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Abstract—We study stochastic static teams with countably
infinite number of decision makers, with the goal of obtaining
(globally) optimal policies under a decentralized information
structure. We present sufficient conditions to connect the concepts
of team optimality and person by person optimality for static
teams with countably infinite number of decision makers. We
show that under uniform integrability and uniform convergence
conditions, an optimal policy for static teams with countably
infinite number of decision makers can be established as the
limit of sequences of optimal policies for static teams with
N decision makers as N — oo. Under the presence of a
symmetry condition, we relax the conditions and this leads to
optimality results for a large class of mean-field optimal team
problems where the existing results have been limited to person-
by-person-optimality and not global optimality (under strict
decentralization). In particular, we establish the optimality of
symmetric (i.e., identical) policies for such problems. As a further
condition, this optimality result leads to an existence result for
mean-field teams. We consider a number of illustrative examples
where the theory is applied to setups with either infinitely many
decision makers or an infinite-horizon stochastic control problem
reduced to a static team.

Index Terms—Stochastic teams, average cost optimization,
decentralized control, mean-field theory.

I. INTRODUCTION

A decentralized control system, or a team, consists of
a collection of decision makers/agents acting together to
optimize a common cost function, but not necessarily sharing
all the available information. Teams whose initial states, obser-
vations, cost function, or the evolution dynamics are random
or are disturbed by some external noise processes are called
stochastic teams. At each time stage, each agent only has
access to some parts of the global information. If each agent’s
information depends only on primitive random variables, the
team is static. If at least one agent’s information is affected
by an action of another agent, the team is said to be dynamic.

On teams with finitely many decision makers, Marschak
[36] studied optimal static teams and Radner [40] developed
foundational results on optimality and established connec-
tions between person-by-person optimality, stationarity, and
team-optimality. Radner’s results were generalized in [30] by
relaxing optimality conditions. A summary of these results
is that in the context of static team problems, convexity of
the cost function, subject to minor regularity conditions, may
suffice for the global optimality of person-by-person-optimal
solutions. In the particular case for LQG (Linear Quadratic
Gaussian) static teams, this result leads to the optimality of
linear policies [40], which also applies for dynamic LQG
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problems under specific information structures (to be discussed
further below) [23]]. These results are applicable for static
teams with finite number of decision makers. In our paper,
the focus is on teams with infinitely many decision makers.

Connections with the literature on mean-field
games/teams. On the case with infinitely many decision
makers, a related set of results involves mean-field games:
mean-field games (see e.g., [25]], [24], [34]) can be viewed as
limit models of symmetric non-zero-sum non-cooperative N-
player games with a mean-field interaction as N — oo. The
uniqueness and non-uniqueness results have been established
for mean-field games in both the PDE and probabilistic setting
[34], [4], [11]. In [4], examples have been provided to show
the existence of multiple solutions to the mean-field games
when uniquness conditions in [34], [11] are violated. The
mean-field approach designs policies for both cases of games
with infinitely many players, as well as games with very
large number of players where the equilibruim policies for the
former are shown to be e-equilibria for the latter [24], [42],
[12]. These results, while very useful for establishing equi-
libria or in the context of team problems, person-by-person-
optimal policies, does not guarantee the e-global optimality
among all policies. That is, e-person-by-person-optimality is
not sufficient for e-global optimality since in the limit one
typically only finds equilibrium policies without establishing
their uniqueness (which would imply global optimality for
team problems) [37], [45], [29]. Related to such problems,
in the economic theory literature, [45], [37], have consid-
ered Cournot-Nash equilibria. This Cournot-Nash equilibrium
concept corresponds to a mean-field equilibrium for a static
problem. However, such an equilibrium does not necessarily
imply global optimality in the context of team problems, as
discussed above.

Recently, mean-field team problems have also been stud-
ied: Social optima for mean-field LQG control problems
under both centralized and a specific decentralized information
structure have been considered in [26], [47]. In [2], a setup
is considered where decision makers share some information
on the mean-field in the system, and through showing that
the performance of a corresponding centralized system can
be realized under a decentralized information structure, global
optimality is established. In our paper, we follow an approach
where optimality for every NV is established and also optimality
holds as N — oo for the limit policy. The papers [28]], [27]
have studied a continuous-time setup where a major agent is
present; by considering the social impact for each individual
player, they showed person-by-person optimal policies asymp-
totically minimize the social cost [26]. By approximating the
mean-field term, the authors bound the induced approximation
error of order O(N T e ~) where €y goes to zero as the num-
ber of players N — oo [26]. In [9], mean-field team problems
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with mixed players have been considered where minor agents
act together to minimize a common cost against a major player.
Also, for the LQ setup, under the assumption that DMs apply
identical policy in addition to some technical assumptions on
the cost function and transition probabilities of Markov chains,
[1]] showed that the expected cost achieved by a sub-optimal
fully decentralized strategy is on e(n) neighborhood of the
optimal cost achieved when mean-field (empirical distribution
of states) has been shared, where n is the number of players.
Such results on mean-field teams either show global optimality
through equivalence to the performance of a centralized setup
(considering specific sharing patterns on the mean-field model)
or typically only assume person-by-person-optimality. In our
paper, we will establish global optimality under a completely
decentralized information structure; however, certain technical
conditions will be imposed.

Connections with the literature on limits of finite player
games/teams. There exist contributions where games with
finitely many players are studied, their equilibrium solutions
are obtained and the limit is taken. Along this direction, the
connection between Nash equilibrium of symmetric N-player
games and an optimal solution of mean-field games has been
addressed in [5]], [17], [L8], [7], [3], [31]. The goal is to find
sufficient conditions such that the limit of the sequences of
Nash equilibrium for the N-player games identify as a solution
of the corresponding mean-field game as N — oo. Conver-
gence of Nash equilibria of symmetric N-player games to
the corresponding mean-field games for stationary continuous-
time problems with ergodic costs has been investigated in [5]],
[17]. Moreover, such a convergence of Nash equilibria for
symmetric N-player games to the corresponding mean-field
solution for a broad class of continuous time symmetric games
has been established in [[18] under uniform integrability and
exchangeability (symmetry) conditions (see [18, Theorem 5.1
and conditions (T) and (S)]) provided that the cost function and
dynamics admit the structural restrictions. In [31]], assumptions
on equilibrium policies of the large population mean-field
symmetric stochastic differential games have been relaxed to
allow the convergence of asymmetric approximate Nash equi-
libria to a weak solution of the mean-field game [31, Theorem
2.6]. In a discrete-time setup, [[7] considered convergence of
Nash equilibria for games with the mean-field interaction and
with ergodic costs for Markov processes. The convergence
result has been derived under an existence assumption on
the mean-field solution and an additional convexity condition
(see [7, Theorem 5.1 and condition (A7)]). In contrast, in the
context of stochastic teams with countably infinite number of
decision makers, the gap between person-by-person optimality
(Nash equilibrium in the game-theoretic context) and global
team optimality is significant since a perturbation of finitely
many policies fails to deviate the value of the expected cost,
thus person by person optimality is a weak condition for such
a setup, and hence the results presented in the aforementioned
papers may be inconclusive regarding global optimality of
the limit equilibrium. This observation motivates us to in-
vestigate the connection between person-by-person-optimality
and global team optimality in stochastic teams with countably
infinite decision makers. Compared with [S], [17]], [18], [Z], [3]
where only the convergence of a sequence of Nash equilibria
for symmetric games with the mean-field interaction has been
studied, we show that, under sufficient conditions, sequences

of optimal policies for teams with N number of decision
makers as N — oo converge to a team optimal policy for static
teams with countably infinite number of decision makers.

Related to mean-field team problems, a limit theory for
mean-field type problems (also called Mckean-Viasov stochas-
tic control problems) has been established in [32], [10]. In
[32], [10], the connection between solutions of N-player
differential control systems and solutions of Mckean-Vlasov
control problems has been investigated. It has been shown that
the sequence of empirical measures of pairs of states and e -
centralized optimal controls (under the classical information
structure since all the information available are completely
shared between players) converges in distribution as N — oo
to limit points in the set of pairs of states and optimal
controls of the Mckean-Vlasov problem [32] (see Remark
B). In contrast, our focus is on the information structures of
decision makers. Here, under convexity of the cost function
and symmetry, we show the convergence of a sequence of
decentralized optimal policies of N-DM teams to an optimal
policy of mean-field teams as N — oo.

Connections with the literature on LQG games/teams.
There has been a number of studies focusing on the LQG
setup (in addition to [26], [47]). A close study is [35] where
LQG static teams with countably infinite number of decision
makers have been studied and sufficient conditions for global
optimality have been established. In our paper, we utilize some
of the results from [35]], however compared with [35], we
propose sufficient conditions for team optimality on average
cost problems for a general setup: except convexity, no specific
structure is presumed a priori on the cost function. For our
analysis, we do not restrict the setup to the LQG one, where
often direct methods can be applied building on [40], [30],
and operator theory involving matrix algebra; in addition, we
also study the mean-field setting. In fact, for a general setup of
static teams, we introduce sufficient conditions (see Theorem[3]
and Theorem[6) such that the optimal cost and optimal policies
of static teams with countably infinite number of decision
makers is obtained as a limit of the optimal cost and optimal
policies for static teams with N number of decision makers
as N — oo. In [20], LQG team problems with infinitely
many decision makers have been considered for a setup
where the cost function is the expected inner-product of an
infinite dimensional vector (and to allow for a Hilbert theoretic
formulation, finiteness of the infinite sum of the moments
of individual random variables is imposed) and linearity and
uniqueness of optimal policies have been established; the
finiteness (of the infinite summation) restriction rules out the
setup in our paper. In [39], infinite horizon decentralized
stochastic control problems containing a remote controller and
a collection of local controllers dealing with linear models
have been addressed for a setup where the cost is quadratic and
the communication model satisfies a specified sharing pattern
of information between local controller and remote controller.
Under the assumed sharing pattern (common information),
the connections between the optimal solution and the coupled
algebraic Riccati equation for Markov jump linear systems and
its convergence to the coupled fixed point equations have been
utilized to show the optimality of the solution [39]].

