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Abstract. In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field
(macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by
environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions
serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion
profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness
of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the
corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees
exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily
yields the input-output stability of the system for sufficiently large noises.

Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is
examined. Specifically, two numerical schemes for identification of order-disorder transition and characteriza-
tion of initial clustering behavior are provided. The results of analysis are validated through several numerical
simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent
model (interacting stochastic differential equations) for a particular distribution of radicals.

1. Introduction

Recent decades have witnessed enormous progress in study of complex systems and their system-theoretic
properties [1, 2]. The main effort has been invested into study of “self-organization” and “spontaneous order”
phenomena [3] that have inspired the development of synchronization and consensus theory [4, 5]. Paradoxi-
cally, these regular behaviors arising from local interactions between subsystems (agents, nodes) of a complex
system are studied much better than various “irregular” dynamic effects such as persistent disagreement and
clustering, exhibited by many real-world systems. Although some culprits of this asynchrony and dissent (e.g.
symmetries and other special structures in the coupling mechanisms, exogenous forces acting on some nodes,
heterogeneous dynamics of nodes, etc.) have been revealed in the literature [6–10], only a few mathematical
models have been proposed that are sufficiently “rich” to capture the diversity of clustering behaviors in real-
world networks and, at the same time, admit rigorous analysis. Long before the recent “boom” in complex
systems, the lack of such models was realized in mathematical sociology. The problem of disclosing mech-
anisms preventing consensus and maintaining enduring disagreement between individuals [11] is nowadays
referred to as the community cleavage problem or Abelson’s diversity puzzle [12, 13]. The interdisciplinary
area of sociodynamical modeling [13–20] has attracted enormous attention of the research community and is
primarily concerned with mechanisms of opinion formation under social influence.

Only few models, proposed in the literature to describe opinion formation processes, have been secured
by experimental evidence. Such models, however, play an important role and contribute, in various aspects,
in comprehending complex systems’ behaviors such as birth, death and evolution of clusters in systems of
interacting particles, and in developing algorithms for control of these behaviors. This explains explosion

Date: January 14, 2020.
M.A.S. Kolarijani and P. Mohajerin Esfahani are with Delft Center for Systems and Control, Delft University of Technology,

Delft, The Netherlands. Email: {M.A.SharifiKolarijani, P.MohajerinEsfahani}@tudelft.nl.
A.V. Proskurnikov is with Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy

and also with the Institute for Problems of Mechanical Engineering, Russian Academy of Sciences (IPME RAS). Email:
anton.p.1982@ieee.org.

1

ar
X

iv
:1

90
5.

04
05

7v
2 

 [
m

at
h.

A
P]

  1
3 

Ja
n 

20
20



2

of interest in models of “opinion formation” in systems and control literature. From the control-theoretic
prospect, most of these models are simply networks of interacting agents, obeying the first-order integrator
model. However, the term “opinion” is now widespread and used to denote the scalar or multi-dimensional
state of an agent, even if this state does not have a clear sociological interpretation1 (belonging, e.g., to an
abstract manifold [21]). The opinion is thus some value of interest, held by an agent and updated, based on
displayed opinions of the other agents.

Nowadays, linear models of opinion dynamics, extending the classical French-DeGroot system in various
directions (allowing, e.g., stubborn agents, asynchronous interactions and repulsion of opinions [13,17,22,23])
have been thoroughly studied. These models are sufficient to explain consensus and disagreement in social
groups, as well as formation of special opinion profiles (e.g., bimodal distributions, standing for opinion
polarization), however, general mechanisms leading to emergence and destruction of unequal clusters are still
far from being well understood. To explain them, more complicated nonlinear models have been proposed,
mimicking some important features of social influence. One feature observed in social and biological systems
is the homophily [24], or tendency of individuals to bond with similar ones. Homophily is related to biased
assimilation [25] effects: individuals readily accept opinions consistent with their views and tend to dismiss
and discount opinions contradicting to their own views. Mathematically, coupling between close opinions is
stronger than that of distant opinions, which is modeled by introducing opinion-dependent influence weights.
Although the possibility of such nonlinearities in opinion dynamics models was mentioned in the pioneering
work [11], substantial progress has been primarily achieved in analysis of bounded confidence models proposed
several decades later as extensions of the deterministic [26] and randomized gossip-based [27] consensus
algorithms for multi-agent networks. Bounded confidence models stipulate that a social actor is insensitive to
opinions beyond its bounded confidence set (usually, this set is an open or closed ball, centered at the actor’s
own opinion), which makes the graph of interactions among the agents distance-dependent. A detailed survey
of bounded confidence models and relevant mathematical results can be found in [18]. Bounded confidence
models exhibit convergence of the opinions to some steady values, which can reach consensus or split into
several disjoint clusters. If the state-dependent interaction graph of the system is symmetric, this follows from
general properties of iterative averaging procedures, and can alternatively be proved by exploring a special
Lyapunov function (“kinetic energy”) [18, 28, 29]. In the general case of asymmetric interaction graphs, such
a convergence has been proved only in special situations [29,30], but seems to be a generic behavior [30–32].

Opinions in real social groups, however, usually do not terminate at steady values yet oscillate, which
is usually explained by two factors. The first reason explaining opinion fluctuation is exogenous influence,
which can be interpreted as some “truth” available to some individuals [33] or a position shared by a group
of close-minded opinion leaders or stubborn individulas (“radicals”) [34–36]. Important results on stability of
the HK model with radicals and more general “inertial” bounded confidence models were obtained in [30].
Typically, the exogenous signal is supposed to change slowly compared to the opinion evolution and is thus
replaced by a constant; the main concern is the dependence between the constant input and the resulting
opinion profile. Numerical results, reported in [34, 35] demonstrate high sensitivity of the opinion clusters
to the radical’s opinion and reveal some counter-intuitive effects, e.g., an increase in the number of radicals
sometimes decreases the number of their followers. The second culprit of persistent opinion fluctuation is
uncertainty in the opinion dynamics, usually modeled as a random drift of each opinion. The presence of a
random excitation can be interpreted as “free will” and unpredictability of a human’s decision [37]; besides
this, randomized opinion dynamics models are broadly adopted in statistical physics [38–41] to study phase
transitions in systems of interacting particles.

Even for the classical models from [26, 27], disclosing the relation between the initial and the terminal
opinion profiles remains a challenging problem (including, e.g., the 2R-conjecture [42, 43]). In presence
of noise, the analysis becomes even more difficult; some progress in the study of the interplay between
confidence range and noise level has been achieved in recent works [44,45]. One of the important directions in

1From the sociological viewpoint, opinions are cognitive orientations of individuals towards some objects or topics [13].
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analysis of bounded confidence models is examination of their asymptotic properties as the number of social
actors becomes very large N → ∞ and their individual opinions are replaced by infinitesimal “elements”.
The arising macroscopic approximations of agent-based models describe the evolution of the distribution of
opinion (usually supposed to have a density) and are referred to as density-based [46], continuum-agent [47,48],
Eulerian [49, 50], kinetic [51], hydrodynamical [28] or mean-field [43, 52] models of opinion formation. In the
continuous-time situation, the density obeys a nonlinear Fokker-Planck (FP) equation. To study clustering
behavior of the macroscopic bounded confidence models, efficient numerical methods have been proposed that
are based on Fourier analysis [40,43,53].

From practical viewpoint, it is convenient to consider opinions staying in a predefined interval, e.g., [0, 1].
The HK and Deffuant-Weisbuch (DW) models, as well as their continuous-time counterparts [18], imply
that starting within the interval, opinions never escape from it. This property, however, is destroyed by
arbitrarily small noises. To keep the opinions bounded, some “boundary conditions” are usually introduced.
The absorbing boundary condition assumes that the opinions are saturated at the extreme values 0 and
1 [40, 45]; an important result from [45] demonstrates that arbitrarily small noises in this situation destroy
clusters and lead to approximate consensus (the maximal deviation of opinions is proportional to the noise
level). More interesting are opinion dynamics with the periodic boundary condition, wrapping the interval
[0, 1] into a circle. The opinion density on the circle corresponds to a 1-periodic solution of the FP equation
on the real line [43, 53, 54]. A disadvantage of the simple periodic boundary condition is the merging of two
extreme opinion values 0 and 1. To distinguish between these extreme opinions, we incorporate an “almost
reflective” (precisely, an even 2-periodic) boundary condition. Dealing with the macroscopic FP equation, the
opinion density is then conveniently represented by an even 2-periodic solution on the real line. This paper
is primarily concerned with mathematical properties of such solutions.

Main Contributions. In this paper, we advance the theory of macroscopic modeling of bounded con-
fidence dynamics. We consider a bounded confidence model with environmental noise which also includes
radical opinions, which are not concentrated at a single point (as in [33,34,49]) but rather distributed over the
interval [0, 1]. The FP equation acquires an (infinite-dimensional) exogenous input, describing the density and
total mass of the radical opinions. This setup allows us to consider the interplay between the noise and the
distributed radicals concerning the behavior of the system. In particular, for the macroscopic FP equation,

(i) the criteria for the existence, uniqueness, and regularity of an even periodic solution are establish
(Theorem 2.1);

(ii) the existence of stationary solution is studied and a global estimate is provided that bounds the
deviation of the stationary state from the uniform distribution (Theorem 2.2);

(iii) a sufficient condition is presented for exponential convergence of the dynamics to stationary state
(Theorem 2.3). Combining this result with the global estimate of item (ii) renders input-output
stability of the system (Corollary 2.4).

Developing ideas from [40,43,53], we then use Fourier analysis to characterize the clustering behavior of the
system under the uniform initial distribution. Specifically, two numerical schemes are presented to analyze

(iv) the interplay between the relative number (mass) of radical agents (with respect to normal agents)
and the critical noise level for order-disorder transition (Section 5.2), and

(v) the impact of the noise and the radical opinions density on the number and timing of the initial
clustering behavior (Section 5.3).

These schemes are then validated through several numerical simulations of the large-scale agent-based and
macroscopic density-based models for a particular distributions of radical opinions.

The paper in organized as follows. Section 2 introduces the macroscopic opinion dynamics model in
question. Here, we also present our main theoretical results regarding well-posedness and stability of the
model. The next two sections are concerned with technical proofs of these results. Section 3 is devoted to
the proofs of well-posedness of the dynamics. In Section 4, we examine the properties of the corresponding
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stationary equation and provide the technical proofs for theoretical results on stability of stationary state. In
Section 5, two numerical schemes are presented for characterization of the clustering behavior of the model.
These general schemes are then tested in Section 6 for a particular distribution of the radical opinions. These
results are accompanied by numerical simulations of both the agent-based and the macroscopic models.
Section 7 concludes the paper.

Notations. The convolution of two functions f and g is denoted by f ? g =
∫
f(x) g(y − x) dy. We note

that in our case one of the functions has a compact support, so the integral always exists. For a function
f(t, x) we use fx (respectively, ft) to denote the derivatives with respect to (w.r.t.) x (respectively, t), so
that fxx is the second partial derivative w.r.t. x. We also use the notation ∂ixf for the i-th order derivative
w.r.t. x. Let X = [0, 1] and X̃ = [−1, 1]. We use P(X) to denote the the space of probability densities
on X. That is, ρ ∈ P(X) if

∫
X
ρ(x) dx = 1 and ρ(x) ≥ 0 for all x ∈ X. We also use Pe(X̃) to denote

the space of probability densities on X, extended evenly to X̃. That is, Pe(X̃) is the space of all functions
ρ : X̃ → [0,∞) such that

∫
X
ρ(x) dx = 1 and ρ(x) = ρ(−x) ≥ 0 for all x ∈ X̃. Lp(X̃) denotes the Banach

space of all measurable functions f : X̃ → R for which ‖f‖Lp(X̃) < ∞. Hk(X̃) for k ∈ N is used to denote
the Sobolev space W k,2(X̃). We use the subscripts per (respectively, ep) to denote the closed subspace of
periodic (respectively, even periodic) functions in the corresponding function space. We denote the dual space
of H1

per(X̃) by H−1
per(X̃) and we use 〈·, ·〉 to denote the corresponding paring of H1

per(X̃) and H−1
per(X̃). We

use → and ⇀ to denote strong and weak convergences, respectively, in an appropriate Banach space. A brief
overview of function spaces relevant to this study is provided in Appendix A.

2. Model Description and Main Theoretical Results

2.1. Macroscopic Model of Opinion Formation

The conventional bounded confidence model describes opinion formation process in a network of N > 1

agents. All agents have the same confidence range R > 0. Agent i’s opinion at time t ≥ 0, denoted by
xi(t) ∈ R, is (directly) influenced only by the opinions of agents j, such that |xj(t)− xj(t)| ≤ R. One of the
simplest continuous-time bounded confidence models is as follows [28]

(1) ẋi(t) =
1

N

N∑
j=1

w
(
xj(t)− xi(t)

)
, w(ξ) =

{
ξ, |ξ| ≤ R
0, |ξ| > R.

It can be shown [18] that the opinions obeying the model (1) always converge xi(t) → xsi as t → ∞, with
w(xsi − xsj) = 0 for all i, j. This corresponds to either consensus (xsi = xsj for all i, j) of the terminal opinions
or their splitting into clusters, comprising one or several coincident opinions. In the latter situation, the
distance between each two clusters is greater than R.

Dynamics of real opinions (as well as physical processes, portrayed by “opinion dynamics” models) often
do not exhibit convergence to steady values, and the fluctuation of opinions persists. In order to capture this
effect, random uncertainties can be introduced into the model mimicking “free will” and unpredictability of
a human’s decision [37]. The simplest of these uncertainties is an additive random noise. The model (1) is
then replaced by the system of nonlinear SDE

(2) dxi(t) =
1

N

N∑
j=1

w
(
xj(t)− xi(t)

)
dt+ σdWi(t),

where Wi are independent standard Wiener processes and σ > 0 characterizes the noise level.

