reported in [8], [9]
lead to the upper bounds of 2n and n, respectively.2 In this
work, we prove a tight bound of ⌈n

2
⌉ for continuous as well as

discrete time LTI systems; all of our results are constructive
(they lead to algorithms for characterizing these sets) and rely
on basic topology and analytic theory of polynomials [10],
[11].3

The separate treatment for continuous and discrete time
systems is warranted; in fact, in contrast to the folklore
expectation of unified properties for continuous and discrete
time systems, there are counterexamples to show that the
analogies between the two are far from complete [13], [14].
The distinct difference between continuous and discrete LTI
systems might be due to the fact that the generalized bilinear

2In discussions with authors of [9], it has been pointed out that a pertur-
bation type argument can help address this issue; the approach adopted in
this work is direct and leads to a constructive algorithm for characterizing the
stabilizing and unstabilizing intervals.

3Thus the emphasis on the SISO case; some of these results have been
extended to MIMO case in [12].
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transform has poles and thus not continuous [15], [16]. There-
fore, generalizing the proposed topological properties of the set
of stabilizing feedback gains from continuous LTI systems to
discrete ones is not straightforward. Nevertheless, in this paper
we show that the set of stabilizing state feedback gains for
discrete-time LTI SISO systems enjoys some of the topological
properties as its continuous counterpart, i.e., open and path-
connected in Euclidean topology and nonconvexity. But in
contrast to the continuous case, the set of stabilizing state
feedback gains is bounded. For output feedback SISO systems,
the corresponding set of stabilizing gains is open, bounded
and in general nonconvex, but is no longer path-connected.
Accordingly, we prove that the set can have at most ⌈n

2
⌉

path-connected components, which is a tight bound supported
by simulation results. The present work also proposes an
algorithm for determining the intervals of stabilizing feedback
gains for general continuous and discrete LIT systems. This
algorithm also computes the number of unstable roots in each
unstable interval.

The paper is organized as follows. In §II, we introduce the
notation and the preliminary background; §III §IV are devoted
to set-theoretic properties of Hurwitz and Schur stabilizing
feedback gains, respectively, followed by numerical examples.
Our results are intermingled with observations and remarks
that further provide insights into some of the geometric and
topological intricacies of feedback stabilization.

II. NOTATION AND PRELIMINARIES

We denote by Mn(R) the set of n × n real matrices and
GLn(R) as its subset of invertible matrices; Rn and Cn
denote the n-dimensional real and complex Euclidean spaces
with n = 1 identified with real and complex numbers. For
a vector v ∈ Rn, we use vj to denote the jth entry of v,
where v = (v1, . . . , vn)⊺. We denote the open unit disk of
C by D = {λ ∈ C ∶ ∣λ∣ < 1} and the left-half plane by
H− = {λ ∈ C ∶ Re(λ) < 0};4 Hn

−
will be the n-dimensional

version of H−. The notation ∣λ∣ denotes the modulus of
the complex number λ ∈ C and λ̄ denotes its complex
conjugate. We use C[λ] and R[λ] to denote polynomials
with complex and real coefficients, respectively, where λ is
the corresponding indeterminant of the polynomial. For a
polynomial p over C or R we use p′ to denote its derivative
with respect to the indeterminant, unless noted otherwise.
By Fundamental Theorem of Algebra, a monic polynomial
p(λ) = λn +αn−1λn−1 + ⋅ ⋅ ⋅ +α0 ∈ C[λ] has n roots (or zeros)
counting multiplicities; we let Zp to denote this set (each zero
is repeated according to its multiplicity). Mind that Zp is not
a well-defined object in Cn as we do not impose a natural
ordering amongst the roots. Thus if Zp = {λ1, . . . , λn} with
each λj ∈ C, σZp = {λσ(1), . . . , λσ(n)} denotes the same set
of roots for every permutation σ in the permutation group
Sn. Hence Zp is more naturally viewed as an element of

4 Re and Im refer to the real and imaginary parts of the complex number;
when applied to a set of complex numbers, these operations are naturally
extended to each element of that set.

the quotient space Cn/Sn, where the underlying equivalence
relation u ∼ v is via,

u = (u1, . . . , un)⊺ = (vσ(1), . . . , vσ(n))⊺,

for some σ ∈ Sn; endow this quotient space Cn/Sn with
a quotient topology induced by the canonical projection
π ∶ Cn → Cn/Sn.

The following result will subsequently be used in our
analysis.

Theorem II.1. ( [17]) There is a homeomorphism h∶Cn →
Cn/Sn, mapping the coefficients of a monic complex polyno-
mial to its zeros.

In this manuscript, we are concerned with “real” linear
time-invariant (LTI) systems, i.e., systems with real parameters
and feedback gains. Hence the roots of the corresponding
characteristic polynomial p(x) ∈ R[x] will be invariant under
complex conjugation, namely if Zp = {z1, . . . , zn} ∈ Cn/Sn,
then5

Z̄p = {z̄1, . . . , z̄n} = Zp;

denote by Cn
∗

as the set of vectors in Cn that are invariant
under entry-wise conjugation.

The relation between the coefficients and roots for real
polynomials follows from Theorem II.1, as the restriction of
a homeomorphism is again a homeomorphism.

Corollary II.1.1. Suppose that p(λ) = λn+an−1λn−1+⋅ ⋅ ⋅+a0 ∈
R[λ] is a real polynomial. Then there is a homeomorphism
ĥ ∶ Rn → Cn

∗
/Sn, mapping coefficients of p(λ) to its roots.

Consider now the continuous LTI SISO system,

ẋ(t) = Ax(t) + bu(t), y(t) = c⊺x(t),(1)

and its discrete time variant,

x(k + 1) = Ax(k) + bu(k), y(k) = c⊺x(k),(2)

where A ∈ Mn(R) and b, c ∈ Rn; such systems
will be abbreviated in terms of the triplet (A, b, c⊺).
We say that the system (A, b, c⊺) is controllable
and observable if it satisfies the Kalman Rank
Condition [18], namely, rank([b,Ab, . . . ,An−1b]) = n
and rank([c⊺, c⊺A, . . . , c⊺An−1]⊺) = n. For synthesizing state
feedback gains for SISO systems with dynamics of order n, we
are interested in identifying k ∈ Rn to synthesize the control
signal u(t) = k⊺x(t); if output-feedback is of interest, the
feedback gain is a scalar k ∈ R and u(t) = ky(t) = kc⊺x(t).
For a controllable and observable triplet (A, b, c⊺), we denote
the set of Hurwitz stabilizing output feedback gains as,6

H = {k ∈ R ∶ max{Re(Zp(λ,A−kbc⊺))} < 0},(3)

and the set of Schur stabilizing output-feedback gains by

S = {k ∈ R ∶ max{∣Zp(λ,A−kbc⊺)∣} < 1},(4)

5Note the equivalence relation on Cn
/Sn.

6The max operation on a set identifies the maximum element of that set.
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where p(λ,A−kbc⊺) denotes the characteristic polynomial of
the closed-loop system with feedback gain k ∈ R. Naturally, we
could have defined the setsH and S in terms of the eigenvalues
of A−kbc⊺; thus max{∣Zp(λ,A)∣} is simply the spectral radius
of the matrix A, that we denote by ρ(A).

When we examine state feedback with the same system
parameters (A, b), the sets Hx and Sx are defined as,

Hx = {k ∈ Rn ∶ max{Re(Zp(x,A−bk⊺))} < 0},(5)
Sx = {k ∈ Rn ∶ max{∣Zp(λ,A−kbc⊺)∣} < 1}

= {k ∈ Rn ∶ ρ(A − kbc⊺) < 1},(6)

where we have used the subscript x to denote state feedback.7

We now observe a relation between H and Hx; a similar
relation holds between S and Sx. This relation will be used
in our subsequent analysis.

Observation II.2. For a controllable and observable system
(A, b, c⊺),

H = {k ∈ R ∶ (kc) ∩Hx ≠ ∅}.

Proof. We only need to observe that k ∈ H is equivalent to
having kc ∈Hx.

Denote by (A♭, b♭) the controllable canonical form [19] of
the pair (A, b); H♭

x,S♭x then denote the corresponding set of
Hurwitz/Schur stabilizing state feedback gains [19]. We now
observe that the sets H♭

x and S♭x are related to Hx and Sx
through a change of coordinates.

Observation II.3. Let (A, b) be a controllable pair and
(A♭, b♭) be its corresponding controllable canonical form.
Then Sx = T ⊺S♭x := {T ⊺k ∶ k ∈ S♭x} and Hx = T ⊺H♭

x := {T ⊺k ∶
k ∈H♭

x}, where T ∈ GLn(R) and (A♭, b♭) = (TAT −1, T b).

Proof. We only prove the relation between S♭x and Sx; the
proof for H♭

x and Hx follows analogously. When k ∈ S♭x,

ρ(A♭ − b♭k⊺) = ρ(T (A − bk⊺T )T −1) = ρ(A − bk⊺T ) < 1;

hence, T ⊺k ∈ Sx and T ⊺S♭x ⊆ Sx. The set inclusion in the
other direction follows analogously; as such, T ⊺S♭x = Sx.