As a further motivation for our study, we note that for
dynamic team problems, Ho and Chu [23] have introduced
a technique such that dynamic partially nested LQG team



problems can be reduced to static team problems (we also
note that Witsenhausen [48]] showed that under an absolute
continuity condition, any sequential dynamic team can be
reduced to a static one). For infinite-horizon dynamic team
problems, this reduction leads to a static team with countably
many decision makers; thus leading to a different setup where
our results in this paper will be applicable. We will study a
particular example as a case study. In particular, the question
of whether partially nested dynamic LQG teams admit optimal
policies under an expected average cost criterion, in its most
general form, has not been conclusively addressed despite
the presence of results which impose linearity apriori for the
optimal policies under such information structures [41]. We
hope that our solution approach can be utilized in the future
to develop a complete theory for such problems.
Contributions.

(i) For a general setup of static teams, we show that (see
Theorem [6)), under a uniform integrability condition (see
Remark ), if sequences of team optimal policies of
decision makers ¢ = 1,..., N of static teams with N
number of decision makers converge uniformly in ¢ =
1,..., N (see (b) in Theorem[f), then the corresponding
limit policies are team optimal for the static team with
countably infinite number of decision makers, under the
expected average cost criteria.

We establish global optimality results for mean-field
teams under strict decentralization of the information
structure for both teams with large numbers of players
and infinitely many players. Toward this end, we in-
troduce a notion of symmetrically optimal teams (see
Definition [6) to obtain a global optimality result under
relaxed sufficient conditions (see Section [[V)). Under mild
conditions on action spaces and observations of decision
makers, through concentration of measures arguments,
we establish the convergence of optimal policies for
symmetric mean-field teams with /N decision makers to
the corresponding optimal policy of mean-field teams (see
Section [V)). In addition, we establish an existence result
for optimal policies on mean-field teams under relaxed
conditions on action spaces and the cost function (see
Theorem [12)).

We apply our results to a number of illustrative examples:
We first consider LQG and LQ (non-Gaussian) average
cost problems with state coupling (see Section [V=A] and
Section [V=B)). We also consider LQG average cost prob-
lems with control coupling (see Section[V=C)). In addition,
we show that the team optimal policy of LQG teams
with classical information structure (see Section
is obtained using the technique proposed in this paper.
This is important since this result, while is well-known in
the stochastic control literature, has not been investigated
using static reduction proposed in [23] and hence this
approach can be viewed as a step to address optimal
solutions for infinite-horizon partially nested dynamic
LQG problems which can be reduced to a static team
with countably infinite number of decision makers.

(ii)

(iii)

The organization of the paper is as follows. Preliminaries and
the problem statement are presented in Section [l Section
contains our main results including sufficient conditions for
team optimality and asymptotic optimality for a general setup
of static teams with countably infinite number of decision

makers. Section [[V]discusses symmetric and mean-field teams,
and applications are presented in Section [Vl Section
presents concluding remarks.

II. PROBLEM FORMULATION
A. Preliminaries

Before presenting our main results, we introduce pre-
liminaries following the presentation in [53], in particular,
we introduce the characterizations laid out by Witsenhausen,
through his Intrinsic Model [49]; further characterizations
and classifications of information structures are introduced
comprehensively in [52]. Suppose there is a pre-defined order
in which the decision makers act. Such systems are called
sequential systems. The action and measurement spaces are
standard Borel spaces, that is, Borel subsets of complete,
separable and metric spaces. The Intrinsic Model for sequential
teams is defined as follows.

o There exists a collection of measurable spaces
{(Q,F), (U U, (Vi,V),i € N7}, specifying the
system’s distinguishable events, and control and
measurement spaces, where N is either {1,...,N} or
N (N denotes the set of natural numbers). In this model
(described in discrete time), any action applied at any
given time ¢ € N is regarded as applied by a decision
maker DM for i € N, who acts only once. The pair
(Q, F) is a measurable space (on which an underlying
probability may be defined). The pair (U?,1?) denotes
the measurable space from which the action, ut, of
decision maker i is selected. The pair (V¢, V) denotes
the measurable observation/measurement space.

o There is a measurement constraint to establish the con-
nection between the observation variables and the sys-
tem’s distinguishable events. The V‘-valued observation
variables are given by v' = hi(w,ul"*"1), where
w1 = fyF k < i — 1}, h' are given measurable
functions and u* denotes the action of DM*. Hence, v’
induces o (v) over Q x [[._} U,

o The set of admissible control laws v = {y!,72,...},
also called designs or policies, are measurable control
functions, so that u® = ~*(v'). Let I'* denote the set of
all admissible policies for DM,

o There is a probability measure P on (€2, F) describing
the probability space on which the system is defined.

Under this intrinsic model, a sequential team problem is
dynamic if the information available to at least one DM is
affected by the action of at least one other DM. A team
problem is static, if for every decision maker the information
available is only affected by exogenous disturbances; that is no
other decision maker can affect the information of any given
decision maker.

Information structures can also be categorized as classical,
quasi-classical or non-classical. An Information Structure (IS)
{v',i € N'} is classical if v contains all of the information
available to DM* for k < 4. An IS is quasi-classical or
partially nested, if whenever u¥, for some k < i, affects v’
through the measurement function h*, v* contains v* (that
is o(v¥) C o(v?)). An IS which is not partially nested is
nonclassical.

(Py) Let N = |N| be the number of control actions taken,
and each of these actions is taken by a different decision



maker, where N := {1,..., N}. Lety, = {y',---,/"}
and let 'y = va ' be the space of admissible policies

for the team with N-DMs. Assume an expected cost
function is defined as

In(vy) = B [e(wo, uy)], M

measurable cost function ¢

Qo X Hivlek — R where E%[c(wo,uy)] :=
Ele(wo, v (v1), -+, 4N (vN))] and we define wy as the
cost function relevant exogenous random variable as
wo : (QF,P) — (920,8(0)). Here, we have the
notation uy := {u’,i € N'} and B(-) denotes the Borel
o-field.

for some Borel

Definition 1. Team optimal solution for (P};) [52]].
For a given stochastic team problem with a given information
structure, a policy (strategy) N-tuple 7', =, e
T'n is optimal (team-optimal solutton) for (PN) if

IN(7y) = VNigN J(y) = JIn-

Definition 2. Person-by-person optimal solution [52].

For a given N-DM stochastic team with a fixed mformatlon
structure, an N-tuple of strategies v = (VAN
constitutes a person-by-person optimal (pbp optimal) solution

for (PN) if, for all B € T and all i € N, the following
inequalities hold:

T = JInE) < In(ry™s B),
(Y, ..y

To simplify notations, let for any 1 < k < N, l;vk =
{Fylvi € {laaN}\{k}}

Definition 3. Stationary solution [40].
A poltcy 5 is stationary if J(y,) < oo, and for all
i=1,. ]j.lP’ almost surely

4

where Vi denotes the gradient with respect to u'.

Where (’YN ’/8) (Z_l)*’ /8’ ’Y(l-’_l)*? R 7’YN*)'

= 0,
wi=vyi(vi)

VuE [c(wo, (117, ul))

In this subsection, without abuse of notations, we some-
times used 7% as v‘(v'). In the following, we present some
related existing results for static teams with N decision
makers. The following is known as Radner’s theorem [40].
Radner proposed the first result to connect the stationarity
concept and global team optimality.

Theorem 1. [40] If
(a) c(wo,uy) is convex and differentiable in wy for P-
almost surely;
(b) 1nf JN(”yN) > —00;
In
(c) JN( ) is locally finite at Z*N [40];
(d) ZN is stationary;
then 1}*\[ is globally optimal for (Pl).
Radner’s theorem fails in some applications because of
the restrictive local finiteness assumption. Krainak et al [30]

relaxed assumptions and presented sufficient conditions for
team optimality on static teams.

Theorem 2. [30] Assume that, for every fixed wo, c(wo, uy) is
convex differentiable in uy. Suppose (b) in Theorem[Il holds.
Let v, € I'n, and assume that Elc(wo, 7}, (vy))] < oo. If,

for all . € T with Elc(wo, v, (vy))] < o0,
N . .
B[ Y- culon 1) =) 20, @
i=1

where ¢, (wo,7},) is the partial derivative of c(wo,uy) with
respect to u' valued in uy = v, then ”yN is an optimal team
policy for (Py). Moreover, zf c(wo, wy) is strictly convex in
uy P-almost surely, then 11\/ is P-a.s. unique.

Since the set of admissible policies is generally uncount-
able, checking @) is difficult. Krainak et al [30] further
developed relaxed conditions under which stationarity of a
policy implies its optimality.

Theorem 3. [30] Assume that, for every fixed wy € €,
c(wo,upy) is a convex differentiable function of w, and sup-
pose (b) in Theorem U holds. Assume that Z?v € I'n is a sta-
tionary policy. Let, for all 7y ., € T'n with Elc(wo, v (vn))] <
oo,

E cut(wo,ljv)(”yi—'yi*) <ocofori=1,...N. (3)
Then 7, is a team optimal policy for (Pr) 1If c(wo,uy) is
strictly convex in uy, P-a.s., then 7 is unique.