Since the dynamics of a stochastic system (2) becomes quite complicated as the number of agents grows,
the standard approach to examine it is the mean-field (or macroscopic) approximation, considering the opin-
ion profile (xi(t))

N
i=1 as a random sampling drawn from some (time-varying) probability distribution of the

opinion. Precisely, it can be shown [55–57] that empirical distributions N−1
∑N
i=1 δxi(t) converge (in the weak



5

sense) as N →∞ to a distribution, whose density ρ(t, x) obeys the FP equation

ρt =
[
ρ (w ? ρ)

]
x

+ σ2

2 ρxx, t ≥ 0, x ∈ R.(3)

A natural extension of the bounded confidence dynamics allows the presence of Nr ≥ 1 radicals (stubborn
agents, zealots) that do not assimilate others’ opinions, however, influence them directly or indirectly. Typ-
ically, the radicals’ opinions are supposed to be constant (or changing very slowly compared to the opinion
formation of “normal” agents). Indexing the “normal” individuals 1 through N and the radicals (N + 1)

through N +Nr, the opinion dynamics becomes as follows

(4)
dxi(t) =

1

N

N+Nr∑
j=1

w
(
xj(t)− xi(t)

)
dt+ σdWi(t), i = 1, . . . , N

ẋi(t) = 0, i = N + 1, . . . , N +Nr.

Often it is supposed that the radicals share a common opinion xi ≡ T for i = N + 1, . . . , N + Nr, which
may also be considered as some “truth” perceived by some individuals [33] or, more generally, an exogenous
signal [34]. The ratioM = Nr/N can be treated as the relative “weight” or “strength” of this external opinion.
More generally, one can assume that the radicals’ opinions are spread over R. Supposing that N,Nr →∞, the
relative mass of the radicals M remains constant, and their empirical distribution N−1

r

∑Nr
i=1 δxN+i

converges
(in the weak sense) to a distribution with sufficiently smooth density ρr, the density of the “normal” opinions
obeys the modified FP equation as follows

ρt =
[
ρ (w ? (ρ+Mρr))

]
x

+ σ2

2 ρxx, t ≥ 0, x ∈ R.(5)

Note that the classical bounded confidence dynamics (1), being a special case of continuous-time consensus
protocol, has an important property: the minimal and maximal opinions mini xi(t) and maxi xi(t) are, respec-
tively, non-decreasing and non-increasing. In particular, if the initial opinions are confined to some predefined
interval, e.g., xi(0) ∈ [0, 1], then one has xi(t) ∈ [0, 1] for all t ≥ 0. The additive noise leads to random drift
of the opinion profile, thus destroying the latter important property. Since in practice bounded ranges of
opinions are usually considered, the dynamics (2), (4) are usually complemented by boundary conditions [40],
preventing the opinions from escaping from the predefined range.

A typical boundary condition is the periodic condition, where the opinion domain [0, 1] is wrapped on a
circle of circumference 1 (formally, replacing a real opinion value x ∈ R by its fractional part {x} = x−bxc = x

mod 1). A disadvantage of the periodic boundary condition is that there is no distinction between the extreme
opinions 0 and 1. In this paper, we address this issue by considering another type of boundary condition,
which we call even 2-periodic. Precisely, a real opinion x ∈ R is replaced by f(x), where f is an even 2-periodic
function, such that f(x) = x on [0, 1] (and hence f(x) = −x for x ∈ [−1, 0], f(x) = 2 − x for x ∈ [1, 2] and
so on). In other words, we first evenly extend the opinion domain [0, 1] into the interval [−1, 1] and then
wrap it on a circle of circumference 2 so that the extreme opinions 0 and 1 correspond to the antipodes of
this circle. We note that with this even 2-periodic extension, the “effective” boundary condition experienced
by the agents is an almost reflective one, that is, when an agent leaves the opinion domain from one end,
it is reflected back into the domain from the same end. This is different from the behavior under simple
periodic boundary condition where the agents leaving the domain form one end, enter the domain from the
other end. However, the introduced boundary condition is “almost” reflective since the even extension causes
some boundary effects: the influence of more extreme neighbors of opinion values in the R-neighborhood of
extreme opinions 0 and 1 is reinforced. This is due to the even extension which introduces more extreme
“artificial” neighbors; see Fig. 1.

As discussed in [43,53,54], the FP equation (3) under the periodic conditions retains its validity, however,
ρ(t, x) is not a probability density on R but a 1-periodic function ρ(t, x + 1) = ρ(t, x) ≥ 0, such that∫ 1

0
ρ(t, x)dx = 1 (that is, ρ(t, ·) serves as a density on the interval [0, 1]). Similarly, for the even 2-periodic

boundary condition, the equation (3) retains its validity when we replace the probability density ρ(t, x) with
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𝒙 = 𝟎 𝒙 = 𝟏

𝝆(𝒙, 𝒕)

𝒙

𝑹

𝒙𝟏 𝒙𝟎

Figure 1. The even 2-periodic extension of the system. The opinion value x0 ∈ [R, 1−R] effectively experiences
a reflective boundary condition, while for the opinion value x1 ∈ [0, R] there is also a boundary effect due to the
even extension. In particular, the influence of more extreme neighbors of x1 is reinforced by introducing artificial
ones (the shaded area in blue). The same boundary effect exists for opinion values in [1−R, 1].

an even 2-periodic function, that is, ρ(t,−x) = ρ(t, x) and ρ(t, x + 2) = ρ(t, x). On the interval [0, 1], the
function ρ(t, ·) again serves as a probability density:

∫ 1

0
ρ(t, x)dx = 1. We also assume that the initial density

ρ0(x) = ρ(0, x) and the density of radical opinions ρr(x), defined on [0, 1], are extended (in the unique possible
way) to even 2-periodic functions on R.

In this study, without loss of generality, we take X = [0, 1] and X̃ = [−1, 1] to be the bounded opinion
domain and its even extension, respectively. To summarize the discussion above, the macroscopic model for
opinion dynamics considered in this study is fully described by the following PDE

ρt = (ρ Gρ)x + σ2

2 ρxx in X̃ × (0, T )

ρ(·+ 2, t) = ρ(·, t) on ∂X̃ × (0, T )

ρ(x, ·) = ρ0(x) on X̃ × {t = 0},
(6)

where

(7) Gρ(x, t) := w(x) ?
(
ρ(x, t) +Mρr(x)

)
.

Note that in (6), we are considering the dynamics over a finite time horizon T for the sake of analysis, however,
T can be chosen arbitrarily large. We again emphasize that the initial density ρ0 and the radical density
ρr are the unique even 2-periodic extensions of the corresponding densities from X to X̃. In essence, we
are considering the same dynamics as in [54] with the extra requirement for ρ0 (and the newly introduced
density ρr) to be even. Finally, we note that [58] also provides a detailed treatment of this dynamics (without
radicals) for a class of interaction potentials on a torus in higher dimensions.

2.2. Main Theoretical Results

To recapitulate, we are interested in even 2-periodic solutions of PDE (6), where ρ0 and ρr are even
2-periodic. A natural question arises whether the model is well-posed in the sense that every (sufficiently
smooth) initial condition ρ0 and input ρr correspond to a unique solution. The affirmative answer is given in
the following theorem.

Theorem 2.1 (Well-posedness of dynamics). Let the initial density of normal opinions and the radical
opinions density satisfy ρ0 ∈ H3

ep(X̃) ∩Pe(X̃) and ρr ∈ H2
ep(X̃) ∩Pe(X̃), respectively. Then, PDE (6) has a

unique, even, strictly positive, classical solution ρ ∈ C1(0,∞;C2
ep(X̃)) such that ρ(t) ∈ Pe(X̃) for all t > 0.

This result implies that ρ(t) := ρ(t, ·) is a (strictly positive) probability density on X = [0, 1] for all
t > 0, as required. For the autonomous systems (without radicals), [54, 58] provide a sufficient condition for
exponential convergence of the dynamics towards uniform distribution ρ = 1 as an equilibrium of the system.
Unlike those studies, the uniform distribution is not an equilibrium of the model considered in this study.
However, it is possible to extend this stability result to our model including the exogenous input, i.e., the
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radicals. To this end, we first consider the stationary equation corresponding to PDE (6) given by

(8)
σ2

2
ρxx + (ρ Gρ)x = 0.

We are particularly interested in even stationary solutions ρs ∈ Pe(X̃) of (8). Our next result characterizes
the stationary state of the system.

Theorem 2.2 (Stationary behavior). Let ρr ∈ H1
ep(X̃) ∩ Pe(X̃) be the radical opinions density.

• Existence: the stationary equation (8) has an even, strictly positive, classical solution ρs ∈ C2
ep(X̃)∩

Pe(X̃).
• Estimate: for any η > 0, if σ2 > σ2

b + ηcb, then ‖ρs − 1‖L2 ≤ 1
η‖ρr‖L2 , where

(9) σ2
b :=

4R

π

(
M +

R√
3

+ 2

)
and cb :=

4R2M

π
√

3
.

Notice how the global estimate in Theorem 2.2 bounds the difference between the stationary solution and
the uniform distribution. This result shows that, even in presence of radical opinions, the stationary solution
can be made arbitrarily close to the uniform distribution by increasing the noise level beyond a minimum
level σb. We note that the minimum noise level σb is directly related to the confidence range R and the relative
mass M . Also, as the “energy” M‖ρr‖L2 of the radicals increases, in order to counteract their effect and keep
the stationary profile in a somewhat uniform state, one must increase the noise level further beyond σb.

With this result in hand, we can now consider the asymptotic stability of stationary state. The next result
provides a sufficient condition for exponential convergence of the dynamics to stationary state for arbitrary
(and sufficiently smooth) initial density ρ0 and radical density ρr.

Theorem 2.3 (Stability). Let ρ0 ∈ H3
ep(X̃) ∩ Pe(X̃) be the initial density of normal opinions and ρr ∈

H2
ep(X̃) ∩ Pe(X̃) be the radical opinions density. Also, let ρ ∈ C1(0,∞;C2

ep(X̃)) with ρ(t) ∈ Pe(X̃) be the
solution to the dynamic equation (6). Then, ρ(t) converges to a stationary state ρs ∈ C2

ep(X̃) ∩ Pe(X̃)

exponentially in L2 as t→∞ if σ > σs, where σs > 0 uniquely solves

(10) σ2
s =

4R(3 +M)

π
+

4R2

π
√

3
exp

(
8R(1 +M)

σ2
s

)
.

An immediate result of Theorems 2.2 and 2.3 is that for sufficiently large noises, the dynamics will converge
to a stationary state that can be made arbitrarily close to uniform distribution by increasing the noise level.

Corollary 2.4 (Input-output stability). For any η > 0, if σ2 > max{σ2
b + ηcb, σ

2
s}, where σb and cb are

defined in (9) and σs > 0 uniquely solves (10), then it holds that

‖ρ(t)− 1‖L2 ≤ βe−λt +
1

η
‖ρr‖L2 ,(11)

where the constant β > 0 depends on ρ0 and ρr and the convergence rate λ > 0 depends on σ, R, and M .

Remark 2.5 (Connection to existing works). The stability result of Corollary 2.4 corresponds to the result
reported in [54, Theorem 2.3] on global stability of uniform distribution ρ = 1 for sufficiently large noises in the
autonomous system without radicals. In particular, by setting M = 0 in the estimate given in Theorem 2.2,
one has cb = 0, hence ρs = 1 is the unique stationary state of the system for σ2 > σ2

b = 4R
π

(
2 +R/

√
3
)
. We

note that σb is the same minimum noise level given in [54, Theorem 2.3], taking into account a multiplicative
factor of two due to the even extension considered in this study. However, direct application of Theorem 2.3
for stability of ρs = 1 leads to a sufficient minimum noise level σs > σb. This is due to the fact that this result
is based on conservative estimates for ρs. Indeed, if one incorporates the fact that ρs = 1 and modifies some
of the arguments provided in the proof of Theorem 2.3 in Section 4.3, then one can show that, in the absence
of radical agents, the uniform distribution ρs = 1 is also globally exponentially stable for σ > σb, reproducing
the result of [54, Theorem 2.3].
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Finaly, we note that, based on the results provided in [58], the input-output stability result of Corollary 2.4
can be generalized to multi-dimensional first-order stochastic interacting particle systems for a particular class
of interaction potentials.

The next two sections are mainly concerned with the technical proofs of the theoretical results listed above.

3. Well-posedness of Dynamics

This section is devoted to the proof of Theorem 2.1 concerning the well-posedness of the dynamics (6).
Throughout this section, all the norms are w.r.t. X̃ = [−1, 1] (as opposed to X = [0, 1]), unless indicated
otherwise. We use C,C0, C1, . . . to represent a generic constant (depending on the model parameters) which
actual values may change from line to line. In case these constants depend on a particular object of interest,
say θ, this dependence is explicitly indicated by C[θ].

Let us first note that because of periodicity, the mass is preserved in (6), that is,∫
X̃

ρ(x, t) dx =

∫
X̃

ρ0(x) dx = 2,

for all t ≥ 0. In particular, we have

‖ρ(t)‖L1 ≥
∫
X̃

ρ(x, t) dx = 2 > 0.

We will be using this property in the sequel.

We start by presenting some useful estimates for the object Gρ defined in (7) that make it possible to
extend the results provided by [54] to our model.

Lemma 3.1 (Estimates for Gρ). Let Gρ be the function defined in (7) with ρr ∈ Pe(X̃). If ρ(t) ∈ L1
per(X̃),

then

(12) ‖Gρ‖L∞ ≤ R (‖ρ(t)‖L1 + 2M) .

If, moreover, ‖ρ(t)‖L1 > 0 , then

(13) ‖Gρ‖L∞ ≤ C ‖ρ(t)‖L1 ≤ C ‖ρ(t)‖L2 .

