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Abstract – This paper studies social optimal control of
mean field LQG (linear-quadratic-Gaussian) models with un-
certainty. Specially, the uncertainty is represented by a un-
certain drift which is common for all agents. A robust op-
timization approach is applied by assuming all agents treat
the uncertain drift as an adversarial player. In our model,
both dynamics and costs of agents are coupled by mean
field terms, and both finite- and infinite-time horizon cases
are considered. By examining social functional variation and
exploiting person-by-person optimality principle, we construct
an auxiliary control problem for the generic agent via a class
of forward-backward stochastic differential equation system.
By solving the auxiliary problem and constructing consistent
mean field approximation, a set of decentralized control strate-
gies is designed and shown to be asymptotically optimal.

Index Terms – Linear quadratic optimal control, mean
field control, model uncertainty, social functional variation,
forward-backward stochastic differential equation.

I. INTRODUCTION

A. Background and Motivation

Mean field games and control have drawn increasing at-
tention in many fields, including system control, applied
mathematics and economics [4], [6], [10]. The mean field
game involves a very large population of small interacting
players with the feature that while the influence of each one
is negligible, the impact of the overall population is significant.
By now, mean field games and control have been intensively
studied in the linear-quadratic-Gaussian (LQG) framework
[16], [17], [22], [32], [27], and there is a large body of works
on nonlinear models [19], [21], [7]. Huang et al. designed
ε-Nash equilibrium strategies for LQG mean field games
with discount costs based on the proposed Nash certainty
equivalence (NCE) approach [16], [17]. The NCE approach
was then applied to the cases with long run average costs [22]
and with Markov jump parameters [33], respectively. Lasry
and Lions independently introduced the model of mean field
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games and studied the well-posedness problem of the limiting
partial differential equations [21]. For further literature, readers
are referred to [15], [33], [34] on mean field games with major
players in continuous- or discrete-time, [7] on probabilistic
analysis of mean field games, and [36] on the oblivious
equilibrium in dynamic games.

Besides noncooperative games, social optima in mean field
models have also drawn much attention. The social optimum
control refers to that all the players cooperate to optimize the
common social cost—the sum of individual costs, which is
usually regarded as a type of team decision problem [11].
Huang et al. considered social optima in mean field LQG
control, and provided an asymptotic team-optimal solution
[18]. Wang and Zhang investigated a mean field social op-
timal problem where a Markov jump parameter appears as a
common source of randomness [35]. Also, see [20] for social
optima in mixed games, [2] for team-optimal control with
finite population and partial information, and [24] for social
optima of static mean field games.

Mathematical models can only be approximations of the real
world. Actually, some parts of a model may be inexact. Thus,
it is worthwhile to study the mean field control with model
uncertainty [3]. The works [13], [14], [31] investigated the
mean field games and control with a global uncertainty term.
The “hard constraint” case (the disturbance is specified with
a bound) was considered in [13] under which the substantial
difficulty arises after the Lagrange multiplier is introduced.
Authors in [14], [31] adopted the “soft constraint” approach
([3], [5], [8]) by removing the bound of the disturbance
while the effort is penalized in the cost function. The works
[30], [27] considered the case that each agent is paired with
the local disturbance as an adversarial player, and provided
an ε-Nash equilibrium by tackling a Hamilton-Jacobi-Isaacs
equation combined with a fixed-point analysis.

B. Challenge and Contribution
This paper investigates mean field LQG social optimum

control with a common uncertain drift, where both dynamics
and costs of agents involve mean field coupled terms. To
address the model uncertainty, a minus quadratic penalty term
of drift is incorporated into the cost functional. There exist
some substantial challenges in studying the problem. First,
the socially optimal control with respect to drift uncertainty
is a high-dimensional optimization problem with indefinite
state weights. The corresponding convexity condition is very
hard to verify. Second, by social variational derivation, the
resulting limit system is governed by a controlled forward-
backward stochastic differential equation (FBSDE). To design
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decentralized strategies, we need to solve the auxiliary optimal
control problem subject to an FBSDE system. Meanwhile, the
asymptotic optimality analysis is different from the general
mean field LQG problems. Third, for the social optimum
problem in the infinite horizon, we are faced with tackle
infinite-horizon FBSDEs and the relevant optimal control
problems.

In this paper, the social optimum control for the robust mean
field LQG model is tackled by using stochastic maximum
principle [38], [39], [40]. For the finite-horizon problem, we
first obtain some low-dimensional convexity conditions and a
set of FBSDEs by analyzing the variation of the centralized
maximization cost to drift uncertainty. With the help of the
Riccati equation, we further obtain a feedback type of the
“worst-case” drift for the social optimum problem. Next, we
construct an auxiliary optimal control problem based on the
social variational derivation and the person-by-person optimal-
ity principle. By solving the auxiliary problem combined with
consistent mean field approximations, a set of decentralized
control laws is designed and further shown to be asymptot-
ically robust social optimal by perturbation analysis. Finally,
from asymptotic analysis to FBSDEs we design decentralized
strategies and show their robust optimality for the infinite-
horizon social optimum problem.

The main contributions of the paper are summarized as
follows. (i) Social optimum control is studied for mean field
models with a common uncertain drift, where coupled terms
are included in both costs and dynamics of agents. By FBSDE
and Riccati equation approaches we design a set of decen-
tralized feedback control laws. (ii) By examining the social
cost variation, we give low-dimensional convexity conditions
and asymptotic convexity analysis for robust social optimum
problems. (iii) From consistency requirements in mean field
approximations, a system of differential equations is derived.
The existence condition of solutions to consistency equations
is characterized by a Riccati equation, instead of a fixed-
point analysis. (iv) From the perturbation analysis to FBSDE,
the decentralized strategies are shown to have asymptotic
robust optimality. (v) By analyzing the asymptotic behavior
of FBSDE, decentralized strategies for the infinite-horizon
problem are designed and further shown be robust social
optimal.

C. Organization and Notation

The organization of the paper is as follows. In Section
II, we consider the finite-horizon social optimization problem
with drift uncertainty. By variational analysis, the centralized
control with respect to drift uncertainty is obtained. Then
an auxiliary optimal control problem is constructed based on
person-by-person optimality. By solving this problem com-
bined with consistent mean field approximations, a set of
decentralized strategies is designed and further proved to be
robust social optimal. Section III tackles the infinite-horizon
social optimum problem. In Section IV, a numerical example
is provided to verify the result. Section V concludes the paper.

Notation: Suppose that (Ω,F , {Ft}0≤t≤T ,P) is a complete
filtered probability space. Throughout this paper, we denote by

⊗ the Kronecker product, Im m-dimensional identity matrix
(In abbreviated as I). We use ‖ · ‖ to denote the norm
of a Euclidean space, or the Frobenius norm for matrices.
For a symmetric matrix Q and a vector z, ‖z‖2Q = zTQz;
for two vectors x, y, 〈x, y〉 = xT y. For a matrix (vector)
M , MT denotes its transpose, M > 0 means that M is
positive definite. Let L2

F (0, T ;Rk) denote the space of all Rk-
valued Ft-progressively measurable processes x(·) satisfying
E
∫ T

0
‖x(t)‖2dt < ∞, and L2

F, ρ2
(0,∞;Rk) denote the space

of all Rk-valued Ft-progressively measurable processes x(·)
satisfying E

∫∞
0
e−ρt‖x(t)‖2dt < ∞. C([0, T ],Rk) is the

space of all Rk-valued functions defined on [0, T ] which are
continuous; Cρ/2([0,∞),Rk) is a subspace of C([0,∞),Rk)
which is given by {f |

∫∞
0
e−ρt‖f(t)‖2dt < ∞}. For conve-

nience of presentation, we use C (or C1, C2, . . .) to denote a
generic constant which may vary from place to place.

II. MEAN FIELD SOCIAL CONTROL OVER A FINITE
HORIZON

Consider a large population systems with N agents. The ith
agent evolves by the following stochastic differential equation:

dxi(t) =[Axi(t) +Bui(t) +Gx(N)(t) + f(t)]dt

+ σdWi(t), 1 ≤ i ≤ N, (1)

where xi ∈ Rn and ui ∈ Rr are the state and the input of agent
i, respectively. x(N)(t) = 1

N

∑N
j=1 xj(t). {Wi, 1 ≤ i ≤ N}

are a sequence of mutually independent d-dimensional Brow-
nian motions. f ∈ L2

F (0, T ;Rn) is an unknown disturbance,
which reflects the effect imposed to each agent by the eternal
environment. The cost function of agent i is given by

JF
i (u) =

1

2
E
∫ T

0

{∥∥xi(t)− Γx(N)(t)− η
∥∥2

Q

+ ‖ui(t)‖2R1
− ‖f(t)‖2R2

}
dt

+
1

2
E‖xi(T )‖2H , (2)

where Q,R1, R2, H ∈ Rn×n are symmetric, Γ ∈ Rn×n and
η ∈ Rn. u = {u1, . . . , uN}. Take {Ft}0≤t≤T as the natural
filtration generated by the Nd-dimensional Brownian motion
(W1, · · · ,WN ). The decentralized control set is given by

UF
i =

{
ui | ui(t) ∈ σ(xi(s), 0 ≤ s ≤ t),

E
∫ T

0

‖ui(t)‖2dt <∞
}
.

For comparison, define the centralized control set as

UF
c =

{
ui| ui(t) ∈ σ(xi(0),Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N),

E
∫ T

0

‖ui(t)‖2dt <∞
}
.

Denote JF
soc(u) =

∑N
i=1 J

F
i (u). Let the social cost under the

worst-case disturbance be

Jwo
soc(u) = sup

f∈UF
c

JF
soc(u, f).



3

Problem (PF): Seek a set of decentralized control laws
(û1, · · · , ûN ) to minimize the social cost under the worst-case
disturbance for System (1)-(2), i.e., infui∈UF

i
Jwo

soc(u).
Remark 2.1: Different from [14], [30], we assume the

disturbance f is a common stochastic process. f may stand for
the impact from tax, subsidy or natural disaster. In this case,
agents may be pessimistic to suppose the disturbance would
use the information of all the agents to play against them.

We make the following assumptions.
(A0) {xi(0)} are independent random variables with the

same mathematical expectation. xi(0) = xi0, Exi(0) =
x̄0, 1 ≤ i ≤ N . There exists a constant C0 such that
max1≤i≤N E‖xi0‖2 < C0. Furthermore, {xi0, i = 1, ..., N}
and {Wi, i = 1, ..., N} are independent of each other.