Furthermore, (@) can be replaced by the following more
checkable conditions [52]: Let I'* be Hilbert space for each
i =1,..,N and E[c(wo, 7, (vy))] < oo forall 7, € I'n.
Moreover, let

“)

E[cut(wo,zjv) vl] ert, i=1,..,N.

The above conditions follows directly from (@) when I'? is a
Hilbert space for all ¢ = 1,2,..., N. This condition can be
checked for some applications; for example, LQ teams [52].

B. Problem statement

(P~) Consider a team with countably infinitely many decision

makers. Let T’ = [[;_ I'! be a countable but an infinite
product policy space. We assume U’ = R", and V! = R™
for all ¢ € N, where n and m are positive integers. Let
c: Qo xR”xR® — R,, and the expected cost be

N
J(7y) = limsup %EW{Z c(wo, u', Zup }, (5)
i=1

N—o00

where we denote ]El[ZfV:1 e(wo, u’, NZ
B[S, clwo, 7 (), % Tply 17 (07))]

Definition 4. Team optimal solution for (Pso).

For a given stochastic team problem with a given information
structure, a policy v* := (y'*,v?*,...) € T is optimal for
(Pso) if

_uP)] =

J(") = ;gg J(y) = J".

Our goal in this paper is to establish conditions for a team
policy to be optimal, and also connect the optimal cost and



policies for (P) and (Py). To this end, we re-define (Py)
for our problem statement as follows:

(Pn) Let N = |N] be the number of control actions taken
and v, = {v',---, 4N} and let Ty = J[ I space of
admissible policies for the team with N-DMs. Assume
an expected cost function is defined as

1 N
JN(ZN) = NEZN |:Z (UO, 7 Zup :| (6)
=1

We will investigate the relations between the sequence of
solutions to () and the solution to (3). We note that our main
result is on the connection between (P..) and (Py).

III. OPTIMAL POLICIES FOR TEAMS WITH INFINITELY
MANY DECISION MAKERS

A. Sufficient conditions of optimality

In the following, we propose sufficient conditions of team
optimality for (P,). We often follow [30], and the result is
an extension of [30] to a general setup of static teams with
countably infinite number of decision makers. We also note
a related analysis in [35)]. We will use the following theorem
for LQ static teams with countably infinite number of decision
makers (see Section [V-B).

Assumption 1. Let

(Al) c(wo,u ,sz LuP) be a Ri-valued jointly convex
function of second and third arguments and differen-
tiable in u® with continuous partial derivatives, for every
wo € Q.

(A2) for some v* €T,

ngnoo—ZIE'y [ c(wo, u', Zu”} ) @)

We note that the cost function is differentiable in
u’ which means that the cost is totally differentiable in

ut, ie., dil c(wo,u ,sz uP) = 6‘31 c(wo, u, un) +
%WLNC(Wba 7MN)

Theorem 4. Assume (Al) holds and (A2) holds for v* € T.
If for all v € T with J(v) < oo,

lim sup — E[ZZC » (wo, Y

N—roo i=1 k=1

") (=AM =0, ®)

where iy = % Zévzl AP (vP), then v* is a globally optimal
team policy for (Pso).

Proof. Under (A1), the required derivatives in (8) in the
direction of u’ exist and the chain rule of derivatives can
be applied since this implies that the cost function is Fréchet
differentiable in u* [19]. Now, we use the convexity property to
justify interchanging the expectation and the derivation similar
to [30, Theorem 2], then we use and (8) to establish the
global optimality of v* for (P). Under (Al), we have for
every a € (0,1],

N
i i ox, O i %
2c(w,7 +a6,uN+N;5p)—C(woﬁ S HN)

N
<a Z c(wo, 7', uv) = c(wo, 7", 1yy))
where pny = % 1P (vP) and &6 = 4" — 4™, Let
1 al a o
hy () : E[NZ (wo, 7" +a517MN+NZ5p)

p=1
— C(W077i*7ﬂjv):| :

Hence, [14, Proposition 6.3.2] implies that ~3’ («) is a mono-
tone non-increasing function as « — 0 in a € [0,1] and
bounded from above by A’y (1). Thus, by [[14, Corollary 6.3.3],
Py n(wo,0) = lima—0 k3 (@) exists. Since AR () is a
monotonic non-increasing function as &« — 0 in « € [0, 1] and
bounded above by h3’ (1), and since J(7*) and J () are finite,
we can choose N large enough such that E(h%P (1)) < oc.
Now, we can use the monotone convergence theorem (see [22}
page. 170]) to interchange the limit and the expectation

Jim E(h39(a)) = E(lim h59(a)) = B0} x (w0,0)). ©9)

From [30, Lemma 1],
N N
%E(Zizl Zk:1 Cyk (Wo, Y

N N
1 : : «
N . ik i *
Q) = —E(i_glc(o.)o,’}/ + ad ,,U,N-FN;DE_lép)).

we have E(h) y(wo,0)) =
iy )6%). Define

Note that Flj\; (o) exists for v € [0,1] since E(hY () <

B (1) < oo, and E(d X, clwo, v, 03)) < oo,
Therefore, one can write F;JX (0) = lim E(h**(«)), and
IN a—r

EY(0) = (ZZcuk wo, v i) (V=" ))-

i=1 k=1

Thus, we can write

J(v) = J(H") zlimsupFN (1) —hmsupFN( ) (10)

- - N—o0 N—oo =
= limsup £} (1) —liminf FY (0) (11

N—oo —N N—oo In

EY (1) = EJ (0)
> lim sup In In (12)
N—00 1

> limsup F'Y (0) > 0, (13)

N—oo IN
where (1) follows from (A2) and (), and —1}\1}11 infay =
—00

limsup —ay, limsupay + lirnsup by > limsup(ay + bn)

N—o00 N —o0 N—o0

imply (I2), and (I3) holds smce F N'(.) is a convex func-
N

tion using [14, Corollary 6.3.3], and since ay > by then

limsup ay > limsup by. Finally, the last inequality follows

N—oco N— oo
from (8); hence, J(y) — J(v*) = 0, and the proof is
completed. o

In some applications, (8) can be difficult to check since it
must be satisfied for all v € T" with J(y) < co. In the next
section, we address this issue by introducing a constructive
approach for static teams with countably infinite number of
decision makers as a limit of a sequence of team optimal
policies of the corresponding static teams with finite number



of decision makers. In the following, we propose sufficient
conditions to approximate the optimal cost and a team optimal
policy for static teams with countably infinite number of
decision makers using the optimal cost and an optimal policy
for static teams with [NV decision makers. We note that our first
result here is based on [35, Theorem 1], which considered an
equality. We denote |y € I'n as a restriction of v € T to the
first N components. B

Theorem 5. Ler ~7 € I'n be an optimal policy for (Pn)
as (@) (see [30], [21)], [53] for sufficient conditions). If there
exists v* € T, with J(v*) < oo, satisfying

lim sup JN('yN) > J("), (14)
N—o00
then ¥* is a globally team optimal policy for (Px).
Proof. We have
| X
* : - y 7
J(7") < limsup ;EN (clwo, u’, ) (15)
= limsu mf EX~ (c(wo,u’, 16
J\HOOIO7 nf Z 0,u', pn))  (16)
= limsup inf — IEV c(wo, u', 17
e Z 0,u’s 1)) a7
N
< inf i —) EX(c ‘ 18
< Inf limsup ; (wo, u', ) (18)
= inf J
Inf T,

where py : N Zp 1 u? and (I3) follows from (14), and (16)
is true since 7} is a team optimal policy for (Py) (see (6)).
Furthermore, (I7) follows from the fact that [y|y: v € T| =

I'n, where |y is 7 restricted to the first N components. [

Remark 1. Under (A2), one can replace (14) with

N

1 “ , . .
lim sup N Z |:]E1N (c(w07 ul7 :U‘N)) -Er (C(w07 uly /LN)):| > 0.

N —o0 i—1

19)

The above theorem and remark will be useful for some
applications (see for example Section [V-D).

B. Asymptotically optimal policies as a limit of finite team
optimal policies

In the following, we present a sufficient condition for (14).
The following result also presents a constructive method to
obtain optimal policies using asymptotic analysis.

Theorem 6. Assume

(a) for every N, there exist ”y € I'n for (Pn) (see (@),
(b) let w € B for some B € f event of P measure one, for
every fixed v'(w), & (v") converges to v (v') uniformly

int=1,2,...,N, ie,
lim  sup [ya(v") =42 @)|=0P—a.s.,
N—001<i<N

(c) there exists a P-integrable function g(wo,v) such that, for
every N,

N

N

1 1 Z .

N E (w07/yoo 7N ’7;0 Up ) SQ(WO,E),
=1

where v = (v',v?,...), then v*, a team optimal policy for
(Pos), is a pointwise limit of 77, an optimal policy for (Pn),

ie, v (v)) = lim % (v") = 4% (v') P-almost surely.
N—o00
Proof. According to Theorem 3l we only need to show that

limsup Jy (7y
N—o00 -

V) = liminf Ty (7]

V)
| X
> el
_E<ngnoo z;cwo,%v )/LN)>
= hm In(L),

where pyy = Z _, Y~ (vP) and the second inequality
follows from Fatou’s lemma (since the cost function is non-
negative). In the following, we justify the equality above. On
a set of P measure one, w € B where B € F, for every
fixed v’(w) in this set, define v(w) = (v!(w),v*(w),...) and
vy (W) = (v (w),. .., vV (w)). We follow three steps to prove
the theorem.