Proof. Notice

|Gρ(x, t)| =
∣∣∣∣∫ (x− y) 1|x−y|≤R (ρ(y, t) +Mρr(y)) dy

∣∣∣∣
≤
∫
|x− y| 1|x−y|≤R |ρ(y, t) +Mρr(y)| dy

≤ R
∫
X̃

|ρ(y, t) +Mρr(y)| dy

≤ R
(∫

X̃

|ρ(y, t)| dy + 2M

)
,

from which we can conclude the inequality (12). The first inequality in (13) then immediately follows from (12)
and the assumption ‖ρ(t)‖L1 > 0. For the second inequality in (13) notice that since X̃ is of finite measure
µ(X̃) = µ([−1, 1]) = 2, for any measurable function v we have

(14) ‖v‖Lp(X̃) ≤ µ(X̃)
1
p−

1
q ‖v‖Lq(X̃),

where 1 ≤ p ≤ q ≤ ∞. �

Using the estimate (13) in Lemma 3.1, one can follow similar arguments as in [54, Lemma 2.1] to show
‖ρ(t)‖L1 = 2 and ρ(t) ≥ 0 for all t ≥ 0; see also [54, Corollary 2.2]. Specifically, assuming PDE (6) has a
solution ρ ∈ C1(0, T ;C2

per(X̃)), one can derive a priori estimate which in turn implies that the solution is
non-negative so that ρ(t) is a probability distribution on X = [0, 1] for all t ≥ 0.
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Lemma 3.2 (Estimates for ∂kxGρ). Let Gρ be the function defined in (7) with ρr ∈ Pe(X̃).

(i) For 1 ≤ p ≤ ∞, if ρ(t), ρr ∈ Lpper(X̃) with ‖ρ(t)‖L1 > 0, then

(15) ‖(Gρ)x‖Lp ≤ C1 ‖ρ(t)‖Lp + C2 ‖ρr‖Lp ≤ C[‖ρr‖Lp ] ‖ρ(t)‖Lp .

(ii) For k ≥ 2, if ρ(t), ρr ∈ Hk−1
per (X̃) with ‖ρ(t)‖L1 > 0, then

(16) ‖∂kxGρ‖L2 ≤ C[‖ρr‖Hk−1 ] ‖ρ(t)‖Hk−1 .

Proof. We have (
Gρ(x, t)

)
x

=∂x

(∫
(x− y) 1|x−y|≤R

(
ρ(y, t) +Mρr(y)

)
dy

)
=∂x

(∫ x+R

x−R
(x− y)

(
ρ(y, t) +Mρr(y)

)
dy

)
=−R

(
ρ(x+R, t) + ρ(x−R, t) +Mρr(x+R) +Mρr(x−R)

)
+

∫ x+R

x−R

(
ρ(y, t) +Mρr(y, t)

)
dy,(17)

which leads to the first inequality in (15). Using the fact that ‖ρ(t)‖L2 ≥ C ‖ρ(t)‖L1 > 0 (see (14)), we have
the second inequality in (15). Computing the higher order derivatives w.r.t. x, we obtain for k ≥ 2

∂kxGρ =−R
(
∂k−1
x ρ(x+R, t) + ∂k−1

x ρ(x−R, t) +M∂k−1
x ρr(x+R, t) +M∂k−1

x ρr(x−R, t)
)

+ ∂k−2
x ρ(x+R, t)− ∂k−2

x ρ(x−R, t) +M∂k−2
x ρr(x+R, t)−M∂k−2

x ρr(x−R, t).

Hence,

‖∂kxGρ‖L2 ≤ C
(
‖∂k−1
x ρ(t)‖L2 + ‖∂k−2

x ρ(t)‖L2 + ‖∂k−1
x ρr‖L2 + ‖∂k−2

x ρr‖L2

)
≤ C (‖ρ(t)‖Hk−1 + ‖ρr‖Hk−1)

≤ C[‖ρr‖Hk−1 ] ‖ρ(t)‖Hk−1 ,

where for the last inequality we used the fact that ‖ρ(t)‖Hk−1 ≥ ‖ρ(t)‖L2 ≥ C ‖ρ(t)‖L1 > 0. �

Lemma 3.3 (More estimates for Gρ). Let ν ∈ Hk
per(X̃), ρr ∈ Hk−1

per (X̃) ∩ Pe(X), and ρ(t) ∈ Hk−1
per (X̃) with

‖ρ(t)‖L1 > 0. Then for k ≥ 2

(18) ‖νGρ‖Hk ≤ C[‖ρr‖Hk−1 ] ‖ν‖Hk ‖ρ(t)‖Hk−1 .

Proof. Notice

(19) ‖νGρ‖Hk ≤ C
(
‖νGρ‖L2 + ‖∂kx(νGρ)‖L2

)
.

For the first term on the right hand side (r.h.s.) of (19), we have

‖νGρ‖L2 ≤ ‖ν‖L2 ‖Gρ‖L∞ ≤ C ‖ν‖L2 ‖ρ(t)‖L2 ≤ C ‖ν‖Hk ‖ρ(t)‖Hk−1 ,

where for the second inequality we used (13). Also, using Leibniz rule, for the second term on the r.h.s.
of (19) we can write

‖∂kx(νGρ)‖2L2 =

∥∥∥∥∥
k∑
i=0

Ci ∂
k−i
x ν ∂ixGρ

∥∥∥∥∥
2

L2

≤ C0 ‖∂kxν‖2L2 ‖Gρ‖2L∞ +

k∑
i=1

Ci ‖∂k−ix ν‖2L∞ ‖∂ixGρ‖2L2

≤ C0 ‖ν‖2Hk ‖ρ‖
2
L2 +

k∑
i=1

Ci ‖∂k−ix ν‖2H1 ‖∂ixGρ‖2L2 ,
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where for the last inequality we used Morrey’s inequality which implies

‖∂k−ix ν‖L∞ ≤ C ‖∂k−ix ν‖H1 .

Now, from (15) we have for i = 1

‖∂ixGρ‖2L2 ≤ C[‖ρr‖L2 ] ‖ρ(t)‖2L2 ,

and from (16) we have for i ≥ 2

‖∂ixGρ‖2L2 ≤ C[‖ρr‖Hi−1 ] ‖ρ(t)‖2Hi−1 .

Putting all these estimates together while keeping only the highest Sobolev norms, we obtain

‖νGρ‖Hk ≤ C1 ‖ν‖Hk ‖ρ(t)‖Hk−1 + C2 ‖ν‖Hk ‖ρ(t)‖L2 + C3[‖ρr‖Hk−1 ] ‖ν‖H1 ‖ρ(t)‖Hk−1

≤ C[‖ρr‖Hk−1 ] ‖ν‖Hk ‖ρ(t)‖Hk−1 .

�

Remark 3.4 (Connection to existing works). Lemma 3.3 is an extension of [54, Proposition 4.1].

With these estimates in hand, we can follow the same arguments as in [54] to show well-posedness of the
dynamics described by PDE (6).

Sketch of proof of Theorem 2.1. Consider the following sequence of PDEs
∂tρn = ∂x(ρn Gρn−1) + σ2

2 ∂xxρn in X̃ × (0, T )

ρn(·+ 2, t) = ρn(·, t) on ∂X̃ × (0, T )

ρn(x, ·) = ρ0(x) on X̃ × {t = 0},
(20)

with smooth initial and radical distributions ρ0, ρr ∈ C∞per(X̃) ∩ Pe(X̃) for now. By standard results on
linear parabolic PDEs [59, Chapter 7], there exists a sequence {ρn : n ≥ 0} in C∞(0, T ;C∞per(X̃)) that
satisfies (20). Furthermore, using the estimate (13) in Lemma 3.1, one can follow the same procedure provided
in [54, Proposition 3.1] to show ‖ρn(t)‖L1 = ‖ρn(0)‖L1 = 2, and hence, ρn(t) ≥ 0 for all n ≥ 1 and t ≥ 0; see
also [54, Corollary 3.2].

Remark 3.5 (Evenness of ρn). One can use the evenness of ρ0 and ρr to show that the unique solutions ρn
to PDEs (20) are also even in x for all t ≥ 0. However, since this property will not be used for existence,
uniqueness and regularity results provided below, we will postpone this argument to later when we deal with
the evenness of the unique solution to PDE (6).

Existence with smooth data. Using Lemmas 3.1 and 3.2 and following a similar idea as in [54, Lemmas 3.5
and 3.7], we can obtain the following convergence results for a limiting object ρ̄

ρn → ρ̄ in L1(0, T ;L1
per(X̃)),(21)

ρnk ⇀ ρ̄ in L2(0, T ;H1
per(X̃)),(22)

∂tρnk ⇀ ρ̄t in L2(0, T ;H−1
per(X̃)),(23)

where nk denotes a subsequence. Moreover, we have the following estimate for {ρn : n ≥ 1} and ρ̄

(24) ‖ρ‖L∞(0,T ;L2) + ‖ρ‖L2(0,T ;H1) + ‖ρt‖L2(0,T ;H−1) ≤ C[T ] ‖ρ0‖L2 .

We claim that ρ̄ is the unique weak solution to (6). That is, ρ̄ solves the weak formulation of (6) defined as

(25)
∫ T

0

〈η, ρt〉 dt+

∫ T

0

∫
X̃

(
σ2

2
ρx + ρ Gρ

)
ηx dxdt = 0,

for any η ∈ L2(0, T ;H1
per(X̃)). To show this, we multiply (20) by η with n = nk and integrate to obtain

(26)
∫ T

0

〈η, ∂tρnk〉 dt+
σ2

2

∫ T

0

∫
X̃

∂xρnk ηx dxdt+

∫ T

0

∫
X̃

ρnk Gρnk−1 ηx dxdt = 0.



11

For the first two terms in (26), using convergence results (23) and (22), we have as k →∞∫ T

0

〈η, ∂tρnk〉 dt→
∫ T

0

〈η, ρ̄t〉 dt,

and ∫ T

0

∫
X̃

∂xρnk ηx dxdt→
∫ T

0

∫
X̃

ρ̄xηx dxdt.

Also, the last term in (26) can be written as∫ T

0

∫
X̃

(ρnk − ρ̄) Gρnk−1
ηx dxdt+

∫ T

0

∫
X̃

ρ̄ (w ? (ρnk−1 − ρ̄)) ηx dxdt+

∫ T

0

∫
X̃

ρ̄ Gρ̄ ηx dxdt.(27)

The limit of the first integral in (27) is zero as k →∞. Indeed, we know Gρnk−1
is bounded by the inequal-

ity (12) in Lemma 3.1, hence, ηxGρnk−1
∈ L2(0, T ;L2

per(X̃)). Also, (22) implies ρnk ⇀ ρ̄ in L2(0, T ;L2
per(X̃)).

The limit of the second integral in (27) is also zero as k →∞. For this integral, we have∫ T

0

∫
X̃

ρ̄ (w ? (ρnk−1 − ρ̄)) ηx dxdt ≤ ‖ρ̄‖L∞(0,T ;L2) ‖ηx‖L2(0,T ;L2) ‖w ? (ρnk−1 − ρ̄)‖L2(0,T ;L2)

≤ C[T ] ‖ρ0‖L2 ‖η‖L2(0,T ;H1)

(∫ T

0

‖ρnk−1 − ρ̄‖2L1 dt

) 1
2

,

where for the second inequality we used (24) and the fact that |w ? (ρnk−1 − ρ̄)| ≤ C ‖ρnk−1 − ρ̄‖L1 by
Lemma 7 (set M = 0 in (12)). Now, notice ‖ρnk−1 − ρ̄‖L1(X̃) ≤ ‖ρnk−1‖L1(X̃) + ‖ρ̄‖L1(X̃) ≤ 4. Hence,∫ T

0

‖ρnk−1 − ρ̄‖2L1 dt ≤ 4

∫ T

0

‖ρnk−1 − ρ̄‖L1 dt = 4 ‖ρnk−1 − ρ̄‖L1(0,T ;L1) → 0,

as k → ∞ by the strong convergence (21). Putting all these results together, we see that ρ̄ indeed satisfies
the weak formulation (25).

To complete the existence result, we have to show ρ̄(x, 0) = ρ0(x). This condition makes sense since
ρ̄ ∈ C(0, T ;L2

per(X̃)) by [54, Theorem 3.8] and the convergence results (22) and (23). Pick some η ∈
C1(0, T ;H1

per(X̃)) with η(T ) = 0 and rewrite the weak formulation (25) as

(28) −
∫ T

0

〈ρ̄, ηt〉 dt+

∫ T

0

∫
X̃

(
σ2

2
ρ̄x + ρ̄ Gρ̄

)
ηx dxdt =

∫
X̃

ρ̄(x, 0) η(x, 0) dx.

Similarly, since ρnk(x, 0) = ρ0(x), we have

(29) −
∫ T

0

〈ρnk , ηt〉 dt+

∫ T

0

∫
X̃

(
σ2

2
∂xρnk + ρnkGρnk

)
ηx dxdt =

∫
X̃

ρ0(x) η(x, 0) dx.

Let k →∞ in (29), so for arbitrary η(x, 0) we obtain from (29) and (28) that∫
X̃

ρ̄(x, 0) η(x, 0) dx =

∫
X̃

ρ0(x) η(x, 0) dx,

which implies ρ̄(x, 0) = ρ0(x).

Relaxed regularity on data. In order to relax regularity assumption on data to ρ0, ρr ∈ L2
per(X̃) ∩ Pe(X̃),

we can use the mollified version of the distributions ρε0 = φε ? ρ0 and ρεr = φε ? ρr with the standard positive
mollifier φε, follow the same procedure and take the limit ε → 0 at the end. See also [54, Theorem 3.12] for
the details of this process.

Uniquness. Let ξ = ρ̄1 − ρ̄2 where ρ̄1 and ρ̄2 are two weak solutions to (6) with ρ0, ρr ∈ L2
per(X̃)∩Pe(X̃).