Remark II.4. Since k ↦ T ⊺k is a diffeomorphism on Rn,
topological properties of the set of stabilizing feedback gains,
such as connectedness, can be studied for the controllable
canonical form instead. Furthermore, for a controllable and
observable triplet (A, b, c⊺), we may assume that (A, b)
is in the controllable canonical form in order to charac-
terize the stabilizing output feedback gains. In fact, since
(A♭, b♭) = (TAT −1, T b), the set of stabilizing gains for
(TAT −1, T b, c⊺T −1) will coincide with H and S for the triple
(A, b, c⊺). This observation is useful as the characteristic
polynomial of the closed-loop system for (A♭, b♭, c⊺) admits
a rather simple form.

7That is, the state “x” is available for feedback.

III. PROPERTIES OF HURWITZ STABILIZING FEEDBACK
GAINS

Consider again the continuous LTI SISO system (1) in
relation to the sets H (3) and Hx (5). The diffeomorphism
between the set of stabilizing feedback gains for a system and
its controllable canonical form (Observation II.3) allows us
to prove a number of topological and metrical properties for
H and Hx. In fact, Observation II.3 leads to the following
properties through the application of theory of polynomials:
(a) H is open in the Euclidean topology for both state-
feedback and output-feedback systems, (b) Hx is unbounded
but H can be either bounded or unbounded, (c) the sets H
and Hx are both convex when the corresponding system has
order two, (d) Hx is connected and H can have at most ⌈n

2
⌉

connected components. We now provide the proofs for these
observations.

Lemma III.1. The set H is open in R and Hx is open in Rn.

Proof. By Observation II.3, without loss of generality, we
shall assume that the system (A, b, c⊺) is in the controllable
canonical form. Let a = (a0, . . . , an−1) be the last row of
A and c = (c0, . . . , cn−1)⊺. For any k ∈ R, the characteristic
polynomial of this system is given by,

p(λ, k) = λn + (an−1 − kcn−1)λn−1 + ⋅ ⋅ ⋅ + (a0 − kc0).

We note that for a fixed k ∈ R, the map υ̃ ∶ Cn
∗
/Sn → R given

by

Zp(λ,k) ↦max{Re(Zp(λ,k))},

is continuous since υ ∶= max ○Re ∶ Cn
∗
→ R is continuous and

there is a unique continuous map υ̃ ∶ Cn/Sn → R such that
υ = υ̃ ○ π:

Cn

Cn* /Sn R;

π υ

υ̃

this follows from the properties of the quotient topology
(see Theorem 3.73 in [20]). Thus the map,

g ∶ k ↦ Zp(λ,k) ↦max{Re(Zp(λ,k))},

is continuous as it is a composition of continuous maps.
Thus as the pre-image of the open interval (−∞,0) under
the continuous map g, the set H is an open subset of R and
as such, H is a union of disjoint open intervals.8 Following
a similar argument, the map gx ∶ Rn → R defined via the
composition,

gx ∶ k ↦ Zp(λ,k) ↦max{Re(Zp(λ,k))},

is continuous and hence Hx is open in Rn.

We shall point out another favorable property ofHx, namely
that it is regular open. In other words, the closure of the
set of Hurwitz stabilizing controllers is the set of marginally

8That is, it can always be represented as such.
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stabilizing controllers and Hx is precisely the interior of the
set of marginally stabilizing controllers.

Lemma III.2. Let

Bx = {k ∈ Rn ∶ max{Re(Zp(λ,A−bk⊺))} = 0}.

Then Bx is the boundary of Hx (that is, ∂Hx) and the closure
of H is,

(7) H̄x =Hx ∪ Bx = {k ∈ Rn ∶ max{Re(Zp(λ,A−bk⊺))} ≤ 0}.

Proof. Note that for any k ∈ Bx, we can perturb the marginally
stable eigenvalues to be stable, i.e., having negative real parts.
This means that there exists a sequence {kn} ⊆ Hx such
that kn → k. On the other hand, we may as well perturb
the marginally stable eigenvalues to become unstable, i.e.,
having positive real parts, suggesting that there is a sequence
{k′n} ⊆ Hcx such that k′n → k. Hence ∂Hx = Bx and (7)
follows.

It is also immediate to deduce that the interior of H̄x,
namely (H̄x)

○

, is Hx; thus Hx is regular open.
Let us now examine the boundedness of the sets H and Hx.

Observation III.3. The set Hx is unbounded.

Proof. By Observation II.3, it suffices to assume that the
pair (A, b) is in controllable canonical form. For any k =
(k0, . . . , kn)⊺ ∈ Rn, the characteristic polynomial of the
corresponding closed-loop system is,

p(λ, k) = λn + (an−1 − kn−1)λn−1 + ⋅ ⋅ ⋅ + (a0 − k0).(8)

By Pole-shifting theorem [21], for every n-tuple
(−j,−j, . . . ,−j), with j ∈ R, there is some kj ∈ Rn
such that kj ∈ Hx and the zeros of p(λ,A − b(kj)⊺) are
exactly (−j, . . . ,−j). But a0−kj0 = (−j)n by Vieta’s formula.9

Hence Hx is not bounded.

For an output feedback system, the set H can either be
bounded or unbounded depending on the properties of the sys-
tem (A, b, c⊺); this is demonstrated in the following example.

Example 1. Let the triplet (A♭, b♭, c⊺), in controllable canon-
ical form, be controllable.10 Let a = (a0, a1, . . . , an−1) be the
last row of A♭. Then,

a) If for some i, j ∈ {0, . . . , n − 1}, ci > 0 and cj < 0, then
H is bounded.

b) Suppose that n = 4 and the entries of c are positive. If
c3c2c1 < c23c0 then H is unbounded; when c3c2c1 > c23c0,
H is bounded.

The assertions in this example are consequences of the Routh-
Hurwitz Criterion. If k is stabilizing, then

an−1 − kcn−1 > 0, . . . , a0 − kc0 > 0.

If there exists a k that satisfies the above inequalities, and for
some i, j, ci > 0 and cj < 0, then k satisfies,

aj

cj
< k < ai

ci
.

9The indexing of kj is with reference to (8).
10Of course, the controllability of the triplet is independent of c.

Hence, H must be bounded. For part (b), the Routh-Hurwitz
Criterion states that,

a3 − kc3 > 0, a2 − kc2 > 0, a1 − kc1 > 0, a0 − kc0 > 0,

(a3 − kc3)(a2 − kc2)(a1 − kc1)
> (a1 − kc1)2 + (a3 − kc3)2(a0 − kc0).

We note that for sufficiently negative k, the last inequality
holds since c1c2c3 > c23c0; hence H is not bounded. On the
other hand, if c1c2c3 < c23c0, then k must be bounded from
below; thus H is bounded.

We further make an observation on a necessary condition
for the unboundedness of the set H; see also [9].

Observation III.4. If (A, b, c⊺) is controllable and observ-
able, a necessary condition for H to be unbounded is that
the nonzero entries of c have the same sign. Moreover, if H is
unbounded, then H must only include one of the two intervals:
(−∞,M) and (M ′,∞) for some M,M ′ ∈ R.

Proof. If a monic polynomial is Hurwitz stable, all of its
coefficients are positive (Theorem 2.4 in [18]). Hence, we have
aj − kcj > 0 for every j. If the nonzero entries of c do not
have the same sign, k should be bounded. Since the system is
observable, c ≠ 0. Thereby, either k <M or k >M ′, for some
M,M ′ ∈ R.

We now make a few observations on the convexity of the
sets H and Hx; needless to say, these observations have direct
algorithmic implications. It is known that a convex combi-
nation of stable polynomials is not necessarily convex [22].
However, a convex combination of stable monic polynomials
with degree 2 is convex; this follows from the Routh-Hurwitz
criterion.

Observation III.5. For the state feedback system (A, b), the
set Hx is convex if n = 2.

Proof. It suffices to show this for (A♭, b♭). Let k = (k0, k1)⊺
and k′ = (k′0, k′1)⊺ be two stabilizing feedback gains. Then
the characteristic polynomial of the corresponding closed-loop
systems are,

p1(λ) = λ2 + (a1 − k1)λ + (a0 − k0),
p2(λ) = λ2 + (a1 − k′1)λ + (a0 − k′0).

Note that p1 and p2 are stable if and only if the coefficients
are positive.11 Hence, if k̂ = (1 − δ)k + δk′, for δ ∈ (0,1),
then pk̂(x) = (1 − δ)p1(x) + δp2(x) and pk̂ is stable by the
positivity of its coefficients.

Observation III.6. For the output feedback system (A, b, c⊺)
with n = 2, the set H is convex.

Proof. Recall that by Observation II.2,

H = {k ∈ R ∶ (kc) ∩Hx ≠ ∅}.

Noting that span(c) ∩ Hx is a convex subset of R2; by
Observation III.5, the proof follows.

11For convexity analysis, this is in fact the key property for systems of
order 2.
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We can also use the Routh-Hurwitz stability criteria to show
the nonconvexity of the set of stabilizing feedback gains when
n > 2. For example, let n = 3 and consider the controllable
canonical form (A♭, b♭) with the last row of A♭ set to 0.
Then the stabilizing feedback gain is parametrized by three
parameters k = (k1, k2, k3) and the characteristic polynomial
of A − bk⊺ is

p(λ,A − bk⊺) = λ3 + k3λ2 + k2λ + k1.