(Step 1): We show that on a set of P measure one, w €
B where B € F, for every fixed v'(w) in this set

; N % (00 ik (0
A}gnoo & ity (Y& (') =~ (vh)) = 0. For a fixed v, fol-
lowing from (b) for a given 4, = sup;<;<n[Vi(v") —
Y2 (v")]> 0 there exists N(dy,) € N such that for N >
N (b)) 175 (0) =725 (0))|< b0, foreveryi=1,...,N,
where J\}lm dww, = 0 P-almost surely. We have P-almost
—00 -
surely,

‘%i(w(v)

since

N

E) 1
— ) | < ~ > by =

=1

5w,yN7

@)= 0,

we can show

and Aim_sup, <i=n R (V)
un sup;<i<

0. Hence,

hm NZz 17N( ) = hm NZl 1%0( )

F0110W1_ng _from continuity, (wO,FyN( ) ,uN) converges to
c(wo, v2 (vY), Nlim ) P-as. foreveryi=1...., N.
—00

we have hm 0w, w =
N oo YN

that

(Step 2): We show that c(wo, i (v"), ) converges to
c(wo,ﬂy;(vl),Nlim o) uniformly ini = 1,...,N P-
—00

almost surely, where 1%, = + Zp 1 Y2 (vP). By continuity
of the cost function, we have for a given €y > 0,
there exists &, oy > 0 such that [y&(v) — 7% (v?)|<
Ouw,vy» and |NZ L (R @) =5 (0Y) < Ouw,v, implies

| (WOa’YN( ) :u’N) - C(w07ﬁ)/oo(vi)7:u’<to)|< EW-,EN [P-almost
surely for every ¢ = 1,..., N. Following from (Step 1), we

have for N > N(6,, UN(GWYEN)_), Y& (0F) = 75 (09)|< By
and |+ Z L (V5 (0") =~ (v")) |< bu,p,, - Hence, P-as.

|e(wo, YN (v1), i) = e(wo, Ve (V1) 1)< €y

where lim €,,_ =0.
N—o00 =N



(Step 3): In this step, we show that P-a.s.,

iy Z el W 0

") 1in) = elwo, 155 (v), 15.)) = 0.
According to (Step 2), for N > N(dy,,,, (w0, )) We have
P-a.s.

N
‘ D el 80783 = e 720 )| < o

Following from (c), we can interchange the limit and the
integral using the dominated convergence theorem, and the
proof is completed.

O

Remark 2. One can relax conditions in Theorem[Blas follows:
(i) relax (a) by considering a sequence of € x-optimal policy,

where ey are non-negative and converges to zero as N —

oo,

relax (c) with a uniform integrability condition which

is satisfied if the following expression is finite (see [6

Theorem 3.5]),
1+€
((UO, ’700 N Z /7 ) :| y

1
sup E H —

for some € > 0. This new condition can be checked in
some applications (see Section[V). The result follows from
[6) Theorem 3.5],

relax the convergence P-almost surely in (b) by consid-
ering convergence in probability, i.e.,

lim IP’( sup > 6) =0,

N —o00 1<i<N

hence similar to the proof of Theorem (Step 1),
using continuous mapping theorem (see for example, [06|
page 20]), we can show that c(wo,vy V'), uy) con-
verges to c(wo,y2(v"), hm wh) in probability. Simi-
larly, the result of (Step 2) “holds in probability. Using
[l6l Theorem 3.5], under the uniform integrablity of
N % '3 N 1k 7
Xy = £ XN e (w020, £ 2K, 75 (0h)
under the convergence in probability of Xy to X :=
ik (0 N i
Jim &3 e (wo, 12 (0), & LI A ()., we can
conclude that BE(Xy) — E(X). This relaxation can
be useful when the weak law of large numbers can be
invoked to check (c), but the strong law of large numbers
fails to apply.

We apply the results of this section to two examples in
Sections [V=A] and [V-B|

In the following section, we show that under symmetry
of optimal policies, sufficient conditions of optimality can be
satisfied quite effortlessly.

(it)

(iii)

TN (") =75 (v)

and

IV. GLOBALLY OPTIMAL POLICIES FOR MEAN-FIELD
TEAMS

A. Symmetric teams

In the following, we present sufficient conditions for team
optimality in symmetric and mean-field teams. The concept of

symmetry has been studied in a variety of contexts; see e.g.,
[38], [13] and many others.

Definition 5. (Exchangeable teams)

An N-DM team is exchangeable if the value of the expected
cost function (see (1)) is invariant under every permutation of
policies.

We note that it is also called fotally symmetric in a game
theoretic context (see for example [13]).

Definition 6. (Symmetrically optimal teams)

A team is symmetrically optimal, if for every given policy, there
exists an identically symmetric policy (i.e., each DM has the
same policy) which performs at least as good as the given
policy.

In the following, we characterize the symmetry of the
general setup for (Pj) (see (I)) defined in Section [I-Al
Clearly, the result will also hold for the (Py) (see (@)
defined in Section [[I=Bl First, we recall the definition of an
exchangeable finite set of random variables.

Definition 7. Random variables x',22%,...,2N are ex-

changeable if any permutation, o, of the set of indexes
{1,...,N} fails to change the joint probability measures
of random variables, i.e., P(dx®® dx®? .. . deoN)) =
P(dxt,d2?,. .. dz™).

Lemma 1. For a fixed N, consider an N-DM team defined
as (Py) (see (@) and let the cost function be a convex
Sfunction of uy P-almost surely. Assume the cost function
is exchangeable P-almost surely with respect to the actions,
.e., for any permutation of indexes, o, P-almost surely
c(wo,ut, ... ulN) = c(wo,uD, ..., uW™)). If U is convex,
and observations of DMs are exchangeable conditioned on wy,
then the team is symmetrically optimal.

Proof. Any permutation of policies does not deviate the value

of Jn(v,) since
IN(Y%)
= /c(wo,ul, s uMP(dot . doN |wo)
X Lo (1), e My (dul - du)P(duo)
= /c(wo,u"(l), . ,uU(N))
X L0 (o), o ueoop(du”, du™)
x Py (dv® D). .. dv”™|wo)P(dwy) (20)

= /c(wo,ul, ceey uN)l{(,yl(vl) VVVVV N(,UN))}(dul, ey duN)

X Pu(dvt,. .., dv™|wo)P(dwo)

where 20) follows from the assumption that the cost func-
tion is exchangeable with respect to the actions, and the
hypothesis that observations of DMs are P-almost surely
exchangeable conditioned on the random variable wg. Let
Ty = (v, 92, ...,¥N*) be a given team policy for (Pj)
(see (1). Cons1der 7,y as aconvex combination of all possible
permutations of pohcles by averaging them, o € X, where X
is the set of all possible permutation. Since U is convex, ¥ N is
a control policy. Following from convexity of the cost function



P-almost surely, we have for a,, = I_é\ (where |X| denotes the

cardinality of X),
INGA ) =INO D aory) < an (1)
gEX

[

= Z acIn(vy) = JIn(ry):s
ocX

where the inequality follows from convexity of the cost func-
tion P-almost surely for every fixed realization of observations
since we have
3 acly? "))
ocx
<E { Z QC
= 3 a0k e, (3 0o (3 0 )|
ocEX

E[c(wo, > () ! 2
(0 23 @) 30 ¥

where (7}‘\]‘7)3 denotes the j-the component of 777, and the
inequality above follows from Jensen’s 1nequa11ty since the
cost function is convex P-almost surely. Hence, the team is
symmetrically optimal. O

In the following, we present another characterization of
symmetrically optimal teams; this looks to be a standard result;
however, a proof is included for completeness since we could
not find an explicit reference.

Lemma 2. For a fixed N, consider an N-DM team defined as
(Py) (see () and let the cost function be a convex function
of un P-almost surely. Assume the set of action space for
each DM is convex. If the expected cost function (see (1)) is
exchangeable with respect to the policies, then the team is
symmetrically optimal.

Proof. Let v = (v, 9%, ...,7Y*) be a given team pol-
icy for (PN) (see (). According to the definition of ex-
changeable teams, any permutation of policies, say 1 N =
(%, ytz* ... yin*), fails to change the value of the expected
cost functlon and hence achieve the same expected cost as the
one induced by ~v* . Consider 7 Jy asa uniform randomization
among all p0331blN permutatlons of optimal policies, since U
is convex then 7 is a control policy. By convexity of the
cost function, through Jensen’s inequality, and the fact that
any permutation of optimal policies preserves the value of the
cost function, we have Jy(7,) < Jn (v}, )- Since 7 is also
identically symmetric, the proof is completed.

Now, we characterize symmetrically optimal teams for

(Pn) (see (@)

Theorem 7. Consider an N-DM team defined as (Pn) (see
(6)) in Section Let action spaces be convex and the cost
function be convex in the second and third arguments P-almost
surely. If observations are exchangeable conditioned on wy,
then the team is symmetrically optimal.

Proof. The cost function defined in (Py) (see (6)) is ex-
changeable in actions, hence under convexity of the action
spaces and the cost function and following from the hypothesis
that observations are exchangeable condition on wy, the proof
is completed using Lemma [11 O

Theorem [7] will be utilized in our analysis to follow.