(A1) Q ≥ 0, R1 > 0, R2 > 0, and H ≥ 0.
From now on, the time variable t might be suppressed if

necessary and no confusion occurs.

A. The Control Problem with Respect to Model Uncertainty

Let ui = ǔi ∈ UF
c , i = 1, · · · , N be fixed. The optimal

control problem with respect to drift uncertainty is as follow:

(P1) maximizef∈UF
c
JF

soc(ǔ, f).

Clearly, (P1) is equivalent to the following problem:

(P1′) minimizef∈UF
c
J̌F

soc(f),

where

J̌F
soc(f) =

1

2

N∑
i=1

E
∫ T

0

{
−
∥∥xi − Γx(N) − η

∥∥2

Q
+ ‖f‖2R2

}
dt

− 1

2
E‖xi(T )‖2H .

Let x = (xT1 , · · · , xTN )T , u = (uT1 , · · · , uTN )T , 1 =
(1, · · · , 1)T , W = (WT

1 , · · · ,WT
N )T , A = diag(A, · · · , A),

B = diag(B, · · · , B), σ̂ = diag(σ, · · · , σ), H =
diag(H, · · · , H), Q̂ = diag{Q, · · · , Q}− 1

N 11T⊗Ψ, and η̂ =

1⊗ η̄, where Ψ
∆
= ΓTQ+QΓ−ΓTQΓ and η̄ ∆

= Qη−ΓTQη.
We can write Problem (P1′) as to minimize

J̌F
soc(f) =

1

2
E
∫ T

0

(
− xT Q̂x + 2η̂T x +NfTR2f

)
dt

− 1

2
E[xT (T )Hx(T )],

subject to

dx(t) = Ǎx(t)dt+ Bu(t)dt+ 1⊗ f(t)dt+ σ̂dW(t).

where Ǎ ∆
= A + 1

N (11T ⊗G).
For the further existence analysis, we introduce the follow-

ing assumptions:
(A2) Problem (P1′) is convex in f ;
(A2′) Problem (P1′) is uniformly convex in f .
Below are some necessary and sufficient conditions to

ensure (A2) or (A2′).
Proposition 2.1: The following statements are equivalent:
(i) Problem (P1′) is convex in f .

(ii) For any f ∈ UF
c ,∫ T

0

(
− yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H ≥ 0,

where y ∈ RnN satisfies

dy = (Ǎy + 1⊗ f)dt, y(0) = 0.

(iii) For any f ∈ UF
c ,

E
∫ T

0

{
−
∥∥(I − Γ)yi

∥∥2

Q
+ ‖f‖2R2

}
dt− ‖yi(T )‖2H ≥ 0,

where for i = 1, 2, · · · , N , yi satisfies

dyi = [Ayi +Gy(N) + f ]dt, yi(0) = 0. (3)

Proof. (i) ⇔ (ii) is given in [14], [23]. From (3), we have
y1 = y2 = · · · = yN = y(N). Thus,∫ T

0

(
− yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H

=

N∑
i=1

∫ T

0

(
−
∥∥yi − Γyi

∥∥2

Q
+ ‖f‖2R2

)
dt−

N∑
i=1

‖yi(T )‖2H

=N
[∫ T

0

(
−
∥∥(I−Γ)yi

∥∥2

Q
+‖f‖2R2

)
dt−‖yi(T )‖2H

]
,

(4)

which implies that (ii) is equivalent to (iii). �
Proposition 2.2: The following statements are equivalent:
(i) Problem (P1′) is uniformly convex in f .
(ii) There exists δ > 0 such that∫ T

0

(
− yT Q̂y +NfTR2f

)
dt− ‖y(T )‖2H ≥ δ

∫ T

0

‖f‖2dt.

(iii) The equation

Ṗ + ǍTP + PǍ− Q̂− P(1⊗ I)(NR2)−1(1T ⊗ I)P = 0,

with P(T ) = −H admits a solution in C([0, T ];RnN ).
(iv) The following equation admits a solution in

C([0, T ];Rn),

Ṗ + (A+G)TP + P (A+G)− PR−1
2 P

− (I − Γ)TQ(I − Γ) = 0, P (T ) = −H.

(v) For any t ∈ [0, T ], det[(0, I)eAt(0, I)T ] > 0, where

A =

 A+G+R−1
2 H −R−1

2

A21 −(A+G+R−1
2 H)T


with A21 = HR−1

2 H+(I−Γ)TQ(I−Γ)+(A+G)TH+H(A+G).
Proof. (i)⇔(ii) is implied from [14], [23]. (i)⇔(iii) is given

by Theorem 4.5 of [28]. By (4) and (ii), we have

E
∫ T

0

{
−‖yi‖2Q(I−Γ)+‖f‖

2
R2

}
dt−‖yi(T )‖2H ≥

δ

N
E
∫ T

0

‖f‖2dt.

By [28, Theorem 4.5], we obtain (ii)⇔(iv), which further
implies (i)⇔(iv). (iv)⇔(v) is given by [14], [25]. �

By examining the variation of J̌F
soc, we first obtain the nec-

essary and sufficient conditions for the existence of centralized
optimal control of (P1).
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Theorem 2.1: (P1′) has a minimizer in UF
c if and only if

(A2) holds and the following equation system admits a set of
adapted solutions (xi, pi, i = 1, · · · , N):



dx̌i =(Ax̌i +Bǔi +Gx̌(N)−R−1
2 p̌

(N)
j )dt+σdWi,

dp̌i =− [AT p̌i +GT p̌
(N)
j −Qx̌i + Ψx̌(N) + η̄]dt

+

N∑
j=1

βji dWj ,

x̌i(0) = xi0, p̌i(T ) = −Hx̌i(T ), 1 ≤ i ≤ N,

(5)

where p(N) = 1
N

∑N
j=1 pj , and furthermore the minimizer is

f̌ = −R−1
2 p(N).

Proof. Suppose that f̌ = −R−1
2 p(N), where pi, i =

1, · · · , N are a set of solutions to the equation system

dpi = αidt+ βiidWi +
∑
j 6=i

βji dWj , pi(T ) = −Hxi(T ), (6)

where i = 1, · · · , N ; αi and βji are to be determined. Denote
by x̌i the state of agent i under the control ǔi and the drift f̌ .
For any f ∈ UF

c and ε ∈ R, let fε = f̌ + εf . Let xεi be the
solution of the following perturbed state equation

dxεi =
(
Axεi +Bǔi + f̌ + εf +

G

N

N∑
i=1

xεi
)
dt+ σdWi,

with xεi (0) = xi0, i = 1, 2, · · · , N .
Let yi = (xεi − x̌i)/ε, and y(N) =

∑N
i=1 yi/N . It can be

verified that yi satisfies (3). Then, by Itô’s formula,

− E〈Hx̌i(T ), yi(T )〉
=E[〈pi(T ), yi(T )〉 − 〈pi(0), yi(0)〉]

=E
∫ T

0

[
〈αi, yi〉+ 〈pi, Ayi +Gy(N) + f〉

]
dt. (7)

We have

J̌F
soc(f̌ + εf)− J̌F

soc(f̌) = εΛ1 +
ε2

2
Λ2 (8)

where

Λ1
∆
=

N∑
i=1

E
∫ T

0

[〈
−Q

(
x̌i−(Γx̌(N)+η)

)
, yi−Γy(N)

〉
+ 〈R2f̌ , f〉

]
dt−

N∑
i=1

E〈Hx̌i(T ), yi(T )〉,

Λ2
∆
=

N∑
i=1

E
∫ T

0

{
−
∥∥yi − Γy(N)

∥∥2

Q
+ ‖f‖2R2

}
dt.

Note that
N∑
i=1

E
∫ T

0

〈
−Q

(
x̌i − (Γx̌(N) + η)

)
,Γy(N)

〉
dt

=E
∫ T

0

〈
−ΓTQ

N∑
i=1

(
x̌i − (Γx̌(N) + η)

)
,

1

N

N∑
j=1

yj
〉
dt

=

N∑
j=1

E
∫ T

0

〈
− ΓTQ

N

N∑
i=1

(
x̌i − (Γx̌(N) + η)

)
, yj
〉
dt

=

N∑
j=1

E
∫ T

0

〈
− ΓTQ

(
(I − Γ)x̌(N) − η

)
, yj
〉
dt.

From (7), one can obtain that

Λ1 =E
N∑
i=1

∫ T

0

[〈
−Q

(
x̌i − (Γx̌(N) + η)

)
,

yi − Γy(N)
〉

+ 〈R2f̌ , f〉
]
dt

+

N∑
i=1

E
∫ T

0

[
〈αi, yi〉+ 〈pi, Ayi +Gy(N) + f〉

]
dt

=E
∫ T

0

〈
NR2f̌ +

N∑
i=1

pi, f
〉
dt

+

N∑
i=1

E
∫ T

0

〈
−Q

(
x̌i − (Γx̌(N) + η)

)
+AT pi

+ΓTQ
(
(I − Γ)x̌(N) − η

)
+ αi +GT p(N), yi

〉
dt,

From (8), f̌ is a minimizer to Problem (P1′) if and only if
Λ2 ≥ 0 and Λ1 = 0. By Proposition 2.1, Λ2 ≥ 0 if and only
if (A2) holds. Λ1 = 0 is equivalent to

αi =−
[
AT pi +GT p(N) + ΓTQ

(
(I − Γ)x̌(N) − η

)
−Q

(
x̌i − (Γx̌(N) + η))

]
,

f̌ =−R−1
2 p(N).

Thus, we have the optimality system (5). Namely, Λ1 = 0 if
and only if (5) admits a solution (x̌i, p̌i, i = 1, · · · , N). �

Let ǔ(N) = 1
N

∑N
i=1 ǔi, and p̌(N) = 1

N

∑N
i=1 p̌i. It follows

from (5) that

dx̌(N) =
(
(A+G)x̌(N) +Bǔ(N) −R−1

2 p̌(N)
)
dt

+
1

N

N∑
i=1

σdWi,

dp̌(N) =−
[
(A+G)T p̌(N) + (Ψ−Q)x̌(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

βji dWj ,

x̌(N)(0) =
1

N

N∑
i=1

xi0, p̌
(N)(T ) = −Hx̌(N)(T ).

