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Abstract—Sliding mode control is a widely used approach in
different application domains, due to its versatility and ease
of implementation. As is well-known, one of its most serious
drawbacks is the presence of chattering. To alleviate this problem,
higher-order sliding mode approaches have been proposed, which
also allow dealing with high relative degree plants. To gain more
flexibility in the controller design and to boost performance,
switched and variable-gain approaches are being developed for
first and second-order sliding mode controllers. This technical
note introduces a conceptual framework to merge the two aspects,
providing a general methodology for the design and tuning of
high-order sliding mode controllers. The main strength of the
method is its generality, in that it accommodates a generic order r
sliding mode controller, and it encompasses both continuous
and discrete variation of the controller parameters, the latter
giving rise to switched strategies. The properties of the closed-
loop system are formally analyzed, and the effectiveness of the
method is demonstrated in simulation on examples of switched
and variable-gain higher-order sliding mode controllers.

Index Terms—Sliding mode control, higher-order sliding mode
(HOSM), switched control.

I. INTRODUCTION

Variable structure control approaches, and sliding mode
(SM) in particular, are recognized as successful methods
to control a wide class of nonlinear systems affected by
uncertainties that are in general unknown in their structure, but
with known bounds. Their ability to provide working solutions
in many practical applications, combined with their ease of
implementation also with scarce computational power, have
made these methods rather pervasive in the control commu-
nity. Of course, these approaches have also some drawbacks,
which originated different lines of research that study how
to alleviate them: the main one is the so-called chattering
phenomenon, which is a high-frequency oscillatory motion
around the sliding manifold due to the discontinuity of the
control law. To address this issue, Higher-Order Sliding Mode
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(HOSM) approaches have been developed, and several HOSM
algorithms have been proposed [1]-[7]. Among these, the al-
gorithm obtained as solution of the so-called Fuller’s Problem
is presented in [8], where different HOSM algorithms are con-
sidered, which guarantee a time-optimal reaching of the sliding
manifold. A second issue in SM control is the generally high
control authority resulting from the application of the method.
This is mainly due to the fact that the controller is designed not
based on the actual uncertainty level, but rather on a — possibly
rather coarse — estimate of its upper bound. A fixed tuning
of the controller parameters based on such estimate, in fact,
leads in general to an excessive control authority, especially
when close to the sliding manifold. To address this issue,
several approaches have been proposed. Further, considering
that in many applications one has to deal with different degrees
of uncertainty and/or different control objectives, which vary
according to the region of the state space currently visited
by the closed-loop trajectory, switched formulations proved
to be an efficient way to achieve performance enhancement.
In the SM literature, different approaches leading to time-
varying control gains were devised to deal with specific
situations and constraints. A possibility is to employ adaptive
SM control laws, which are reviewed in [9]: they are typically
based either on the so-called o-adaptation method [10]-[12]
or on dynamic adaptation [13], [14]. A different approach
was proposed in [15], where, to deal with state-dependent
uncertainties and to ensure global convergence properties, a
second-order SM (SOSM) control algorithm which modifies
the amplitude of the control gain within each time interval
between two successive extremal points was proposed, giving
rise to a de facto switching control law. Within the same
context, [16] proposes a hybrid first-order SM control law for
second-order systems, which relies on a partitioning of the
state space into different regions and on the availability of
two scalar control variables. In [17], a time-based adaptation
coupled with the additional degrees of freedom given by a
switched variation of the controller parameters is proposed
for a SOSM control algorithm. Furthermore, [18] considered
state-dependent uncertainties associated with each region of
the state space, and proposed a switched strategy to define
time-varying parameters for a SOSM controller.

