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Categorization Problem on Controllability of

Boolean Control Networks
Qunxi Zhu, Zuguang Gao, Yang Liu, Member IEEE, Weihua Gui

Abstract—A Boolean control network (BCN) is a discrete-time
dynamical system whose variables take values from a binary set
{0, 1}. At each time step, each variable of the BCN updates
its value simultaneously according to a Boolean function which
takes the state and control of the previous time step as its input.
Given an ordered pair of states of a BCN, we define the set of
reachable time steps as the set of positive integer k’s where there
exists a control sequence such that the BCN can be steered from
one state to the other in exactly k time steps; and the set of
unreachable time steps as the set of k’s where there does not
exist any control sequences such that the BCN can be steered
from one state to the other in exactly k time steps. We consider
in this paper the so-called categorization problem of a BCN, i.e.,
we develop a method, via algebraic graph theoretic approach, to
determine whether the set of reachable time steps and the set of
unreachable time steps, associated with the given pair of states,
are finite or infinite. Our results can be applied to classify all
ordered pairs of states into four categories, depending on whether
the set of reachable (unreachable) time steps is finite or not.

Index Terms—Boolean control network; Categorization; Con-
trollability; Semi-tensor product of matrices; Algebraic graph
theory.

I. INTRODUCTION

The Boolean network (BN) was firstly proposed by Kauff-

man [1] to model gene regulatory networks (GRNs). BN is a

simple yet quite powerful tool for analizing GRNs, compared

with other tools such as those involving ordinary differential

equations, which often have numerous unknown parameters

and can be hardly solved for large-scale systems [2]. In

addition, the BNs facilitate to study the possible steady-state

behaviors systematically. For example, Albert et al. proposed

a simplified BN of the segment polarity gene network of

Drosophila melanogaster [3]. Such a BN can provide an

essential qualitative description for the expression of genes.

BNs with external control inputs are called Boolean control

networks (BCNs). A typical example is the cell cycle control

network of fission yeast [4].
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In the past decade, Cheng and his colleagues [5] have

proposed a seminal technique, called semi-tensor product

(STP) of matrices, for analyzing BNs and BCNs. Some

applications of STP include the analysis of controllability [6]–

[9], observability [6, 10]–[13], stability and stabilization [14]–

[18], optimal control [19]–[21] and so on. Moreover, other

kinds of BNs and BCNs, such as the conjunctive Boolean

networks (CBNs) [22]–[26], are recently prevalence. It is no

surprise that the research on the BNs and BCNs has become

increasingly attractive and challenging. Specifically, the study

of controllability has developed rapidly in recent years [6]–

[9]. One of the most influential results on controllability was

provided in [7], where they defined a so-called controllability

matrix, and the controllability of the BCN can be determined

by checking the positiveness of the controllability matrix.

Additionally, Laschov and Margaliot [8] further studied the

k fixed-time controllability by applying the Perron-Frobenius

theory. Roughly speaking, an ordered pair of states is k fixed-

time controllable if there exists a control sequence that drives

the system from the first state to the second state in ex-

actly k time steps. The results in [8] relates the k fixed-time

controllability with the positiveness and primitivity of some

matrices. We will formally define these concepts and introduce

the relevant results in section II.

In this paper, we propose and answer the following ques-

tions: Given a starting state and an ending state, is there

infinite number of positive integer k’s such that the pair is k
fixed-time controllable? Is there infinite number of positive

integer k’s such that the pair is not k fixed-time controllable?

Equivalently, we define the set of reachable time steps (set

of unreachable time steps, respectively) as the collection of

positive integer k’s such that the given pair of states is k fixed-

time controllable (not k fixed-time controllable, respectively),

and check the finiteness of these two sets. A complete answer

to this question is provided as Theorem 3, and some further

result is also presented (see Theorem 4).