(9)

Proposition 2.3: The FBSDE (5) admits a set of adapted
solutions (xi, pi, i = 1, · · · , N) if and only if (9) admits an
adapted solution (x(N), p(N)).
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Proof. If (9) admits an adapted solution (x(N), p(N)), then (5)
is decoupled. The existence of a set of solutions to (5) follows.
The part of necessity is straightforward. �

We further discuss the optimal feedback control of (P1′).
Let p̌(N)(t) = P (t)x̌(N)(t) + š(t), t ≥ 0, where P ∈ Rn×n
and š ∈ Rn. Then by (9) we have

dp̌(N) =P
[
(A+G)x̌(N) +Bǔ(N) −R−1

2 p̌(N))dt

+
1

N

N∑
i=1

σdWi

]
+ Ṗ x̌(N)dt+ dš

=−
[
(A+G)T (Px̌(N) + š) + (Ψ−Q)x̌(N)

+ η̄
]
dt+

1

N

N∑
i=1

N∑
j=1

βji dWj .

This implies

Ṗ + (A+G)TP + P (A+G)− PR−1
2 P

− (I − Γ)TQ(I − Γ) = 0, P (T ) = −H, (10)

dš+
[
(A+ Ḡ)T š+ PBǔ(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

( σ
N
− βji

)
dWj = 0, š(T ) = 0, (11)

where Ḡ ∆
= G−R−1

2 P .
By the local Lipschitz continuous property of the quadratic

(matrix) function, (10) must admit a unique local solution
in a small time duration [T0, T ]. The global existence of the
solution for t ∈ [−∞, T ] or [0, T ] can be referred to [9], [1].
From Proposition 2.2, we obtain that under (A2′), (10) has a
unique solution in C([0, T ],Rn×n).

Theorem 2.2: Under (A0), (A1), (A2′), Problem (P1′) has
a minimizer

f̌(t) = −R−1
2 [P (t)x̌(N)(t) + š(t)], t ≥ 0, (12)

where P and š are solutions of (10) and (11), respectively.
Proof. Under (A2′), (10) admits a unique solution P , which
implies (11) has a unique solution š in C([0, T ],Rn). By [25,
Theorem 2.4.1], (9) admits a unique solution (x̌(N), p̌(N)),
where p̌(N) = Px̌(N)+š. From Proposition 2.3, (5) is solvable.
This with Theorem 2.1 completes the proof. �

Remark 2.2: From the above analysis, (A2′) is sufficient for
solvability of FBSDE (5). Indeed, from [25], (A2′) is also a
necessary condition to ensure that the solvability of (5) holds
for any ǔi ∈ UF

c .

B. Distributed Strategy Design

After the “worst-case” drift f̌ is applied, we have the
following optimal control problem.

(P2): Minimize JF
soc(u, f̌(u)) over {ui ∈ UF

c , i =
1, · · · , N}, where

dxi =[Axi +Bui +Gx(N)−R−1
2 (Px(N) + s)]dt

+ σdWi, 1 ≤ i ≤ N, (13)

ds =−
[
(A+ Ḡ)T s+ PBu(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj , s(T ) = 0. (14)

JF
soc(u) =

1

2

N∑
i=1

E
∫ T

0

{∥∥xi − Γx(N) − η
∥∥2

Q
+ ‖ui‖2R1

−‖Px(N) + s‖2
R−1

2

}
dt+

1

2
E‖xi(T )‖2H . (15)

We first show that Problem (P2) has the property of uni-
formly convexity under certain conditions.

Lemma 2.1: Assume that A0), A1), A2′) hold. There exists
a sufficiently large C0 > 0 with R1 > C0I and R2 > C0I
such that Problem (P2) is uniformly convex in u.
Proof. Denote Q̄ = diag{Q, · · · , Q}− 1

N 11T⊗(Ψ+PR−1
2 P ),

R1 = diag{R1, · · · , R1}, Ā = diag{A, · · · , A} + 1
N 11T ⊗

(G−R−1
2 P ). By a similar argument with [23], we obtain that

Problem (P2) is uniformly convex if for any ui ∈ UF
c ,

E
∫ T

0

(
zT Q̄z + uTR1u−Ns̀TR−1

2 s̀
)
dt

+ E‖z(T )‖2H ≥ δE
∫ T

0

‖u‖2dt

where z ∈ RnN and s̀ ∈ Rn satisfy

dz =(Āz + Bu− 1⊗R−1
2 s̀)dt, z(0) = 0, (16)

ds̀ =−
[
(A+ Ḡ)T s̀+

1

N
PB(1T ⊗ I)u

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̀ji dWj , s̀(T ) = 0. (17)

By [38, Chapter 7] and (17),

E
∫ T

0

‖s̀(t)‖2dt ≤ C1

N2
E
∫ T

0

‖1T ⊗ I‖2‖u(t)‖2dt

≤C1

N
E
∫ T

0

‖u(t)‖2dt. (18)

This with (16) leads to E
∫ T

0
‖z‖2dt ≤ C2

∫ T
0
E‖u‖2dt. Note

that

λmin(Q̄) ≥λmin(Q)− [λmax(Ψ)+λmax(PR−1
2 P )]

≥− [λmax(Ψ) + λmax(PR−1
2 P )],

where λmin(Q) and λmax(Q) are smallest and largest eigen-
values of Q, respectively. From this with (18), there exists
δ > 0 and C0 > 0 such that for R1 > C0I and R2 > C0I ,

E
∫ T

0

(
zT Q̄z+uTR1u−Ns̀TR−1

2 s̀
)
dt+ E‖z(T )‖2H

≥ E
∫ T

0

[
uT (R1 − C0InN )u

]
dt ≥ δE

∫ T

0

(uTu)dt.

�
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1) The Social Variational Derivation: Note that the social
optimum implies the person-by-person optimality [11]. If the
social cost is convex, then the socially optimal solution exists
and coincides with the person-by-person optimal solution [35].
We now provide a transformation of the original social opti-
mum problem by variational derivation and person-by-person
optimality. Suppose that û = (û1, · · · , ûN ) is a minimizer
to Problem (P2), where ûj ∈ UF

c . Let x̂j correspond to ûj ,
j = 1, · · · , N and x̂(N) = 1

N

∑N
j=1 x̂j . Let ŝ correspond to

û1, · · · , ûN . Fix û−i = (û1, · · · , ûi−1, ûi+1, · · · , ûN ), and
perturb ui. Denote δui = ui − ûi, δxj = xj − x̂j , δx(N) =
1
N

∑N
j=1 δxj and δs = s − ŝ. Let the strategy variation δui

be adapted to Ft and satisfy E
∫ T

0
‖δui‖2dt <∞. Let δJi be

the variation of Ji with respect to δui. By (13) and (14),

dδxj
dt

=Aδxj +
Ḡ

N
δxi +

Ḡ

N

∑
k 6=i

δxk −R−1
2 δs,

j 6= i, δxj(0) = 0,

dδs =−
[
(A+ Ḡ)T δs+

1

N
PBδui

]
dt

+
1

N

N∑
i=1

N∑
j=1

δβji dWj , δs(T ) = 0. (19)

where Ḡ
∆
= G − R−1

2 P . This implies δxj = δxk, for any
j, k 6= i. Thus,

dδxj
dt

=(A+
N − 1

N
Ḡ)δxj +

Ḡ

N
δxi−R−1

2 δs, δxj(0)=0,

which gives that

δxj(t)=

∫ t

0

e(A+N−1
N Ḡ)(t−τ)

( Ḡ
N
δxi(τ)−R−1

2 δs(τ)
)
dτ.

We further have

δx(N)(t) =
1

N
δxi(t) +

N − 1

N

∫ t

0

e(A+N−1
N Ḡ)(t−τ)

×
( Ḡ
N
δxi(τ)−R−1

2 δs(τ)
)
dτ.

By this with (14), one can obtain

δJi(u, f̌) =E
∫ T

0

{
[x̂i − Γx̂(N) − η]TQ

[
δxi − Γδx(N)

]
− (Px̂(N) + s)TR−1

2 (Pδx(N) + δs)

+ ûTi R1δui

}
dt+ E[xTi (T )Hδxi(T )],

and for j 6= i,

δJj(u, f̌)

=E
∫ T

0

[
(x̂j − Γx̂(N) − η)TQ(δxj − Γδx(N))

− (Px̂(N) + s)TR−1
2 (Pδx(N) + δs)

]
dt

+ E[xTj (T )Hδxj(T )].

The above equation further implies that∑
j 6=i

δJj(u, f̌)

=E
∫ T

0

(
x̂

(N)
−i − N−1

N (Γx̂(N) + η)
)T
Q
[
(I − N−1

N Γ)

·
∫ t

0

e(A+N−1
N Ḡ)(t−τ)(Ḡδxi −NR−1

2 δs)dτ − Γδxi

]
− (Px̂(N) + s)TR−1

2

[
P
( (N−1)2

N2

∫ t
0
e(A+N−1

N Ḡ)(t−s)

· Ḡδxids+N−1
N δxi

)
+(N − 1)δs

]
dt+ E

[
x

(N)
−i (T )T

·H
∫ T

0

e(A+N−1
N Ḡ)(T−t)(Ḡδxi −NR−1

2 δs)dt
]
,

where x̂(N)
−i = 1

N

∑
j 6=i x̂j . Let δψi = Nδs. Then from (19),

dδψi =−
[
(A+ Ḡ)T δψi + PBδui

]
dt

+

N∑
i=1

N∑
j=1

δβji dWj , δψi(T ) = 0. (20)

For large N , it is plausible to approximate x̂(N) by a deter-
ministic function x̄. The zero first-order variational condition
combined with the mean field approximation gives

E
∫ T

0

{
(x̂i − Γx̄− η)TQδxi −

[
((I − Γ)x̄− η)TQΓ

+ (Px̄+ s̄)TR−1
2 P

]
δxi +

[
((I − Γ)x̄− η)TQ(I − Γ)

−(Px̄+s̄)TR−1
2 P

]∫ t

0

e(A+Ḡ)(t−τ)(Ḡδxi−R−1
2 δψi)dτ

− (Px̄+ s̄)TR−1
2 δψi + ûTi R1δui

+ x̄T (T )He(A+Ḡ)(T−t)(Ḡδxi −R−1
2 δψi)

}
dt

+ E[xTi (T )Hδxi(T )] = 0, (21)

where x̄ ∈ C([0, T ],Rn) is an approximation of x̂(N). From
observation, the equation (21) is the zero variation condition
for the optimal control problem with the cost function:

J ′i(ui)

=
1

2
E
∫ T

0

{
xTi Qxi + 2

[
− ((I − Γ)x̄− η)

T
QΓ

− (Γx̄+ η)TQ− (Px̄+ s̄)TR−1
2 P

]
xi

+ 2
[
((I − Γ)x̄− η)TQ(I − Γ)− (Px̄+ s̄)TR−1

2 P
]

×
∫ t

0

e(A+Ḡ)(t−τ)(Ḡxi −R−1
2 ψi)dτ

+ x̄T (T )He(A+Ḡ)(T−t)(Ḡxi −R−1
2 ψi)

+ uTi R1ui

}
dt+

1

2
E[xTi (T )Hxi(T )]

=
1

2
E
∫ T

0

{
xTi Qxi − 2

[
Ψx̄+ η̄ + (Px̄+ s̄)TR−1

2 P
]
xi

+ 2vT (Ḡxi −R−1
2 ψi) + uTi R1ui

}
dt

+
1

2
E[xTi (T )Hxi(T )], (22)
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where the second equality holds by an exchange of order of
the integration, and

v(t)
∆
=

∫ T

t

e(A+Ḡ)T (τ−t)[(I − Γ)TQ((I − Γ)x̄− η)

− PR−1
2 (Px̄+ s̄)

]
dτ + e(A+Ḡ)T (T−t)Hx̄(T ).