The following example essentially shows that convex combi-
nations of stable polynomials are not necessarily stable.

Example 2. Consider the system,

A =
⎛
⎜⎜
⎝

0 1 0
0 0 1
0 0 0

⎞
⎟⎟
⎠
, b =

⎛
⎜⎜
⎝

0
0
1

⎞
⎟⎟
⎠
.

For k1 = (−24,−5,−5)⊺ and k2 = (−0.9,−1,−1)⊺, the
characteristic polynomials of the corresponding closed-loop
systems are given by p1(λ) = λ3 + 5λ2 + 5λ + 24 and
p2(λ) = λ3 + λ2 + λ + 0.9. Both polynomials are stable and
as such, k1, k2 ∈ Hx; however, k′ = 0.5k1 + 0.5k2 yields an
unstable characteristic polynomial p(λ) = λ3+3λ2+3λ+12.45.

A. Connectedness properties of Hx and H

We will now delve into connectedness of the sets H and
Hx, requiring more delicate arguments as compared with their
boundedness and convexity properties. For the state feedback
system,

ẋ(t) = Ax(t) + bu(t),

by Corollary II.1.1, Hx is connected in Rn. We now show
that this set is in fact contractible, i.e., it can be continuously
deformed to a point [20].

Lemma III.7. When (A, b) is controllable, the set of sta-
bilizing feedback controllers Hx ⊆ Rn is connected and
contractible.

Proof. Let {Hn
−
}∗ denote the set of n-tuples v ∈ Hn

−
in-

variant under (entry-wise) complex conjugation. We note that
{Hn

−
}∗/Sn is connected in Cn/Sn by noting that every v ∈

{Hn
−
}∗/Sn is path-connected. This path in fact defines a homo-

topy between the identity and the constant map (−1, . . . ,−1).
Mind that

H = (an−1, . . . , a0)⊺ − σ̂−1({Hn−}∗/Sn),

i.e., an affine translation in Rn. By Corollary II.1.1, it now
follows that Hx is connected and contractible.

Remark III.8. Note that even though the set Hx in con-
tractible to a point, it is not necessary star-convex. This is
due to nonlinearity of the Vieta’s map σ̂−1.

Connected Components of H: We now develop bounds
on the number of connected components of H as it is not
necessary connected. Lemma III.10 provides a bound of n and
Lemma III.14 will tighten the bound to ⌈n

2
⌉. We have chosen

to present the two lemmas in sequence, since the proof of
Lemma III.10 is straightforward but tightening the bound to
⌈n
2
⌉ requires more delicate analysis.
Let us start our analysis by recalling the smooth dependence

of simple roots of a polynomial on its coefficients, subse-
quently used in Lemma III.14.

Lemma III.9. Let aj ∶ I → R be C∞ functions for j =
{1, . . . , n}, where I ⊆ R is an open interval. If t0 ∈ I and
λ0 is a simple root of the polynomial f(λ) = an(t0)λn +
an−1(t0)λn−1 + ⋅ ⋅ ⋅ + a0(t0) ∈ R[λ] with t0 ∈ I, then there
exists a C∞ function η ∶ J → C over an open interval J ⊆ I
such that t0 ∈ J , η(t0) = λ0 and η(t) is a zero of

f(λ, t) = an(t)λn + an−1(t)λn−1 + ⋅ ⋅ ⋅ + a0(t),

for every t ∈ J .

Proof. This follows from Implicit Function Theorem [23].
First note that f(λ, t) is C∞ in both λ and t; we note that at
(λ0, t0), f ′(λ0, t0) ≠ 0 since λ0 is a simple zero.

We now prove an upper bound of n on the number of
connected components of H.

Lemma III.10. If H ≠ ∅, it has at most n connected
components.

Proof. Note that in the SISO case, H is a subset of R;
furthermore, it suffices to show that (A♭, b♭, c⊺) has at most n
connected components. Recall that for k ∈ R, the characteristic
polynomial of a closed-loop system A♭ − kb♭c⊺ is given by

p(λ, k) = λn + (an−1 − kcn−1)λn−1 + ⋅ ⋅ ⋅ + a0 − kc0,

where a := (a0, a1, . . . , an−1) is the last row of A♭ and cj’s
are components of c. Let ζ ∶ Rn → Pn(λ) denote the natural
bijection, assigning coefficients to monic polynomials. We
denote by,

Γ = {a ∈ Rn ∶ ζ(a) has at least one zero on imaginary axis},

and `(k) = a−kc, i.e., a parametrized line in Rn. Suppose that
`(k) intersects Γ for finitely many k’s, listed in an increasing
order k1, . . . , kq; this fact will be proved subsequently. Let
np(λ,k)(H−) denote the number of roots of p(λ, k) in H−.
Moreover, let γ(r) be a counterclockwise oriented curve in
C consisting the line segment [−ir, ir] and the semicircle
S(r, θ) = reiθ, with θ ∈ [π/2,3π/2]. For each k ∈ (kj , kj+1),
we define

mr(k) =
1

2πi
∫
γ(r)

p′(λ, k)
p(λ, k) dλ, and m(k) = lim

r→∞
mr(k).

Note that if p(λ, k) does not vanish on γ(r), by Cauchy’s
Argument Principle [24], mr(k) is the number of zeros
of p(λ, k) inside the curve γ(r). However, since p(λ, k)
has at most n roots, the integral is well-defined except at
finitely many r’s. Hence m(k) is well-defined and m(k) =
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np(λ,k)(H−). In the meantime, the function m(k) is contin-
uous in k and integer-valued, and thereby, m(k) = np(λ,k) is
constant on each interval (kj , kj+1). That is, either np(λ,k) = n
or np(λ,k) < n, corresponding to either stabilizing or non-
stabilizing gains, respectively. So by inspecting the number of
intersections between `(k) and Γ, one can derive an upper
bound on the number of connected components of H. Let

(9) r(λ) = cn−1λn−1+⋅ ⋅ ⋅+c0, and s(λ) = an−1λn−1+⋅ ⋅ ⋅+a0.

Consider an intersection of `(k) and Γ that is, when for some
k ∈ R, there exists λ = iβ, β ∈ R, for which p(iβ, k) = 0.
We first observe that r(iβ) ≠ 0 since otherwise iβ would be
a root for every k ∈ R. This on the other hand, implies that H
is empty. Hence p(iβ, k) = 0 implies that,

k = (iβ)n + an−1(iβ)n−1 + ⋅ ⋅ ⋅ + a0
cn−1(iβ)n−1 + ⋅ ⋅ ⋅ + c0

.(10)

Since k ∈ R, β must be a root of,

φ(β) = Im ((λn + s(λ)) r(λ̄)∣λ=iβ) = 0.

We note that φ(β) ∈ R[β] has degree at most 2n − 1. Thus it
can be written as,

φ(β) = i2n−2β2n−1 + i2n−4d2n−3β2n−3 + ⋅ ⋅ ⋅ + i2d3β3 + d1β,

for some set of real coefficients {d2n−3, d2n−5, . . . , d1} ⊆ R,
noting that all exponentials of i are either 1 or −1. Now let us
set τ(β) = i2n−2β2n−2 + i2n−4d2n−3β2n−4 + ⋅ ⋅ ⋅ + i2d3β2 + d1 ∈
R[β]; hence, φ(β) = βτ(β). Now we note that τ(β) is an
even polynomial in β (having only even degrees). Letting

υ(β) = i2n−2βn−1 + i2n−4d2n−3βn−2 + ⋅ ⋅ ⋅ + i2d3β + d1,(11)

we have τ(β) = υ(β2). Thereby, the roots of τ are the square
roots of those of υ. This implies that τ has two real roots if
υ has a positive real root. We further observe that if β0 is a
positive real root of υ(β), then

√
β0 and −

√
β0 are the real

roots of τ .
Let us now consider the scenario that leads to greatest upper

bound on the number of connected components of H. This
scenario corresponds to the situation where φ(β) has 2n − 1
real roots; let these roots be {0, β1,−β1, . . . , βn−1,−βn−1},
where βj ∈ R+ for each j. These roots can be mapped to
feedback gains via relation (10); in fact, βj and −βj are
mapped to the same k. Thus adding the k that corresponds
to the 0 root via relation (10), we will have at most n values
for k. These values on the other hand, divide the real line into
n+1 intervals. But only one of the two unbounded intervals can
be stabilizing by Observation III.4; the upper bound of n on
the number of connected components of H now follows.

Remark III.11. Note that having n connected components for
H implies that we can have a situation where {k1, . . . , kn} are
marginally stabilizing gains and the open intervals (kj , kj+1)
are stabilizing. Figure 1 demonstrates this phenomena for two
adjacent intervals: there is a gain k0 such that the closed-loop

system is marginally stable but (k′, k0) and (k0, k′′) are both
stabilizing for some k′, k′′ ∈ R.12 The system parameters13 are

A =
⎛
⎜⎜
⎝

−0.825 −1.21 − 625919
4800000

1 0 0
0 1 0

⎞
⎟⎟
⎠
, b =

⎛
⎜⎜
⎝

1
0
0

⎞
⎟⎟
⎠
, c =

⎛
⎜⎜
⎝

1
7.5
12.5

⎞
⎟⎟
⎠
.