The motivation of our study is two-fold. First, we note that

a BCN is said to be k fixed-time controllable if every ordered

pair of states of the BCN is k fixed-time controllable. It was

shown in [8] that if a BCN is k fixed-time controllable, then

the BCN is also p fixed-time controllable for any p ≥ k (see

Theorem 2 in section II). However, for a specific pair of states

which is k fixed-time controllable, it is not necessarily true

that the pair is p fixed-time controllable for any p ≥ k. A

natural question one may ask is that for a given pair of states,

does there exist some integer k such that the pair is p fixed-

time controllable for any p ≥ k. If the answer is yes, we say

that this pair of states falls into the primitive category. If the

http://arxiv.org/abs/1904.05887v2
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answer is no, we further classify those pairs into three other

categories. The detailed formulation is provided in section II.

A second motivation of our research comes from potential

biological applications. The goal of interest may be to drive

a system from one state to another, assuming that the former

is undesired and the latter is desired. Additionally, one may

encounter the situation that a biological system consists of sev-

eral identical subsystems with no couplings among them, and

each subsystem is modeled by the same BCN. For example,

a multi-cellular organism has identical BCNs, each modeling

a cell-cycle [8]. We may be interested in finding a control

law with respect to each subsystem to drive each subsystem

from different initial states to the same desired state at some

fixed time. Our results in this paper characterize all possible

values of such fixed times efficiently, without checking each

positive integer. If such a fixed time exists, all subsystems can

be applied with the same control law afterwards, resulting in

a complete synchronization of the states of these subsystems

in the following dynamical evolutions.

The remainder of this paper is organized as follows. Sec-

tion II introduces some preliminaries on algebraic graph

theory and the existing controllability results of BCNs. In

section III we present the categorization problem on control-

lability of BCNs and establish our main result. An illustrative

example is provided in section IV . Finally, we conclude the

paper in section V.

Before ending this section, we present the following nota-

tions that will be used throughout the paper: Z+ – the set of

the positive integers; [a, b] – the integer set {a, a + 1, ..., b}
with a ≤ b; Coli(A) – the ith column of the matrix A;

∆k := {δik | i = 1, 2, · · · , k}, where δik is the ith column

of the identity matrix Ik; D := {T = 1, F = 0} – the

logic field; An m × n matrix A with Coli(A) ∈ ∆m for

all i – the logical matrix; Lm×n – the set of all m × n
logical matrices; A = δm[i1, i2, ..., in] – the simplified ex-

pression for A = [δi1m, δi2m, ..., δinm ] ∈ Lm×n; Bn×n – the

set of n × n Boolean matrices, i.e., all entries are 0 or 1;

B(A) — Boolean form of nonnegative matrix A, which is a

Boolean matrix with the ijth entrie 1 if Aij > 0, and the

ijth entrie 0 if Aij = 0. A +B B = (Aij ∨ Bij) (resp.

A×BB :=

(
n∑

k=1
B(Aik ∧Bkj)

)

ij

) – the Boolean addition

(resp. product) of A,B ∈ Bn×n; A(k) := A×B · · · ×BA
︸ ︷︷ ︸

k

;

A matrix A > 0 means its entries are positive; |C| – the

cardinal number of the set C. ⋉ – semi-tensor product (STP)

of matrices.

II. PROBLEM FORMULATION AND BACKGROUNDS

A. Problem formulation

In this subsection, we formally introduce the categorization

problem. We first need the following definitions.

A BCN with n state variables can be described as follows:

xi(t+ 1) = fi(x1(t), ..., xn(t);u1(t), ..., um(t)), (1)

where xi ∈ D , i ∈ [1, n] are the state variables, ui ∈ Dm, i ∈
[1,m] are the input variables, and fi : Dn+m → D , i ∈ [1, n]

are the logical functions. With vector form expression, i.e., we

use δ12 to represent state 1 and δ22 to represent state 0, one has

xi, ui ∈ ∆2. Then as in [5], (1) can be transformed into the

algebraic form:

x(t+ 1) = L⋉ u(t)⋉ x(t), (2)

where x(t) = ⋉
n
i=1xi(t) ∈ ∆N with N := 2n, u(t) =

⋉
m
j=1uj(t) ∈ ∆M with M := 2m, and L ∈ LN×NM . Let

M :=
M∑

j=1

B L⋉ δjM and F :=
N∑

i=1

B M(i), (3)

where F is called the controllability matrix [7]. We define the

controllability of a BCN as follows.