The present technical note aims at optimally combine the
advantages of HOSM with those of variable gain and switch-
ing, providing a comprehensive methodological framework for
the design of the resulting controllers. This allows achieving
both chattering alleviation and reduced control authority, while
leaving freedom to also accommodate different performance
specifications for a single system according to the online evo-
lution of the closed-loop trajectory. Specifically, the extension



to HOSM with augmented auxiliary system for chattering
reduction and to the case of state constraints as in [19] are
discussed. The main result of the proposed approach is the
generality of the method, that allows designing a generic order
r sliding mode controller (thus allowing one to deal with
systems of any relative degree), and the fact that it embodies,
as particular cases, both continuous and discrete variation of
the controller parameters, the latter giving rise to switched
strategies. General conditions for designing the controller
parameters are provided independently of the adopted strategy.
Moreover, overcoming the explicit definition of a Lyapunov
function candidate, which is quite challenging for the generic
order 7 sliding mode, finite time convergence of the sliding
variable to the sliding manifold is rigorously proved.

The structure of the technical note is as follows. Section
IT introduces the needed preliminaries on SM control, states
the problem formulation, and provides general theoretical
results. Section III presents the proposed variable-gain and
switched formulations of the control algorithm, together with
the assessment of the closed-loop properties, while in Section
IV a numerical example is illustrated. Conclusions are drawn
in Section V.

II. GENERAL FRAMEWORK
A. Problem formulation

In this technical note, we consider the class of continuous-
time SISO uncertain nonlinear systems [8] described by

&(t) = a(zx,t) + b(x, t)u(t) (1)

where z € R™ is the system state (with initial condition
xo 2 x(ty)), u € R is the control variable, a : R — R”
and b : R®™! — R™ are uncertain and sufficiently smooth
vector fields, and the whole state vector x is available for
feedback (the explicit dependence of variables on time is
omitted when convenient, in order to improve readability).
The first step towards designing the proposed HOSM control
strategy is to define the system output

y(t) = f(x(t)) 2)

which coincides with the sliding variable to be steered to zero
in finite time, with f : R™ — R being a known function.
Two assumptions, which are standard in sliding mode control
systems, are introduced in the following.

Assumption 1: The relative degree r of system (1)-(2) (i.e.,
the minimum order of time derivative of y(¢) in which w(t)
appears explicitly) is uniform, globally well defined, and time-
invariant. (]
Given suitable functions h(z,t) and g(x,t), one obtains that
the r-th order time derivative of y(t), namely (™ (t), is

Y (t) = h(z,t) + g(z, t)u(t). 3)

Assumption 2: Functions h and ¢ are uncertain, but bounded
according to
[h(z,t)] < C(a,t) ©)

g(z,t) € [Kpm(z,t), Kp(z,t)] C [Km,KM] 5)

for all x € R™ and all ¢t > to, where Kpy > K,, > 0
are known scalar constants, while C(z,t), K,,(x,t), and
Kps(x,t) are known functions of state and/or time. O
The objective of the HOSM control law is to attain, in finite
time, the manifold given by

VO =y ) =

The system describing the evolution of y(¢) and its time
derivatives can be directly expressed by defining o; () =
y(t), obtaining

=y V(1) = 0. 6)

ai1(t)  =oa(t)

: (7)
Gro(t) = on(t)

or(t) = h(z,t) + g(z, thu(?)

which is referred to as auxiliary system. In general, one can
define a diffeomorphism ®(x) : R™ — R"™, which generates
both ¢ € R" and the internal state ( € R™~". The dynamics
of ((t) has to satisfy the following assumption.

Assumption 3: The internal dynamics of system (1)-(2),
namely

C(t) =v(a(t),¢(1)), (8)
presents no finite escape time phenomena, i.e., there exists
no finite time instant ¢, such that lim;_||¢(t)|| = oo, for

top < te < oo. Furthermore, the zero dynamics is globally
asymptotically stable, which can be proven by the existence
of a radially unbounded Lyapunov function V(¢) [20]: as a
consequence, when o(t) = 0, every trajectory ((t) converges
to zero as ¢t — oo. |
Assumption 3 implies that, once o(t) is steered to zero in
finite time by the control action, x(¢) will converge to zero
asymptotically.