−14 −12 −10 −8 −6 −4 −2 0

−6

−4

−2

0

2

4

6

Real Axis

Im
ag
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ar

y
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xi
s

Locus 1
Locus 2
Locus 3

Fig. 1: An example where the feedback gain k0 leads to
a marginally stable closed-loop system yet both intervals
(k′, k0) and (k0, k′′) are stabilizing for some k′, k′′ ∈ R.

We now proceed to show that the bound on the number of
connected components ofH can be tightened to ⌈n

2
⌉. The proof

of this tighter bound follows a distinct line of reasoning, as
necessitated by examples such as that shown in Figure 1. The
result contains several technical details. Let us outline the idea
behind the proof first: we denote by {0, β1,−β1, . . . , βn,−βn}
as the real roots of φ(β) and {k1, . . . , kn} in an increasing
order as the feedback gains acquired via relation (10) in
Lemma III.10:

a) We will first show that when two adjacent intervals
(kj−1, kj) and (kj , kj+1) are stabilizing, then p(λ, kj) =
λn + (an−1 − kjcn−1)λn−1 + ⋅ ⋅ ⋅ + (a0 − kjc0) would have
the non-stable mode λ0 = iβ, i.e., the mode with zero real
part, as a simple root of p(λ, kj) ∈ R[λ]. By Lemma III.9,
this would imply that we can find some C∞ function
η ∶ I → C (with I ⊂ R and ki ∈ I) such that η(t)
tracks the zero of p(λ, k) locally with η(kj) = r. Indeed,
what we really need is that the curve of the root iβ is
differentiable at iβ.

b) If two adjacent intervals are both stabilizing, the curve
η(t) is tangent to the imaginary axis at t0. We show that
this observation leads to having −βj and βj as multiple
zeros of φ(β). Mind the subtlety here: λ0 is the simple
root of the polynomial p(λ, kj) ∈ R[λ] in λ whereas
±βj are multiple zeros of the polynomial φ(β) ∈ R[β]
in β (recall the expression for φ(β) in the proof of

12Note that Theorem 1 in [8] uses the same line of reasoning as the proof
of Lemma III.10 to arrive at the improved bound of ⌈

n
2
⌉ for the number of

connected components inH, assuming that the intervals constructed above are
stabilizing/non-stabilizing interlacing intervals. However, as Figure 1 depicts,
this assumption is not valid in general. The ⌈

n
2
⌉ bound is still valid, however,

and can be obtained by utilizing the structure of the polynomial φ(β) and
the relation between the feedback gain k and parameter β.

13These parameters are actually chosen carefully according to the analysis
of Lemma III.14.
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Lemma III.10.). See Figure 2 for a demonstration of the
relations.

c) Using the multiplicities of λj ′s as roots of φ(β) and a
careful counting of the stabilizing/non-stabilizing inter-
vals lead to the final result.

We shall developing several propositions before we prove
the main result. First we provide an asymptotic expansion
of the zeros of p(λ, k) with respect to k. Note that this is
not simply a Taylor expansion around k, as a multiple root
is not differentiable with respect to k. Recall the definitions
of the polynomials r(λ) and s(λ) (9) used in the proof of
Lemma III.10.

Proposition III.12. Suppose for k0 ∈ R, λ0 is a root of
p(λ, k0) ∈ R[λ] with multiplicity m ∈ N and r(λ0) ≠ 0. Then
for k that is sufficiently close to k0, p(λ, k) will have m roots
given by,

λj = λ0 + ((k − kj)
r(λ0)
h(λ0)

)
1/m

ωj + o(∣k − kj ∣1/m),

for j = 1, . . . ,m, where ωj’s are the mth roots of unity,14

h(λ) ∈ R[λ] is such that p(λ, k0) = (λ − λ0)mh(λ),
and o(∣k − kj ∣1/m) signifies a function f(k) for which
limk→kj ∣f(k)∣/∣k − kj ∣1/m = 0.15

Before we prove the proposition, let us remark that in the
case that (k − kj)r(λ0)/h(λ0) is negative, there would be
m choices for ((k − kj)r(λ0)/h(λ0))1/m, namely (−(k −
kj)r(λ0)/h(λ0))1/mei(π+2πl)/m for l = {0,1, . . . ,m−1}. Note
that these numbers differ multiplicatively from each other by
ei2πν/m, with ν ∈ {0, . . . ,m− 1}; the expression above would
not be affected by selecting any of these numbers. Moreover,
this statement should be interpreted separately for k ↑ kj and
k ↓ kj . The difference amounts to a rotation of λj’s.

Proof. Since λ0 is a root of multiplicity m, p(λ, k0) = (λ −
λ0)mh(λ), where h(λ) ∈ R[λ] with h(λ0) ≠ 0. Hence, for
k ∈ R, we can write p(λ, k) as

p(λ, k) = λn + (an−1 − kcn−1)λn−1 + ⋅ ⋅ ⋅ + a0 − kc0
= λn + (an−1λn−1 − k0cn−1)λn−1 + ⋅ ⋅ ⋅ + a0 − k0c0
− (k − k0)(cn−1λn−1 + ⋅ ⋅ ⋅ + c0)

= p(λ, k0) − (k − k0)r(λ)
= (λ − λ0)mh(λ) − (k − k0)r(λ).

Now suppose that (λ− λ0)mh(λ)− (k − kj)r(λ) = 0. Putting
λ̂ = λ−λ0, ĥ(λ̂) = h(λ̂+λ0)/h(λ0), r̂(λ̂) = r(λ̂+λ0)/h(λ0)
and t = k − kj , it suffices to show that the zeros of λ̂mĥ(λ̂)−
t r̂(λ̂) are exactly,

λ̂j = ( r(λ0)
h(λ0)

)
1/m

ωj + o(∣t∣1/m), for j = 1, . . . ,m,

as t → 0. Note that ĥ(0) = 1 and ĥ(λ̂) ∈ R[λ̂]. Let t > 0 and
observe that if z is a zero of

ψt(λ) := λmĥ(t1/mλ) − r̂(t1/mλ),
14That is, there are the zeros of zm − 1.
15Recall root locus rules!

then t1/mz would be a zero of λmh(λ)−t r(λ). On a compact
set [0, T ] (T ∈ R+), ψt(λ) → ψ0(λ) = λM − r(0) uniformly.
Let us denote the zeros of ψ0(λ) = λm − r(0) by

zj = (r(0))1/m ωj , for j = 1,2, . . . ,m,

where ωj’s are the mth roots of unity. Choose a sufficiently
small ε > 0 such that the disks Bzj(ε) are disjoint. Since
∂Bzj(ε) is compact and ψ0(λ) does not vanish on ∂Bzj(ε),
there is some l > 0 such that ∣ψ0(λ)∣ > l. Since ψt(λ)→ ψ0(λ)
uniformly on any compact subset of C, there is some t∗ > 0,
such that ∣ψt(λ)−ψ0(λ)∣ < l for t ∈ (−t∗, t∗) and λ ∈ B̄zj(ε).
By Rouché’s Theorem [24], there is exactly one zero for ψt(λ)
in each Bzj(ε) for t ∈ (−t∗, t∗). As such, the zeros of ψt(λ)
are given by,

r(0)1/mωj + o(1).

It then follows that,

λ′j = (t r(λ0)
h(λ0)

)
1/m

ωj + o(∣t∣1/m), for j = 1, . . . ,m;

the case where t < 0 can be treated similarly by considering
t h(λ) = (−t)(−h(λ)). Hence,

λj = λ0 + ((k − kj)
r(λ0)
h(λ0)

)
1/m

ωj + o(∣k − kj ∣1/m),

for j = 1, . . . ,m.

Before we proceed to the proof of the main result of this
section, let us make an observation pertaining to the derivative
of f(β) ∈ R[β] evaluated on the imaginary axis.

Proposition III.13. Consider f(λ) = αmλm + ⋅ ⋅ ⋅ +α1λ+α0 ∈
R[λ] and let ϕ(β) = Im (f(λ)∣

λ=iβ
) ∈ R[β]. Then we have,

dϕ(β)
dβ

= Re( df
dλ

∣
λ=iβ

) .

Proof. When m is odd we have,

ϕ(β) = im−1αmβ
m + im−3αm−2β

m−2 + ⋅ ⋅ ⋅ + i2α3β
3 + α1β.

Hence,

ϕ′(β) =mim−1αmβ
m−1 + (m − 2)im−3αm−2β

m−3 +⋯
+ 3i2α3β

2 + α1.

But we also note that,

Re( df
dλ

∣
λ=iβ

) = Re ((mαmxm−1 +⋯ + α1) ∣x=iβ)

= Re (mαm(iβ)m−1 +⋯ + α1)
=mim−1αmβ

m−1 + (m − 2)im−3αm−2β
m−3

+⋯ + 3i2α3β
2 + α1

= ϕ′(β)

The case when m is even follows analogously.