Definition 1 (Controllability [7, 8]). The BCN (1) is

1) controllable from x0 to xd, if there are a T > 0 and a

sequence of control u(0),...,u(T − 1), such that driven

by these controls the trajectory can go from x(0) = x0

to x(T ) = xd;

2) controllable at x0, if it is controllable from x0 to

destination xd = x, ∀x;

3) controllable, if it is controllable at any x.

We also define the k fixed-time controllability of a BCN.

Definition 2 (k fixed-time controlllability [8]). Given a pair

of states (x0, xd), the pair is called k fixed-time controllable if

there exists a sequence of control u(0),...,u(k− 1) that steers

the BCN (1) from x(0) = x0 to x(k) = xd. The BCN (1) is

k fixed-time controllable if all pairs (x0, xd) are k fixed-time

controllable.

For each ordered pair of states (δiN , δjN ), we define two

sets ρ(i, j) and σ(i, j) as follows: for each positive integer k,

if there is a sequence of control u(0),...,u(k − 1) that steers

the BCN from x(0) = δiN to x(k) = δjN , then k ∈ ρ(i, j);
otherwise, k ∈ σ(i, j). It should be clear that ρ(i, j)⊔σ(i, j) =
Z
+. As a reference, we call ρ(i, j) the set of reachable time

steps and σ(i, j) the set of unreachable time steps.

With the above definitions, we present the categorization

problem as follows.

Problem 1. Consider the BCN (1). The goal is to classify all

pairs (δiN , δjN ) into the four categories:

1) unreachable: |ρ(i, j)| = 0;

2) transient: 0 < |ρ(i, j)| < ∞ and |σ(i, j)| = ∞;

3) primitive: |ρ(i, j)| = ∞ and |σ(i, j)| < ∞;

4) imprimitive: |ρ(i, j)| = ∞ and |σ(i, j)| = ∞.

Equivalently, one wishes to obtain the controllability cate-

gorization matrix C = (Cji), Cji ∈ [0, 3], where Cji is defined

to be k if the pair (δiN , δjN ) belongs to the category (k + 1).

B. Backgrounds

We note that, as the number of state pairs in Problem 1

is huge, and the BCN (1) can have complicated structures,

solving Problem 1 requires nontrivial techniques. We will

develop a method via algebraic graph theoretic approach. Prior

to that, we introduce in this subsection some preliminary

results on digraphs and matrices, as well as the results on

controllability of BCNs.
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1) Directed graphs: Let G = (V,E) be a digraph with

the set of nodes (vertices) V and the set of directed edges

E ⊆ V × V . The order of a graph G is the number of nodes

in V . We denote by vi → vj a directed edge from vi to vj in

G, and if i = j, the edge is called the self-loop of the node i.
The adjacency matrix A ∈ Bn×n of G is defined as follows:

Aij = 1 (resp. 0) if and only if vi → vj ∈ (resp. /∈) E. For

simplicity, the digraph (i.e., G) of A is denoted by G(A).
Assumed that vi and vj are two nodes of G. A walk from

vi to vj , denoted by wij , is a sequence of nodes vi0 → vi1 →
· · · → vim in which each vij → vij+1

, for j = 0, . . . ,m− 1,

is an edge. If vi0 = vim , the walk is called a closed walk. A

cycle is a closed walk with no repetition of nodes other than

the starting- and the ending- node. A walk is said to be a path

if all the nodes in the walk are pairwise distinct. Let pij be

a path from vi to vj . We denote by Pij the set of all paths

from vi to vj . The length of a walk (resp. path, cycle) is the

number of edges in that walk (resp. path, cycle).