B. Optimal solutions for mean-field teams as limits of optimal
policies for finite symmetric teams

In the following, we present results for symmetrically
optimal static teams. First, we focus on the case that the
observations of decision makers are identical and independent,
then we deal with non-identical and dependent observations
under additional assumptions. As we noted earlier, mean-field
games studied in [18]] belong to this class in a game theoretic
context; in [[18] concentration of measures arguments and
independence of measurements have been utilized to justify the
convergence of equilibria (person-by-person-optimality in the
team setup). We also note that [29] and [37] have considered
symmetry conditions for mean-field games. In the context
of LQ mean-field teams, [2] has considered a setup where
DMs share the mean-field in the system either completely or
partially (through showing that a centralized performance can
be attained under the restricted information structure). Also,
for the LQ setup under the assumption that DMs apply an
identical policy in addition to some technical assumptions, [1]]
showed that the expected cost achieved by a sub-optimal fully
decentralized strategy is on €(n) neighborhood of the optimal
expected cost achieved when mean-field (empirical distribution
of states) has been shared, where n is the number of players.
In [28]], a continuous-time setup with a major agent has been
studied.

Remark 3. We note that, in [32] Section 2.4], [10, Chapter
6 Volume 1], the connection between solutions of N -player
differential control systems and solutions of Mckean-Viasov
control problems has been investigated under either the as-
sumption that the information structure is classical (i.e., the
problem is centralized) since the controls, ul, for each player
are assumed to be progressively measurable with respect to the
filtration generated by all initial states, (X§,...,X}") and
Wiener processes of all DMs ({(W}, ..., WN) s < t}), or
by imposing structural assumptions on the controllers where
controllers assumed to belong to the open-loop class (with
their definition being, somewhat non-standard, that u: are pro-
gressively measurable with respect to the filtration generated
by initial states and Wiener processes instead of the path of
states X! for s < t) or to belong to Markovian controllers
(e, ui = ¢'(t, X)) where ¢' are measurable functions)
[32],[10, pages 72-76]. Also, in [32\ Theorem 2.11], it has
been shown that a sequence of relaxed (measure-valued) open-
loop en-optimal policies for N-player differential control
systems (with only coupling on states) converges to a relaxed
open-loop Mckean-Vlasov control optimal solution. Under
additional assumptions, the existence of a strong solution and
a Markovian optimal solution of McKean-Vlasov solution has
been established [32) Theorem 2.12 and Corollary 2.13]. In
the mean-field team setup, under the decentralized information
structure, it is not clear apriori whether the limsup of the
expected cost function and states of dynamics for N-DM teams
converge to the limit. In fact, the information structure of the
team problem can break the symmetry and also can prevent
establishing a limit theory (for example, by considering a
partial sharing of observations between DMs). Here, by fo-
cusing on the decentralized setup and by considering mean-
field coupling of controls, using a convexity argument and
symmetry, we show that a sequence of optimal policies for
(Pn) converges pointwise to an optimal policy for (Ps).



Our next theorem, under the assumption that observations
are independent and identically distributed, utilizes a measure
concentration argument to establish a convergence result.

Theorem 8. Consider a team defined as (Pso) (see (@) with
the convex cost function in the second and third arguments
P-almost surely. Let the action space be compact and convex
for each decision maker, and v's be i.i.d. random variables. If
there exists a sequence of optimal policies for (Py) (see (@),
{vx} ., which converges (for every decision maker due to the
symmetry) pointwise to vi, as N — oo, then v, (which is
identically symmetric) is an optimal policy for (Po).

Proof. Action spaces and the cost function are convex and
following from the hypothesis that v’s are i.i.d. random
variables (hence they are exchangeable conditioned on wyq)
and the result of Theorem one can consider a sequence
of N-DM teams which are symmetrically optimal that defines
(Pn) (see (@) and whose limit is identified with (P, ). Define
emplrlcal measures on actions and observation of Qx(B) :=
& Yisi 8¢ (B), and Qn(B) = % YL, 8¢ (B), where
Bez:=UxV, (= (h),o), ¢ = (1% (v), ),
and Jy (-) is the Dirac measure for any random variable Y.
In the following, we first show that () converges weakly to
Q = Law(¢t,) P-almost surely, then we show holds, and
we invoke Theorem

(Step 1): For every g € Cy(Z), where we denote Cp(X) as
the space of continuous and bounded functions in X, we have

Jim P (’/ngN - /gd@N’ > )

= Z&f;—ZEH

(21)

—¢ lth EHg g('yzo(’ui),vi):| (22)
{ ngloo‘g — g(vn ()0 | =0,

(23)

where follows from Markov’s inequality, the triangle
inequality and the definition of the empirical measure, and
follows from the hypothesis that v’s are identical random
variables. Since g is bounded and continuous, the dominated
convergence theorem implies . Hence, for every subse-
quence there exists a subsubsequence such that | [ gd@ Ni, —
J gdQ Ni, | converges to zero P-almost surely as | — oo. On
the other hand since v’s are i.i.d. random variables, the strong
law of large numbers (SLLN) implies Qn converges weakly
to @ P-almost surely, that is | [ gdQn — [ gd@Q| converges to
zero P-almost surely for every g € C,(Z). Hence, through
choosing a suitable subsequence, )y, converges P-almost
sure weakly to ) since for every continuous and bounded
function g, we have P-a.s.,

Jin | [ga0 ~ [ aiq
< Jin_ (| [oaow~ [aaax|+| [ aaan - [ gac])
_o. e

(Step 2): Following from [46, Theorem 3.5] and [16, Lemma
1.5], or [33, Theorem 3.1] using the fact that the cost function
is non-negative and continuous, we have

hmsup—ZE[ <me ZvN )]

N —o00
ZliminfE[IE[/ c(wo,u,/uQN(du xV))
N—o0 =z U

x QN (du, dv)|wo

> E|E| liminf

_ N_wo Zc (_o:)o,u,/UuQN(du X V))
x QN (du, dv)|wo

_ /Z ¢ (wo,u, /U wQ(du x V)) Q(du, dv)|wo

>E|E

Il

(25)

where the first inequality follows from the definition of @y
and replacing limsup by liminf. The second inequality follows
from Fatou’s lemma. In the following, we justify @23). Since
Qn converges weakly to () P-almost surely, using continuous
mapping theorem [6, page 20], we have Qn(du x V)
converges weakly to Q(du x V) P-almost surely, hence the
compactness of U implies [;; uQn(duxV) — [, uQ(duxV)
P-almost surely, and continuity of the cost function
P-almost ~ surely —implies  c(wo, u, [ u@Qn(du x V))
converges to ¢ (wo, u, [y uQ(du x V)) P-almost
surely. Define a non-negative bounded sequence
GY = min{M,c(wo,u, [juQn(duxV))}, where
G% +GN = ¢ (wo, u, fUuQN (dux V)) as M — oo, then
we have P-almost surely

liminf | ¢ (wo, u,/ uQ N (du x V)) Qn(du,dv)
N—oo [z U

= lim liminf

¢ (wo,u,/ u@Qn (du x V)) Qn (du, dv)
M—oco N—oo [z U
> lim liminf / GNQn(du, dv)
z

M—00 N—oo

= lim / GMQ(du, dv)

M—oo |z

:/Zc(wo,u,/mucg(du xV)) Q(du, dv),

where the first inequality follows from the definition of G%
and the second equality is true using [46, Theorem 3.5] since
G4 is bounded (hence it is uniformly @ y-integrable) and
continuously converges to G, and the monotone convergence
theorem implies the last equality. Hence, holds which
implies (I4), and the proof is completed using Theorem [3

O

Remark 4. The proof above reveals that if P-almost surely
the sequence {Qn} N converges weakly to Q, then Theorem
can be generalized to a class of team problems defined as
(Pso) (see (B) which may include ones with a non-convex cost
function and/or the ones with conditionally non-exchangeable
observations: This relaxation contains a class of problems (see
e.g. Example 4 in Section [V=-CI) where one can consider a



sequence of N-DM teams which admits asymmetric optimal
policies that define (Py) (see (@), but whose limit is identified
with (Ps) under an optimal sequence of policies.

In the following, we relax the hypothesis that observations
of decision makers are independent.

Proposition 1. Consider a team defined as (Ps.) (see Q) with
the convex cost function in the second and third arguments P-
almost surely. Let the action space be compact and convex for
each decision maker, and v* = h(x,zi), where z's are i.i.d.
random variables. If there exists a sequence of optimal policies
for (Pw) (see (@), {vx}n~, which converges pointwise to v
as N — oo, then v}, (which is identically symmetric) is an
optimal policy for (Pxo).

Proof. Since z's are i.i.d. random variables, observations, v* =
h(z, %), have identical distributions (but are not independent),
and similar to the proof of Theorem [§] using symmetry, one
can show holds. In the following, we show and (23)
hold.

]ggnmp(] /ngN - ng' > e)

S EH—me(v E(g(1%(v"). "))

T

€2 Nooo
(26)
2
~ lim (9 21@{ H_ZL%O v xH @7)
— 0 (28)

where L(v% (v), v7) i= g(v% ('), v) — E(g(y% (1), v1) ),
and (26) follows from Chebyshev’s inequality, and fol-
lows from the law of iterated expectations. The structure
v® = h(z, 2*) implies conditional independence of v's given ,
hence, using the law of large numbers and since g € Cy(2),
we have (28), and this implies QQn, converges weakly to
Law(¢i |z) P-almost surely as k — oo, hence through
choosing a suitable subsequence, Qn,, converges P-almost
sure weakly to Q = Law({’ |x) as I — oo and the rest of the
proof to justify (23) is the same as that of Theorem O

Remark 5. Existence of optimal policies for (Py) and dy-
namic teams satisfying static reduction have been studied in
[151)] and [21]. In [51) Theorem 4.8], the existence of opti-
mal policies achieved under o-compactness of each decision
maker’s action space and under mild conditions on the control
law and the cost function. Hence the existence of identically
symmetric optimal policies for (Py) (see @) follows from
symmetry and [51, Theorem 4.8]; thus, the existence result
for (Pw) is obtained under assumptions of Theorem

In the following, action spaces need not be compact; this
is particularly important for LQG models as we will see in
the next section.