Then, for every η ∈ L2(0, T ;H1
per(X̃)) we have∫ T

0

〈η, ξt〉 dt+
σ2

2

∫ T

0

∫
X̃

ξx ηx dxdt+

∫ T

0

∫
X̃

(ρ̄1 Gρ̄1 − ρ̄2 Gρ̄2) ηx dxdt = 0.
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We can rewrite the last integrand as

ρ̄1 Gρ̄1 − ρ̄2 Gρ̄2 = ρ̄1(w ? (ρ̄1 +Mρr))− ρ̄2(w ? (ρ̄2 +Mρr))

= (ρ̄1 − ρ̄2)(w ? (ρ̄1 +Mρr)) + ρ̄2(w ? (ρ̄1 − ρ̄2))

= ξ Gρ̄1 + ρ̄2 (w ? ξ),

to obtain

(30)
∫ T

0

〈η, ξt〉 dt+
σ2

2

∫ T

0

∫
X̃

ξx ηx dxdt = −
∫ T

0

∫
X̃

ξ Gρ̄1 ηx dxdt−
∫ T

0

∫
X̃

ρ̄2 (w ? ξ) ηx dxdt.

Now, for the first integral on the r.h.s. of (30), we have∣∣∣∣∣
∫ T

0

∫
X̃

ξ Gρ̄1 ηx dxdt

∣∣∣∣∣ ≤ 2R(1 +M) ‖ξ‖L2(0,T ;L2) ‖ηx‖L2(0,T ;L2)

≤ σ2

4
‖ηx‖2L2(0,T ;L2) + C1 ‖ξ‖2L2(0,T ;L2),(31)

where for the first inequality we used (12) in Lemma 3.1 and Cauchy-Schwarz inequality, and for the second
inequality we used Young’s inequality. Similarly, for the the second integral on the r.h.s. of (30), we have∣∣∣∣∣

∫ T

0

∫
X̃

ρ̄2 (w ? ξ) ηx dxdt

∣∣∣∣∣ ≤ ‖ρ̄2‖L∞(0,T ;L2) ‖ηx‖L2(0,T ;L2) ‖w ? ξ‖L2(0,T ;L2)

≤ C2[T ] ‖ρ0‖L2 ‖ηx‖L2(0,T ;L2) ‖ξ‖L2(0,T ;L2)

≤ σ2

4
‖ηx‖2L2(0,T ;L2) + C2[T ] ‖ρ0‖2L2 ‖ξ‖2L2(0,T ;L2),(32)

where for the second inequality we used (24) and Lemma 3.1 (see (13) and (14)). Using (31) and (32) for (30)
and setting η = ξ, we obtain ∫ T

0

〈ξ, ξt〉 dt ≤
(
C1 + C2[T ] ‖ρ0‖2L2

)
‖ξ‖2L2(0,T ;L2).

By [54, Theorem 3.8], we know

〈ξ, ξt〉 =
1

2

d

dt
‖ξ(t)‖2L2 .

Thus, for all T , we have

1

2

∫ T

0

d

dt
‖ξ(t)‖2L2 dt ≤

(
C1 + C2[T ] ‖ρ0‖2L2

) ∫ T

0

‖ξ(t)‖2L2dt.

This implies, for a.e. t ∈ [0, T ]
d

dt
‖ξ(t)‖2L2 ≤ C[T, ρ0] ‖ξ(t)‖2L2 .

Hence, by Grönwall’s inequality,
‖ξ(t)‖2L2 ≤ C[T, ρ0] ‖ξ(0)‖2L2 .

This implies ‖ξ(t)‖L2 = ‖ρ̄1(t) − ρ̄2(t)‖L2 = 0 since ξ(0) = ρ0 − ρ0 = 0. Then, from continuity of ρ̄1 and ρ̄2

in time (by [54, Theorem 3.8]), we obtain uniqueness. That is, ρ̄1 = ρ̄2 for all t ∈ [0, T ].

Regularity. Here, we first mollify the problem data ρ0 and ρr with the standard positive mollifier φε so
that the solutions {ρn : n ≥ 0} to (20) are all smooth. This allows us to take derivatives of (20) to any order.
We then take the limit ε→∞ at the end. For simplicity, we omit the arguments for this last step and drop
the subscript ε.

Employing Lemma 3.3, we can extend the improved regularity results in space in [54] (Theorem 4.2). That
is, for ρ0 ∈ Hk

per(X̃) ∩ Pe(X̃) and ρr ∈ Hk−1
per (X̃) ∩ Pe(X̃), we have

(33) ρ̄ ∈ L2(0, T ;Hk+1
per (X̃)) ∩ L∞(0, T ;Hk

per(X̃)).
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Moreover, since ρr is constant in time, we can also employ the results on improved regularity in time provided
by [54, Theorem 4.3] for our model. This means, for ρ0 ∈ H2k

per(X̃) ∩ Pe(X̃) and ρr ∈ L2
per(X̃) ∩ Pe(X̃), we

have for i ≤ k

(34) ∂it ρ̄ ∈ L2(0, T ;H2k−2i+1
per (X̃)) ∩ L∞(0, T ;H2k−2i

per (X̃)),

and

(35) ∂k+1
t ρ̄ ∈ L2(0, T ;H−1

per(X̃)).

With these regularity results in space and time, we can derive the required regularity on the solution as stated
in Theorem 2.1. Let ρ0 ∈ H3

per(X̃)∩Pe(X̃) and ρr ∈ H2
per(X̃)∩Pe(X̃) and ρ̄ be the unique weak solution to

PDE (6). By (33), we have ρ̄ ∈ L∞(0, T ;H3
per(X̃)). Hence, by Sobolev embedding theorem [60, Section 4.12],

we have ρ̄(t) ∈ C2
per(

¯̃X) (after possibly being redefined on a set of measure zero). This gives the required
regularity in space. Also, (34) and (35) imply that ρ̄t ∈ L2(0, T ;H1

per(X̃)) and ρ̄tt ∈ L2(0, T ;H−1
per(X̃)). Hence,

by [54, Theorem 3.8], we have ρ̄t ∈ C(0, T ;L2
per(X̃)) (after possibly being redefined on a set of measure zero).

This gives the required regularity in time. Putting these results together, we have ρ̄ ∈ C1(0, T ;C2
per(X̃)).

Evenness. The evenness imposed on ρ0 and ρr implies that if ρ(x, t) is a solution of (6), then ρ(−x, t) is
also a solution. Indeed, from (6) we obtain

∂tρ(−x, t)− σ2

2
∂2
xρ(−x, t) = ∂x

(
ρ(−x, t)

∫
w(−x− y) (ρ(y, t) +Mρr(y)) dy

)
= ∂x

(
ρ(−x, t)

∫
w(−x+ y) (ρ(−y, t) +Mρr(−y)) (−dy)

)
= ∂x

(
ρ(−x, t)

∫
−w(−x+ y) (ρ(−y, t) +Mρr(y)) dy

)
= ∂x

(
ρ(−x, t)

∫
w(x− y) (ρ(−y, t) +Mρr(y)) dy

)
,

where for that last equality we used the fact that w is an odd function. Then, assuming ρ0 ∈ H3
ep(X̃) ∩

Pe(X̃) and ρr ∈ H2
ep(X̃) ∩ Pe(X̃) (notice that Hk

ep(X̃) ⊂ Hk
per(X̃)), the uniqueness of the solution ρ̄ ∈

C1(0, T ;C2
per(X̃)) to PDE (6) implies that the solution is even, that is, ρ̄ ∈ C1(0, T ;C2

ep(X̃)).

Positivity. Using the same approach as in [58], we consider the following version of (6) in the unknown
function ρ with ρ̄ being the non-negative weak solution

ρt = (ρ Gρ̄)x +
σ2

2
ρxx.

This is a linear parabolic PDE with smooth and bounded coefficients (by Lemmas 3.1 and 3.2) for which ρ̄
is a classic non-negative solution. Thus, by parabolic Harnack inequality [59, Section 7.1.4, Theorem 10], we
have

sup
x∈X̃

ρ̄(x, t1) ≤ c inf
x∈X̃

ρ̄(x, t2),

for 0 < t1 < t2 < ∞ and some positive constant c. Non-negativity of ρ̄(x, t) implies that infx∈X̃ ρ̄(x, t) and
hence ρ̄(x, t) is strictly positive for all t > 0. �

4. Stationary Behavior and Stability

4.1. Existence of Stationary Solution

This section mainly concerns the proof of existence result in Theorem 2.2 for stationary equation (8). All
the norms in this section are w.r.t. X = [0, 1] (as opposed to X̃ = [−1, 1]), unless indicated otherwise. We
note that norms on the even 2-periodic spaces computed w.r.t. to X and X̃ differ by a multiplicative constant,
e.g., ‖u‖Lp(X̃) = 2

1
p ‖u‖Lp(X). We again use C,C0, C1, . . . to represent a generic constant (depending on the
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model parameters) which actual values may change from line to line. In case these constants depend on a
particular object of interest, say θ, this dependence is explicitly indicated by C[θ].

Let us begin with providing a fixed point characterization of the solution to stationary equation (8). We
note that, corresponding to the solution to dynamic equation (6), we are particularly interested in even
solutions ρs ∈ Pe(X̃) of stationary equation (8).

Lemma 4.1 (Fixed point characterization). ρs ∈ C2
ep(X̃) ∩Pe(X̃) is a solution of stationary equation (8) if

and only if ρs is a fixed point of the operator T : Pe(X̃)→ Pe(X̃) defined by

(36) T ρ :=
1

K
exp

(
− 2

σ2

∫ x

0

Gρ(z) dz

)
,

where the constant K is determined by the normalizing condition

K =

∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ(z) dz

)
dx.

Proof. The “if” part is clear since any fixed point ρs ∈ C2
ep(X̃) satisfies the stationary equation (8). For the

“only if” part, note that integrating (8) once, we have

(37)
σ2

2
ρx + ρ Gρ = C.

Now notice that we can set C = 0 since we are interested in even solutions to (37). Indeed, from (37) we have

σ2

2
ρx(−x) + ρ(−x)[w(−x) ? (ρ(−x) +Mρr(−x))] = C.

Hence, for an even solution, we obtain

−σ
2

2
ρx(x)− ρ(x)[w(x) ? (ρ(x) +Mρr(x))] = C,

where we used the fact that w is an odd function. This implies C = 0. Rearranging and integrating (37) once
again, we have

(38) ρ(x) =
1

K
exp

(
− 2

σ2

∫ x

0

Gρ(z) dz

)
,

where the normalizing condition gives the constant K as

K =

∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ(z) dz

)
dx.

This completes the proof. �

This characterization allows us to use tools from operator theory, in particular, Schauder fixed point
theorem to derive existence result for the stationary solution. Before that, we present some preliminary
results for the operator T .

Lemma 4.2 (Estimates for T ). Let T be the operator on Pe(X̃) defined by (36).

• If ρ, ρr ∈ Pe(X̃), then

(39) ‖T ρ‖L∞ ≤ exp

(
8R(1 +M)

σ2

)
,

and

(40) ‖∂xT ρ‖L∞ ≤
4R(1 +M)

σ2
exp

(
8R(1 +M)

σ2

)
.

• If ρ, ρr ∈ L2
ep(X̃) ∩ Pe(X̃), then

(41) ‖T ρ‖H2 ≤ C[‖ρr‖L2 ] ‖ρ‖L2 .
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• If ρ, ρr ∈ Hk−2
ep (X̃) ∩ Pe(X̃), then for k ≥ 3

(42) ‖T ρ‖Hk ≤
k−1∑
i=1

Ci[‖ρr‖Hk−2 ] ‖ρ‖iHk−2 .

Proof. From the definition (36) and inequality (12) in Lemma 3.1 we obtain

|T ρ| =
exp

{
− 2
σ2

∫ x
0
Gρ(z) dz

}∫ 1

0
exp

{
− 2
σ2

∫ x
0
Gρ(z) dz

}
dx
≤

exp
{

4R(1+M)
σ2

}
exp

{
− 4R(1+M)

σ2

} = exp

{
8R(1 +M)

σ2

}
,

which gives the estimate (39).

Now, observe

‖∂xT ρ‖L∞ =

∥∥∥∥− 2

σ2
Gρ T ρ

∥∥∥∥
L∞
≤ 2

σ2
‖Gρ‖L∞ ‖T ρ‖L∞ .

Using (12) in Lemma 3.1 and (39), we obtain the inequality (40).

For the inequality (41), first notice

‖T ρ‖H2 ≤ C
(
‖T ρ‖L2 + ‖∂2

xT ρ‖L2

)
≤ C1 + C2 ‖∂2

xT ρ‖L2 ,(43)

where for the second inequality we used the fact that ‖T ρ‖L2 ≤ C ‖T ρ‖L∞ is bounded by (39). Also, we
have

‖∂2
xT ρ‖L2 =

∥∥∥∥− 2

σ2
(T ρ ∂xGρ +Gρ ∂xT ρ)

∥∥∥∥
L2

≤ C (‖T ρ‖L∞ ‖∂xGρ‖L2 + ‖Gρ‖L∞ ‖∂xT ρ‖L2)

≤ C[‖ρr‖L2 ] ‖ρ‖L2 + C2

≤ C[‖ρr‖L2 ] ‖ρ‖L2 ,

where for the second inequality we used (15) in Lemma 3.2 and the last inequality follows from the fact that
‖ρ‖L2 ≥ ‖ρ‖L1 > 0 (see (14)). Inserting this result in (43), we obtain inequality (41).

Similarly, for k ≥ 3, we have (see (43))

‖T ρ‖Hk ≤ C1 + C2 ‖∂kxT ρ‖L2 .(44)

Now, notice

‖∂kxT ρ‖L2 = ‖∂k−1
x ∂xT ρ‖L2 =

∥∥∥∥∂k−1
x

(
− 2

σ2
Gρ T ρ

)∥∥∥∥
L2

=
2

σ2
‖∂k−1
x (T ρ Gρ) ‖L2

≤ C ‖T ρ Gρ‖Hk−1 ≤ C[‖ρr‖Hk−2 ] ‖ρ‖Hk−2 ‖T ρ‖Hk−1 ,

where for the last inequality we used Lemma 3.3. Combining this result with (44), we derive a recursive
inequality. Performing the recursive computations while keeping the highest Sobolev norms, we obtain

‖T ρ‖Hk ≤ C0 +

k−1∑
i=1

Ci[‖ρr‖Hk−2 ] ‖ρ‖iHk−2 .