We are now ready to prove the bound ⌈n
2
⌉ on the number

of connected components of H.
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φ(β)

β1 −β1 . . . βj −βj . . . βn−1 −βn−1 0

k1 . . . kj . . . kn−1 kn

p(λ, k1) . . . p(λ, kj) . . . p(λ, kn−1) p(λ, kn)

λ0 . . . λn−1

Fig. 2: The relation between roots of φ(β) and p(λ, k), as the root locus intersects the imaginary axis for continuous time
systems.

Lemma III.14. Let H ≠ ∅; then it has at most ⌈n
2
⌉ connected

components.

Proof. Consider two adjacent intervals (kj−1, kj) and
(kj , kj+1) that are both stabilizing. Note that by assumption
p(λ0, kj) = 0 for some pure imaginary λ0. First, let us examine
whether λ0 can have multiplicity m ≥ 2. By Proposition III.12
for k sufficiently close to k0, p(λ, k) will have m roots given
by,

λj = λ0 + ((k − kj)
r(λ0)
h(λ0)

)
1/m

ωj + o(∣k − kj ∣1/m),

for j = 1, . . . ,m, where ωj’s are the mth roots of unity. When
m ≥ 3, as k → kj , m roots, from m equally spaced directions
in the complex plane (see Figure 3), would tend to λ0. In

Re{z}

Im{z}

λ0

Fig. 3: Roots coming from m = 3 equally spaced directions in
the complex plane tend to λ0

this case, at least one direction would be in the right half
plane, contradicting the assumption that both (kj−1, kj) and
(kj , kj+1) are stabilizing. If m = 2, the roots would traverse a
horizontal line passing through λ0,16 with on of the intervals
as nonstabilizing. This is again a contradiction. Hence λ0 must
be simple. This on the other hand would imply the differentia-
bility of the root with respect to k. By the asymptotic formula
above (with m = 1), the derivative of η′(kj) = r(λ0)/h(λ0);

16Note that in this case either k ↑ kj or k ↓ kj would yield the quantity (k−
kj)r(λ0)/h(λ0) in Proposition III.12 positive, and the resulting expression
would be a scalar multiple of the primitive 2nd roots of unity, i.e., ±α for
some α ∈ R.

note that in this scenario h(λ0) = p′(λ0, kj). But the condition
that both intervals are stabilizing implies that η′(λ0) is pure
imaginary (the tangent of the curve should be the imaginary
axis, see Figure 1); that is

dη

dk
∣
kj

= iγ,

for some γ ∈ R. This implies that if λ0 = iβ (β ∈ R) is a zero
of φ(β); since η′(λ0) is pure imaginary, we would also have,

Re ((λn + s(λ) − kjr(λ))
′

r(λ̄)∣λ=iβ) = 0,(12)

where s(λ) = an−1λn−1+⋅ ⋅ ⋅+a0. Putting r(λ) = ro(λ)+re(λ),
where ro(λ) consists of the terms with odd degrees and re(λ)
consists terms of even degrees, we observe that r(λ̄)∣λ=iβ =
r(−iβ) = re(iβ) − ro(iβ) = (re(λ) − ro(λ)) ∣z=iβ . Now by
Proposition III.13, we have

φ′(β) = Re [((λn + s(λ) (re(λ) − ro(λ))))
′

∣λ=iβ]

= Re{[(λn + s(λ))′ (re(λ) − ro(λ))

+ (λn + s(λ)) (r′e(λ) − r′o(λ))] ∣λ=iβ} .

Noting that (λn + s(λ) − k r(λ)) ∣λ=λ0 = 0, we have

φ′(β) = Re{[(λn + s(λ))′ (re(λ) − ro(λ))

+ (−k r(λ)) (r′e(λ) − r′o(λ))] ∣λ=iβ} .

Now r′e(λ) consists of terms with odd degrees and r′o(λ) of
those with even degrees; this implies that,

(r′e(λ) − r′o(λ)) ∣λ=iβ = (−r′e(λ) − ro(λ)) ∣λ=−iβ
= −r′(λ̄)∣λ=iβ ,
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minding that r′(λ̄) refers to the derivative of r′(λ) evaluated
at λ̄. Furthermore,

Re [(−kr′(λ)r(λ̄)) ∣λ=iβ] = Re [(−kr′(λ̄)r(λ)) ∣λ=iβ] .

Combining all these observations, we conclude that φ′(β) = 0.
Now let {0, u1,−u1, . . . , uµ,−uµ, v1,−v1, . . . , vν ,−vν} de-

note the roots of the polynomials φ(β), where ui’s and vj’s
are nonnegative real numbers, and v1,−v1, . . . , vν ,−vν are
roots with multiplicity greater than 1. We must then have
2µ+ 2(2ν) ≤ 2n− 2. These roots will be mapped to the gains
k via the relation,

k = q(λ)
λn + r(λ) ∣λ=iβ

.

Now let Λ = {k1, . . . , kµ′} be the set of distinct real
gains corresponding to {u1,−u1, . . . , uµ,−uµ} and Π =
{k1, . . . , kν′} be the set of distinct real gains corresponding
to {v1,−v1, . . . , vν ,−vν}. Note that µ′ ≤ µ and ν′ ≤ ν since
it is possible that multiple roots are mapped to the same k;
append k corresponding to 0 via (10). We must then have
µ′+2ν′ ≤ n. Now if kj ∈ Λ, then one of the intervals (kj−1, kj)
and (kj , kj+1) is not stabilizing. Let Υ be the collection of
intervals that are not stabilizing. It follows then that if k ∈ Λ,
k must be the end point of an interval in Υ. Note that only
one of the unbounded intervals could be stabilizing; thereby,

µ′ ≤ 1 + 2(∣Υ∣ − 1) = 2∣Υ∣ − 1.

Now, Lemma III.10 implies that the set of feedback (real) gains
k is divided into ν′ +µ′ +1 intervals. As such, ν′ +µ′ +1− ∣Υ∣
is the number of stabilizing intervals, obtained by subtracting
the number of non-stabilizing intervals from the total number
of intervals. Hence,

µ′ + ν′ + 1 − ∣Υ∣ ≤ µ′ + ν′ + 1 − µ
′ + 1

2

= ν′ + µ
′ + 1

2
≤ 2ν′ + µ′ + 1

2
≤ n + 1

2
= ⌈n

2
⌉.

Remark III.15. We note that ⌈n
2
⌉ is a tight upper bound.

Indeed, Figure 1 already indicates that there are two disjoint
stabilizing intervals for a SISO system with n = 3. Figure 4
provides a more transparent view of this; the system parame-
ters are,

A =
⎛
⎜⎜
⎝

0 1 0
0 0 1

−0.133 −1.125 −0.625

⎞
⎟⎟
⎠
, b =

⎛
⎜⎜
⎝

0
0
1

⎞
⎟⎟
⎠
, c =

⎛
⎜⎜
⎝

12.5
7.5
1

⎞
⎟⎟
⎠
.

We mention that although stabilizing and non-stabilizing
intervals do not necessary interlace for all controllable and ob-
servable triplets (A, b, c⊺), this property is indeed generic.17 To
this end, we first observe that the set CO of all controllable and
observable triplets (A, b, c⊺) is open in Mn×n(R) ×Rn ×Rn.

Proposition III.16. The set CO is (Zariski) open.

17A property is generic when it holds except on an algebraic (Zariski closed)
set.
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Root path of the largest real part as k varies

Fig. 4: The figure depicts how the root with the largest real
part varies with respect to the feedback gain k. The blue and
yellow segments correspond to two stabilizing intervals.

Proof. Putting C to denote the controllability matrix and O
to denote the observability matrix. We observe (CO)c = Cc ∪
Oc∪CcOc, where Cc denotes the collection of non-controllable
but observable systems, Oc denotes the collection of non-
observable but controllable systems, and CcOc denotes the
collection of non-controllable and non-observable systems.18

We note that Cc is the set where all the n × n minors of
C vanish. Similarly for Oc and CcOc. Hence, (CO)c is an
algebraic set. Consequently, CO is open.

We now observe the interlacing property is generic.

Lemma III.17. For a controllable and observable system
(A, b, c⊺), the property that the stabilizing and non-stabilizing
intervals in H interlace is generic.

Proof. Denote U ⊆ CO the subset such that the corresponding
Hurwitz stabilizing set H has the interlacing property. As we
have shown, for any (A, b, c⊺) ∈ CO, if we have two adjacent
stabilizing (or non-stabilizing) intervals, then the correspond-
ing polynomial φ(β) must have a root with multiplicity greater
than one. This means the discriminant of φ(β) must vanish.
This in turn is a polynomial in the entries of A, b, c⊺. That is,

Uc = {(A, b, c⊺) ∈ Uc ∶ ∆(φ(β)) = 0}.

This suggests that U is Zariski open and nonempty (see for
example, Figure 4).19

An algorithm for characterizing the connected compo-
nents of H: Our analysis for deriving the bound ⌈n

2
⌉ for the

number of connected components of H has direct algorithmic
implications. We summarize the corresponding algorithm as
follows.