Two nodes vi and vj of G are called strongly connected

if there exists a directed walk from vi to vj , and a directed

walk from vj to vi. A graph G is strongly connected if

any two nodes vi and vj are strongly connected. A single

node with self-loop is regarded as trivially strongly connected

to itself. Evidently, strong connectivity between nodes is

reflexive, symmetric, and transitive, resulting in an equivalence

relation on the nodes of G and simultaneously yielding a

partition, V1 ⊔ V2 ⊔ · · · ⊔ VS , with
⋃
Vi = V . Let Ei be

the set of edges vij → vik such that vij , vik ∈ Vi. Then

Gi = (Vi, Ei), i ∈ [1, S] are the induced subgraphs of G.

We also call each induced subgraph a strongly connected

component (SCC) of G. Specifically, a single node without

self-loop is an SCC by itself. In this paper, we call such a

single node the Type 1 SCC (T1SCC), and all other SCCs the

Type 2 SCC (T2SCC).

We next present the following definition on condensation

digraphs.

Definition 3 (Condensation digraph [27]). Let G be a digraph

and A be its adjacency matrix. Assume that G has S SCCs:

G1, . . . , GS , where Gi = (Vi, Ei). Let G∗(A) be the conden-

sation digraph of G(A), and A∗ be the adjacency matrix of

G∗(A). G∗(A) and A∗ are constructed as follows:

1) The set of nodes of G∗(A) is obtained by identifying

each SCC as a node,

2) If there exists a directed edge in G(A) from a node in

Vi to a node in Vj , then A∗
ij = 1; otherwise, A∗

ij = 0.

The constructed condensation digraph G∗(A) has no closed

directed walks.

We then define the primitivity of a digraph.

Definition 4 (Primitive digraph [27]). Let G be a strongly

connected digraph of order n. Let η = η(G) be the greatest

common divisor of the lengths of the cycles of G. The digraph

G is primitive if η = 1 and imprimitive if η > 1. The integer

η is called the index of imprimitivity of G. The index of

imprimitivity η is also referred to as the loop number [25].

With Definition 4, we have the following result.

Lemma 1 ( [27]). Let G be a strongly connected digraph of

order n with index of imprimitivity η. Then, for each pair of

nodes vi and vj , the lengths of the directed walks from vi to

vj are congruent modulo η.

2) Matrices: We first define the reducibility of a matrix.

Definition 5 (Reducible matrix [27]). A matrix A of order n is

called reducible if there exists a permutation matrix P ∈ Ln×n

such that

P⊤AP =

(
B C
0 D

)

(4)

where B and D are square matrices of order at least one. A

matrix is said to be irreducible if it is not reducible.

For the rest of this paper, we let A be a Boolean matrix, i.e.,

all entries of A are either 0 or 1. It should be clear that there

is an one-to-one correspondence between the set of Boolean

matrices of order n and the set of digraphs of order n. We

then have the following lemmas.

Lemma 2 ( [27]). The matrix A of order n is irreducible if

and only if its digraph G(A) is strongly connected.

Lemma 3 ( [27]). Let A be a matrix of order n. Then there

exists a permutation matrix P of order n and an integer S ≥ 1
such that the Frobenius normal form of (4) can be written as

P⊤AP =








A1,1 A1,2 · · · A1,S

0 A2,2 · · · A2,S

...
...

. . .
...

0 0 · · · AS,S








. (5)

If A in Lemma 3 is the adjacency matrix of digraph G,

then A1,1, A2,2, . . . , AS,S are adjacency matrices of the SCCs

of G. Specifically, if the SCC Gi is a T2SCC, then Ai,i is

a square irreducible matrix; if the SCC Gi is a T1SCC, then

Ai,i is a 1-by-1 zero matrix.

We next define the primitivity of a matrix.

Definition 6 (Primitive matrix [27]). A nonnegative matrix

A ∈ R
n×n is primitive if there exits an integer j ≥ 1 such

that Aj > 0. If A is primitive, the smallest j such that Aj > 0
is called the exponent of A, denoted by γ(A).

We note that if matrix A is primitive, then it is also

irreducible. Further, we also have the following results on

primitive matrices.