Then, since ‖ρ‖iHk−2 ≥ ‖ρ‖L2 ≥ C ‖ρ‖L1 > 0, we can remove the constant C0 and consider its effect in
constants Ci. This gives the desired inequality (42). �

Proposition 4.3 (Lipschitz continuity of T ). Let T be the operator on Pe(X̃) defined by (36) with ρr ∈
Pe(X̃). Then T is Lipschitz continuous in Lp for 1 ≤ p <∞ with Lipschitz constant

(45) LT =
1

2
exp

{(
8R(1 +M)

σ2

)(
1− 1

p

)} (
exp

{
16R

σ2

}
− 1

)
.
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Proof. We use a similar argument to the one provided by [52]. Let ρ1, ρ2 ∈ Pe(X̃). Using the estimate (39)
in Lemma 4.2, we have for 1 ≤ p <∞

‖T ρ2 − T ρ1‖Lp =

∥∥∥∥T ρ1

(
T ρ2

T ρ1
− 1

)∥∥∥∥
Lp
≤ ‖T ρ1‖Lp

∥∥∥∥T ρ2

T ρ1
− 1

∥∥∥∥
L∞

≤ ‖T ρ1‖
1− 1

p

L∞

∥∥∥∥K1

K2
exp

{
− 2

σ2

∫ x

0

w ? (ρ2 − ρ1) dz

}
− 1

∥∥∥∥
L∞

,(46)

where for the last inequality we used ‖T ρ‖L1(X) = 1. Now, define

Γ(ρ1 − ρ2) :=
2

σ2

∫ x

0

w ? (ρ1 − ρ2) dz,

and observe

|Γ(ρ2 − ρ1)| = 2

σ2

∣∣∣∣∫ x

0

∫
(z − y) 1|z−y|≤R (ρ2(y)− ρ1(y)) dydz

∣∣∣∣
≤ 2

σ2

∫ x

0

∫
|(z − y)| 1|z−y|≤R |ρ2(y)− ρ1(y)| dydz

≤ 2R

σ2

∫ x

0

∫
X̃

|ρ2(y)− ρ1(y)| dydz ≤ 4R

σ2
‖ρ2 − ρ1‖L1 .(47)

Similarly, we can write the normalizing constant K1 as

K1 =

∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ1 dz

)
dx =

∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ2 dz

)
exp {−Γ(ρ1 − ρ2)} dx.

From (47), it follows

K1 ≤
∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ2 dz

)
exp

(
4R

σ2
‖ρ2 − ρ1‖L1

)
dx = K2 exp

(
4R

σ2
‖ρ2 − ρ1‖L1

)
,

and

K1 ≥
∫ 1

0

exp

(
− 2

σ2

∫ x

0

Gρ2 dz

)
exp

(
−4R

σ2
‖ρ2 − ρ1‖L1

)
dx = K2 exp

(
−4R

σ2
‖ρ2 − ρ1‖L1

)
.

Hence,

(48) exp

(
−4R

σ2
‖ρ2 − ρ1‖L1

)
≤ K1

K2
≤ exp

(
4R

σ2
‖ρ2 − ρ1‖L1

)
.

Using (47) and (48), we can rewrite (46) as

‖T ρ2 − T ρ1‖Lp ≤ ‖T ρ1‖
1− 1

p

L∞ max

{
exp

(
8R

σ2
‖ρ2 − ρ1‖L1

)
− 1, 1− exp

(
−8R

σ2
‖ρ2 − ρ1‖L1

)}
.

Hence,

‖T ρ2 − T ρ1‖Lp ≤ ‖T ρ1‖
1− 1

p

L∞

(
exp

(
8R

σ2
‖ρ2 − ρ1‖L1

)
− 1

)
.(49)

Now, notice that
‖ρ2 − ρ1‖L1 ≤ ‖ρ2‖L1 + ‖ρ1‖L1 = 2,

(recall that norms are defined over X) and for a > 0

eax−1 ≤ 1

2
(e2a−1)x, ∀x ∈ [0, 2].

Thus, we have

(50) exp

(
8R

σ2
‖ρ2 − ρ1‖L1

)
− 1 ≤ 1

2

(
e

16R
σ2 −1

)
‖ρ2 − ρ1‖L1 .

Combining (49) and (50), we obtain

‖T ρ2 − T ρ1‖Lp ≤
1

2
‖T ρ1‖

1− 1
p

L∞

(
e

16R
σ2 −1

)
‖ρ2 − ρ1‖L1 .
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Finally, using (39) in Lemma 4.2 and the inequality (14) which relates norms over domains of finite measure,
we have

‖T ρ2 − T ρ1‖Lp ≤ LT ‖ρ2 − ρ1‖Lp ,

where the constant LT is given by (45). �

With this preliminary results in hand, we next move on to the proof of existence result in Theorem 2.2.

Proof of Theorem 2.2 (Existence). Following essentially the same argument as in [58, Theorem 2.3] and using
Lemma 4.1, we can present the existence result for the stationary solution as the fixed point of the operator T .
First note that using the estimate (39) in Lemma 4.2, we have ‖T ρ‖L2 ≤ C ‖T ρ‖L∞ ≤ c for some positive
constant c. Thus, for the purpose of finding the fixed points of T , we can restrict T to act on the closed and
convex set E := {ρ ∈ L2

ep(X̃) ∩ Pe(X̃) : ‖ρ‖L2 ≤ c}. Now, notice that, using inequalities (39) and (40) in
Lemma 4.2, we have for any ρ ∈ E

(51) ‖T ρ‖2H1 ≤ ‖T ρ‖2L2 + ‖∂xT ρ‖2L2 ≤ C1‖T ρ‖2L∞ + C2‖∂xT ρ‖2L∞ ≤ c′,

for some constant c′ > 0. That is, T (E) ⊂ E is uniformly bounded in H1
ep(X̃). Thus, by the Rellich-

Kondrachov compactness theorem [59, Section 5.7, Theorem 1], T (E) is precompact in L2
ep(X̃). Since E ⊂

L2
ep(X̃) is closed, this implies T (E) is also precompact in E. Also, T is Lipschitz continuous by Proposition 4.3.

Hence, by Schauder fixed point theorem [59, Section 9.2.2, Theorem 3], it has a fixed point ρs ∈ E which
by (51) belongs to H1

ep(X̃).

Regularity. The estimate (42) in Lemma (4.2) implies that if ρr ∈ Hk−2
ep (X̃), then the fixed point ρs =

T ρs ∈ Hk
ep(X̃). In particular, if ρr ∈ H1

ep(X̃), then ρs ∈ H3
ep(X̃). Hence, by Sobolev embedding theorem [60,

Section 4.12], ρ ∈ C2
ep(X̃) (after possibly being redefined on a set of measure zero).

Positivity. The positivity of the fixed point directly follows from the representation (36). �

Remark 4.4 (Uniqueness). By Proposition 4.3, T is Lipschitz continuous in Lp with Lipschitz constant LT
given by (45), and thus, is a contraction for LT < 1. Hence, by Banach fixed-point theorem [59, Section
9.2.1, Theorem 1], T has a unique fixed point for LT < 1. Setting p = 1 in (45) gives the sufficient condition
σ2 > 16R

ln 3 for uniqueness of stationary solution. This result corresponds to the sufficient condition provided
in [52, Theorem 2].

Remark 4.5 (Semi-Gaussian clusters). For a highly concentrated radical opinion distribution with average
opinion A =

∫
X
x ρr(x) dx, we can provide an approximate solution to the stationary equation (8) as follows

(52) ρs(x) =
1

K
exp

{
−M + 1

σ2
min

{
(x−A)2, R2

}}
,

where K is the normalizing constant (see Appendix B for the details). This result is an extension of the
approximate solution provided by [43, Section 5.2]. In particular, one can reproduce the same result by setting
M = 0 and A = 0. Equation (52) shows that for highly concentrated radicals the possible accumulation of
normals around the average radical opinion A in the stationary state is semi-Gaussian with variance σ2

2(M+1) .
Note that, as argued in [43], other clusters centered at opinion values other than x = A may also exist. As
long as these clusters are well-separated so that inter-cluster influences can be ignored, one can use the same
approximation to derive a semi-Gaussian profile for the shape of these clusters (set M = 0 and A = x0 in (52)
where x0 denotes the center of the corresponding cluster). This analysis shows that M affects the shape of
the possible cluster formed at the average radical opinion A in stationary state.

4.2. Global Estimate for Stationary Solution

This section is devoted to the proof of the estimate given in Theorem 2.2. In this section, all the norms
are w.r.t. the domain X̃ = [−1, 1], unless indicated otherwise.
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Proof of Theorem 2.2 (Estimate). Let ψ = ρs − 1 so that
∫
X
ψ(x) dx = 0. From the stationary equation (8)

we obtain

−σ
2

2
ψxx = [(ψ + 1) Gψ+1]x = [(ψ + 1) (w ? 1 +Gψ)]x = [(ψ + 1) Gψ]x = [ψ Gψ]x + [Gψ]x,

where we used the fact that w ? 1 = 0. Next, we multiply this last equation by ψ and integrate by part over
X̃ to derive

σ2

2
‖ψx‖2L2 = −

∫
X̃

ψx ψ Gψ dx−
∫
X̃

ψx Gψ dx.

The extra terms are zero due to periodicity. Thus,

σ2

2
‖ψx‖2L2 ≤

∣∣∣∣∫
X̃

ψx ψ Gψ dx

∣∣∣∣+

∣∣∣∣∫
X̃

ψx Gψ dx

∣∣∣∣ ≤ ‖Gψ‖L∞ ‖ψx‖L2 ‖ψ‖L2 + ‖ψx‖L2 ‖Gψ‖L2 .(53)

Now, using inequality (12) in Lemma 3.1, we obtain

‖Gψ‖L∞ ≤ 2R
(
‖ψ‖L1(X) +M

)
= 2R

(
‖ρ− 1‖L1(X) +M

)
≤ 2R

(
‖ρ‖L1(X) + 1 +M

)
≤ 2R(M + 2).(54)

Also, we have

|Gψ(x)|2 =

(∫
w(x− y) (ψ(y) +Mρr(y)) dy

)2

=

(∫ x+R

x−R
(x− y) (ψ(y) +Mρr(y)) dy

)2

≤
∫ x+R

x−R
(x− y)2 dy

∫ x+R

x−R
(ψ(y) +Mρr(y))2 dy

≤ 2

3
R3

∫ x+R

x−R
(ψ(y) +Mρr(y))2 dy.(55)

Hence,

‖Gψ‖2L2 ≤
2

3
R3

∫
X̃

∫ x+R

x−R
(ψ(y) +Mρr(y))2 dydx

=
2

3
R3

∫
X̃

∫ R

−R
(ψ(x+ y) +Mρr(x+ y))2 dydx

=
2

3
R3

∫ R

−R

∫
X̃

(ψ(x+ y) +Mρr(x+ y))2 dxdy

=
4

3
R4‖ψ +Mρr‖2L2 .(56)

Using estimates (54) and (56), we can obtain form (53) (recall that uniform distribution is not an equilibrium
of the system and hence ‖ψx‖L2 6= 0)

σ2

2
‖ψx‖L2 ≤ 2R(M + 2)‖ψ‖L2 +

2R2

√
3
‖ψ +Mρr‖L2

≤ 2R(M + 2)‖ψ‖L2 +
2R2

√
3

(‖ψ‖L2 +M‖ρr‖L2)

= 2R

(
M +

R√
3

+ 2

)
‖ψ‖L2 +

2R2M√
3
‖ρr‖L2 .(57)

Now, since
∫
X
ψ(x) dx = 0, we can employ Poincaré inequality [59, Section 5.8.1, Theorem 1] to obtain

‖ψ‖L2 ≤ C ‖ψx‖L2 . The optimal value for the Poincaré constant for X̃ = [−1, 1] is C = 1
π . Combining this
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result with inequality (57), we have

(58)
(
σ2 − 4R

π

(
M +

R√
3

+ 2

))
‖ψ‖L2 ≤ 4R2M

π
√

3
‖ρr‖L2 .

Defining σb and cb as in (9) gives the desired inequality ‖ψ‖L2 ≤ 1
η‖ρr‖L2 , where η = (σ2 − σ2

b )/cb. �

4.3. Stability of Stationary State

This section is devoted to the proof of Theorem 2.3 concerning stability of stationary state. All the norms
in this subsection are w.r.t. the domain X̃ = [−1, 1] (as opposed to X = [0, 1]), unless indicated otherwise.

Proof of Theorem 2.3. We follow similar arguments as the ones in [54], except we consider a general stationary
state ρs (instead of the uniform distribution considered in [54]). Let ψ = ρ − ρs so that

∫
X
ψ(x) dx = 0.

From the dynamic equation (6), we obtain

ψt = [(ψ + ρs) Gψ+ρs ]x +
σ2

2
[ψ + ρs]xx

= [(ψ + ρs) (w ? ψ +Gρs)]x +
σ2

2
[ψ + ρs]xx

= [ψ (w ? ψ +Gρs)]x + [ρs (w ? ψ)]x + [ρs Gρs ]x +
σ2

2
ψxx +

σ2

2
ρsxx

= [ψ (w ? ψ +Gρs)]x + [ρs (w ? ψ)]x +
σ2

2
ψxx,(59)

where for the last equality we used the fact that ρs is a solution to the stationary equation (8), that is,

[ρs Gρs ]x +
σ2

2
ρsxx = 0.

Multiplying (59) by ψ and integrating by part over X̃ we obtain (the extra terms are zero due to periodicity)

1

2

d

dt
‖ψ‖2L2 +

σ2

2
‖ψx‖2L2 ≤

∣∣∣∣∫
X̃

ψx ψ (w ? ψ +Gρs) dx

∣∣∣∣+

∣∣∣∣∫
X̃

ψx ρ
s (w ? ψ) dx

∣∣∣∣
≤ (‖w ? ψ‖L∞ + ‖Gρs‖L∞) ‖ψx‖L2 ‖ψ‖L2 + ‖ρs‖L∞ ‖ψx‖L2 ‖w ? ψ‖L2 ,(60)

Now, from inequality (12) in Lemma 3.1, we have

‖w ? ψ‖L∞ ≤ 2R ‖ψ‖L1(X) = 2R ‖ρ− ρs‖L1(X) ≤ 2R
(
‖ρ‖L1(X) + ‖ρs‖L1(X)

)
= 4R,

and
‖Gρs‖L∞ ≤ 2R

(
‖ρs‖L1(X) +M

)
= 2R(1 +M).