Remark 1: Notice that, differently from classical approaches
in HOSM, which consider constant bounds on the uncertain
terms, the bounds considered in the proposed framework can
be dependent on time and on the value of the state. Our
formulation only considers the presence of matched distur-
bances. This is a common assumption in sliding mode control,
however one could still employ the same approach detailed in
the remainder of the technical note (which only deals with
the dynamics of y(t) and its time derivatives) while assuming
the presence of unmatched disturbances acting on the internal
dynamics. Indeed, as discussed, among others, in [21], due
to the definition of ®(x), the uncertain function a(z,t) is
mapped into matched uncertain terms in the auxiliary system
(7), while the residual unmatched terms can affect only the
internal dynamics. In this case, the internal dynamics has to
be assumed input-to-state stable with respect to the unmatched
disturbances, which would be a less restrictive hypothesis than
that of Assumption 3. This would imply convergence of x(t)
to a bounded set, whose size would depend on the unmatched
disturbance realization. g

Following an approach similar to that of [8] (which was
however developed for systems with constant bounds on



the uncertain terms), the control law wu(t) is defined as a
discontinuous function of

o]’ ©)

while the amplitude U = U(xz, t) of the discontinuous control
variable is assumed to be varying as a function of time, and
of the state. No reference to any specific amplitude variation
strategy is made here, in order to obtain a general result.
However, it is assumed that U(x,t) satisfies the following
assumption.

Assumption 4: For all z € R™ and all ¢ > %,

O'é |:0'1 g9

Km(df,t)U(l',t) - C(l‘,t) Z €, (10)
Uz,t) < U, (11)
where € € R+ and U € R+ are constant terms. O

One can notice that Assumption 4 implies the existence of a
global upper bound on C'(z,t) which, however, does not need
to be explicitly defined. The expression of the control law is

u(t) = =U(x,t) - sgn(s(o)), (12)

in which, being s(o) a null-measure set, the value of wu(t)
for s(o) = 0 is determined as the Filippov solution of the
discontinuous vector field at o [22]. As also reported in [8],
[19], the use of efficient methods to define an expression of
s(o) for a specific higher-order case is still an open problem
(see, e.g., [23]), but a general analytical condition from which
the expression of s(o) can be obtained is provided in [8].

Remark 2: The expression of s(o) for the general case can
be obtained as follows. In [8], it is assumed that C', K,,, and
K are constant, and the constant reduced control amplitude
o, € Ry is defined as

o 2 KU —-C, 13)

with U being the constant amplitude of the control variable.
The general expression of s(o) is obtained in this work by
substituting € to o, in [8]. Thus, € can be interpreted as global
lower bound of a “reduced control amplitude”. (]
We report here the explicit expression of s(o) for r = 1,2, 3,
by referring to [8], and substituting € to «,:

ceR = s(0)= o0y (14)

ceR?= s(0) = al+%‘e’2| (15)
3 2

7R = 5(0) = o1+ T +sgn (o + )

3
2 . 2\ 35
X {\}g (sgn (02 + Z3Ts) 5%2““) o2 + —;i) ’

Obtaining the expression of the surface s for the fourth and
fifth-order cases is possible in principle: the complexity of the
expression of s(o) grows very fast with the order r, but the
derivation of efficient numerical or exact-algebraic methods
(see the references in [8]), is not investigated in this paper.
Remark 3: The general formulation of the control law
in (12) provides the control designer with a wide choice.
In particular, the knowledge of the time-varying bounds on
the uncertain terms can lead to varying U(x,t), increasing
it when large uncertain terms have to be dominated, and

+ ”} . (16)

reducing it when smaller amplitudes are sufficient to guarantee
convergence, while at the same time reducing the chattering
effect. The variation can be smooth in time, or the control
amplitude can switch between different pre-defined values. In
the remainder of this section, a general result will be proven,
while more specific results will be described in the following
sections. ]

B. General result on finite-time convergence

Theorem 1: Given system (1)-(2) satisfying Assumptions
1 and 3, with bounds on the uncertain terms satisfying As-
sumption 2, a feedback control law of form (12) is defined
which satisfies Assumption 4. Then, o converges to the origin
in finite time.