2) Mean field approximation: Based on (13), (20) and (22),
we construct the following auxiliary optimal control problem.

(P3): minimize J̄i(ui) over ui ∈ Ui, where

dx̀i =[Ax̀i +Bui +Gx̄−R−1
2 (Px̄+ s̄)]dt

+ σdWi, x̀i(0) = xi0, (23)

dψi =−
[
(A+ Ḡ)Tψi + PBui

]
dt

+ ziidWi, ψi(T ) = 0. (24)

J̄i(ui) =
1

2
E
∫ T

0

[
x̀Ti Qx̀i − 2(Px̄+ s̄)TR−1

2 Px̀i

− 2(Ψx̄+ η̄)T x̀i + 2vT (Ḡx̀i −R−1
2 ψi)

− 2(Px̄+ s̄)TR−1
2 ψi + uTi R1ui

]
dt

+
1

2
E[x̀Ti (T )Hx̀i(T )]. (25)

Here s̄, v are determined by

˙̄s = −(A+G−R−1
2 P )T s̄− PBū− η̄, s̄(T ) = 0, (26)

v̇ = −(A+ Ḡ)T v −
[
(I − Γ)TQ((I − Γ)x̄− η)

− PR−1
2 (Px̄+ s̄)

]
, v(T ) = Hx̄(T ), (27)

and x̄, ū ∈ C([0, T ],Rn) are given for approximations to
x̂(N), û(N), respectively.

Theorem 2.3: Assume that (A0)-(A1), (A2′) hold. Problem
(P3) has a unique optimal control

ûi(t) = −R−1
1 BT [ki(t)− P (t)l(t)], 1 ≤ i ≤ N, (28)

where (l, ki, ζi) is a unique adaptive solution to the following
(decoupled) FBSDE

dl =[(A+ Ḡ)l +R−1
2 v +R−1

2 (Px̄+ s̄)]dt, l(0) = 0, (29)

dki =−
{
AT ki +Qx̀i − (Ψx̄+ η̄)− PR−1

2 (Px̄+ s̄)

+ ḠT v
}
dt+ ζidWi, ki(T ) = Hx̀i(T ). (30)

Proof. Since Q ≥ 0 and R1 > 0, then from [23], [14], (P3)
is uniformly convex in ui and there exists a unique optimal
control for (P3), denoted as ûi. Then

0 =δJ̄i(ûi)

=E
∫ T

0

[
(Qx̀i−Ψx̄−η̄)T δx̀i − (Px̄+ s̄)TR−1

2 Pδx̀i

+ vT (Ḡδx̀i −R−1
2 ψi)− (Px̄+ s̄)R−1

2 ψi

+ uTi R1δui

]
dt+ E[x̀Ti (T )Hδx̀i(T )], (31)

where δui = ui− ûi, δx̀i = x̀i− x̂i, and δψi = ψi− ψ̂i. Note
that (29) and (30) are decoupled. Given x̄, ū ∈ C([0, T ],Rn),

(29) is a standard linear BSDE and so has a unique solution
(ki, ζi). Note that

d(δx̀i) =(Aδx̀i +Bδui)dt,

d(δψi) =−
[
(A+ Ḡ)T δψi + PBδui

]
dt

+

N∑
i=1

N∑
j=1

δβji dWj , δψi(T ) = 0.

By Itô’s formula, we have

E[x̀Ti (T )Hδx̀i(T )]

=E[kTi (T )δx̀i(T )− kTi (0)δx̀i(0)]

=E
∫ T

0

{
−
[
Qx̀i − (Ψx̄+ η̄)

− PR−1
2 (Px̄+ s̄) + ḠT v

]T
δx̀i + kTi Bδui

}
dt,

and

E[lT (T )δψi(T )− lT (0)δψi(0)]

=E
∫ T

0

[
(R−1

2 v +R−1
2 (Px̄+ s̄))T δψi−lTPBδui

]
dt.

This and (31) gives

0 = E
∫ T

0

(R1ui +BT ki −BTPl)T δuidt,

which implies ûi = R−1
1 BT (Pl − ki), 1 ≤ i ≤ N . �

Let ki = Kx̀i + ϕ. Then by (23) and (29),

dki =K(Ax̀i −BR−1
1 BT (Kx̀i − Pl + ϕ) +Gx̄

−R−1
2 (Px̄+ s̄))dt+KσdWi + K̇x̀i + ϕ̇

=−
{
AT (Kx̀i + ϕ) +Qx̀i − (Ψx̄+ η̄)

− PR−1
2 (Px̄+ s̄) + ḠT v

}
+ ζidWi,

which implies

K̇ +ATK +KA−KBR−1
1 BTK +Q = 0,

K(T ) = H, (32)

ϕ̇+ (A−BR−1
1 BTK)Tϕ+KBR1B

TPl

+KḠx̄−KR−1
2 s̄− (Ψx̄+ η̄)

− PR−1
2 (Px̄+ s̄) + ḠT v = 0, ϕ(T ) = 0. (33)

Besides, applying (28) into (23), we obtain

dx̂(N) =[Ax̂(N) −BR−1
1 BT (Kx̂(N) − Pl + ϕ)

+ Ḡx̄−R−1
2 s̄]dt+

1

N

N∑
i=1

σdWi,

where x̂(N)(0) = 1
N

∑N
i=1 xi0. As an approximation, one can

obtain

˙̄x =(Ā+Ḡ)x̄+BR−1
1 BT (Pl−ϕ)−R−1

2 s̄, x̄(0) = x̄0, (34)

where Ā ∆
= A−BR−1

1 BTK.
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By (34), (25), (27), and (33),

˙̄x =(Ā+ Ḡ)x̄+BR−1
1 BT (Pl − ϕ)

−R−1
2 s̄, x̄(0) = x̄0,

l̇ =(A+ Ḡ)l +R−1
2 v +R−1

2 (Px̄+ s̄), l(0) = 0,

˙̄s =− (A+ Ḡ)T s̄+ PBR−1
1 BT (Kx̄− Pl + ϕ)

− η̄, s̄(T ) = 0,

ϕ̇ =− ĀTϕ−KBR−1
1 BTPl −KḠx̄+KR−1

2 s̄

+ Ψx̄+ η̄ + PR−1
2 (Px̄+ s̄)−ḠT v, ϕ(T ) = 0,

v̇ =− (A+ Ḡ)T v + (Ψ−Q)x̄+ η̄

+ PR−1
2 (Px̄+ s̄), v(T ) = Hx̄(T ).

(35)
For further analysis, we assume:
(A3) (35) admits a unique solution in C([0, T ],R5n).
Note that (35) can be taken as an FBSDE without diffusion

terms. The condition of contraction mapping in Theorem 5.1 of
[25] holds necessarily. Thus, (35) must admit a unique solution
in a small time duration [T0, T ]. However, some additional
conditions are needed for existence of a (global) solution to
(35) in the time duration [0, T ]. We now give a sufficient
condition that ensures (A3).

Let

M11 =

[
Ā+ Ḡ BR−1

1 BTP
R−1

2 P A+ Ḡ

]
,

M12 =

[
−R−1

2 −BR−1
1 BT 0

R−1
2 0 R−1

2

]
,

M21 =

 PBR−1
1 BTK −PBR−1

1 BTP
−KḠ+ Ψ + PR−1

2 P 0
Ψ−Q+ PR−1

2 P 0

,

M22 =

 −(A+ Ḡ) PBR−1
1 BTK 0

(K + P )R−1
2 −Ā −ḠT

PR−1
2 0 −(A+ Ḡ)

.
Then (35) can be written as

˙̄x

l̇
ṡ
ϕ̇
v̇

 =

[
M11 M12

M21 M22

]
x̄
l
s
ϕ
v

+


0
0
−η̄
η̄
η̄

 . (36)

Proposition 2.4: If the Riccati differential equation

Ẏ = M21 +M22Y − YM11 − YM12Y,

Y (T ) =

[
0 0 HT

0 0 0

]T
admits a solution Y ∈ R3n×2n in [0, T ], then (A3) holds.
Furthermore, under the assumption η̄ = 0, if the Riccati
differential equation

Ż = M12 +M11Z − ZM22 − ZM21Z,Z(0) = 0 (37)

admits a solution Z ∈ R2n×3n in [0, T ], then (A3) holds.

Proof. Denote m = [x̄T , lT ]T , and z = [sT , ϕT , vT ]T . Let

z = Y m + α, α(T ) = 0. Then Y (T ) =

[
0 0 HT

0 0 0

]T
.

By (36),

ż =Ẏ m+ Y (M11m+M12z) + α̇

=(Ẏ + YM11 + YM12Y )x̄+ YM12α+ α̇

=M21x̄+M22(Y x̄+ α) + [−η̄T , η̄T , η̄T ]T .