Lemma 4 ( [27]). If A is primitive, then γ(A) ≤ (n−1)2+1.

Proposition 1 ( [27]). A digraph G is primitive if and only if

its adjacency matrix A is primitive.

3) Controllability and k fixed-time controllability: Given a

BCN (1), we can compute the matrices M and F as in (3).

The controllability and k fixed-time controllability of the BCN

can then be determined by the following theorems.

Theorem 1 ( [7]). The BCN (1) is

1) controllable from δjN to δiN , if and only if, Fij = 1;

2) controllable at δjN , if and only if, Colj(F) > 0;

3) controllable, if and only if, F > 0.
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Theorem 2 ( [8]). Consider the BCN (1).

1) The BCN (1) is controllable, if and only if, M is

irreducible.

2) The BCN (1) is k fixed-time controllable, if and only if,

M(k) > 0.

3) If the matrix M is primitive, then γ(M) ≤ N2−2N+2
and the BCN (1) is γ(M) fixed-time controllable. If

M is not primitive, then the BCN is not k fixed-time

controllable for any k.

4) If the BCN (1) is k fixed-time controllable, then it is p
fixed-time controllable for any p ≥ k.

Remark 1. We note that the controllability of the BCN can

be determined with matrix F by Theorem 1, while whether

the BCN is the k fixed-time controllable or not can only be

determined with matrix M by Theorem 2. Specifically, if M
is primitive, then BCN (1) is k fixed-time controllable for any

k ≥ γ(M). When M is reducible, although the BCN (1) is

not k fixed-time controllable, we may still have some pairs

(x0, xd) that are k fixed-time controllable.

For convenience, we call BCN (1) P-controllable if it is

k fixed-time controllable for some integer k > 0. We call

BCN (1) NP-controllable if it is controllable, but not k fixed-

time controllable for any k > 0. Equivalently, BCN (1) is

P-controllable if M is primitive; BCN (1) is NP-controllable

if M is irreducible and imprimitive.

III. MAIN RESULTS

Recall that in Problem 1, we aim to classify all state pairs

of BCN (1) into four categories. Equivalently, one wishes to

obtain the controllability categorization matrix C. We note that

the Boolean form of C is exactly F in (3), i.e., B(C) ≡ F .

Evidently, the form of the controllability categorization

matrix C is trivial in the following situation. If the BCN (1) is

P-controllable (resp. NP-controllable), then, C = 2N×N (resp.

C = 3N×N ). In other words, C is trivial if M is irreducible,

as it follows from the definitions that

1) If the BCN (1) is P-controllable, then for any pair of

states δiN and δjN , we have |ρ(i, j)| = ∞ and |σ(i, j)| <
∞.

2) If the BCN (1) is NP-controllable, then for any pair of

states δiN and δjN , we have |ρ(i, j)| = ∞ and |σ(i, j)| =
∞.

In the rest of this section, we investigate the case when M
is reducible.

A. Main theorem

Let G = (V,E) be the state transition digraph of BCN (1),

where V is the set of states, i.e., V := ∆N , and E := {δiN →
δjN | δjN = LuδiN for some u ∈ ∆M}, i.e., an edge δiN → δjN
exists in E if there exists some control u which drives the

system from state δiN to state δjN in one step. Let M̄ be

the adjacency matrix of G, then, M̄ := M⊤, where M is

defined as in (3). Then, by Lemma 3, we can write M̄ in

the Frobenius normal form as in (5) in a similar manner,

with the replacement of A in (5) with M̄. Then we have

that M̄1,1 ∈ Bq1×q1 ,M̄2,2 ∈ Bq2×q2 , ...,M̄S,S ∈ BqS×qS

where
∑S

i=1 qi = N . The BCN (1) thereby has S SCCs,

denoted by, X1, ...,XS , with
⋃S

i=1 Xi = ∆N . Additionally, we

denote by Id(i) the index of the SCC that the state δiN belongs

to. From the Definition 3, we can construct the condensation

digraph G∗(M̄) of the BCN (1) as well as its adjacency matrix

M̄∗.