Proof: In order to use a more compact notation, a new
term is defined as v(x,t) = g(z,t)u(t). Being g(z,t) > 0
by assumption, given the expression of w(¢) in (12), then
v(x,t) = =V (z,t)sgn(s(o(t))), with

V(z,t) € [C(z,t) + €, K (2, 6)U (2, )] > 0, (17)

as C(xz,t) +€ < Ky, (x,t)U(z,t) according to (10). Consider
system

21 (t) = ZQ(t)
: (18)

Zro1(t) = 2.(t)

Ze(t) = o(z,t) +(z, Hw(t)
with

Oz, t) € [-W + €, W — ¢ (19)
y(z,t) =1 (20)
w(t) = —Wsgn(s(z)) 1)

being W = Kj;U. Considering that the expression of s(-) is
the same for o or z as argument, one can notice that s(z) is
defined by using the reduced control amplitude, given by o, =
1-W —(W —€) = ¢, which can be obtained from the analogous
of (13) for system (18). System (18) has constant bounds on
the uncertain terms, positive reduced control amplitude, and
the expression of s(z), following the expressions (14)-(16) and
their generalization to the r-th order, is the same defined in
[8]. Therefore, according to Theorem 2 in [8], z converges to
the origin in finite time for any initial condition z(ty).

Now, consider again the auxiliary system (18) with initial
condition o (), and take an arbitrary time evolution of h(z,t)
and g(z,t) that satisfies (4)-(5). By taking z(tg) = o(t), one
will obtain z(t) = o(t) if and only if

h(z,t) + g(z, t)u(t) = ¢(x,t) + w(t),

which, given the two closed-loop control laws and remember-
ing the definition of v(z,t), is equivalent to imposing

d(x,t) = h(x, t) + (W — V(x,t))sgn(s(z(t))). (22)

However, this corresponds to a feasible evolution of system
(18) only if ¢(x,t) satisfies (19). Two cases have to be
analyzed:



o If s >0, then
B(e,) = h(w, ) + W = V(z,2),
Given the bounds provided in (4) and (17) for h(x,t) and
V(x,t), respectively, one has
o(x,t) € [-C(x,t) + W =W,
C(z,t)+ W — C(z,t) — €

= [—C(JZ, t)7 W — 6] . (23)
o If s <0, then
o(x,t) = h(z,t) — W+ V(z,t),
which implies
¢(z,t) € [-C(z,t) = W 4 C(z,t) +¢,
C(z,t) — W+ W]
=[-W +¢C(x,t)]. (24)

Given that, by Assumption 4, W — C(z,t) = KyU —
C(z,t) > ¢, then W — € > C(x,t), and an inclusion merging
(23) and (24) can be written as

oz t) € [-W 4 e, W — ¢,

which coincides with (19). This implies that every feasible
time evolution of system (7) coincides with the time evolution
of system (18) for a particular (and feasible) realization of
¢(x,t), which in turn implies that o(t) converges to the origin
in finite time. ]

Remark 4: The result proved in Theorem 1 for a general
amplitude variation strategy is based on the parallelism with
fixed gain approaches as in [8] and [24]. Hence, the presented
convergence arguments refer to the construction of a family
of non-smooth Lyapunov functions. The choice of the Lya-
punov function candidate relies on the analytic expression of
the convergence time, whose computation, however, becomes
difficult for high values of r. For the simpler case of SOSM
control with switched gain, an estimate of the convergence
time can be found for instance in [21]. (Il

Remark 5: In some cases, the definition of the control
variable as a discontinuous signal, although of varying am-
plitude, can induce unacceptable vibrations on the controlled
variables, especially when mechanical systems are considered.
The proposed framework can be easily extended to the case in
which additional states are introduced in the auxiliary system
(7), and an m-th order time derivative of u(t) is used as control
variable, thus obtaining the value of w(t) by m-fold time
integration of a discontinuous control variable. As m increases,
the smoothness of the control signal u(¢) also increases, so
that the frequency of chattering is significantly reduced. On
the other hand, the chattering amplitude does not necessarily
decrease as m increases. Indeed, as discussed in [25] by
exploiting the so-called describing function method, higher-
order sliding mode approaches can generate larger chattering
amplitude with respect to classical sliding mode control. A
higher gain leads to a higher chattering amplitude: therefore,
switched/variable gain methods such as those presented in this
technical note can successfully tackle this problem. O