18For a set A, Ac denotes its complement.
19Note that Mn(R)×Rn

×Rn is identified by the affine space An2
+2n

[R]

and the subset CO is equipped with the Zariski subspace topology.
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Algorithm 1: Identifying stabilizing intervals of H
1: Find the real roots {λ1, . . . , λl} of the real polyno-

mial (11). Appending {0} to this list if necessary, we get
L = {0, λ1, . . . , λl}. Map L to {k1, . . . , kl′} (order this list
in an increasing manner) by (10).

2: Identify whether (−∞, k1) and (kl′ ,+∞) are stabilizing
(Observation III.4).

3: If (−∞, k1) is stabilizing, check the multiplicity of λ1′
that maps to k1. If λ1′ is simple, then (k1, k2) is not
stabilizing. If λ1′ is not simple, check whether (12) is
satisfied; if not, i.e., the corresponding derivative is not
pure imaginary, then (k1, k2) is not stabilizing. If this
derivative is pure imaginary, then (k1, k2) is stabilizing.
Continue the process.

The main computational cost of Algorithm 1 is finding the
roots of a real polynomial. The specifics are beyond the scope
of this paper; see [25], [26] and references therein for the
recent algorithmic developments in this direction.

Let us demonstrate the progression of Algorithm 1 for the
example in Remark III.11. The characteristic polynomial of
the closed-loop system for this example is then

p(λ, k) = λ3 + 0.825λ2 + 1.21λ + 0.3401666667

+k(λ2 + 7.5λ + 12.5).

Furthermore,

φ(β) = λ5 − 7.5225λ3 + 1.367899792λ,

with nonnegative roots 0,
√

6018
40

, where
√

6018
40

has multiplicity
2. The root β1 = 0 is mapped to k1 = − 625919

6×107
, and β2 =

√

6018
40

to k2 = 2041
6000

. We start from the unbounded interval
(k2,∞): pick k and test the stability of the closed loop system;
n this case, we conclude that (k2,∞) is stabilizing. Since k2
is acquired from a multiple root of φ(β), we examine the
derivative p′(λ, k2); since it is pure imaginary, we conclude
that the interval (k1, k2) is stabilizing. As such (−∞, k1) is
not stabilizing by Observation III.4.

IV. PROPERTIES OF SCHUR STABILIZING FEEDBACK GAINS

In this section, we study the properties of the set of static
feedback gains (4) for discrete-time linear systems (2). Here
is our first observation.

Lemma IV.1. There is a homeomorphism h ∶Hx → Sx.

Proof. Without loss of generality, as we have done throughout
this paper, we assume that the pair (A, b) is in the controllable
canonical form. Recall that the bilinear transform,

g ∶ λ↦ λ + 1

λ − 1

is a diffeomorphism between the unit disk D and the open
left-half plane H− in C. Clearly G := (g, . . . , g) ∶ Dn → Hn

−

defines a diffeomorphism between Dn → Hn
−

. Passing to the
quotient space (modulo the action of the symmetric group),
we have a diffeomorphism G̃ ∶ Dn/Sn → Hn

−
/Sn given by

G̃ ○ π = G, where π is the canonical projection. Let ζ be

the bijection between Rn and the set of monic nth degree
polynomials, i.e., if α = (α0, . . . , αn−1) ∈ Rn, then ζ(α) =
λn + αn−1λn−1 + ⋅ ⋅ ⋅ + α0. Denote the sets,

E = {α ∈ Rn ∶ ζ(α) has all roots in D},
F = {α ∈ Rn ∶ ζ(α) has all roots in H−}.

By Corollary II.1.1, we have following commuting diagram:

E F

{Dn}∗/Sn {Hn
−
}∗/Sn,

σ̂

σ̂−1○G̃○σ

σ̂

G̃

where {Dn}∗/Sn ⊆ Cn/Sn denotes the n-dimensional vector
invariant under conjugation with entries inside the unit disk of
C; similarly for {Hn

−
}∗/Sn (recall the notation in § II).

Now, the map

σ̂−1 ○ G̃ ○ σ̂ ∶ E → F ,

defines a homeomorphism between E and F . However, note
that Sx = a − E and Hx = a − F , where a is the last row
of A. This completes the proof since a translation in Rn is a
diffeomorphism.

Remark IV.2. The above result immediately implies that
Sx is open, connected and contractible since Hx is. In our
subsequent discussion, we will also outline more direct proofs
for the above facts since they provide additional insights
into the structure of the set of stabilizing feedback gains for
discrete-time linear systems.

In view of Lemma IV.1, one might be inclined to construct a
similar homeomorphism between the sets S and H. However,
as it turns out, the technique adopted in Lemma IV.1 can not be
generalized for this purpose. For example, when k0 ∈ S, it does
follow that k0c ∈ Sx. However, under the homeomorphism
constructed in Lemma IV.1, the image of k0c is not necessarily
a scalar multiple of c. For a concrete example, one may
consider the triplet (A, b, c⊺) given by

A =
⎛
⎜⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟
⎠
, b =

⎛
⎜⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟⎟
⎠
, c =

⎛
⎜⎜⎜⎜
⎝

1
2
3
4

⎞
⎟⎟⎟⎟
⎠
.

We note 0 ∈ S and Zp(λ,A−0bc⊺) = {0, . . . ,0}. Under the
bilinear transform, the zeros will be mapped to {−1, . . . ,−1},
which corresponds to characteristic polynomial p(λ) = λ4 −
4λ3+6λ2−4λ+1. However, no k ∈H can yield a closed-loop
system A − kbc⊺ with this characteristic polynomial.20

We now demonstrate that:
a) S and Sx are both open in the Euclidean topology.
b) S and Sx are both bounded.
c) S and Sx are convex if the system has two states.

20Note that we are not claiming that such homeomorphism does not exist.
The non-existence of such a homeomorphism requires a deeper understanding
of these two topological subspaces. To the best of our knowledge such a
homeomorphism has not been reported in the literature.

10



d) Sx is connected and S has at most ⌈n
2
⌉ connected

components.
Most of the proofs for the discrete time case have a similar
flavor as their continuous counterparts. However, the proof for
the upper bound on the number of connected components of
S has a few distinct steps.

Lemma IV.3. The set S is open in R and Sx is open in Rn.

Proof. The proof proceeds similar to the proof of Lemma III.1.
We only need to observe that the composition map,

υ := max ○ ∣ ⋅ ∣ ∶ Cn
∗
→ [0,∞),

is continuous, even when adopted on the quotient space. That
is, there is a unique continuous map υ̃ ∶ Cn

∗
/Sn → [0,∞) such

that υ = υ̃ ○ π. Hence the map,

k ↦ Zp(λ,A−kbc⊺) ↦max (∣Zp(λ,A−kbc⊺)∣)

is continuous. The interval [0,1) is open in the subspace
topology of [0,∞) and S is the preimage of [0,1) under the
above map; thereby, S is open.

In order to show that Sx is open in Rn, we only need to
observe that the map F ∶ Rn → [0,∞), given by

k ↦ Zp(λ,A−bk⊺) ↦max (∣Zp(λ,A−bk⊺)∣) ,

is continuous and Sx = F −1([0,1)).

We now note that contrary to the continuous time case, the
sets S and Sx are bounded.

Proposition IV.4. The set Sx is bounded in Rn.

Proof. It suffices to assume that (A, b) is in the controllable
canonical form. For any k ∈ Rn, the characteristic polynomial
of the corresponding closed-loop system assumes the form,21

p(λ, k) = λn + (an−1 − kn−1)λn−1 + ⋅ ⋅ ⋅ + (a0 − k0).

Let λ1, . . . , λn denote the zeros of p(λ, k). By Vieta’s formula,
the coefficients of p(λ, k) are elementary symmetric functions
of its roots λ1, . . . , λn. For every k ∈ Sx, ∣λj ∣ < 1 for all
j; as such, the coefficients of p(λ, k), and by extension,
k0, . . . , kn−1, are bounded.

Corollary IV.4.1. For the controllable and observable output
feedback system (A, b, c⊺), the set S is bounded.

Proof. We observe that S = {k ∈ R ∶ kc ∩ Sx ≠ ∅}.

In regards to convexity properties, it is known that the set
Sx is not convex in general [22], [27].

Observation IV.5. The set Sx is convex when n = 2.

Proof. Without loss of generality, we assume that the pair
(A, b) is in the controllable canonical form. Suppose that
k = (k0, k1)⊺ and e = (k′0, k′1)⊺ are two stabilizing controllers.
The characteristic polynomials of the corresponding closed-
loop systems are then,

pk(λ) = λ2 + k1λ + k0, and pk′(λ) = λ2 + k′1λ + k′0.

21The entries of k are consistent with the way the are indexed in the
characteristic polynomial.