Thus, we obtain

Ẏ =M21 +M22Y − YM11 − YM12Y, (38)

α̇ =(M22 − YM12)α+ [−η̄T , η̄T , η̄T ]T , (39)

where Y (T ) =

[
0 0 HT

0 0 0

]T
and α(T ) = 0. Since (38)

admits a solution, then (39) has a solution. Applying z =
Y m+ α into (36), we have

ṁ = M11m+M12(Y m+ α), m(0) = [x̄T0 , 0]T ,

which implies (35) admits a unique solution in [0, T ].

Denote Z =

[
Z11 Z12 Z13

Z21 Z22 Z23

]
. Note that s(T ) =

ϕ(T ) = 0, and v(T ) = Hx̄(T ). We have 0 0
0 0
H 0

[ Z11 Z12 Z13

Z21 Z22 Z23

]

=

 0 0 0
0 0 0

HZ11(T ) HZ12(T ) HZ13(T )

 6= I3n.

By the modified Radon’s Lemma (see e.g., [1, Theorem
3.1.3]), the proposition follows. �

C. Asymptotic Optimality

For Problem (PF), we may design the following decentral-
ized control:

ûi(t) = −R−1
1 BT [K(t)xi(t)− P (t)l(t) + ϕ(t)], (40)

where K,P are given by (32) and (10), respectively, and l
and ϕ are determined by (35). After the control laws (40) are
applied, we obtain the state equations of agents as follows:

dx̂i =[Āx̂i + Ḡx̂(N)+BR−1
1 BT (Pl − ϕ)−R−1

2 ŝ]dt

+ σdWi, i = 1, · · · , N. (41)

dŝ =−
[
(A+ Ḡ)T ŝ+ PBû(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj , ŝ(T ) = 0. (42)

For further analysis, we assume
(A4) The Riccati equation admits a solution:

˙̃P + P̃ (Ā+ Ḡ) + (A+ Ḡ)T P̃ − P̃R−1
2 P̃

+ PBR−1
1 BTK = 0, P̃ (T ) = 0.

Lemma 2.2: Assume that (A0)-(A1), (A2′), (A3)-(A4) hold.
For the system (1)-(2), we have

sup
0≤t≤T

E
(
‖x̂(N) − x̄‖2 + ‖ŝ− s̄‖2

)
= O(1/N). (43)
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Proof. It follows by (41) and (42) that

dx̂(N) =[(Ā+ Ḡ)x̂(N) +BR−1
1 BT (Pl − ϕ)

−R−1
2 ŝ]dt+

1

N

N∑
i=1

σdWi,

dŝ =(A+ Ḡ)T ŝ+ PBû(N) + η̄
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj , ŝ(T ) = 0.

Denote ξ ∆
= x̂(N) − x̄ and χ

∆
= ŝ − s̄. From the above two

equations and (35),

dξ =(Ā+ Ḡ)ξdt−R−1
2 χdt+

1

N

N∑
i=1

σdWi,

ξ(0) = 1
N

∑N
i=1 xi0 − x̄0, (44)

dχ =−
[
(A+ Ḡ)Tχ+ PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj , χ(T ) = 0. (45)

Let χ(t) = P̃ (t)ξ(t) + ψ(t), t ≥ 0. By Itô formula,

dχ = ˙̃Pξ + P̃
{

[(Ā+ Ḡ)ξ −R−1
2 (P̃ ξ + ψ)]dt

+
1

N

N∑
j=1

σdWj

}
+ ψ̇

=−
[
(A+ Ḡ)T (P̃ ξ + ψ) + PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj ,

which gives
∑N
i=1 β

j
i = (P̃ + I)σ, and

˙̃P + P̃ (Ā+ Ḡ) + (A+ Ḡ)T P̃ − P̃R−1
2 P̃

+ PBR−1
1 BTK = 0, P̃ (T ) = 0,

ψ̇ + (A+ Ḡ−R−1
2 P̃ )Tψ = 0, ψ(T ) = 0.

From (A4), we have P̃ is existent and ψ(t) ≡ 0. Thus,

ξ(t) =eΥtξ(0) +
1

N

∫ t

0

eΥ(t−µ)
N∑
i=1

σdWi(µ),

where Υ = Ā+ Ḡ−R−1
2 P̃ . By (A0), one can obtain

E‖ξ(t)‖2 ≤ 2

N

∥∥eΥt
∥∥2
{

max
1≤i≤N

E‖xi0‖2+

∫ t

0

∥∥e−Υµσ
∥∥2
dµ
}
,

which completes the proof. �
Lemma 2.3: If u = (u1, · · · , uN ) satisfies

sup
f∈UF

c

J (N)
soc (u) ≤ C,

then there exists C1 independent of N such that
E
∫ T

0
‖ui‖2dt ≤ C1 for all i = 1, · · · , N .

Proof. Let f = 0. Since R1 > 0, then supf J
(N)
soc (u) ≤ C

implies E
∫ T

0
‖ui‖2dt ≤ C1 for all i = 1, · · · , N . �

Lemma 2.4: Assume that (A0)-(A1), (A2′), (A3)-(A4) hold.
Then there exists a constant C0 independent of N such that

sup
f∈UF

c

N∑
i=1

Ji(û, f) ≤ NC0.

Proof. Under (A0), (A1) and (A2′), f̌ = −R−1
2 (Px̌(N) +

s) is a maximizer of
∑N
i=1 Ji(û, f), i.e.,

∑N
i=1 Ji(û, f̌) =

supf
∑N
i=1 Ji(û, f). By Lemma 2.2, we obtain

sup
0≤t≤T

E‖x̂(N)‖2 sup
0≤t≤T

(
2E‖x̂(N) − x̄‖2 + 2‖x̄‖2

)
≤ C,

sup
0≤t≤T

E‖s(t)‖2 ≤ sup
0≤t≤T

(
2E‖s̄‖2 + 2E‖s− s̄‖2

)
≤ C.

Denote g ∆
= Ḡx̂(N) + BR−1

1 BT (Pl − ϕ) − R−1
2 s. Note that

l, ϕ ∈ C([0, T ],Rn). Then we have sup0≤t≤T E‖g(t)‖2 ≤ C.
It follows from (41) that

E‖x̂i‖2 ≤C + 3C
∥∥∥E∫ T

0

eĀ(T−τ)dτ
∥∥∥2

+ 3E
∫ T

0

∥∥∥eĀ(T−τ)σ
∥∥∥2

dτ.

From this with (40), we have
N∑
i=1

sup
f
Ji(û, f) =

1

2

N∑
i=1

E
∫ T

0

{∥∥x̂i − Γx̂(N) − η
∥∥2

Q

+ ‖ûi‖2R1
− ‖f̌‖2R2

}
dt ≤ NC0.

�
Let k̂i

∆
= Kx̂i + ϕ, where ϕ is given by (35). We have the

following approximation result.
Lemma 2.5: Assume that (A0)-(A1), (A2′), (A3)-(A4) hold.

Then for problem (PF), we have

sup
0≤t≤T

E‖k̂(N) − v‖2 = O(1/N),

where k̂(N) = 1
N

∑N
i=1 k̂i and v is given by (35).

Proof. Let ϑ = v − Kx̄ − ϕ. By (35) and some elementary
calculations, we obtain

dϑ(t) = −ATϑ(t)dt, ϑ(T ) = 0,

which implies ϑ(t) ≡ 0. This further gives v = Kx̄ + ϕ. By
Lemma 2.2, we have

sup
0≤t≤T

E‖k̂(N) − v‖2 = sup
0≤t≤T

E‖K(x̂(N) − x̄)‖2

≤ C sup
0≤t≤T

E‖x̂(N) − x̄‖2 = O(1/N).

This completes the proof. �
We are in a position to state the result of asymptotic

optimality of the decentralized control.
Theorem 2.4: Let (A0)-(A1), (A2′), (A3)-(A4) hold. Assume

that (P2) is convex. For Problem (PF), the set of control laws
û = (û1, · · · , ûN ) given by (40) has asymptotic robust social
optimality, i.e.,∣∣∣∣ 1

N
Jwo

soc(û)− 1

N
inf
u∈UF

c

Jwo
soc(u)

∣∣∣∣ = O(
1√
N

).

Proof. See Appendix A. �



10

III. ROBUST MEAN FIELD SOCIAL CONTROL OVER AN
INFINITE HORIZON

In this section, we consider social optimum control in robust
mean field model over an infinite horizon. Let

Ui =
{
ui | ui(t) ∈ σ(xi(s), 0 ≤ s ≤ t),

E
∫ ∞

0

e−ρt‖xi(t)‖2dt <∞
}
,

and

Ji(u, f) =
1

2
E
∫ ∞

0

e−ρt
{∥∥xi(t)− Γx(N)(t)− η

∥∥2

Q

+‖ui(t)‖2R1
− ‖f(t)‖2R2

}
dt, (46)

where ρ ≥ 0.
Problem (PI): Seek a set of decentralized control to

optimize the social cost under the worst-case disturbance
for System (1) and (46), i.e., infui∈Ui supf∈Uc Jsoc, where
Jsoc(u, f) =

∑N
i=1 Ji(u, f), and

Uc =
{
ui| ui(t) ∈ Ft,E

∫ ∞
0

e−ρt‖xi(t)‖2dt <∞
}
.

A. Decentralized Control Design

Let ui = ǔi ∈ Uc, i = 1, · · · , N be fixed. The optimal
control problem with respect to drift uncertainty is as follow:

(P4) minimizef∈Uc J̌soc(ǔ, f),

where

J̌soc(ǔ, f) =
1

2

N∑
i=1

E
∫ ∞

0

e−ρt
{
−
∥∥xi(t)− Γx(N)(t)

−η
∥∥2

Q
+ ‖f(t)‖2R2

}
dt. (47)

An example of scalar model. Consider the case of uniform
agents with scalar states. Let A = a, η = 0, G = 0, Q =
1,Γ = γ, R2 = r2, xi ∈ R and ǔi = 0, i = 1, · · · , N . By
rearranging the integrand of Jsoc, we have

J̌soc =
1

2
E
∫ ∞

0

e−ρt
(
− xT Q̂x+Nr2f

2
)
dt,

where x = (x1, · · · , xN )T , and Q̂ = (q̂ij) is given by

q̂ii = 1 + (γ2 − 2γ)/N, q̂ij = (γ2 − 2γ)/N, i 6= j.

Introduce the Riccati equation

2(a− ρ

2
)P − 1

Nr2
P11TP − Q̂ = 0. (48)

By observation, P has the form pij =

{
p if i = j
q if i 6= j.