Remark 6: 1f the last equation of the auxiliary system (7)
is defined including a known function h(z,t), as
&p(t) = h(z,t) + h(z,t) + gz, t)u(t), (25)
then one can define an additional term in the control law in
order to compensate it (see, e.g., [26]), as

u(t) = —h(z,t) — U(x,t) - sgn(s(o(t))). (26)
It is immediate to see that the resulting closed-loop system
is the same considered in Theorem 1, and therefore the same
results hold. U
In [19], a general HOSM strategy was proposed in order to
cope with the presence of state constraints, and in particular
inequality contraints that have to be satisfied point-wise in
time on the components of 0. Assume that the satisfaction of
the state constraint

o(t) eS8, t >t (27)
is added to the requirements for the closed-loop system, where
S is a compact set including the origin. Then the control law
can be expressed as

w(t) =

{_W(x,t) -sgn(s(o(t)), c €S (28)

—W(z,t) -sgn(o.(t)), o ¢ S .

If the “unconstrained” control law (12) is applied, there exists
a set 8’ C S of initial conditions o (ty), named region of
attraction, for which o(t) € S for all ¢ > tg, and for which
o(t) converges to the origin in finite time. The use of the
control law defined in (28) is targeted at an enlargement of
the region of attraction.

Corollary 1: Given system (1)-(2) satisfying Assumptions 1
and 3 and subject to the state constraints in (27), with bounds
on the uncertain terms of the auxiliary system (7) satisfying
Assumption 2, a feedback control law of form (28) is defined
which satisfies Assumption 4. Then, o converges to the origin
in finite time for all o(tp) € S’ with 8" C S, and x converges
asymptotically to the origin.

Proof: The result is immediately proven given the defi-
nition of S’ and the results in Theorem 1. [ ]
The amount of enlargement of the region of attraction S as
compared to S’ strongly depends on the system dynamics
and on the type of state constraints. The reader is referred
to Section V in [19] for a discussion on this topic in the case
of constant control amplitude.

III. VARIABLE-GAIN AND SWITCHED HOSM LAWS

Following the general formulation in Section II, in this
section variable-gain and switched HOSM control laws, be-
longing to the class of algorithms represented by (12), will
be introduced. This section will refer to the formulation of
Section II, also imposing state constraints.



A. Variable-gain HOSM

Consider the auxiliary system (7) controlled via (12) where
the gain U(x,t) varies according to

a C(z,t)

U(z,t) 7[(7”(33 )

+9, (29)
with § being a positive constant.

Corollary 2: Consider a given auxiliary dynamics (7) with
associated constraints (4) and (5) and controlled via (12).
Assumptions 3-4 hold. If U(x,t) is defined as in (29) with
e = K,,(z,t)d, then inequalities (10) and (11) are satisfied,
and the results of Theorem 1 apply. (]

Proof: Since § is a positive constant, being ¢ =
K, (z,t)0, one has that K, (x,t)U(x,t) = C(x,t)+e€, which
directly implies (10). Moreover, since Assumption 2 implies
the existence of a global upper bound on C(z,t), and a global
positive lower bound on K,,(z,t), there exists a positive
constant U such that inequality (11) holds. ]

B. Switched HOSM

Consider the auxiliary system (7) with an additional as-
sumption on the partition of the state-space as follows. We
assume that the state space S of system (7) is partitioned
into k non-overlapping subsets S;, ¢ = 1,...,k, which are
such that U;—1,  1S; = S, and we assume that in each of
them we may define different upper and lower bounds for
the uncertainties. Note that the subsets S;, ¢ = 1,...,k do
not need to be necessarily nested. If this is the case, instead,
the state space S can be partitioned into compact regions
Ri,i=1,...,k so that it is possible to introduce the subsets
S; :Ri\RH_l,Z’:l,...,k’—l with S, = Ry.