Also, following a similar procedure as in (55) and (56) with M = 0, we obtain ‖w ? ψ‖L2 ≤ 2R2‖ψ‖L2/
√

3.
Finally, from (39) in Lemma 4.2, we have ‖ρs‖L∞ ≤ exp

(
8R(1 +M)/σ2

)
. Using these estimates and the

Young’s inequality we can rewrite (60) as

1

2

d

dt
‖ψ‖2L2 +

σ2

2
‖ψx‖2L2 ≤

(
2R(3 +M) +

2R2

√
3

exp

(
8R(1 +M)

σ2

))
‖ψx‖L2 ‖ψ‖L2

≤ 1

σ2

(
2R(3 +M) +

2R2

√
3

exp

(
8R(1 +M)

σ2

))2

‖ψ‖2L2 +
σ2

4
‖ψx‖2L2 .

Hence,

1

2

d

dt
‖ψ‖2L2 ≤

1

σ2

(
2R(3 +M) +

2R2

√
3

exp

(
8R(1 +M)

σ2

))2

‖ψ‖2L2 −
σ2

4
‖ψx‖2L2 .

Once again, since
∫
X
ψ(x) dx = 0, we can employ the Poincaré inequality [59] (Section 5.8.1, Theorem 1)

‖ψ‖L2 ≤ C ‖ψx‖L2 with optimal Poincaré constant C = 1
π to obtain

d

dt
‖ψ‖2L2 ≤

{
2

σ2

(
2R(3 +M) +

2R2

√
3

exp

(
8R(1 +M)

σ2

))2

− π2σ2

2

}
‖ψ‖2L2 .
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Then, by Grönwall’s inequality, we have

‖ψ(t)‖2L2 ≤ ‖ψ(0)‖2L2 exp

[{
2

σ2

(
2R(3 +M) +

2R2

√
3

exp

(
8R(1 +M)

σ2

))2

− π2σ2

2

}
t

]
.

Now, notice that ‖ψ(0)‖L2 ≤ ‖ρ0‖L2 + ‖ρs‖L2 is finite. Thus, if the constant factor in the exponential is
negative, then ‖ψ(t)‖2L2 → 0 exponentially fast as t→∞. Negativity of the this constant factor corresponds
to the condition σ > σs, where σs solves (10). �

5. Characterization of Solution: Fourier Analysis

In this section, we exploit the periodic nature of the system and use Fourier analysis to study the behavior
of the solution to the PDE (6) with uniform initial condition ρ0 = 1. To this end, we derive a system of
ordinary differential equations (ODEs) describing the evolution of Fourier coefficients of the normal opinion
density ρ. Then, these ODEs are used for identification of the so-called order-disorder transition. In particular,
a numerical scheme is presented for approximating the critical noise level at which this transition occurs.
Moreover, we use these ODEs to provide another approximation scheme for characterizing the initial clustering
behavior of the system including the number and the timing of possible clusters. These numerical schemes
are in essence similar to the linear stability analysis previously employed by [37, 40, 43, 53, 61] for analysis of
noisy bounded confidence models without radicals.

5.1. Fourier ODEs for Macroscopic Model

Notice that the set {cos (πnx)}∞n=0 is an orthogonal basis for the space L2
ep(X̃) containing even 2-periodic

functions on X̃ = [−1, 1]. Then, the even 2-periodic extension of the probability densities in the model allows
us to consider the Fourier expansions of ρ and ρr in the form of

ρ(x, t) =

∞∑
n=0

pn(t) cos (πnx) and ρr(x) =

∞∑
n=0

qn cos (πnx) .(61)

By inserting the expansions (61) into (6) and setting the inner product of the residual with elements of
the basis to zero (in other words, taking inverse Fourier transform), we can obtain a system of quadratic
ODEs describing the evolution of Fourier coefficients pn(t). Considering the first frequency components
n = 1, . . . , Nf , these ODEs are expressed as

(62) ṗn = cn + bTnp+ pTQnp,

where p = (p1, p2, . . . , pNf )T . Note that for n = 0, i.e., the constant term in the Fourier expansion, we obtain
ṗ0 = 0. This is due to the periodic nature of the system that preserves the zeroth moment. The coefficients
in (62) are given by

cn = 2MR fn qn,

(bn)k =

{
2R fn + MR

2 f2n q2n − π2σ2n2

2 , k = n

nMR
{
qn+k fn+k

n+k +
q|n−k| fn−k

n−k

}
, k 6= n,

(Qn)k,l =


nR fk

k , l = n− k > 1

nR
{
fk
k + fn−k

n−k

}
, l = k − n > 1

0, otherwise,

(63)

where

fn := − cos (πnR) + sinc (πnR) ,(64)

with sincx = sin x
x . Also, recall that qn, n ∈ N are the Fourier coefficients of ρr.
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Interestingly, one notices that the interaction between different frequency components in the quadratic
terms is limited to those that are in a sense complements of each other. That is, each frequency n of ρ is
affected by the frequency pairs (n1, n2) such that either n1 +n2 = n or |n1−n2| = n. This, in turn, leads to a
particular structure for the matrix Qn in the quadratic terms. As expected, a similar behavior is seen in the
linear terms: the effect of each frequency k of ρ on a given frequency n of ρ is modulated by the frequency
components n+ k and |n− k| of ρr.

5.2. Order-disorder Transition

A common behavior in noisy interactive particle systems is the order-disorder transition. For large values
of σ, the effect of diffusion process can overcome the attracting forces among agents preventing the system
from forming any cluster. This behavior has been analyzed and observed in several noisy bounded confidence
models for opinion dynamics. Pineda et. al. used linear stability analysis in [37, 61] to compute the critical
noise level above which the clustering behavior diappears for a modified version of Defuant model [27]. The
same behavior was also reported in [39] for Defuant model. The same technique of linear stability analysis
was used in [43, 53] to compute the critical noise level for noisy HK system similar to our model, except
without radicals.

Here, we provide a method for approximating the critical noise level σc at which the transition occurs. To
this end, we linearize the systems at t = 0 to obtain a system of linear ODEs expressed as

(65) ṗ = c+Bp.

The vector c ∈ RNf and the matrix B ∈ RNf×Nf are defined accordingly using the objects cn and bn in (63).
We emphasize that the linearization (65) is for a uniform initial condition, i.e., pn(0) = 0 for n = 1, . . . , Nf .

Looking at coefficients cn and bn in (63), we notice that the noise level σ only appears in the diagonal
entries of B such that by increasing σ, these diagonal entries decrease. That is, for a large enough σ, all
eigenvalues of B are negative and the linearized system (65) is stable. This will be our first criterion for
determining the critical noise level σc: the noise level above which all eigenvalues of B are negative.

In order to consider the effect of the constant linear growth rates c in (65), we further require the stationary
values p̄n, n = 1, . . . , Nf of the linearized system (65) (i.e., the solution to the equation c + Bp̄ = 0) to be
relatively small. In other words, taking the equilibrium of the linearized system 1 +

∑Nf
n=0 p̄n cos (πnx) as an

approximation of the stationary state ρs, we require ρs to be close to uniform distribution ρ = 1 (representing
disorder). Similar to the theoretical estimate of Theorem 2.2, we quantify this criterion by using Parseval’s
identity and setting

‖ρs − 1‖2L2 ≈ ‖p̄‖22 < γ,(66)

where the constant γ > 0 determines the level of similarity between ρs and uniform distribution. To sum up,
we solve numerically for the minimum level of noise for which B is Hurwitz and the inequality (66) holds.

5.3. Initial Clustering Behavior

For noises smaller than the critical noise level σc, we expect to see a clustering bahvior. In order to
characterize the initial clustering behavior, we make use of the exponential growth rate γn := (bn)n and linear
growth rate cn given in (63). The proposed numerical method is as follows. We ignore the interactions
between different frequencies in (62), that is, for each frequency n = 1, . . . , Nf , we consider the equation
ṗn = cn + γnpn with pn(0) = 0 (corresponding to uniform initial distribution) for initial evolution of the
Fourier coefficient pn. Then, for a given set of model parameters (σ,R,M) and radical opinions density ρr,
we numerically compute the dominant wave-number n∗ := argmaxn∈N γn with γn∗ > 0, that is, the unstable
mode with the largest exponential growth rate. We speculate that the corresponding trigonometric term
pn∗ cos(πn∗x) is the dominant component of the initial clustering behavior. The sign of pn∗ depends on the
linear growth rate cn∗ : pn∗ > 0 if cn∗ > 0, and pn∗ < 0 otherwise.
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Considering the even 2-periodic extension of the model, the dominant wave-form must be interpreted on
the interval X̃ = [−1, 1]. Then, the number of initial clusters nclu in the interval X = [0, 1] resulting from
the wave-form 1 + pn∗ cos(πn∗x) is given by

nclu :=

{
bn
∗

2 c+ 1, cn∗ > 0

dn
∗

2 e, cn∗ < 0.
(67)

We also expect that the timing of this initial clustering behavior to be inversely related to the corresponding
exponential growth rate γn∗ . Indeed, by solving for the time for which the solution to the equation ṗn =

cn + γnpn is equal to ±1, we can approximate the time to initial clustering tclu as

(68) tclu :=
1

γn∗
ln

(
1 +

γn∗

|cn∗ |

)
.

A similar approximation has been used in [53] in order to derive the time to the initial clustering using
fluctuation theory.

6. Numerical Study

In this section, we provide a numerical study of the model at hand for a particular distribution of radical
agents/opinions through simulations of the corresponding discrete- and continuum-agent models. Further-
more, we validate the result of Fourier analysis for identification of order-disorder transition (Section 5.2) and
characterization of initial clustering behavior (Section 5.3).

The particular radical distribution considered in this section is a triangular distribution with average A
and width 2S

ρr(x) =

{
1
S2 (S − |x−A|), |x−A| ≤ S
0, otherwise.

(69)

Although this choice may seem specific, it is rich enough for our purposes. In particular, with this choice, the
zeroth, first and second moments of the radical opinions density are simply captured by the parameters M ,
A and S, respectively. Moreover, we assume that the radicals are concentrated around their average opinion,
that is, we consider small values of S (w.r.t. the confidence range R).

For the discrete-agent model, the SDEs (4) are solved numerically using the Euler-Maruyama method for
N = 500 normal agents with time step ∆t = 0.01. In particular, for the radical agents, we produce a random
sample of size Nr = MN from the triangular distribution (69). The initial distribution of normal agents
is taken to be uniform, that is, the initial opinions are randomly sampled from a uniform distribution on
the interval X = [0, 1]. For complete correspondence between the discrete- and continuum- agent models,
we also consider the effect of even 2-periodic extension in the simulations of the discrete-agent model. See
Appendix C for the details of the numerical scheme. The details of numerical scheme for simulation of the
continuum-agent model will be discussed in Section 6.1.

In the sequel, we make use of the order parameter

Qd(t) =
1

N2

N∑
i,j=1

1|xi(t)−xj(t)|≤R,

introduced by [43] and its continuum counterpart

Qc(t) =

∫
X2

ρ(x, t) ρ(y, t) 1|x−y|≤R dxdy,

to quantify orderedness in the clustering behavior of the model. In words, the order parameter Q is the
(normalized) number/mass of agents that are in R-neighborhood of and hence interacting with each other. In
particular, in the continuum case, Qc = 2R for a uniform distribution of opinions (absolute disorder), while
Qc = 1 for a single-cluster distribution with all agents residing in an interval of width R or less (complete
order). In case of a clustered behavior, roughly speaking, the inverse of the order parameter is equal to the
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number of clusters. We also use the evolution of order parameter to characterize the timing of the clustering
behavior.

In all the simulation results reported in this section the width of radicals distribution and the confidence
range are fixed at S = 0.1 and R = 0.1, respectively.

6.1. Simulation of the Continuum-agent Model

In order to solve the continumm-agent model described by PDF (6) numerically, we use Fourier ODEs (62)
to compute the coefficients of Fourier expansion of normal opinion density ρ using the first Nf terms of
the expansion. However, regarding the radical opinion density, one notices that the considered triangular
distribution does not satisfy the conditions of Theorem 2.1 for well-posedness of PDE (6), that is, ρr /∈ H2

ep(X̃).
This will not be an issue since we will be working with the projection of the proposed ρr in the Hilbert space
L2
ep(X̃). That is, we use the Fourier coefficients of ρr in (62) which for the triangular distribution (69) are

given by

(70) qn = 2 cos (nπA) sinc2(nπS/2).

To be precise, we need the Fourier coefficients qn of ρr for 1 ≤ n ≤ 2Nf , that is, twice the length of Fourier
expansion of ρ; see the linear terms of (62). For the initial condition, we again consider uniform distribution
ρ0 = 1, which corresponds to p0 = 1 and pn(0) = 0 for the Fourier coefficients.

It is also possible to employ a semi-explicit pseudo-spectral method, similar to the one provided by [43], for
numerically solving (6); see Appendix D for details of this method for our model. The main difference is that
the pseudo-spectral method solves the PDE for a set of discrete points in the space (x ∈ X) while solving the
Fourier ODEs gives an approximation of the solution in terms of a finite basis for the corresponding Hilbert
space.

These two methods (if both converge) result in the same solution. Fig. 2 compares the result of numerical
simulations of the model using these two methods for a particular combination of system data. Note that,
in these simulations, the number of points for the spacial discretization in pseudo-spectral method is twice
the Nf for Fourier ODEs so that the methods are compatible, i.e., both include the same set of frequency
components. The left panel of Fig. 2 shows a similar result using these two methods for Nf = 32 frequencies.
However, as the number of frequencies considered in the simulations are decreased, we see that that the
pseudo-spectral method starts to diverge while Fourier ODEs are still stable.