Note that by Vieta’s formula, k0 < 1 and k′0 < 1 since the
zeros are inside the unit disk. For k̂ = (1 − δ)k + δk′ with
δ ∈ [0,1], consider the corresponding characteristic equation
pk̂(λ) = (1−δ)pk(λ)+δpk′(λ). If pk̂ has two conjugate zeros
z1, z̄1, then ∣z1∣ = ∣z̄1∣ < 1 by Vieta’s formula since ∣z1∣2 =
(1 − δ)k0 + δk′0 < 1. On the other hand, if pk̂ has two real
zeros, suppose that one of them is 1 or −1 (note that by Vieta’s
formula, the product of two zeros is strictly less than 1; hence
the other zero is inside the open unit disk), i.e., pk̂(1) = 0
or pk̂(−1) = 0. Note that pk(1), pk(−1), pk̂(1), pk̂(−1) are
all positive since if pk has two conjugate zeros, then pk(λ)
is positive on the real line; if pk has two real zeros, by the
assumption that the zeros are in (−1,1), pk(1), pk(−1) are
positive. This is a contradiction to the assumption that pk̂(1) =
0 or pk̂(−1) = 0 (as pk̂(λ) is the convex combination of pk(λ)
and pk′(λ)). Hence the zeros of pk̂ must be in the open unit
disk for every δ ∈ [0,1].

A. Connectedness properties of Sx and S
The following topological property of the set Sx has imme-

diate algorithmic implications.

Lemma IV.6. For the state feedback system, the set Sx is
connected and contractible in Rn.

Proof. The proof proceeds similar to the proof of Lemma III.7.
Putting Γ = {λ ∈ C ∶ ∣λ∣ < 1}n, it suffices to show that Γ∗/Sn
is connected and contractible.22 But this is immediate since
any v ∈ Γ∗/Sn is connected to (0, . . . ,0) by the convex line
segment (1 − δ)v + δ 0 (δ ∈ (0,1)) in Γ∗.

For the output feedback case, the set S is not connected in
general. Following is an example of a SISO system with more
than one path-connected component.23

Example 3. Consider the LTI system (A, b, c⊺) with,

A =
⎛
⎜⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟
⎠
, b =

⎛
⎜⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟⎟
⎠
, c =

⎛
⎜⎜⎜⎜
⎝

0.5184
−2.448
4.33
−3.4

⎞
⎟⎟⎟⎟
⎠
.

The feedback controllers are then parametrized by intervals in
R. Figure 5 depicts that the roots of the closed loop system are
inside the unit disk for some interval, then become unstable,
and subsequently reenter the unit disk as k varies; as such, S
has two connected components.

Connected Components of S for SISO Systems: We
now show that there is at most ⌈n

2
⌉ connected components

in S . We will follow a similar line of reasoning as for the
continuous systems presented in § III-A. We shall demonstrate
the upper bound n first, followed by the upper bound of ⌈n

2
⌉.

The essential ideas for proving the two results are similar to
the strategy we followed in Lemmas III.10 and III.14, with
some subtle differences.

Lemma IV.7. The set S has at most n connected components.

22As such, Γ∗ is the subset of n-dimensional complex-valued vectors with
entries having modulus less than one and closed under conjugation.

23 This example actually shows that the bound in Lemma IV.10 is tight.

11



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Axis

Im
a
g
in
a
ry

A
x
is

Largest root modulus as k varies

Fig. 5: The figure depicts how the root with largest modulus
varies with respect to the feedback gain k. The blue and red
segments correspond to two stabilizing intervals.

Proof. Note that in this case, S is a subset of R; it also suffices
to assume that the system is in the controllable canonical
form. Consider the characteristic polynomial of a closed-loop
system,

p(λ, k) = λn + (an−1 − kcn−1)λn−1 + ⋅ ⋅ ⋅ + a0 − kc0,

where a = (an−1,, . . . , a0) is the last row of A and cj’s are
components of c. Let ζ be the bijection between Rn and the
set of monic nth degree polynomials, and

Γ = {a ∈ Rn ∶ ζ(a) has roots on the unit disk in C},

and parameterize the line `(k) := a − kc. Suppose `(k) ∩ Γ
for finitely many k’s, listed in increasing order {k1, . . . , kl}
(this will be proven subsequently). Let np(x,k)(D) denote the
number of roots of the closed loop characteristic polynomial
on D. Moreover, let γ be a counterclockwise oriented unit
circle in C, tracing the boundary of D. For each k ∈ (kj , kl),
we define,

m(k) = 1

2πi
∫
γ

p′(λ, k)
p(λ, k) dλ.

Note that p(λ, k) does not vanish on γ, and by Cauchy’s Argu-
ment Principle [10], m(k) is the number of zeros of p(λ, k)
inside γ, that is, m(k) = np(λ,k)(D). We further note that
m(k) is continuous in k, and as such, np(λ,k)(D) is constant
on each interval (kj , kj+1). Hence, either np(λ,k)(D) = n or
np(λ,k)(D) < n, respectively, corresponding to stabilizing and
non-stabilizing gains k.

Now by inspecting the number of intersections between
`(k) and Γ, we can derive an upper bound on the number
of connected components of S. In this direction, when `(k)
intersects Γ there is λ0 = eiθ ∈ C such that,

λn0 + (an−1 − kcn−1)λn−10 + ⋅ ⋅ ⋅ + (a0 − kc0) = 0,

and therefore,

k = λn0 + an−1λn−10 + ⋅ ⋅ ⋅ + a0
cn−1λn−10 + cn−2λn−20 + ⋅ ⋅ ⋅ + c0

.(13)

Note that r(λ0) = cn−1λn−10 + ⋅ ⋅ ⋅ + c0 ≠ 0 (see details in the
proof of Lemma III.10). This implies that h(λ) := Im((λn0 +
s(λ0))r(λ0)) = 0, where r(λ0) is the complex conjugate of
r(λ0). Substituting λ0 = eiθ into (λn0 + s(λ0))r(λ0), we have

αne
inθ + αn−1ei(n−1)θ + ⋅ ⋅ ⋅ + α0

+ α1e
−iθ + ⋅ ⋅ ⋅ + α−(n−1)e−i(n−1)θ = 0,

where (αn, . . . , α1, α0, α−1, . . . , α−(n−1)) are the correspond-
ing coefficients when we expand the product. This implies
that

βn sin(nθ) + ⋅ ⋅ ⋅ + β1 sin(θ) = 0,

where (βn, . . . , β1) ∈ Rn are the corresponding real coeffi-
cients. We now note Chebyshev polynomials of second kind
satisfy,

Un−1(cos(θ)) sin(θ) = sin(nθ),

where Un−1(cos(θ)) is the Chebyshev polynomial of degree
n − 1 in cos(θ). It thus follows that,

sin(θ) (β1 + β2U1(cos(θ)) + ⋅ ⋅ ⋅ + βnUn−1(cos(θ)))
=: sin θ g(cos(θ)),(14)

where g(cos(θ)) ∈ R[cos(θ)] has degree n−1. By Fundamen-
tal Theorem of Algebra, there will be at most n − 1 possible
values for cos(θ). Noting that θ = 0 or θ = π also satisfy
the above relation. Mind that for each value of cos(θ), there
are two possible θ’s in [0,2π), yielding a conjugate pair eiθ

and e−iθ. But this conjugate pair will be mapped to the same
gain k via (13). Thereby, we will have at most n+ 1 possible
values for such k’s. Since the set of stabilizing controllers is
bounded, we have at most n connected components.

Remark IV.8. Figure 6 depicts a similar situation as observed
perviously for the continuous systems: two adjacent intervals
(k′′, k0) and (k0, k′) could be both stabilizing but k0 is only
marginally stabilizing. The system parameters are,

A =
⎛
⎜⎜
⎝

2909
1000

− 283
100

26129688223−120
√

6273911930105230
18036490000

1 0 0
0 1 0

⎞
⎟⎟
⎠
,

b =
⎛
⎜⎜
⎝

1
0
0

⎞
⎟⎟
⎠
, c =

⎛
⎜⎜
⎝

0.1343
−0.1846
0.0623

⎞
⎟⎟
⎠
.

Now we prove that the bound on the number of connected
components of S can be tightened to ⌈n

2
⌉. The strategy for

proving this bound is similar to Lemma III.14. That is, we need
to examine the implications of having two adjacent stabilizing
intervals (kj−1, kj) and (kj , kj+1); see Figure 6.

We first make an observation.

Proposition IV.9. Let

ϕ(λ) = a−nλ−n + an−1λ−(n−1) + ⋅ ⋅ ⋅ + a0 + a1λ + ⋅ ⋅ ⋅ + anλn,
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Fig. 6: Two adjacent stabilizing intervals (kj−1, kj) and
(kj , kj+1) where kj is not stabilizing.

and

h(θ) = Im(ϕ(λ)∣λ=eiθ),

where ϕ(λ) ∈ R[λ]. Then h′(θ) = Re ((λϕ′(λ))∣
λ=eiθ

); note
that h′(θ) denotes differentiation with respect to θ and ϕ′

refers to differentiation with respect to λ.

Proof. By linearity of the operations involved, it suffices to
show this relation holds for λ−l and λl, when l ∈ N. For λj ,
v(θ) := Im(λl∣λ=eiθ) = sin(lθ) and v′(θ) = l cos(lθ); however,

Re ((λ(λl)′)∣λ=eiθ) = Re (lλl∣λ=eiθ) = l cos(lθ).

For λ−l, w(θ) := Im(λ−l∣eiθ) = − sin(lθ) and w′(θ) =
−l cos(lθ). The proof now follows by observing that,

Re ((λ(λ−l)′)∣λ=eiθ) = Re (−lλ−l∣λ=eiθ) = −l cos(lθ).