Given a pair of states δiN and δjN , which are two nodes

in the state transition graph G, let Pij be the set of paths

from δiN to δjN , and P ∗

Id(i),Id(j) be the set of paths from

Id(i) to Id(j) in the condensation graph G∗(M̄). Let K :=
|P ∗

Id(i),Id(j)|. We denote these paths in the condensation graph

by p∗1
Id(i),Id(j), p

∗2
Id(i),Id(j), . . . , p

∗K
Id(i),Id(j). Then, we use the

following method to partition the set Pij into K subsets

P 1
ij , . . . , P

K
ij .

For any path pij ∈ Pij , we replace every node δlN ∈ pij
with the node Id(l), if the resulting path, ignoring self-loops,

is p∗k
Id(i),Id(j), then pij ∈ P k

ij .

With the above partitions, we further define ηkij to be the

greatest common divisor of the indexes of primitivity of the

T2SCC along path p∗k
Id(i),Id(j). If there is no T2SCC along the

path p∗k
Id(i),Id(j), we let ηkij = 0 and πk

ij = ∅. Otherwise, we

define

πk
ij =

{
l(pkij) mod ηkij | pkij ∈ P k

ij

}
, (6)

let η̄ij be the least common multiple of {η1ij , . . . , η
K
ij }, and

π̃k
ij :=

{

a+ b · ηkij | a ∈ πk
ij , b ∈

[

0,
η̄ij

ηk
ij

− 1
]}

. Then, let

π̄ij :=
⋃
π̃k
ij . With these definitions, we are in a position

to present our main theorem.

Theorem 3. Considering the BCN (1), we have

1) Cji = 0, if and only if, Fji = 0.

2) Cji = 1, if and only if, π̄ij = ∅ and Fji = 1.

3) Cji = 2, if and only if, π̄ij = [0, η̄ij − 1].
4) Cji = 3, if and only if, π̄ij 6= ∅ and π̄ij 6= [0, η̄ij − 1].

We first provide a proof for the bulletins (1) and (2) of

Theorem 3. In the next subsection, we will provide a complete

proof of bulletins (3) and (4). We will also provide a follow-up

result in section III-C.

Proof of Theorem 3, part I. We now prove the first two bul-

letins of Theorem 3.

1) We note that by definition, Cji = 0 if and only if δjN
is unreachable from δiN , or equivalently, BCN (1) is

uncontrollable from δiN to δjN , which, by Theorem 1,

holds if and only if Fji = 0.

2) We show that if π̄ij = ∅ and Fji = 1, then Cji = 1. The

other direction can be similarly shown. By definition,

Cji = 1 if and only if 0 < |ρ(i, j)| < ∞ and |σ(i, j)| =
∞. Note that π̄ij = ∅ if and only if π̃k

ij = ∅ (i.e.,

πk
ij = ∅) for all k ∈ [1,K]. This implies that ηkij = 0 for

all k and there is no T2SCC along the path p∗kId(i),Id(j)
for all k. Therefore, there is no T2SCC along any path

pij ∈ Pij . We thus have that ρ(i, j) = {l(pij) | pij ∈
Pij}. Since |Pij | is finite, we have that |ρ(i, j)| < ∞.

Since Fji = 1, there exists at least one path pij ∈ Pij ,

which implies that |Pij | > 0 and |ρ(i, j)| > 0. Lastly,
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for any positive integer k /∈ {l(pij) | pij ∈ Pij}, we

have that k ∈ σ(i, j). This implies that |σ(i, j)| = ∞.

B. Analysis and proof of Theorem 3

In this subsection, we show the last two bulletins of The-

orem 3. We first consider the case that |P ∗

Id(i),Id(j)| = 1,

i.e., there is only one path from Id(i) to Id(j) in the

condensation graph. Later we will extend to the general case

where |P ∗

Id(i),Id(j)| = K for any positive integer K .