In the remainder of this section, we use the Fourier ODEs (62) with Nf = 128 for numerical simulation of
the continuum-agent model since they are computationally more efficient.

6.2. Order-disorder Transition

In this section, we numerically study the order-disorder transition in the model. In particular, we consider
the effect of the relative mass of radicals M on the critical noise level σc at which this transition occurs.
Furthermore, we use our simulation results to examine the approximation scheme presented in Section 5.2.
In this regard, we note that the interplay between the confidence range R and the critical noise level σc have
been studied in [43]. There, the authors showed that as R increases, the critical noise level σc also increases
in such way that for small values of R, we observe a first-order transition.

6.2.1. An Illustrative Example

Our model exhibits the same order-disorder transition previously reported for similar noisy HK systems [40,
43, 53]. Fig. 3 shows this effect for a particular combination of system data in the discrete- and continuum-
agent models. Notice that for σ larger than a critical level the clustering behavior almost disappears (see the
lower panel corresponding to σ = 0.05 in Fig. 3a). To be more precise, a higher level of noise decreases the
life-time of clustering behaviors with larger number of clusters.
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Figure 2. Comparison of the pseudo-spectral method (PS) described in Appendix D with ∆t = 0.01 and the
Fourier ODEs (ODE) given in (62) for numerical simulation of the continuum-agent model (6). The results are
for t = 400 with system data (σ,M,A) = (0.03, 0.1, 0.7). In the right panel, some of the points in the solution of
the pseudo-spectral method are outside the limits of the vertical axis.

This effect can be particularly seen in the evolution of order parameter in Fig. 3b. In this regard, notice
that for noises smaller than the critical noise level (here σ < 0.05) the flat areas in the order parameter in
Fig. 3b correspond to a clustered behavior, where the number of clusters is equal to the inverse of the order
parameter. To illustrate, observe that for σ = 0.03 and σ = 0.04, the system reaches a single-cluster profile
around the average radical opinion A = 0.7. Notice, however, for σ = 0.03 the system first goes through a
2-cluster profile corresponding to the flat area in the blue solid line at height 0.5 in Fig. 3b. On the other
hand, for σ = 0.02, we observe a 2-cluster profile at t = 104 in Fig. 3a. Notice, however, how the system goes
through 4-cluster and 3-cluster profiles as depicted in Fig. 3b (the flat areas in the order parameter). Finally,
for σ = 0.01, we observe a very fast emergence of a 4-cluster profile (Fig. 3b) that has survived until t = 104

as shown in Fig. 3a. Here, we also notice that exact position of clusters in the discrete- and continuum-agent
models differ. This particular difference between mean-field and agent-based models has been also mentioned
by [37,61]. Indeed, our numerical simulations show that even the number of clusters resulting from mean-field
and agent-based models may differ; this also has been reported and explained previously in [43]. Finally, we
note that for M = 0.1, the approximation scheme explained in Section 5.2 results in σc = 0.043 for γ = 1 and
σc = 0.051 for γ = 0.1 (see (66) for influence of γ).

6.2.2. Effect of M on σc

Fig. 4 shows the order parameter derived numerically by simulating the continuum- and discrete-agent
models. Notice how for each M , as noise increases, the system experiences a transition form order (clustered
phase with Q ≈ 1 in the yellow strip) to disorder (with Q ≈ 0.2 in the dark blue area in the upper part of the
plots). Also, we note that the blue strip in the lower part of plots in Fig. 4 represents clustering behaviors
with larger number of clusters (similar to the behavior seen for σ = 0.01 in Fig. 3).

This result shows that as the relative mass of radicals M increases, the corresponding critical noise level
σc, above which the system is in disordered state, also increases. The dependence of σc on M is in the form
of a concave function. Furthermore, for small values of M , the transition seems to be discrete, signaling a
first-order transition. However, for large values of M the transition becomes blurry. This phenomenon was
also reported in [43] for the dependence of the critical noise level on the confidence range R. Notice that as
M increases, the required noise level for disordered behavior also increases. This increase in the noise level
leads to wider clusters, which, in turn, makes it difficult to differentiate order from disorder; see, e.g., the
panels corresponding to σ = 0.04, 0.05 in Fig. 3.
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Figure 3. Numerical simulation of the discrete-agent model (Disc.) and continuum-agent model (Cont.) for
different values of noise σ with system data (M,A) = (0.1, 0.7). As noise increases the number of clusters decreases
so that for a large enough noise the clustering behavior disappears (see Section 6.2). The black dashed lines in
left panels for σ = 0.03, 0.04 are the approximate stationary solutions (52) (see Remark 4.5).

Also shown in Fig. 4 (red lines) is the result of scheme provided in Section 5.2 for approximating the critical
noise level. As can be seen, the scheme indeed provides a good approximation of the critical noise level. In
particular, the dashed red line (for γ = 1) almost perfectly separates the two phases of order and disorder.

6.3. Initial Clustering Behavior

For noises smaller than the critical noise level, agents start to form clusters; see Fig. 3. In particular, we
observe a cluster of normal agents around the average radical opinion A due to the force field generated by
the radicals. Generally, three types of clusters may form: (1) the cluster at the average radical opinion A,
(2) the cluster(s) at the extreme opinions x = 0 and/or x = 1, and (3) the cluster(s) around opinion values
other than x = 0, 1, A. The third type of clusters are expected to perform a random walk with their center
of mass moving like a Brownian motion (assuming clusters do not interact). The effective diffusivity of these
Brownian motions is inversely related to the size of the cluster, i.e., the number of agents in the cluster. This
will result in a process of consecutive merging between these clusters until complete disappearance of them.
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Figure 4. The order parameter at t = 103 from numerical simulation of the continuum- and discrete-agent
models starting form uniform initial distribution. For the discrete-agent model, the average of order parameter
over the time window [900, 1000] is reported. The plot covers the region σ×M ∈ [0.01, 0.15]× [0.01, 1] with step
sizes ∆σ = 0.005 and ∆M = 0.02. The red lines show the result of the numerical scheme described in Section 5.2
for approximating the critical noise level for different values of γ w.r.t. the second criterion (66). See Section 6.2
for details.

Detailed descriptions of this process are provided in [43, 53]. Notice however that this description does not
apply to cluster(s) formed at x = A and x = 0, 1. These clusters are affected by forces other than the normal
attractions among the agents within the cluster. The cluster formed at x = A is under influence of radicals
and the possible clusters at the extreme opinions x = 0, 1 are reinforced due to the even 2-periodic extension
considered in our model. The behavior of these clusters (survival or dissolution) depends on their size, the
exogenous force acting on them, and the effect of other clusters in their neighborhood.

In this section, we use the analysis scheme provided in Section 5.3 to investigate the effect of the zeroth
and first moment of radicals (M and A, respectively) on the initial clustering behavior of the model for noises
smaller than the critical level. In particular, we investigate the effect ofM and A on the number, position and
timing of initial clusters for different values of σ. We again emphasize that we are considering a concentrated
triangular distribution for radical agents and a uniform initial distribution for normal agents. Let us begin
with illustrating how the objects introduced in Section 5.3, namely, exponential and linear growth rates and
the dominant wave-number, can be used to characterize the initial clustering behavior.

6.3.1. An Illustrative Example

Consider the system data (σ,M,A) = (0.01, 0.1, 0.7). Fig. 5 depicts the values of the exponential growth
rate γn and the linear growth rate cn for different frequencies. In Fig. 5a we observe that the unstable mode
with the maximum exponential growth rate is n∗ = 8 with γn∗ = 0.177. Fig. 5b shows that the linear
coefficient corresponding to this frequency is cn∗ = 0.007 > 0. Then, (67) implies that the initial clustering
behavior is expected to have nclu = 5 clusters. Also, using (68), we obtain tclu = 18.16 for the time to initial
clustering.

Fig. 6 shows the time evolution of distribution of normal opinions/agents for the system data corresponding
to Fig. 5. For the continuum-agent model, we can see a 5-cluster profile corresponding to the speculated
waveform as depicted in Fig. 6a. A similar clustering behavior is observed in the Monte Carlo simulation
of the discrete-agent model in Fig. 6b. Here, we observe three clear clusters: the cluster at average radical
opinion A = 0.7 and the two clusters at extreme opinions x = 0, 1. However, we observe an almost uniform
distribution of normal agents in the opinion range [0.1, 0.5]. This is due to the fact that the exact position of
the corresponding clusters formed in the discrete-agent model varies within this range. Individual realizations
of the discrete model show one, two or three clusters in this range with two clusters being the most frequent
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Figure 5. Exponential and linear growth rates for system data (σ,M,A) = (0.01, 0.1, 0.7) for different frequen-
cies. On the left panel we see the maximum exponential growth corresponds to n∗ = 8 with γn∗ = 0.177. On
the right panel we see cn∗ = 0.007 > 0. This implies that the waveform p8 cos(8πx) with p8 > 0 is the dominant
component of the initial clustering behavior.
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(b) Discrete-agent model

Figure 6. Evolution of distribution of normal opinions/agents during the initial clustering behavior for system
data (σ,M,A) = (0.01, 0.1, 0.7) corresponding to Fig. 5. The distributions shown for the discrete-agent model are
the average profiles of 300 realizations. The onset of a 5-cluster behavior is observed from approximately t = 20

corresponding to the waveform 1 + cos(8πx) speculated for the initial clustering behavior with tclu = 18.16.

behavior as expected. This effect has been also reported by [37] in Monte Carlo simulations of a noisy Defuant
model. Furthermore, we notice that the timing object t∗ = 18.16 also gives a good approximation for the
onset of the corresponding clustering behavior for both continuum- and discrete-agent systems.
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Figure 7. Characterization of the initial clustering behavior based on the dominant wave-number in the Fourier
expansion of the continuum-agent model for different values ofM and A with noise levels σ = 0.01 (left), σ = 0.02

(middle), and σ = 0.03 (right).

6.3.2. Effect of M and A on Initial Clustering

Performing a similar analysis to the one provided in the example above, we can compute the dominant wave-
number (n∗), number of initial clusters (nclu) and time to initial clustering (tclu) for a general combination of
system data. Fig. 7 shows the result of this analysis for different values of M and A at three different noise
levels σ. Here, we only considered the values A < 1 − R = 0.9 since for 1 − R < A < 1 the boundary effect
due to even 2-periodic extension comes into play.

Comparing the left, middle and right panels of Fig. 7 corresponding to different levels of noise, we observe
that as the level of noise increases, the number of clusters in the possible clustering behavior of the system
decreases (see Fig. 7b), while the timing experiences a general increase (see Fig. 7c). This effect has been
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already shown in Fig. 3. In particular, with respect to the timing, we notice that as the level of noise decreases,
the initial clustered profile emerges faster; see Fig. 3b.

For low levels of noise, e.g., σ = 0.01 (see the left panels in Fig. 7), the dominant wave-number does not
depend on the M or A. In this case, the most important effect of the first moment of radical opinions density
A is on the position of clusters. That is, the clustered profile emerges in a way that we observe a particular
cluster formed at the average radical opinion A. The parameter A also affects the timing of the clustering
behavior in a periodic fashion. On the other hand, the zeroth moment of radical opinions density M only
affects the timing of the clustering behavior: asM increases, tclu decreases. Fig. 8 shows the simulation results
for σ = 0.01 and compares the evolution of opinions for different values of M and A. For the continuum
model in the the top panels of Fig. 8 we observe that indeed a 4-cluster profile has emerged in all systems.
Comparing Figs. 8a and 8b shows that M only affects the timing of clustering behavior. This effect is better
seen in Fig. 8g where we observe a faster convergence of order parameter for S2 with larger M . On the other
hand, comparing Figs. 8b and 8c corresponding to A = 0.85 and A = 0.7, respectively, we observe a change
in the positioning of the clusters. Monte Carlo simulations of the discrete-agent model reveals that the same
general description also holds for this system. This is particularly seen in the time evolution of the order
parameter in the discrete-agent model as depicted in Fig. 8h. However, we once again note that there are
differences between the behavior of the continuum- and discrete-agent models. In particular, the evolution of
order parameter in Fig. 8g shows that the continuum-agent model has seemingly converged to steady-state
with four clusters, while this is clearly not the case for the discrete-agent model as can be seen in Fig. 8h.
Indeed, in the discrete-agent model, as described in the beginning of this section, all the possible clusters
formed around opinion values other than x = 0, 1, A will necessarily disappear in the steady state profile,
where the time required for their disappearance depends on the noise level and particularly the size of these
clusters. Hence, unlike the discrete-agent model, for the continuum-agent model (in the limit N → ∞), the
system may require infinite time for this merging of the clusters to occure. This, in turn, can lead to differet
behaviors in the discrete- and continuum-agent models over exponentially large times scales [43]; see also the
evolution of order parameter in Fig. 3b.

As shown in Fig. 7, for higher levels of noise, e.g., σ = 0.03, we observe nonlinear effects. That is, M and
A start to affect the dominant wave-number (see the middle and right panels of Fig. 7a). Nevertheless, these
effects are limited as the number of clusters is still 3 or 4 for σ = 0.02, and 2 or 3 for σ = 0.03. Besides,
we still observe a general increase in the timing of the clustering behavior as M decreases. Fig. 9 shows the
evolution of normal opinions/agents distribution and the corresponding order parameter for three different
combinations of M and A at the noise level σ = 0.03. Once again, in the continuum-agent model we observe
a 2-cluster profile for all combinations as shown in the top panels of Fig. 9. For the discrete-agent model, we
observe a 3-cluster behavior in which the cluster formed between the two clusters at x = 0 and x = A has
already disappeared for S3 in Fig. 9f at t = 400. Indeed, our simulations for σ = 0.03 reveals a single-cluster
profile around the average radical opinion x = A after a large enough time; see Fig. 3.

To summarize the discussions above, for concentrated distribution of radicals, the main effect of the zeroth
and first moments of radical distribution is on the timing and positioning of the possible clustering behavior,
respectively. The number of clusters (to be precise, the life-time of possible transient clustered profiles) is
mainly determined by the noise level of the system. This is particularly the case for lower levels of noise.