Denote

ā = a − ρ
2 . By solving (48), we obtain the maximal solution

as follows: p = q + 1
2ā and

q =
1

N

(
r2ā−

1

2ā
+
√
r2
2ā

2 + r2(γ2 − 2γ − 1)

)
.

The optimal control is given by

f̌ =
1

Nr2
1TPx =

[
ā+

√
ā2+

1

r2
(γ2−2γ− 1)

]
x(N).

�
For general systems, we make the following assumptions:
(A5) Problem (P4) is uniformly convex in f ;
(A6) A+G− ρ

2I is Hurwitz.
Below are some sufficient conditions to guarantee (A5).
Proposition 3.1:
Let (A6) hold. (P4) is uniformly convex in f , i.e., (A5)

holds, if and only if one of (i)-(iv) holds.
(i) For any f ∈ Uc, there exists δ > 0 such that

J ′soc(f) = E
∫ ∞

0

e−ρt
(
− yT Q̂y +NfTR2f

)
dt

≥ δE
∫ ∞

0

e−ρt‖f‖2dt,

where y ∈ RnN satisfies

dy = (Ǎy + 1⊗ f)dt, y(0) = 0.

(ii) The equation

ρP = ǍTP + PǍ− Q̂− P(1⊗ I)(NR2)−1(1T ⊗ I)P

admits a solution such that Ǎ− (1⊗ I)(NR2)−1(1T ⊗ I)P−
ρ
2 (IN ⊗ I) is Hurwitz.

(iii) The equation

ρP =(A+G)TP + P (A+G)− PR−1
2 P + Ψ−Q

admits a solution such that A+ Ḡ− ρ
2I is Hurwitz.

(iv) The real part of any eigenvalue of M is not zero, where

M =

[
A+G− ρ

2I R−1
2

−(I − Γ)TQ(I − Γ) −AT −GT + ρ
2I

]
.

Proof. (A5)⇔(i) follows by Lemma 1 of [23]. We now prove
(ii)⇒(A5). If (ii) holds, then by the completion of squares
technique, we can obtain

J ′soc(f)

=E
∫ ∞

0

e−ρtN
∥∥∥f(t) +

1

N
R−1

2 (1T ⊗ I)Py(t)
∥∥∥2

R2

dt ≥ 0.

Clearly, J ′soc(f) = 0 leads to f(t) = − 1
NR

−1
2 (1T ⊗ I)Py(t),

which together with y(0) = 0 further implies f(t) ≡ 0. From
[14] we obtain that J ′soc(f) is positive definite, which implies
that (P4) is uniformly convex. Note that (Ǎ− ρ

2 (IN⊗I)), IN⊗
I) is stabilizable. From (4) and (A5)⇔(i), (P4) is uniformly
convex if and only if there exists δ > 0 such that∫ ∞

0

e−ρt
(
−‖(I−Γ)yi‖2Q+fTR2f

)
dt ≥

∫ ∞
0

e−ρtδ‖f‖2dt.

Following the proof of (ii)⇒(A5), we obtain (iii)⇒(A5). Since
(A6) holds, it follows by [29] that (A5)⇒(iii). Note that (1T ⊗
I)Ǎ = 1T ⊗ (A+G), Ǎ(1⊗ I) = 1⊗ (A+G), and 1

N (1T ⊗
I)Q̂(1T ⊗ I) = Q−Ψ. We have 1

N (1T ⊗ I)P(1T ⊗ I) = P.
From (3) and y1 = y2 = · · · = y(N), we obtain (iii)⇔(ii).
(iii)⇔(iv) is implied from [26]. �

Remark 3.1: From the proof of Proposition 3.1, Assumption
(A5) implies

J ′soc(f) = E
∫ ∞

0

e−ρt
(
− yT Q̂y +NfTR2f

)
dt ≥ 0,
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i.e., (P4) is convex in f .
With some abuse of notation, later we still use

P,K, Y, Z, s, s̄, ϕ, v · · · . But in this section P,K, Y, Z are
time-invariant and s, s̄, ϕ, v are functions of time t, t ∈ [0,∞).
Following (10)-(12), we may construct

f̌ = −R−1
2 (Px(N) + š),

where P ∈ Rn×n and š ∈ L2
F, ρ2

(0,∞;Rn) are determined by

(A+G− ρ

2
I)TP + P (A+G− ρ

2
I)

− PR−1
2 P − (I − Γ)TQ(I − Γ) = 0, (49)

dš+ [(A+G−R−1
2 P − ρI)T š+ PBǔ(N) + η̄]dt

+
1

N

N∑
i=1

ζidWi = 0. (50)

Theorem 3.1: Under (A1) and (A5), Problem (P4) has a
minimizer f̌ = −R−1

2 (Px(N) + š), where P is the maximal
solution of (49) and š is the unique solution of (50) in
L2
F, ρ2

(0,∞;Rn).

Proof. Denote x́i = e−
ρ
2 txi, úi = e−

ρ
2 tui and f́ = e−

ρ
2 tf . It

follows by (1) and (47) that

dx́i(t) =[(A− ρ
2
I)x́i(t)+Búi(t) +Gx́(N)(t)+f́(t)]dt

+ e−
ρ
2 tσdWi(t), 1 ≤ i ≤ N,

J̌soc(ǔ, f) =
1

2

N∑
i=1

E
∫ ∞

0

{
−
∥∥x́i(t)− Γx́(N)(t)

−e−
ρ
2 tη
∥∥2

Q
+ ‖f́(t)‖2R2

}
dt.

By a similar argument in the proof of Theorem 2.1, we obtain
J̌soc(ǔ, f) = εΛ′1 + ε2

2 Λ′2, where

Λ′1
∆
=

N∑
i=1

E
∫ ∞

0

[〈
−Q

(
x́i − (Γx́(N) + η)

)
, ýi

− Γý(N)
〉

+ 〈R2f́ , f́〉
]
dt,

Λ′2
∆
=

N∑
i=1

E
∫ ∞

0

{
−
∥∥ýi − Γý(N)

∥∥2

Q
+ ‖f́‖2R2

}
dt,

and ýi satisfies

dýi =
[
(A− ρ

2
)ýi +Gý(N) + f́

]
dt, ýi(0) = 0.

By (A5), Λ′2 ≥ 0. Problem (P4) has a unique minimizer f́ =
−R−1

2 ṕ(N) if and only if

dx́i =
[
(A− ρ

2
I)x́i +Búi −R−1

2 ṕ(N) +Gx́(N)
]
dt

+ e−ρtσdWi, xi(0) = xi0,

dṕi =−
[
(A− ρ

2
I)T ṕi +GT ṕ(N) −Qx́i + Ψx́(N)

+ e−ρtη̄
]
dt+

N∑
j=1

β́ji dWj ,

(51)

admits a set of solutions (x́i, ṕi, i = 1, · · · , N) in
L2
F, ρ2

(0,∞;Rn). It follows from (51) that

dx́(N) =
[
(A+G− ρ

2
I)x́(N) +Bú(N)

−R−1
2 ṕ(N)

]
dt+ e−ρtσdWi, xi(0) = xi0,

dṕ(N) =−
[
(A+G− ρ

2
I)T ṕ(N) + (Ψ−Q)x́(N)

+ e−ρtη̄
]
dt+

N∑
j=1

β́ji dWj .

(52)

Note that A + G − ρ
2I is Hurwitz. By (A5) and Proposition

3.1, we obtain that (49) admits a maximal solution such that
A+G− ρ

2I−R
−1
2 P is Hurwitz, which with [?, Theorem 3.3]

gives that (50) admits a unique solution in L2
F, ρ2

(0,∞;Rn).
Let ṕ(N) = Px́(N) + ś, where ś = e−

ρ
2 tš. Then we have that

(x́(N), ṕ(N)) is a solution of (52). By a similar argument to
Theorem 2.2, the proof is completed. �

After the worst-case drift f̌ is applied, we have the following
optimal control problem.

(P2′): Minimize Jsoc(u, f̌(u)) over {ui, 1 ≤ i ≤ N)|ui ∈
Uc}, where s ∈ L2

F, ρ2
(0,∞;Rn),

dxi =[Axi+Bui +Gx(N)−R−1
2 (Px(N) + s)]dt

+ σdWi, xi(0) = xi0, 1 ≤ i ≤ N, (53)

ds =−
[
(A+ Ḡ)T s+ PBu(N) + η̄

]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj , (54)

Jsoc(u) =
1

2

N∑
i=1

E
∫ ∞

0

e−ρt
{∥∥xi − Γx(N) − η

∥∥2

Q

+ ‖ui‖2R1
− ‖Px(N) + s‖2

R−1
2

}
dt. (55)

Lemma 3.1: Assume that A0), A5), A6) hold. Then there
exists C ′0 > 0 such that R1 > C ′0I and R2 > C ′0I , then
Problem (P2′) is uniformly convex.
Proof. Let z ∈ RnN and s̀ ∈ Rn satisfy

dz =(Āz + Bu− 1⊗R−1
2 s̀)dt, z(0) = 0, (56)

ds̀ =−
[
(A+ Ḡ)T s̀+

1

N
PB(1T ⊗ I)u

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̀ji dWj . (57)

By a similar argument with [23], we obtain that Problem (P2)
is uniformly convex if for any ui ∈ Uc, there exists δ > 0
such that

E
∫ ∞

0

e−ρt
(

zT Q̄z + uTR1u−Ns̀TR−1
2 s̀
)
dt

≥δE
∫ ∞

0

e−ρt‖u‖2dt. (58)

Note that A + Ḡ − ρ
2I is Hurwitz. By [29, Lemma 2.5] and

(57),

E
∫ ∞

0

e−ρt‖ś(t)‖2dt ≤ C1

N
E
∫ ∞

0

e−ρt‖u(t)‖2dt. (59)
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Since Ā− ρ
2I is Hurwitz, then from (56) and (59), we obtain

E
∫ ∞

0

e−ρt‖z‖2dt ≤ C
∫ ∞

0

e−ρtE‖u‖2dt.

Note λmin(Q̄) ≥ −λmax(Ψ + PR−1
2 P ). Thus, there exists

C ′0 > 0 such that for R1 ≥ C ′0I and R2 ≥ C ′0I , (58) holds.
�

Based on the analysis in Section II-B, we construct an
auxiliary optimal control problem.