Theorem 9. Consider a team defined as (Pso) (see (3)) with
the convex cost function in the second and third arguments
P-almost surely. Let the action spaces be convex for each
decision maker. Let v's be i.id. random variables. If there
exists a sequence of optimal policies for (Py) (see (@),
{v~}~, which converges pointwise to v, as N — oo, and

(A3) for some § >0, sup E(|vx (v})]*+°) < oo,
N>1

10

then %, (which is identically symmetric) is an optimal policy

Jor (Pso).

Proof. In the following, we just show [, uQn(du x V) —
fU u@(du x V) P-almost surely, and the rest of the proof
follows from that of Theorem [8] We have

Nli_r)nOO]P’( /UuQN(du x V) — /UudQN(du X V)’ > e)
<e 1N15noo—Z1E[ v (%) ] (29)
=t im0 04| (30)
= e*lE{NIgnm "ﬁv(vl) — 75 (") } =0,  BD

where (29) follows from Markov’s inequality and the triangle
inequality, and (3Q) is true since observations have identical
distributions, and follows from the uniform integrability
assumption (A3) and the pointwise convergence of 3 using
[6, Theorem 3.5]. On the other hand, SLLN implies P-
almost surely that [ uQn(du x V) = £ SN ~* (vf) —
ftu uQ(du x V), and this completes the proof. O

In the following, we present a result for monotone mean-
field coupled teams.

Theorem 10. Consider a team defined as (Px) (see () with
the convex cost function in the second and third arguments
P-almost surely. Let the action spaces be convex for each
decision maker. Let the cost function be increasing in the last
argument, and v's be i.i.d. random variables. If there exists
a sequence of optimal policies for (Pn), {vx}n (see (@),
which converges pointwise to 3, then vi, as N — oo (which
is identically symmetric) is an optimal policy for (Puo).

>E|E

>E|E

Proof. We show (14) holds, then we invoke Theorem Bl We
use the same definitions in Theorem [8] for measures Qn and
Q). We have
E[E[liminf/ c (wo,u,/ uQ N (du x V)> Qn(du, dv) wOH
N—oo =z U
/ liminf ¢ <w0,u, / u@Q N (du x V))
lJz N—oo U
X Q(du, dv) w()” (32)
/ c <w0,u, / u@(du x V)> Q(du, dv) wg”, (33)
L LJz U
where follows from a version of Fatou’s lemma in [15,
Theorem 1.1], and (B3) is true since from the lower semi-
continuity of [i; uQn (du x V), we have lim inf [i; uQn (du x
—00
) > JyuQ(du x V), and continuity and the hypothesis
that the cost function is increasing in the last argument
imply for all u € U, 1}\rlninfc(w0,u,fU uQn (du x V)) >
— 00
¢ (wo, u, [y uQ(du x V)) P-almost surely, and this completes
the proof. O

In the following, observations need not be identical or
independent.

Theorem 11. Consider a team defined as (Px,) (see () with
the convex cost function in the second and third arguments



P-almost surely. Let the action spaces be convex for each
decision maker. Let (a), and (c) in Theorem [0 hold, and
let observations be exchangeable conditioned on wy. Assume
there exists a sequence {Yiy}n converges pointwise to i,
as N — oo, and let P-a.s.

2 i
Tlh) — )| < L)

(34)

where J\}im N1t Zivzl f(v") < oo and Nlim h(N) = 0.
—00 —

Then, a team optimal policy for (Pso) is symmetrically optimal

and an optimal policy is identified as a limit of a sequence of

team optimal policies for (Py) (see @) as N — oc.

Proof. Following from the result of Theorem [Z, one can

consider a sequence of N-DM teams which are symmetrically

optimal that defines (Py) (see (6)) and whose limit is identi-

fied with (P~ ). Equivalent to (b) in Theorem[6] we can show

that lim sup |[|vi(v")—7% (v))]]*= 0 P-almost surely. We
N—o0 1<i<N

have

Jim - sup |y (vf) = 9% (0)]
—00 << N
N
< . * A 7\|2
—Nlﬂo;m(”) V3o (V)]
1 N
< i — H =
< Jim A(N)5 > ) =0,

where the last inequality follows from (34). Hence, thanks
to Theorem [l a team optimal policy for (P,) is the limit
of a sequence of team optimal policies for (Py) (see (@)
as N — oo, and hence a team optimal policy for (Poo) is
symmetrically optimal and the proof is completed. |

C. An existence theorem on globally optimal policies for
mean-field team problems

An implication of our analysis is the following existence
result on globally optimal policies for mean-field problems. In
Theorem [8] we showed that if a pointwise limit as N — oo
of a sequence of optimal policies for (Py) (see (@) exists,
this limit is a globally optimal policy for (Ps), but under
the conditions stated in the following theorem, an existence
result also can be established. In the following, we relax the
assumption that there exists a pointwise convergence sequence
of optimal policies for (Py) (see (6). For the following
theorem, we do not establish the pointwise convergence;
but clearly if a sequence of optimal policies for (Py) (see
(6)) converges pointwise, a global optimal policy exists. Let
Qn(B) = % YL, 8¢y (B), where B € Z := U x V, and
Cy == (7 (01), ).

Theorem 12. Consider (Pso) (see (B)) with the convex cost
function in the second and third arguments P-almost surely.
Let the action spaces be convex for each decision maker.
Assume further that, without any loss, the optimal control laws
can be restricted to those with E(¢p;(u')) < K for some finite
K, where ¢; : U' — Ry is lower semi-continuous. If v's are
i.i.d. random variables, then there exists an optimal policy for

(Poo)-
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We note that the limit policy is not necessarily determin-
istic according to the above result; this interesting discussion
is left open for further study.

Proof. We first show that {Qx}y is pre-compact in the
product space (V x U) equipped with the weak convergence
topology for each component. Then, we show that an induced
policy by the limit () achieves lower expected cost than

lim sup Jn(77,), and we invoke Theorem [5] to complete the
N—oco -
proof. Action spaces and the cost function are convex and

following from the hypothesis that v’s are ii.d. random
variables (hence they are exchangeable conditioned on wy)
and the result of Theorem [7l one can consider a sequence of
N-DM teams which are symmetrically optimal that defines
(Pn) (see (@) and whose limit is identified with (Ps).

(Step 1): In the following, we show that for some subse-
quence {Q,, }ner converges weakly to () P-almost surely, that
is, P-a.s., for every continuous and bounded function g,

lim ‘/ngn—/ng‘ 0,
n—oo

where n € I is the index set of a converging subsequence.
We use the fact that observations are i.i.d. and the space
of control policies is weakly compact (see e.g., [51, proof
of Theorem 4.7]). That is because, we can represent the
control policy spaces with the space of all joint measures
on (V¢ x U') for each DM with a fixed marginal on v
[S3], [8]. Since the team is static, this decouples the policy
spaces from the policies of the previous decision makers,
and following from the hypothesis on ¢; and the fact that
v — [v(dz)g(z) is lower semi-continuous for a continuous
function g [51} proof of Theorem 4.7], the marginals on U
will be weakly compact. If the marginals are weakly compact,
then the collection of all measures with these weakly compact
marginals are also weakly compact (see e.g., [50, Proof of
Theorem 2.4]) and hence the control policy space is weakly
compact. Using Tychonoff’s theorem, the countably infinite
product space is also compact under the product topology
which implies compactness of the space of control policies
under the product topology. Hence, there exists a subsequence
{Q@n}ner converges weakly to () P-almost surely.

(Step 2): Now, we show that (I4) holds. We have

E{E{/Zc(wmu,/UuQ(du xV)) Q(du, dv) wOH
:A}iinmE{E{/Zmin{M,c(wmu,/qu(duxV))}

«Q(du, dv) wOH (35)

= lim E{E{ lim /min{M,c<wo,u,/uQn(duXV))}
M—o00 n—oo [~ U

X Qn (du, dv) |wo ] (36)

= lim lim E{E[/ min{M,c(wo,u,/uQn(du XV)) }
M — 00 n—00 =z U

X Qn (du, dv) |wo ] (37)

EUZ min {M,c <w0,u,/u;uQN(dU X V)> }

< lim limsupE
M—0 N-00




x QN (du, dv)

N
< limsup — ZIE

N—o0 i—1

(38)

|

c <w07 yn (v N Z’YN )} ) (39)

where (33) follows from the monotone convergence theorem.
Since {Q,}ner converges weakly to (Q P-almost surely, we
have by continuous mapping theorem (by considering a projec-
tion to the first component) [i; uQy(duxV) — [, uQ(duxV)
P-almost surely. Following from (Step 1), (36) follows from
[46, Theorem 3.5]. That is because, the cost function is con-
tinuous in actions, and min{M, ¢ (wo, u, [ uQn(du x V))}is
continuously converges in u, mln{M c(wo, Un, [y uQn (du X

V))} — min{M, c(wo, u, [ uQ(du x V))} where u,, — u
as n — oo. Equality (37) follows from the dominated con-
vergence theorem since min{M, ¢ (wo, u, f;; u@Qn (du x V))}
is bounded, and (38) is true since hmsup is the greatest
convergent subsequence limit for a bounded sequence. Finally,
(@9) follows from the definition of empirical measures and
since for every M, min{M, ¢ (wo,u, [;; uQn(du x V))} <

¢ (wo, u, JyuQn(du x V)); hence, following from Theorem
Bl the randomized limit policy through subsequence is a
globally optimal for (Py).

|
We apply the results of this section in Section

V. EXAMPLES

In the following, we present a number of examples to
demonstrate results in previous sections. First, we consider
LQG and LQ static teams with coupling between states,
then we consider LQG symmetric static teams with coupling
between control actions. Moreover, we investigate dynamic
infinite-horizon average cost LQG teams with the classical
information structure.