7. Final Remarks

In this paper, we considered a macroscopic model for bounded confidence opinion dynamics with envi-
ronmental noise. In particular, we studied the effect of exogenous influence by adding a mass of radical
(continuum) agents to the original population of the normal agents. The well-posedness of the continuum
dynamics expressed as a nonlinear Fokker-Planck equation was established under some assumptions on the
initial density of the normal opinions and the density of radical opinions. The long-term behavior of the
model was also discussed by considering the corresponding stationary equation. In this regard, we provided a
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(c) Continuum - S3 : (0.15, 0.7)
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(d) Discrete - S1 : (0.05, 0.85)
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(e) Discrete - S2 : (0.15, 0.85)
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(f) Discrete - S3 : (0.15, 0.7)
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(g) Continuum-agent model
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(h) Discrete-agent model

Figure 8. Numerical simulation of the model with σ = 0.01 for different values of (M,A), namely, S1 :

(0.05, 0.85), S2 : (0.15, 0.85), and S3 : (0.15, 0.7). The upper panels (A, B, and C) show the opinion distribution
for continuum-agent model. The middle panels (D, E, and F) show the the result of Monte Carlo simulation
(average of 300 realizations) of discrete-agent model. The lower panels (G and H) show the evolution of order
parameter for these systems.
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(c) Continuum - S3 : (0.15, 0.7)
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(d) Discrete - S1 : (0.05, 0.85)
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(e) Discrete - S2 : (0.15, 0.85)
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(f) Discrete - S3 : (0.15, 0.7)
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(g) Continuum-agent model
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(h) Discrete-agent model

Figure 9. Numerical simulation of the model with σ = 0.03 for different values of (M,A), namely, S1 :

(0.05, 0.85), S2 : (0.15, 0.85), and S3 : (0.15, 0.7). The upper panels (A, B, and C) show the opinion distribution
for continuum-agent model. The middle panels (D, E, and F) show the the result of Monte Carlo simulation
(average of 300 realizations) of discrete-agent model. The lower panels (G and H) show the evolution of order
parameter for these systems.
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sufficient condition based on the noise level that guarantees exponential convergence of the dynamics towards
the stationary state that can be made arbitrarily close to uniform distribution. In the context of opinion
dynamics, we derived a theoretical bound on the minimum noise level required to counteract the effect of
radical agents and keep the system in a somewhat uniform state.

Exploiting the periodicity of the considered continuum-agent model, we used Fourier analysis to provide
a general framework for characterization of the clustering behavior of the system with uniform initial distri-
bution. We then applied this framework for a particular distribution of radical opinions, namely, a relatively
concentrated triangular distribution. In particular, we studied the effect of the relative mass of the radicals on
the critical noise level for order-disorder transition. As expected, the analysis showed that for a larger number
of radical agents, the critical noise level increases. We note that this result corresponds to the theoretical
result on the global estimate for stationary state. However, comparing the theoretical lower bound on the
noise level for the global estimate with its counterpart derived numerically, we find that the theoretical bound
is quite conservative, which was expected considering its theoretical nature. We also considered the effect of
relative mass and average opinion of radicals on the number, timing and positioning of the clusters for noises
smaller than the critical noise level. Here, the noise level was shown to be the main factor in determining the
number of clusters. Meanwhile, the relative mass of the radicals mainly affects the timing of the clustering
behavior, that is, for larger masses of radicals, the clustering behavior is expected to emerge faster. On
the other hand, the main effect of the average opinion of the radicals is on the positioning of the clusters;
the clusters are positioned in a way that we see a cluster formed around the average opinions of radicals.
The numerical simulations of the continuum-agent model and the corresponding discrete-agent model were
in agreement with these results.

Appendix A. Preliminaries on Function Spaces

The definitions provided here are mostly borrowed from [59]. Let {fk)}∞k=1 be a sequence in a Banach
space B with norm ‖·‖B . The strong convergence fk → f implies ‖fk−f‖B → 0, while the weak convergence
fk ⇀ f implies g(fk)→ g(f) for all bounded linear functionals g : B → R.

Let f : X̃ → R be a measurable function on X̃ = (−1, 1). The Lp-norm of f is defined as follows

‖f‖Lp(X̃) =

{ (∫
X̃
|f(x)|p

) 1
p , 1 ≤ p <∞

ess supX̃ |f(x)|, p =∞.

Then, Lp(X̃) denotes the Banach space of all measurable functions f : X̃ → R for which ‖f‖Lp(X̃) <∞.

Let f, g ∈ L1
loc(X̃) be locally summable functions (i.e., f, g have a finite integral over every compact subset

of X̃). We say that g is the k-th weak (partial) derivative of f , if∫
X̃

f ∂kxφ dx = (−1)k
∫
X̃

g φ dx,

for all test functions φ ∈ C∞c (X̃) (infinitely differentiable functions φ : X̃ → R with compact support in X̃).

Hk(X̃) for k ∈ N is used to denote the Sobolev space W k,2(X̃) consisting of functions f ∈ L2(X̃) whose
weak derivatives up to order k exist and belong to L2(X̃). Note that Hk(X̃) is a Hilbert space.

We use the subscript per to denote the closed subspace of periodic functions in the corresponding function
space, e.g.,

Lpper(X̃) = {f ∈ Lp(X̃) : f(−1) = f(1)} and Hk
per(X̃) = {f ∈ Hk(X̃) : f(−1) = f(1)}.

Similarly, we use the subscript ep to denote the closed subspace of even periodic functions in the corresponding
function space, e.g.,

Lpep(X̃) = {f ∈ Lpper(X̃) : f(−x) = f(x), ∀x ∈ X̃},

Hk
ep(X̃) = {f ∈ Hk

per(X̃) : f(−x) = f(x), ∀x ∈ X̃}.
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We denote the dual space of H1
per(X̃) by H−1

per(X̃), that is, the space of bounded linear functionals on
H1
per(X̃). Moreover, we use 〈·, ·〉 to denote the corresponding paring of H1

per(X̃) and H−1
per(X̃). That is,

for f ∈ H1
per(X̃) and g ∈ H−1

per(X̃), we use 〈g, f〉 to denote the real number g(f). Since periodic boundary
condition allows for integration by parts without extra terms, H−1

per(X̃) has most of the properties of the space
H−1(X̃), the dual space of H−1

0 (X̃); see [59, Section 5.9.1] for a detailed description of the space H−1(X̃). In
particular, one can extend the result in [59, Section 5.9, Theorem 3] to derive [54, Theorem 3.8]. For reader’s
convenience, the corresponding theorem is presented below.

Theorem. [54, Theorem 3.8] Let the function f : X̃ × [0, T ]→ R be such that

f ∈ L2(0, T ;H1
per(X̃)) and ft ∈ L2(0, T ;H−1

per(X̃)).

Then, f ∈ C(0, T ;L2
per(X̃)) after possibly being redefined on a set of measure zero. Moreover, the mapping

t 7→ ‖f(t)‖2
L2(X̃)

is absolutely continuous, with

d

dt
‖f(t)‖2

L2(X̃)
= 2〈ft, f〉,

for almost every t ∈ [0, T ].

Appendix B. Approximate Solution to Stationary Equation

In order to provide an approximate solution to the stationary equation (8), we assume radicals are highly
concentrated around a particular opinion value x = A. To be precise, we assume that the average opinion of
radicals is A =

∫
X
x ρr(x) dx and the variance of radicals σ2

r =
∫
X

(x−A)2 ρr(x) dx is much smaller than the
confidence range R. It helps to think of the limit being a point mass of radicals located at opinion value x = A.
We further assume that the noise level σ is also much smaller than R so that the inter-cluster influences (from
other possible clusters) can be ignored. Using these assumptions, we can expect this particular cluster of
normal agents to be concentrated around A. This implies that in order to evaluate the integral in (38), we
only need to consider values of y near A. Under these assumptions, for R < A < L−R, we can write∫ x

0

w ? (ρ+Mρr) dz =

∫ x

0

∫
(z − y) 1|y−z|≤R (ρ(y) +Mρr(y)) dydz

≈
∫ x

0

∫ A+R

A−R
(z −A) 1|z−A|≤R (ρ(y) +Mρr(y)) dydz

=

∫ x

0

(z −A)1|z−A|≤R dz

∫ A+R

A−R
(ρ(y) +Mρr(y)) dy

=
1

2

(
(x−A)2 −R2

)
1|x−A|≤R

∫ A+R

A−R
(ρ(y) +Mρr(y)) dy

≈ M + 1

2

(
(x−A)2 −R2

)
1|x−A|≤R.

Inserting this result in (38), we have

ρs(x) =
1

K
exp

{
−M + 1

σ2

(
(x−A)2 −R2

)
1|x−A|≤R

}
,

which can also be expressed as (by modefyying the normalizing constant K)

ρs(x) =
1

K
exp

{
−M + 1

σ2
min

{
(x−A)2, R2

}}
.

In Fig. 3a, this approximate solution is shown for σ = 0.03 and σ = 0.04, where the system has converged
to a single cluster profile in both continuum- and discrete-agent models corresponding to the assumptions
for derivation of the approximate solution. This result shows that the approximate solution is indeed a good
approximation as it almost perfectly matches the numerical solution of the continuum-agent model.
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Appendix C. Euler-Maruyama Method for Discrete-agent Model

The interacting SDEs considered for the simulation of the discrete-agent model in this study is{
dxi = − 1

N

(∑
j∈Ni(xi − x

ext
j ) +

∑
j∈Ni(xi − x

ext
rj )
)

dt+ σ dW i
t ,

xi(0) = xi0 .
(71)

where xexti , i = 1, . . . N are the opinions of normal agents and xextri , i = 1, . . . Nr are the opinions of radical
agents with Nr = MN . The superscript ext corresponds to the even 2-periodic extension as explained below.
In order to solve (71) numerically, we employ the Euler-Maruyama method. Algorithm 1 summarizes the
numerical scheme. As described in Section 6, we assume that the radicals have a triangular distribution
centered at A with width 2S. That is, we produce a random sample of radicals with size Nr from the
triangular distribution (69) (Step 0). In particular, for complete correspondence between the discrete- and
continuum- agent models, we also consider the effect of even 2-periodic extension in our simulations. To this
end, we use even 2-periodic extensions of x and xr for calculating the sum on the r.h.s. of (71) (vectors
denoted by xext and xextr in Steps 0, 1 and 2). Also, due to periodicity, in each iteration, the opinion values
outside the support X = [0, 1] are reflected back to X (Step 5).

Algorithm 1 Euler-Maruyama method for even 2-periodic extension of (71)

Step 0. xr = (xr1 , xr2 , · · · , xrNr )T ∼ ρr(x);
xextr = [xr; −xr; 2− xr];

for t = 0 to t = T
∆t − 1: do

Step 1. xext(t) = [x(t); −x(t); 2− x(t)], where x(t) = (x1(t), x2(t), · · · , xN (t))T ;
Step 2. ẋi(t) = − 1

N

(∑
j∈Ni(xi − x

ext
j ) +

∑
j∈Ni(xi − x

ext
rj )
)
;

Step 3. dW i
t = zi

√
∆t, where zi ∼ N(0, 1);

Step 4. xi(t+ 1) = xi(t) + ẋi(t) ·∆t+ σ dW i
t ;

Step 5. xi(t+ 1) = xi(t+ 1) mod (2L);
if xi(t+ 1) > L, then xi(t+ 1) = 2− xi(t+ 1).

end for

Appendix D. Pseudo-spectral Method for Continuum-agent Model

This is a modification of the algorithm given in [43] for our model. Let us first recall the PDE (6) for the
continuum-agent model

ρt = (ρ G)x +
σ2

2
ρxx(72)

where

(73) G(x, t) = w ? (ρ+Mρr) =

∫
X̃

(x− y) 1|x−y|≤R (ρ(y, t) +Mρr(y)) dy,

Using the first Nf terms of Fourier expansions of ρ and ρr, we can write

ρ(x, t) +Mρr(x) =

Nf∑
k=−Nf

(ρ̂k(t) +Mρ̂rk) eiπkx.

Inserting this into (73), we obtain

G(x, t) =
∑

−Nf≤k≤Nf ,k 6=0

−2iR

πk
fk (ρ̂k(t) +Mρ̂rk) eiπkx,
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where fk is given by (64). Hence,

Ĝk(t) =

{
− 2iR

πk fk (ρ̂k(t) +Mρ̂rk), k 6= 0

0, k = 0.

With Fourier coefficients of G in terms of Fourier coefficients of ρ in hand, we can apply pseudo-spectral
method for solving (72) as described in Algorithm 2. As shown, the multiplication h = ρ G on the r.h.s.
of (72) is performed in the time domain (Step 4), while the differentiations w.r.t. x are performed in frequency
domain (Step 5). Note that the symmetric nature of solution is preserved in the algorithm (Step 1). Also,
preservation of mass is satisfied by setting ρ̂0(t + 1) = ρ̂0(t) (Step 5). We also note that the algorithm is
semi-explicit (see the first equation in Step 5).

Algorithm 2 Pseudo-spectral method for (72)

Step 0. for x ∈ [−1, 0] set ρr(x) = ρr(−x);
ρ̂rk = FFT [ρr(x)];

for t = 0 to t = T
∆t − 1: do

Step 1. for x ∈ [−1, 0] set ρ(x, t) = ρ(−x, t);
Step 2. ρ̂k(t) = FFT [ρ(x, t)];
Step 3. Ĝk(t) = − 2iR

πk fk (ρ̂k(t) +Mρ̂rk), Ĝ0(t) = 0;

G(x, t) = iFFT
[
Ĝk(t)

]
;

Step 4. h(x, t) = ρ(x, t) G(x, t);
ĥk(t) = FFT [h(x, t)];

Step 5. ρ̂k(t+ 1) =
(
iπkĥk(t)− π2σ2k2

2 ρ̂k(t+ 1)
)
·∆t+ ρ̂k(t);

ρ̂0(t+ 1) = ρ̂0(t);
ρ(x, t) = iFFT [ρ̂k(t)];

end for
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