For ease of notation, we now use p∗
Id(i),Id(j) to denote the

path from Id(i) to Id(j) in the condensation graph, and let ηij
be the greatest common divisor of the indexes of imprimitivity

of the T2SCCs along the path p∗
Id(i),Id(j). Again, if there is

no T2SCC along the path, let ηij = 0.

Let the cycles in the T2SCCs along path p∗
Id(i),Id(j) be

c1, ..., ck with the lengths equal to l(c1), ..., l(ck), respectively.

Then any walk wij of G(M̄) has length of the form

l(wij) = l(pij) + a1 · l(c1) + · · ·+ ak · l(ck),

where a1, . . . , ak are nonnegative integers. Note that,

from [27], we have the following lemma.

Lemma 5 ( [27]). Let Ψ = {l1, l2, ..., lk} be a nonempty set

of positive integers and η be the greatest common divisor of

the integers in Ψ. Then there exists a smallest positive integer

φ(l1, l2, ..., lk), called the Frobenius-Schur index of Ψ, such

that for any integer n ≥ φ(l1, l2, ..., lk), nη can be expressed

as a nonnegative linear combination of these integers, i.e., as

a sum, nη = a1l1+ a2l2+ · · ·+ aklk, where a1, a2, ..., ak are

nonnegative integers.

From the Lemma 5 and the definition of ηij , there exists a

φ (l(c1), ..., l(ck)) such that for any n ≥ φ (l(c1), ..., l(ck)), we

have that nηij = a1l(c1) + · · · + akl(ck). Similarly, we can

find some φ′ (l(c1), ..., l(ck)) ≥ φ (l(c1), ..., l(ck)) such that

for any integer n ≥ φ′ (l(c1), ..., l(ck)), we have that nηij =
a′1l(c1)+ · · ·+a′kl(ck) where a′1, . . . , a

′
k are positive integers.

Therefore, by connecting these cycles with a path pij , we can

obtain a walk wij whose length can be l(pij) + nηij for all

n ≥ φ′ (l(c1), ..., l(ck)).
As in (6), we define a set of integers,

πij = {l(pij) mod ηij | pij ∈ Pij} . (7)

Evidently, if πij = [0, ηij − 1], i.e., πij is a complete

residue system modulo ηij , then for any integer n ≥
φ′ (l(c1), ..., l(ck)) ηij +maxpij∈Pij

l(pij), there exists a walk

wij of length n. In the special case that ηij = 0, then πij is

not well defined. We thereby redefine πij = ∅ for such a case.

Based on the above definitions, we have the following result.

Lemma 6. Let δiN and δjN be two nodes of the state transition

digraph G(M̄) of the BCN (1). Consider the case that there

is only one path p∗
Id(i),Id(j) from node Id(i) to node Id(j)

in the condensation digraph G∗(M̄). Then the pair (δiN , δjN )
belongs to the primitive category, i.e., Cji = 2, if and only if

πij = [0, ηij − 1].

Proof. (Sufficiency). When πij = [0, ηij − 1], by the argu-

ments before Lemma 6, there exists an integer

n′ := φ′ (l(c1), ..., l(ck)) ηij + max
pij∈Pij

l(pij) > 0 (8)

such that one can construct a walk wij with the length n,

for any integer n ≥ n′. In other words, |ρ(i, j)| = ∞ and

|σ(i, j)| < ∞. This implies Cji = 2.

(Necessity). When Cji = 2, we have that |ρ(i, j)| = ∞ and

|σ(i, j)| < ∞. Suppose that to the contrary πij 6= [0, ηij − 1].
Then there exists an integer k ∈ [0, ηij − 1] such that k /∈ πij ,

which implies that a walk of length ηijn+k, ∀n ≥ n′, cannot

be constructed. This contradicts with |σ(i, j)| < ∞.

Note that Lemma 6 essentially proves the third bulletin of

Theorem 3 for the case when |P ∗

Id(i),Id(j)| = 1. We next

consider the general case where |P ∗

Id(i),Id(j)| = K , with K
being any positive integer, and prove the last two bulletins of

Theorem 3.