A. Example 1, Static quadratic Gaussian teams with coupling
between states

Consider the following observation scheme,

vt =t 4 2, (40)
where {z'}ien and {z'}en are iid. zero mean Gaussian
random variables. Let {2*};cn be independent of {z*};cn. The
expected cost function is defined as

J(y )—11msupNE[ZR P+Qui—z' —pun)?|, (41)

N —oc0

where yin := & S°r_ 2%, Let R be a positive number and Q
be a non-negative number.

Theorem 13. For LQG static teams as formulated above, un-
der the measurement scheme {@Q), v (v') is globally optimal
for (P) achieved as the limit N — oo of 7% (v"), an optimal
solution for (Py).

Proof. We invoke Theorem [@] to prove the theorem. The
stationary policy (see Definition [3) is obtained as

W = (R+Q)7'QU + BRI ),
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where the equality follows from the assumption that z’s are
independent of z’s and z*s, k # i forevery i = 1,2, ..., N and
the assumption that random variables are mean zero. Following
from [30], stationary policies are team optimal for (Ppy) in
this formulation. We have 7 (v') = (R + Q) 'QE(z*|v?).
Since v's are zero mean Gaussian random variables, we have
E(z![v") = By 1 0" := Kv', where X xy is defined as a

covariance of two rsnvdom variables X and Y. We have P-a.s.,
sup_ i (0) = ()] = 2 sup |~ E(a'[o")]
1<i<N R+Qi<i<n' N
KQ
= sup |=v'|—— 0,
R+Q1<13N|N |N—>oo
(42)
where follows from
1 N
dim 7 < Jim 5 Y0 =0

where the first inequality is true since (v')?s are non-negative,

and equality follows from the strong law of large numbers
(SLLN) since v’s are i.i.d. and have a finite variance, hence, (b)
holds. One can show that the condition in Remark [2(ii) holds
since v’s and z’s are i.i.d. random variables, hence Theorem
completes the proof. O

B.  Example 2, Static non-Gaussian teams with coupling
between states

Let the observation scheme be {@Q), where {z‘};en and
{2"};en are i.i.d. zero mean random variables with finite vari-
ance. Let {2'};en be independent of {z°};cn. The expected
cost function is defined as (@I)). Let R be a positive number
and @ be a non-negative number.

Theorem 14. For LQ static teams as formulated above,
under the measurement scheme @Q), +%*(v*) = (R +
Q)" 'QE(x*|[v*) is globally optimal for (Pw,) and is obtained
as the limit of Y&+ (v¥) as N — oc.

Proof. In the following, we use both Theorem ] and Theorem
Clearly, (A1) holds, we show that (A2) holds,

1 N o ,
s 2| YL PR+ QL) —at -

N—o00 i—1

1 al _Q2 2. 0,1 2 i 2

. hjrvnjgopNE[; LB+ 26 ) Q]
43)

N o 2 o N 4+ 3)o2

<timow 7E| 32 o Fwe)] + i SETIE
(44)

_ —Q? E[E2($1|’U1):| +QU2 (45)

Q+R ’

where (@3) follows from E (E(z'|[v))(z’ + pn)) =
E (E (E(z'|v")(z* + ,uN)JvZ)) = 1+ +)E (E*(z7[v%)),
and @4) is true since x’ and 2° are i.i.d. random variables

and limsupay + limsup by > limsup(any + by). We can
N —o0

N— N—o0 X
justify @3) by defining Vi = (E(z%|v%))?, and since Y's are



measurable functions of {v'};>1, and v's and z’s are i.i.d.,
Y*s are i.i.d. random variables. Similarly, one can show the
other side direction for liminf. Hence (A2) is satisfied. Now,

we check (B), for every 7% with J(y o) <o,
hj{rnsup —E<ZZC k (wo, v, )(mk)>
2Q 7\/ -
= limsup —=> > B (B(z" (my)|0")) = E (&% + pn) (my))
= (46)
9 &
= limsup —= ; E (un (my)) 47)
N
= 2Qlimsup o5 S TE [k (0F)] —E [R5 (08)] 49)
k=
o
— —2Qliminf — ; E (z%y5 (")) (49)
N
> —2Qo lim inf % ; VE (& (v%))2] (50)
> —2Qo liminf sup Bl (")) =0, (51

N —o0 1<k<N

where measurability of my, := 7 (vF) —~v%*(vF) with respect
to the o-field generated by v* implies [@6), and @7) follows
from the iterated expectations property. Since zPs are mean
zero and independent of v* for k # p, we have [@S8), and (@9)
follows from the fact that v£* is independent of k, and since
v¥ and ¥ are i.i. d random variables. Moreover, J(y_ ) < oo,
so E(vE (vF)) < < 00, and Cauchy—Schwarz
inequality 1mp11es and follows from

E [(45 (v*))*]
N2

liminf sup
N—oo 1<k<N

N

< lim mf Z =0, (52)
=1
where (52) is true since E [(vA (v%))?)] > 0 and

limsup & E (Zg L w k))2R) < J(y_) < oo. Thus, @)

N—00
is satisfied and Theorem Ml completes the proof.

One can also invoke Theorem [@] to complete the proof. One
can show that the condition in Remark 2{ii) holds since v’s and
x's are i.i.d. random variables. We only justify (b). Stationary
policy is team optimal for (P ) in this formulation [30], hence
YR (W) = (R+ Q) *Q(1 + +)E(z'[v%), so we need to show
that

lim sup h -7 (’Ul)} =0P-a.s,

N—=oo1<i<N
Equivalently, we can show that P-a.s

lim sup NL (E(z'|v* ))

N—00 1<i<N ~ N—ooo

where the first inequality is true since (E(wi|vi))23 are non-
negative, and equality follows from SLLN since

E ((E(z']v")?) = E((z")?) - E((2' - E@[v"))?) < o0,
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iy 2 .. . .
and (E (:v1|vl)) are i.i.d. sequence of random variables since
v's are i.i.d. random variables and the proof is completed. [

C. Example 3, LOG symmetric teams with coupling between
control actions

Let

v'=H'z+2, (53)
where {z'};cn is independent zero mean Gaussian random
vectors also independent of z, with covariance ¥,; = N° > 0.
Define w = (z, 2%, 22,...), and wp := x where z is a Gaussian

random vector with covariance E(xz”) = . Let
J(v) = limsu iE”[i HT Ry’ — Z
1 N N~>oop N - i—1
N N
e R e Yo 3 ]
k k=1

(54)

where R is an appropriate dimension positive definite matrix
and D, and @ are appropriate dimension positive semi-definite
matrices, and R > 2D. In the following, we follow steps in
[52) Theorem 2.6.8] to obtain optimal policies for (Py).

Lemma 3. Consider an N-DM LQG team formulated above,
under the measurement scheme (33)), the global optimal policy
for (Pn) is linear, i.e., ”y]’i,* (v*) = ﬂ'kavk Here, ﬂ'ka S
Mnﬁm(R), n X m real-valued matrix, is obtained by solving
the following parallel update scheme,

N

Z W%,(i)HPSk]a (55)
p=1,p#k

where Ly = (R + % — %)71(% - D), Sk =
Soo(H*)T (H*S00(H*)T 4 Six) ™! and the initial points of
the iterations are considered as zero functions.

1

Proof. By Definition 3] stationary policies satisfy the follow-

ing equality for k =1,..., N,
M kx* k Q _ D
K6+ ()
| X
X {E(gvk) + N Z E<7$‘(v”)|vk>} =0, (56)
p=1,p#k
where M = R + J?Z — %, and (B6) can be rewritten as

PR”yN( v) + Pr(w) =0, where P is a blogk diagonal matrix
with éi-th block P;; 5% (w) := E(8*(w)|v"), R is a matrix where
R == M and Rij = _(N — D) forevery i,j =1,...,N,
j # 4, and r(w) = z. Note that P is a projection operator
defined on a Hilbert space whose operator norm is one. Now,

we use the successive approximation method [52, Theorem
A.6.4]. According to (38), we can write for k =1,2,..., N

My iy (0°) + ey (v°) — e (0F) + (% —D)
x {E 1 p_IZNI;#]E@N o )|vk>} —0.



Thus, by dividing the expression over € and rearranging it, we
have

o 0F) = (L= Tyt (0F) - —<%—D)
el + %p%‘f(ﬁ“)(”p) #)],

where the initial points of the iterations are zero functions.
We can write 73 (v) = P(I — R) MO 1 Pr(w). Similar
to [52, Theorem 2.6.5], the above sequence converges to
the unique fixed point if and only if the spectral radius

satisfies the following constraint p (P(I - %) p(I —

)

= hm supl[||A||F]* < 1, where A := [ — =, ||A||:=

sup ||A:c|| and p denotes spectral radius. The ﬁrst equality
z||<1
ys |t|rue since both P and A maps I'n into itself and P has
operator norm equal to one. The above constraint can_be
always satisfied by choosing € = L(\naz(R) + Anin(R)).
On the other hand, since (z,2",...,2") are jointly Gaussian,
then v§*(v¥) = 7kv* for k = 1,..., N. Hence, ”y]’i,*)(i) (k) =
wf\,_’(i)vk, and by linearity of the conditional expectation, we
have E(z|vF) = SFoF, and E(vR (vP) o) = ok HPSFF.
Hence (33) holds. Following from [52], the stationary policy
is globally optimal for (Py), and this completes the proof. [l

Theorem 15. Consider (Ps) with the expected cost (54).
Under the following measurement scheme

v'=Hzx+ 2, (57)

where z's are i.i.d. Gaussian random vectors, v (v') = 750"
is an optimal policy for (Pso) and is the pointwise limit of
Vi (v') = V', an optimal policy for (Py).