More specifically, inside each subset S;,¢ = 1,...,k,
constant upper and lower bounds on the uncertain terms are

assumed to be known, i.e., Vi =1,...,k, and we can write
h(z,t) € [-C;, Ci] (30)
g(x,t) € [Km i, Kyl - 3D

Such upper bounds can be determined by taking into account
the shape of the regions, and the fact that within each of them
the state of the auxiliary system is bounded.

Consider now the control law (12) where U(x,t) is a
switched gain selected as

on

Ulw,t) = 77—

+6, i=1,...,k, (32)
with §; being positive constants.

Corollary 3: Consider a given auxiliary dynamics (7) with
associated constraints (4) and (5) and controlled via (12).
Assumptions 3-4 hold. If U(x,t) is defined as in (32) with
€ = Ky, :0;, Vi = 1,...,k, then inequalities (10) and (11)
are satisfied, and the results of Theorem 1 apply. (]

Proof: Since §; is a positive constant, and being € =
K6, Yi=1,...,k, it holds that K,,, ;U(z,t) = C; + ¢,
which directly implies (10). Moreover, since K, ; and C; are
constant inside each subset, it is possible to state that U =
C;/ K i + d; so that also inequality (11) holds. [ |

IV. NUMERICAL EXAMPLE

Consider the nonlinear system given by

i = —x1 4 *2(u +d) (33a)
1

To = 2x1To +sinxy + §(U + d) (33b)

i‘g = T2 (33C)

which is adapted from [27, Ch. 6] by adding the unknown
matched disturbance term d, detailed in the following using
two different formulations. System (33) can be rewritten in
form (1) with

—x1 + €2*2d e2%2
a(z,t) = |2x133 + sin(z2) + 3d| , bz, t)=| %
2332 0
(34)
By choosing y = 0; = x3, one has
dl =09 = 2.%2 (35)
Gy =h + h + gu = 2(2x 29 + sin(x2)) +d +u (36)

with relative degree equal to 2. Note that the term h =
2(2z1x9 + sin(xz)) represents the known component of the
drift term (see Remark 6), while h = d is the unknown
counterpart. Furthermore, consider the constraint set as S =
{(01,02) : |o1| <1, |oa| < 1}. Define now the diffeomor-
phism

T3 01
O(x) = 2x9 = | o2 (37
14 2 — 22 ¢

so that the internal dynamics of the system, that is

$=(0,0) = (1= ¢ = e™)(1+200e”) = 2sin () e
(38)

is globally Lipschitz in (, thus presenting no finite time escape

phenomena [28]. Furthermore, the zero dynamics

(=v(0,¢) =~

is asymptotically stable. Thus, Assumption 3 is satisfied.

(39)

A. Variable-gain strategy

Now, we would like to design a variable-gain control law,
as detailed in the previous section. Assume that d = v(1 +
sin(t) + |r3 + 423|), with v C [~1, 1] randomly generated.
Then, |h(x,t)| < 1 +sin(t) + |3 + 423 = C(x,t) < C =4,
while g(z,t) = 1 = K,,. Choosing § = 1 and U(x,t) =
1+sin(t) + |3 +423| + 1, all the assumptions of Corollary 2
are satisfied. Compensating the known dynamics as described
in Remark 6, the whole control law is

u = —2(2z1x2 + sin(xsz)) — U(x,t) sgn (01 + 022|Z2|) .