(P5): Minimize J̄i(ui) over ui ∈ Ui, where

dx̀i=[Ax̀i+Bui+Gx̄−R−1
2 (Px̄+s̄)]dt+ σdWi,

x̀i(0) = xi0, (60)

dψi =−
[
(A+ Ḡ)Tψi + PBui

]
dt+ ziidWi

J̄i(ui) =
1

2
E
∫ ∞

0

e−ρt
[
x̀Ti Qx̀i − 2(Ψx̄+ η̄)T x̀i

− 2(Px̄+ s̄)TR−1
2 Px̀i + 2vT (Ḡx̀i −R−1

2 ψi)

− 2(Px̄+ s̄)TR−1
2 ψi + uTi R1ui

]
dt. (61)

Here s̄, v ∈ Cρ/2([0,∞),Rn) are determined by

˙̄s =− (A+ Ḡ− ρI)T s̄− PBū− η̄,
v̇ =− (A+ Ḡ− ρI)T v + (Ψ−Q)x̄+ η̄ + PR−1

2 (Px̄+ s).

By using the method in [38], [33], we can show that if (A6)
holds and Q ≥ 0, (P5) admits the unique optimal control

ûi(t) = −R−1
1 BT (Kxi(t)− Pl(t) + ϕ(t)), (62)

where K ∈ Rn×n and l, ϕ ∈ Cρ/2([0,∞),Rn) are determined
by

ρK =ATK +KA−KBR−1
1 BTK +Q,

l̇ =(A+ Ḡ)l +R−1
2 v +R−1

2 (Px̄+ s̄), l(0) = 0,

ρϕ =ϕ̇+ ĀTϕ+KBR−1
1 BTPl +KḠx̄

−KR−1
2 s̄− (Ψx̄+ η̄)−PR−1

2 (Px̄+ s̄) + ḠT v.

By applying the control (62) into (53) combined with mean
field approximations, we obtain the following equation system:

˙̄x =(Ā+Ḡ)x̄+BR−1
1 BT(Pl−ϕ)−R−1

2 s̄, x̄(0) = x̄0,

l̇ =(A+ Ḡ)l +R−1
2 v +R−1

2 (Px̄+ s̄), l(0) = 0,

˙̄s =−(A+ Ḡ−ρI)T s̄+ PBR−1
1 BT (Kx̄+ ϕ)−η̄,

ϕ̇=− (Ā−ρI)Tϕ−KBR−1
1 BTPl −KḠx̄

+KR−1
2 s̄+ Ψx̄+ η̄ + PR−1

2 (Px̄+ s̄)−ḠT v,
v̇ =− (A+ Ḡ− ρI)T v + (Ψ−Q)x̄+ η̄

+PR−1
2 (Px̄+ s̄).

(63)

For further analysis, we assume:
(A7) (63) admits a unique solution (x̄, l, s, ϕ, v) in

Cρ/2([0,∞),R5n).
The existence and uniqueness of a solution to (63) may be

obtained by using fixed-point methods similar to those in [17]
and [33]. We now give a sufficient condition that ensures (A7)

by virtue of Riccati equations. Using the notation in Section
II-B, we have

˙̄x

l̇
ṡ
ϕ̇
v̇

 =

[
M11 M12

M21 M22 + ρI3n

]
x̄
l
s
ϕ
v

+


0
0
−η̄
η̄
η̄

. (64)

Proposition 3.2: If the algebraic Riccati equation

M21 + ρY +M22Y − YM11 − YM12Y = 0

admits a solution Y ∈ R3n×2n such that both M11 +M12Y −
ρ
2I2n and −M22+YM12− ρ

2I3n are Hurwitz, then (A7) holds.
Proof. Denote m = [x̄T , lT ]T , z = [sT , ϕT , vT ]T . Let z =
Y m+ α. By (64) and Itô’s formula, we obtain

Ẏ =M21 +M22Y − YM11 − YM12Y, (65)

α̇ =(M22 − YM12)α+ [−η̄T , η̄T , η̄T ]T . (66)

Since (65) admits a solution such that −M22 +YM12− ρ
2I3n

is Hurwitz, then (66) has a unique solution

α(t) ≡−
∫ ∞

0

exp
[(
−M22 + YM12 −

ρ

2
I3n
)
τ
]

· [−η̄T , η̄T , η̄T ]T dτ.

Applying z = Y x̄+ α into (63), we have

ṁ = (M11 +M12Y )m+M12α.

Since M11 + M12Y − ρ
2I2n is Hurwitz, then [x̄T , lT ]T ∈

Cρ/2([0,∞),R2n), and this further implies that (63) admits
a unique solution in Cρ/2([0,∞),R5n). �

B. Asymptotic Optimality

Let

ûi(t) = −R−1
1 BT (Kxi(t)− Pl(t) + ϕ(t)), (67)

where l and ϕ are determined by (63). After the control ûi is
applied, the closed-loop dynamics can be written as

dx̂i = [Āx̂i + Ḡx̂(N) +BR−1
1 BT (Pl − ϕ)

−R−1
2 ŝ]dt+ σdWi.

(68)

For further analysis, we assume
(A8) The equation

P̃ (Ā+Ḡ)+(A+Ḡ)T P̃−P̃R−1
2 P̃+PBR−1

1 BTK = 0 (69)

admits a solution P̃ such that Ā+ Ḡ− ρ
2I −R

−1
2 P̃ and A+

Ḡ − ρ
2I − R

−1
2 P̃ are Hurwitz, where Ā = A − BR−1

1 BTK
and Ḡ = G−R−1

2 P .
Theorem 3.2: Assume (i) (A0)-(A1), (A5)-(A8) hold, (ii)

A − ρ
2I is Hurwitz (iii) (P2′) is convex. For Problem (PI),

the set of control laws û = (û1, · · · , ûN ) given by (40) has
asymptotic robust social optimality, i.e.,∣∣∣∣∣ 1

N
sup
f∈Uc

Jsoc(û, f)− 1

N
inf
ui∈Uc

sup
f∈Uc

Jsoc(u, f)

∣∣∣∣∣ = O(
1√
N

).

Proof. See Appendix B. �
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IV. NUMERICAL EXAMPLE

We now give a numerical example for Problem (PF) to
verify the result. Take the parameters A = B = R1 = R2 =
Q = H = 1, G = −1.5, Γ = 0.5, η = 0, and T = 1. By
solving (10), we can obtain that P (t) = − 1

(t+1) −
1
2 , which

is shown in Fig. 1. By Proposition 2.2, (A2′) holds. For (37)
in Proposition 2.4, the curves of all entries of the solution Z
are given in Fig. 2. It can be seen that when t ∈ [0, 0.7], (37)
admits a solution. By Matlab computation, the solution blows
up at t = 0.758276. From Proposition 2.4, when t ∈ [0, 0.7],
(A3) holds. The curve of P̃ is shown in Fig. 3. It can seen that
the Riccati equation in (A4) adimits a solution P̃ when t ∈
[0, 0.8]. As a conclusion, when t ∈ [0, 0.7], (A0)-(A1), (A2′),
(A3)-(A4) hold. By Theorem 2.4, Problem (PF) admits a set
of control laws which has asymptotic robust social optimality.
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Fig. 1: The curve of P (t)
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Fig. 2: The curves of all entries of Z ∈ R2×3 when
t ∈ [0, 0.7]
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V. CONCLUDING REMARKS

This paper considered a class of mean field LQG social
optimum problem with global drift uncertainty. Based on
the soft control approach, a set of decentralized strategies
is designed by optimizing the worst-case cost subject to
consistent requirements in mean field approximations. Such
set of strategies is further shown to be robust social optimal
by perturbation analysis.

For further work, it is of interest to consider mean field team
optimization with volatility-uncertain common noise. Due to
common noise and volatility uncertainty, all states of agents
are coupled via some high-dimensional FBSDE systems. An-
other interesting topic is the mean field Stackelberg game with
a leader and many followers [34], [37]. The team problem with
hierarchical structure is worthwhile to study further.

APPENDIX A
PROOF OF THEOREM 2.4

Proof. Note that we only need to optimize the social cost
under worst-case disturbance Jwo

soc(u). By Theorem 2.2, we
can restrict to consider Problem (P2) instead of (PF). From
Lemma 2.4, one obtains that for (P2),

E
∫ T

0

(‖x̂i‖2 + ‖ûi‖2)dt < C. (A.1)

It suffices to consider all ui ∈ UF
c such that Jwo

soc(u) ≤
Jwo

soc(û) ≤ NC0. By Lemma 2.3,

E
∫ T

0

‖ui‖2dt < C, i = 1, · · · , N, (A.2)

which implies

E
∫ T

0

‖u(N)‖2dt < C. (A.3)

By (14) and [38, Chaper 7], we have

E
∫ T

0

‖s‖2dt ≤ C1E
∫ T

0

‖u(N)‖2dt < C.

From (13),

dx(N) =
[
(A+Ḡ)x(N)+Bu(N)−R−1

2 s
]
dt+

1

N

N∑
i=1

σdWi,
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which together with (A.3) implies E
∫ T

0
‖x(N)‖2dt< C. This

with (A.2) leads to

E
∫ T

0

(‖xi‖2 + ‖ui‖2 + ‖s‖2)dt < C. (A.4)

Let x̃i = xi − x̂i, ũi = ui − ûi, i = 1, · · · , N , x̃(N) =
1
N

∑N
j=1 x̃j and s̃ = s− ŝ. Then by (13),

dx̃i =(Ax̃i + Ḡx̃(N) +Bũi −R−1
2 s̃)dt, x̃i(0) = 0. (A.5)

ds̃ =−
[
(A+ Ḡ)T s̃+ PBũ(N)

]
dt

+
1

N

N∑
i=1

N∑
j=1

β̃ji dWj , s̃(T ) = 0. (A.6)

By (A.1) and (A.4),

E
∫ T

0

(‖x̃i‖2 + ‖ũi‖2 + ‖s̃‖2)dt < C. (A.7)

From (14), we have

JF
soc(u) =

1

2

N∑
i=1

E
∫ T

0

[∥∥x̂i − Γx̂(N) − η + x̃i

− Γx̃(N)
∥∥2

Q
+
∥∥ûi + ũi

∥∥2

R1

−
∥∥P (x̂(N) + x̃(N)) + ŝ+ s̃

∥∥2

R−1
2

]
dt

+
1

2
E
∥∥x̂i(T ) + x̃i(T )

∥∥2

H

=

N∑
i=1

(JF
i (û) + J̃F

i (ũ) + Ii),

(A.8)

where

J̃F
i (ũ)

∆
=

1

2
E
∫ T

0

[
‖x̃i − Γx̃(N)‖2Q + ‖ũi‖2R1

− ‖Px̃(N)‖2R2

]
dt+

1

2
E
∥∥x̃i(T )

∥∥2

H
,

Ii =E
∫ T

0

[(
x̂i − Γx̂(N) − η

)T
Q
(
x̃i − Γx̃(N)

)
+ ûTi R1ũi −

(
P (x̂(N) + ŝ)

)T
R−1

2 (Px̃(N)

+ s̃)
]
dt+ E[x̂Ti (T )Hx̃i(T )].