Proof. In the following, we invoke Proposition [1| and The-
orem [9] to prove the theorem. Under (37), the static team
is symmetrically optimal and hence from (33), we have
v = Ln[S + N"YN -1)nyHS], %y = R'D[S +
ni HS], where Ly := (N?R —2DN + Q)" '(N?D — NQ),
S = Yoo(H)T(HZ00(H)T 4+ Lpx)~ L. Since for every N,
we have JN(”y}‘v) < oo, and since R > 0, we have

sup E(||v% (wH)][3) < oo, which implies (A3). The proof is
N>1

completed using the results of Proposition [I] and Theorem [0
One can also invoke Theorem [11] to justify the result. O

1) Example 4, Asymmetric LOG team problems: Here, we
consider simple variation of Example 3 considered above to
illustrate Remark 4l Consider the observation scheme (37), and
let the expected cost function be defined as

N
1
J(7)= lim sup —EY HTRut —
(=t 2| 5 () Z
1 N N N
x(@z+ =D u er—Zu’“)TQ(an—Zu’C
N &~ N &~ N &
M
_'_i (uk)TOLkuk
N b
k=1

where M € Z4 is independent of N. Clearly, the N-DM
team admits asymmetric optimal policies for (Py) with the
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expected cost Jy for every N. However, one can observe
that the last term above goes to zero as N — oo under a
sequence of optimal policies, and hence asymptotically the
expected cost would essentially be (534) and Theorem
implies %, is an optimal policy since P-almost surely the
sequence @)y converges weakly (the asymmetric term vanishes
when N — o0). That is, the optimal policy designed for
the symmetric problem is also a solution for the asymmetric
problem since under this policy the additional term (which is a
non-negative contribution) vanishes, certifying its optimality.

D. Example 5, Multivariable classical linear quadratic Gaus-
sian problems: average cost optimality through static reduc-
tion

Here, we revisit a well-known problem and a well-known
solution, using the technique presented in this paper. Let

Xt+1 = AXt + B’th + wt,

where A € M,, ,(R), B € M,, n(R) and w's and X, are
ii.d. Gaussian random vectors with mean zero and positive
variance taking values in R™. Let (A, B) be controllable and
let

J ()= limsup Jr(y)

T—o0
1 T—1
:= limsup =EX xrQx, + TRut],
T—)oopT |:Z Q ! ( )

where () > 0 and R > 0 are appropriate dimensions real
matrices. We can write,

t

T-1 t T
1
J() =limsup fm[z (ZAt—kBuk—l " ZAt—kgk)
k=0

T—roo t=0 k=1

t t
xQ(ZAt_kBuk_l + ZAt_ka> + (ut)TRut]7
k=1 k=0

where ¢ = (XI, (w")T, (whHT,...)T. In the following, we
consider fully observed classical IS, i.e., Y! = X;, and we
can write Y = H'( + Zt o Dyjud, where H? and D,; are
appropriate dimensional matrlces Using [23, Theorem 1], we
can reduce IS to the static one as V* = H;(. According to [22]

Sect10n35] we have v} = G4 X, fort = 0,1,...,7 — 1,
where kT =0, and
Gh = —(R+ BTk B) "1 BTkt A, (58)

kp=Q+ AT A — AT B(R+ BTES B) T BT E A
(59)

Theorem 16. For LQOG teams with the classical information
structure, ut* = Tlim (") = 4L (vt is the optimal policy
— 00

for J(v), where {~7*}r is a sequence of optimal policies for
{Jr(y )} with the pointwise limit Y& as T — oo.

Although, this result is a classical one in the literature,
here, we present a new approach using the static reduction.

Proof. Since, k.
(59 as

Eho=Q+ ATk, (A— ATk, B(R+ BTk, _,B)™'BTEK,_|A.

We use Theorem [3] and Remark [Tl to show that v = G X
is team optimal, where G, = —(R + BTC*B)"'BTC* A,

1= kt{l fort=1,2,...,T, one can write



and following from controllability of (A4,B), C* =
élm Cp, a fixed point of the following recursion ex-
—1

ists, Cg(n) = Q + ATﬂCﬁ(n — DA — ATBCs(n —

1)B(R+ B'BCs(n—1)B) ' BT BC5(n—1)A. By compar-

ing C*(n) = lim C%(n) and B9), we have lim k% = K =
B—1 T— o0

C* = lim C*(n). Hence, fort =0,1,...,7T—1, Tlim Gh =

n—oo — 00
—(R+BTKB)"'BTKA = —(R+ BTC*B)"'BTC*A =
G . Now, we use Remark [l to show (I4) holds.

lim sup
T—o0

Tr(a) — JT@;)'

E[ t Tr(CkT (L?’“)T(H@L?’“Ck”
A[Er(a(s2) )]

T
E[Y 17 (cko? ((L’%") (Hy) Ly
0

<limsup sup

T—oo 0<t<T—1

(60)

<limsup sup
T—oo 0<t<T-1

() o) o
< Y?limsup sup Tr((HtT)CtT — (H&)C&)‘ (62)
T—oo 0<t<T—1
< ¥%limsup | sup TT((GtT)TRGtTCl}
T—oo Lo<i<T—1
—(Goo)TRGLCI)| +  sup  |Tr(Qel) } (63)
0<t<T—-1
< ¥?limsup | sup Tr((GtT)TRGtT — (GOO)TRGOO) '
T—oo Lo<i<T-1
x sup |Tr(CkL)
0<t<T—-1
+ sup |Tr (GZORGOOetT) ’ + sup |Tr(Qeh) } (64)
0<t<T—1 0<t<T—1
< %2 limsup { sup TT((GtT(G})T - GOOGZO)R) ’
T—oo Lo<i<T—1
X ( sup |Tr(eh)|+ sup TT(C’Z;O)D
0<t<T—1 0<t<T—1

+ sup Tr(Qeh)

0<t<T—1

where Ly" = [['_}(A+ BGY), Lt = [['_} (A + BGx).
Hi = (Q + (G%)"RGY), H] @ +< o) RGoo).

T
el i= CL — Ct, and C = {22_0 g (15 } ct, =

sup
0<t<T—1

Tr <G£RG006%> ’ +

| o

{22:0 Ltk (Lf;O’“)T} and %? := max(c%,,02,), where 0%,
and 012” are the variance of each component of X, and wk,
respectively. Equality (60) follows from the fact that {w"}
are i.i.d. and independent from Xj. Inequality (&I) follows
from the trace property that Tr(ABC) = Tr(CAB), and
(©2) follows from the hypothesis that (s are i.i.d. random
vectors and Tr(ABC) = Tr(BCA) and (63) follows from
linearity of the trace and sup f + ¢ < sup f + sup g. Inequal-
ity [@4) follows from adding and subtracting G, RGoCL
in the first term and using Tr(AB) < Tr(A)Tr(B) for
A and B positive semi- deﬁmte matrices since (39) implies

that for a fixed 7T, {kT — 0 is a decreasing sequence, i.e.,
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K > k% > kb > - > kp. ', and hence {G4(GL)T !

is a decreasing sequence. Also, from (38), we have for a
fixed T, {(A + BGL)(A + BGL)TY[Z! is an increasing
sequence, hence, (GL)T RGL — GL RG is positive semi-
definite. Finally, the last inequality follows from the definition
of 4. and the following calculation. First note that for a fixed
T, {Tr(et)} ! is an increasing sequence. Hence,

lim  sup T hHl=o.

|Tr(e)|= lim |Tr(e
T~>oo0<t<T 1 T—o0

Similarly, lim supOStST_1|TT(QetT)|: 0. We have,

lim sup |Tr(CL)|= ’TT
T—o00<t<T—1

—(A+BGx))']| =0,

where Y(T) denotes the T power of the matrix Y and the
result follows from ||A + BGxl||< 1 (following from the
controllability assumption). Finally, we have

lim sup |Tr[(GH(GhH)" — GGL)

| R]| =0,
=00 0<t<T—1

where the second equality follows from the aforementioned
observations and since R is positive definite. Therefore,
lim sup|Jr(y7.)—J (77 )|= 0, and the proof is completed. [
T— o0 - -

Remark 6. Similarly, one can show the result for (i) Yt =
CXt, (A,Q) is observable and Q = CT C, (ii) the discounted

LOG team problems with the classical information structure.

VI. CONCLUSION

In this paper, we studied static teams with countably
infinite number of DMs. We presented sufficient conditions
for team optimality concerning average cost problems. Also,
constructive results have been established to obtain the team
optimal solution for static teams with countably infinite num-
ber of DMs as limits of the optimal solutions for static teams
with finite number of DMs as the number of DMs goes
to infinity. We also studied sufficient conditions for team
optimality of symmetric static teams and mean-field teams
under relaxed conditions. We recently studied convex dynamic
teams with countably infinite DMs and mean-field teams [44].
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