We are now in the position to prove the tight bound of ⌈n/2⌉
on the number of connected components of S.

Lemma IV.10. When S ≠ ∅, it has at most ⌈n
2
⌉ connected

components.

Proof. Similar to the continuous case, we need to explore the
implications of having two adjacent intervals be stabilizing.
Suppose (kj−1, kj) and (kj , kj+1) are two such intervals,
where k’s in each interval are stabilizing. By assumption,
p(λ0, kj) = 0 for some ∣λ0∣ = 1. By Proposition III.12,
λ0 = eiθ0 is a simple root for p(λ, kj) ∈ R[λ] since the unit
disk has positive Gaussian curvature (see argument in the proof
to Lemma III.14). Let us denote by s(λ) = an−1λn−1+⋅ ⋅ ⋅+a0
and r(λ) = cn−1λ

n−1 + ⋅ ⋅ ⋅ + c0. Now the curve η(t) is
differentiable at λ0 with

dη

dt
∣
t=kj

= r(λ0)
(λn + s(λ))′∣λ=λ0

,

by appealing to the asymptotic formula or just formally
differentiating. Geometrically, at kj , the derivative should be
orthogonal to λ0 if the curve η(k) is tangent to the unit sphere
at λ0. This implies that,

r(λ)
(λn + s(λ))′

∣
λ=λ0

= iγλ0,

where γ ∈ R. Hence,

Re (r(λ̄) (λn + s(λ))′ λ∣λ=eiθ0 ) = 0.(15)

Recall that kj’s correspond to the roots of sin(θ)g(cos(θ))
via (13). So if (kj−1, kj) and (kj , kj+1) are both stabilizing,
then the θ0 that maps to kj must satisfy,

Im ((λn + s(λ)) r(λ̄)∣λ=eiθ0 ) = 0,(16)

Re (r(λ̄)p′kj(λ)λ∣λ=eiθ0 ) = 0.(17)

Let us now show that these two relations imply if cos(θ0)
is a solution to g(cos(θ0)) (recall that (16) is equivalent to
sin(θ)g(cos(θ)) = 0), then g′(cos(θ0)) = 0 due to (17). Note
that θ0 ≠ 0 or π by (15).

Let us consider the function G(θ) defined by

G(θ) = Im ((λn + s(λ)) r(λ̄)∣λ=eiθ) .

Note that G(θ) = sin(θ)g(cos(θ)). We adopt the notation
G′(θ) to refer to differentiation with respect to θ. Let us define
q(λ) = r(1/λ) and observe that q′(λ) = −r′(1/λ)/λ2. Then

G(θ0) = Im ((λn + s(λ)) q(λ)∣λ=eiθ0 ) .

By Proposition IV.9, we have

G′(θ0) = Re (λ ((λn + s(λ))q(λ))′ ∣λ=eiθ0 )

= Re (λ (λn + s(λ))′ q(λ)∣λ=eiθ0
+λ (λn + s(λ)) q′(λ)∣λ=eiθ0 ) .

Noting that λn0 + s(λ0) − kjr(λ0) = 0, i.e., λn0 + s(λ0) =
kjr(λ0), it follows that,

G′(θ0) = Re
⎛
⎝
(λ(λn + s(λ))′r( 1

λ
) + λkjr(λ)q′(λ)) ∣λ=eiθ0

⎞
⎠

= Re((λ(λn + s(λ))′r( 1

λ
) − 1

λ
kjr(λ)r′(

1

λ
))∣λ=eiθ0)

= Re((λ (λn + s(λ))′ r(λ̄) − kjr(λ)λ̄r′(λ̄)) ∣λ=eiθ0)

= Re((λ (λn + s(λ))′ r(λ̄) − kjr(λ̄)λr′(λ)) ∣λ=eiθ0)

= Re (r(λ̄)p′kj(λ)λ∣λ=eiθ0 ) .

The above identity is precisely (17), i.e., G′(θ0) = 0. But by
the chain rule,

G′(θ0) = cos(θ0)g(cos(θ0)) − sin2(θ0)g′(cos(θ0)) = 0.

Since sin(θ0) ≠ 0, it follows that g′(cos(θ0)) = 0. Putting
v = cos(θ0), it now follows that v must be a multiple root if
the two adjacent intervals are both stabilizing.

Now let {u1, . . . , uµ, v1, . . . , vν} denote the roots of the
polynomial g(v) = g(cos(θ)) = 0, where vj’s are roots of
multiplicity greater than 1. We have µ + 2ν ≤ n − 1. These
roots will be mapped to kj’s via (13). Let Λ = {kj}µ

′

j=1 and
Π = {kj}ν

′

j=1 be the corresponding sets to {uj} and {vj}. Since
θ = 0 or θ = π also corresponds to real k’s, we add these two
to the set Λ. Now µ′ + 2ν′ ≤ n + 1. Let Υ be the collection
of nonstabilizing intervals. Note that if ki ∈ Λ, then one of
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the intervals (kj−1, kj) and (kj , kj+1) must be not stabilizing.
Hence, kj must be the endpoint of some interval in Υ. It now
follows that the cardinality of Λ is given by

µ′ = ∣Λ∣ ≤ 2 + 2(∣Υ∣ − 2).
On the other hand, the total number of stabilizing intervals
would be µ′ + ν′ + 1 − ∣Υ∣ and thereby,

µ′ + ν′ + 1 − ∣Υ∣ ≤ µ′ + ν′ + 1 − µ
′ + 2

2
≤ n + 1

2
.

Consequently, the total number of stabilizing intervals is at
most ⌈n

2
⌉.24

Remark IV.11. As shown in Example 3, this bound is tight.

We now observe the property that the stabilizing and non-
stabilizing intervals in S interlace is also generic. The proof
is almost verbatim to the one to Lemma III.17 except that
we need the nonemptyness of U for discrete systems; this is
immediate from Example 3.

Lemma IV.12. For a controllable and observable system
(A, b, c⊺), the property that stabilizing and non-stabilizing
intervals in S interlace is generic.

An algorithm for characterizing the connected com-
ponents of S: Similar to the continuous case, our analysis
leads to an algorithm for identifying the stabilizing intervals
for discrete-time linear SISO systems. We summarize this
algorithm below.

Algorithm 2: Identifying stabilizing intervals of S
1: Find real zeros {λ1, . . . , λl} of the real polynomial (14).

Note that these zeros correspond to cos(θ). Mapping
these zeros to the corresponding values of λ, we get
{λ1, λ̄1, . . . , λl, λ̄l}. Appending {−1,1} to this list if nec-
essary, we get a new list L = {1,−1, λ1, λ̄1, . . . , λl, λ̄l}.
Mapping L to {k1, . . . , kl′} (order this list in an increasing
manner) by (13).

2: Start from the interval (−∞, k1). It is not stabilizing by
Proposition IV.4. Check the multiplicity of λ1′ that maps
to k1. If λ1′ is simple, then (k1, k2) is not stabilizing; if
λ1′ is not simple, check whether (15) is satisfied; if not,
i.e., the corresponding derivative is not pure imaginary,
then (k1, k2) is not stabilizing. On the other hand, if this
derivative is pure imaginary, then (k1, k2) is stabilizing.
Continue the process.

We demonstrate the progression of Algorithm 2 on the
example in Remark IV.8. The characteristic polynomial of the
closed-loop system is given by

p(λ, k) = λ3 + 2.909λ2 + 2.83λ − 0.9217272705

+ k(0.1343λ2 − 0.1846λ + 0.06229).
Furthermore,

g(cos(θ)) = 0.24916 (cos (θ))2 − 0.4840272752 cos (θ)
+ 0.2350722459,

24In particular, when n = 2, the set S corresponding to the triplet (A, b, c⊺),
if nonempty, is connected.

has a root
√

6018
40

with multiplicity 2. Then sin(θ1) = 0 is
mapped to k1 = 0.06065638 and k3 = 20.09687366; cos(θ2) =√

6018
40

on the other hand maps to k2 = 0.6198635016. By
Corollary IV.4.1, the two unbounded intervals (−∞, k1) and
(k3,∞) are both non-stabilizing. We note that k1 corresponds
to sin(θ) = 0 and thereby (k1, k2) is stabilizing. Since k2
is obtained from a multiple root of g(cos(θ)), we need to
check condition (15). In this case, we conclude that the interval
(k2, k3) is stabilizing.25

V. CONCLUSION

The motivation for this work stems from recent interest in
devising learning type algorithms for control synthesis, that
evolve over the set of stabilizing feedback gains. This in
turn, has inspired the need to further examine the topological
properties of these sets. We envisage that some of these
properties might been observed in the earlier literature in
system theory and known to experts;26 however, this work is
an attempt to gather and prove these properties in a concise
and rigorous manner using basic topology and the theory of
polynomials. In this work, we have focused on topological
and metrical properties of stabilizing state feedback gains and
SISO output feedback gains for continuous and discrete time
linear systems; some of these results have MIMO counterparts
that are discussed in [12]. In this latter case, topological argu-
ments turn out to be even more dominant for characterizing
the set of stabilizing feedback gains, with less reliance on the
geometry of polynomials.
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