By Lemma 2.1, Problem (P2) is uniformly convex for N ≥
N0, which with Proposition 2.1 gives J̃i(ũ) ≥ 0. We now

prove 1
N

∑N
i=1 Ii = O( 1√

N
). By straightforward computation,

N∑
i=1

Ii =

N∑
i=1

E
∫ T

0

{
x̃Ti
[
Q(x̂i − Γx̂(N) − η)

− ΓTQ((I − Γ)x̂(N) − η)
]

+ ûTi R1ũi

}
dt

−NE
∫ T

0

(
Px̂(N) + ŝ

)T
R−1

2 (Px̃(N) + s̃)dt

+

N∑
i=1

E[x̂Ti (T )Hx̃i(T )]

=

N∑
i=1

E
∫ T

0

{
x̃Ti (Qx̂i −Ψx̄− η) + ûTi R1ũi

−
(
Px̄+ ŝ

)T
R−1

2 Px̃i

}
dt

+

N∑
i=1

E
∫ T

0

ξT
[
(Ψ−PR−1

2 P )x̃i−PR−1
2 s̃
]
dt

−NE
∫ T

0

(Px̄+ ŝ)TR−1
2 s̃dt+

N∑
i=1

E‖x̂Ti (T )‖2H , (A.9)

where ξ = x̂(N) − x̄. By (35) and (41),

dk̂i =
{
−AT k̂i −Qx̂i + (Ψx̄+ η̄) + PR−1

2 (Px̄+ s̄)

−ḠT v+KG(x̂(N) − x̄)−KR−1
2 (ŝ− s̄)

}
dt

+KσdWi, k̂i(T ) = Hx̂i(T ).
(A.10)

By (A.5) and Itô’s formula,
N∑
i=1

E[x̂Ti (T )Hx̃i(T )]

=

N∑
i=1

E
∫ T

0

{
−
[
Qx̂i − (Ψx̄+ η̄)− PR−1

2 (Px̄+ s̄)

+ ḠT v −KG(x̂(N) − x̄) +KR−1
2 (ŝ− s̄)

]T
x̃i

+ k̂Ti (Ḡx̃(N) +Bũi −R−1
2 s̃)

}
dt,

and

0 =

N∑
i=1

E[lT (T )s̃(T )− lT (0)s̃(0)]

=NE
∫ T

0

[R−1
2 v +R−1

2 (Px̄+ s̄)]T s̃dt

−NE
∫ T

0

(lTPBũ(N))dt.

The above two equations lead to
N∑
i=1

E[x̂Ti (T )Hx̃i(T )]

=

N∑
i=1

E
∫ T

0

{
−
[
Qx̂i − (Ψx̄+ η̄)− PR−1

2 (Px̄+ s̄)

−KG(x̂(N) − x̄) +KR−1
2 (ŝ− s̄)

]T
x̃i

− ûTi R1ũi + (k̂(N) − v)T Ḡx̃i

− (k̂(N) − v)R−1
2 s̃+ (Px̄+ s̄)TR−1

2 s̃
}
dt.
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From this and (A.9),
N∑
i=1

Ii =

N∑
i=1

E
∫ T

0

[
ξT (Ψ− PR−1

2 P +KG)x̃i

+ (k̂(N) − v)T (Ḡx̃i −R−1
2 s̃)

+ ((P +K)x̃i + s̃)R−1
2 (s̄− ŝ)

]
dt.

By Lemmas 2.2, 2.5 and Schwarz inequality, we obtain

1

N

N∑
i=1

Ii = O(
1√
N

).

From this with (A.8), the theorem follows. �

APPENDIX B
PROOF OF THEOREM 3.2

To prove Theorem 3.2, we need three lemmas.
Lemma B.1: Assume that (A0)-(A1), (A5)-(A8) hold. For

Problem (PI), we have

E
∫ ∞

0

e−ρt
(
‖x̂(N) − x̄‖2 + ‖ŝ− s̄‖2

)
dt = O(

1

N
). (B.1)

Proof. By a similar argument to (44)-(45), we obtain

dξ =(Ā+ Ḡ)ξdt−R−1
2 χdt+

1

N

N∑
i=1

σdWi,

ξ(0) = 1
N

∑N
i=1 xi0 − x̄0,

dχ =−
[
(A+ Ḡ)Tχ+ PBR−1

1 BTKξ
]
dt

+
1

N

N∑
i=1

N∑
j=1

(βji −
σ

N
)dWj ,

where ξ=x̂(N) − x̄ and χ=ŝ− s̄. By Itô’s formula and (A8),
we have χ = P̃ ξ + ψ, where P̃ is given by (69). Denote
Υ = Ā+ Ḡ−R−1

2 P̃ . Then

ξ(t) =eΥtξ(0) +
1

N

∫ t

0

eΥ(t−µ)
N∑
i=1

σdWi(µ).

This with (A8) gives E
∫∞

0
e−ρt‖ξ(t)‖2dt = O(1/N). �

Lemma B.2: Assume that (A0)-(A1), (A5)-(A8) hold. For
Problem (PI) and any N ,

max
1≤i≤N

E
∫ ∞

0

e−ρt
(
‖x̂i‖2 + ‖ûi‖2

)
dt <∞. (B.2)

Proof. By (A7) and Lemma B.1, we obtain that

E
∫ ∞

0

e−ρt(‖x̂(N)(t)‖2 + ‖ŝ(t)‖2)dt <∞.

Note that Ā− ρ
2I is Hurwitz. By Schwarz’s inequality,

E
∫ ∞

0

e−ρt‖x̂i(t)‖2dt

≤ C+3E
∫ ∞

0

e−ρµ‖g(µ)‖2
∫ ∞
µ

t
∥∥e(Ā− ρ2 I)(t−µ)

∥∥2
dtdµ

+ 3CE
∫ ∞

0

e−ρµ‖σ(µ)‖2
∫ ∞
µ

∥∥e(Ā− ρ2 I)(t−µ)σ
∥∥2
dtdµ

≤ C + 3CE
∫ ∞

0

e−ρµ‖g(µ)‖2dµ

+ 3CE
∫ ∞

0

e−ρµ‖σ(µ)‖2dµ ≤ C1.

This with (A7) completes the proof. �
Lemma B.3: Assume A− ρ

2I is Hurwitz. Then

E
∫ ∞

0

e−ρt‖k̂(N) − v‖2dt ≤ O(1/N).

Proof. By (63) and some elementary computations, we obtain
dϑ(t) = −(A − ρ

2I)Tϑ(t)dt, where ϑ = v − Kx̄ − ϕ. This
leads to ϑ(t) = e−(A− ρ2 I)tϑ(0). Since A− ρ

2I is Hurwitz, and
ϑ ∈ Cρ/2([0,∞),Rn), then we have ϑ(t) ≡ 0, which implies
v = Kx̄ + ϕ. By Lemma B.1,

∫∞
0
e−ρtE‖k̂(N) − v‖2dt ≤

O(1/N). This completes the proof. �
Proof of Theorem 3.2. As in the proof of Theorem 2.4, we

restrict to Problem (P2′). It suffices to consider all ui ∈ Uc
such that supf∈Uc Jsoc(u, f) ≤ supf∈Uc Jsoc(û, f) ≤ NC0.
Taking f = 0, we have

E
∫ ∞

0

e−ρt‖ui‖2dt < C. (B.3)

By (54) and [29], we have

E
∫ ∞

0

e−ρt‖s‖2dt ≤ C1E
∫ ∞

0

e−ρt‖u(N)‖2dt < C.

Noticing A + Ḡ − ρ
2I is Hurwitz, one can obtain

E
∫∞

0
e−ρt‖x(N)‖2dt < C which with (B.3) implies

E
∫ ∞

0

e−ρt
(
‖xi‖2 + ‖ui‖2 + ‖s‖2

)
dt ≤ C. (B.4)

From this and (B.2),

E
∫ ∞

0

(‖x̃i‖2 + ‖ũi‖2 + ‖s̃‖2)dt < C. (B.5)

We have Jsoc(u) =
∑N
i=1(Ji(û) + J̃i(ũ) + Ii), where

J̃i(ũ)
∆
=

1

2
E
∫ ∞

0

e−ρt
[
‖x̃i − Γx̃(N)‖2Q

+ ‖ũi‖2R1
− ‖Px̃(N)‖2R2

]
dt,

Ii
∆
= E

∫ ∞
0

e−ρt
[(
x̂i − Γx̂(N) − η

)T
Q
(
x̃i

− Γx̃(N)
)

+ ûTi R1ũi

−
(
P (x̂(N) + s)

)T
R−1

2 (Px̃(N) + s̃)
]
dt.

From Lemma 3.1 and Proposition 3.1, J̃i(ũ) ≥ 0 for N ≥ N0.
By making use of Itô’s formula and straightforward computa-
tions,
N∑
i=1

Ii =

N∑
i=1

E
∫ ∞

0

e−ρt
{
x̃Ti
[
Qx̂i −Ψx̄− η̄

]
+ ûTi R1ũi −

(
Px̄+ ŝ

)T
R−1

2 Px̃i

}
dt

+

N∑
i=1

E
∫ ∞

0

e−ρtξT [(Ψ− PR−1
2 P )x̃i − PR−1

2 s̃]dt

−NE
∫ ∞

0

e−ρt(Px̄+ ŝ)TR−1
2 s̃dt,

=

N∑
i=1

E
∫ ∞

0

e−ρt
[
ξT (Ψ− PR−1

2 P +KG)x̃i

+ (k̂(N) − v)T (Ḡx̃i −R−1
2 s̃)

+ ((P +K)x̃i + s̃)R−1
2 (s̄− ŝ)

]
dt.
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From (B.1) and (B.5), we obtain

1

N

N∑
i=1

Ii = O(
1√
N

).

�
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