(40)
Based on the result in Corollary 2, o converges to the origin
in finite time while satisfying the imposed constraints, as
can be observed in Figure 1 (lower-left), where the auxiliary
state-space and the box constraint S are illustrated. More
specifically, oo slides on its lower bound. Figure 1 (upper-
right) reports also the control input u(t) and the uncertain
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Figure 1. Variable-gain. From the top left: time evolution of the state x; time
evolution of the control input u, disturbance h and variable gain U(z,t);
auxiliary phase-space with box state constraints S; time evolution of the
internal dynamics ¢

term h(z,t). It is apparent how the control gain U(z,t) is
continuously varied, while maintaining the reduced control
amplitude e constant. Finally, Figure 1 (upper-left) reports
the time evolution of the state x, while Figure 1 (lower-
right) illustrates the time evolution of the asymptotically stable
internal dynamics.

B. Switched-gain strategy

Consider now again the outermost constraint set S, and the
auxiliary state space partitioned into ellipsoidal subsets, i.e.,

S & {(o1,02) :0.3 <0’ Mo <0.7}
Sy = {(01,02) :0'Mo < 0.3},

with M = diag{1, 2} such that

1 ifoed,
|h(z,t)| < <2 ifoed
4 otherwise .

Choosing § = 1 and

2 ifoed
U(z,t)=4¢3 ifoes

5 otherwise ,

all the assumptions of Corollary 3 are satisfied. Hence, o
converges to the origin in finite time when applying the control
law (40) with the switched gain defined above. Analogously
to the variable-gain case, Figure 2 reports the time evolution
of the state x (upper-left), as well as the auxiliary state-
space with the outermost constraint set (lower-left). Notice
that o is steered to zero in finite time, while satisfying the
imposed limits, with o2 sliding on its lower bound. Moreover

S0 = 0
® =
0.5
1
15 0.5
1 0 1 o 2 4 6 8 10
o1 time [s]

Figure 2. Switched gain. From the top left: time evolution of the state
x; time evolution of the control input u, disturbance h and switched-gain
U(x,t); auxiliary phase-space with box state constraints S; time evolution of
the internal dynamics ¢

Figure 2 (upper-right) reports the control input u(t) and the
uncertain term h(z,t). U(x,t) is switched depending on the
ellipsoidal subset to which the state belongs, while maintaining
the reduced control amplitude e constant.

C. Comparative analysis

As a term of comparison, a standard second-order controller
with constant gain U = 5 and compensation of the known
dynamics as in Remark 6, for a fair comparison, has been
considered, and the results shown in Figure 3. For the sake
of brevity, only the case with the same disturbance as in the
variable-gain strategy is illustrated. The amount of chattering
(visible in the zoomed portions of Figures 1, 2 and 3) is
measured by the Lo and L.,-norms of the components of
o in the time interval between 4 s and 10 s, in which ideally
01 = 0 = 0. As can be seen in Table I, the fixed-gain strategy
leads to a visible increase of both the Lo-norm and the L-
norm, as compared to the variable-gain strategy and switched
one. Hence, our proposed control laws, as expected, present
a double advantage: one in terms of control effort reduction,
guaranteed by the switched/variable gain nature, and one in
terms of the beneficial chattering attenuation property.

V. CONCLUSIONS

This technical note proposed a holistic framework for the
design of high-order SM controllers with gain depending on
time and on the state value. The method allows designing
SM controllers with both continuous and switched adaptation
under the same conceptual scheme, which enjoy finite time
convergence to the sliding manifold. The shown simulation
examples confirm the capability of the method to offer the way
for combined chattering alleviation, reduction of the control
authority and enhanced performance levels.



Table I
CHATTERING EVALUATION

HOSM strategy | Variable | Lo-norm | Leo-norm
variable-eain o1 7.61x 1075 | 9.16 x 107°
& o9 55x 1073 | 6.5x 1073
switched-eain o1 7.94x107% | 1.07 x 107°
& o2 53x1073 | 53x1073
fixed-gain o1 9.98 x 107% | 1.35 x 1077

& o9 95%x1073 | 9.5x10°3

02
L
e

-1 0 1 o 2 4 6 8 10
o1 time [s]

Figure 3. Constant gain. From the top left: time evolution of the state x;
time evolution of the control input wu, disturbance h and constant gain U,
auxiliary phase-space with box state constraints S; time evolution of the
internal dynamics ¢
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