Proof of Theorem 3, part II. (3) (Sufficiency). Recall the

definitions before Theorem 3. Each ηkij is the greatest

common divisor of the index of primitivities of the

T2SCCs along path p∗k
Id(i),Id(j). Similar to the arguments

for the case |P ∗

Id(i),Id(j)| = 1, it can be shown that

if s ∈ πk
ij , we can construct a walk wij of length

nkη
k
ij + s for any nk ≥ n′

k for some positive integer

n′
k. Here, we can pick n′

k as in (8). We perform the

same implementation for each path p∗k
Id(i),Id(j). Then,

with the definition of η̄ij , for some n′′
k , we can rewrite

the set {nkη
k
ij + s | nk ≥ n′

k} as {nkη̄ij + s, nkη̄ij +

ηkij + s, ..., nkη̄ij + ηkij
η̄ij

ηk
ij

+ s | nk ≥ n′′
k}. Note that

this can be done for each k ∈ [1,K]. Therefore, for

each s∗ ∈ π̄ij , we have that s∗ ∈ π̃k
ij for some k,

and a walk of length nkη̄ij + s∗, nk ≥ n′′
k , can be

constructed. If π̄ij = [0, η̄ij − 1], then there exists

some n∗ = maxk∈[1,K] n
′′
k such that for any n ≥ n∗,

we can construct a walk of length n. This implies

that |ρ(i, j)| = ∞ and |σ(i, j)| < ∞, or equivalently,

Cji = 2.

(Necessity). Suppose that to the contrary π̄ij 6= [0, η̄ij −
1], then there exists some s ∈ [0, η̄ij − 1] such that

s /∈ π̃k
ij for any k ∈ [1,K], which implies that we cannot

construct a walk of length nη̄ij + s, ∀n ∈ Z
+. This

implies that |σ(i, j)| = ∞, which is a contradiction.

(4) Since we have shown (1), (2), (3), the result of (4)

follows directly.

C. Connection of categorization results to graph structure

In this subsection, we provide a further result on the cate-

gorization of state pairs. In particular, we show the following

fact which relates the categorization to the structure of the

state transition digraph.

Theorem 4. Let (δiN , δjN ) be a pair of states of BCN (1).

Suppose that δiN ∈ Xα and δjN ∈ Xβ , where Xα and Xβ are

two SCCs of the state transition digraph. Then, for any states

δi
′

N ∈ Xα and δj
′

N ∈ Xβ , we have that Cj′i′ = Cji.
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We now prove the above theorem. To proceed, we first

recall some notations. Let δiN and δjN be two nodes of the

state transition digraph G(M̄) of the BCN (1). Denote by

α := Id(i) and β = Id(j). Let ηα (resp. ηβ) be the index of

imprimitivity of the SCC Xα (resp. Xβ). In the special case

that Xα (resp. Xβ) is a T1SCC, we redefine ηα := 0 (resp.

ηβ := 0).

With the above notations, the proof of Theorem 4 is shown

as follows.

Proof of Theorem 4. It should be clear that if there is no path

from any node in Xα to any node in Xβ , then, we have that

Cji = 0, ∀δiN ∈ Xα, ∀δ
j
N ∈ Xβ . We now restrict our discussion

to the situation that there exists a path from some node in Xα

to some node in Xβ .

First, consider the case that α = β. If there is only one

node in Xα (i.e., T1SCC or T2SCC), then the theorem trivially

holds. If Xα is a T2SCC with at least two nodes, one can

prove the theorem as follows. (1) If ηα = 1, then we have that

Cji = 2, ∀δiN , δjN ∈ Xα. (2) If ηα > 1, then by the Lemma 1,

for any pair δiN , δjN ∈ Xα, there exists an integer k ∈ [0, ηα]
such that πij = {k}. In other words, πij 6= ∅ and πij 6= [0, ηα].
By Theorem 3, this implies that Cji = 3, ∀δiN , δjN ∈ Xα.

Next, consider the case that α 6= β. For any pair (δiN , δjN )

with δiN ∈ Xα and δjN ∈ Xβ , we have that η̄ij = η∗αβ for

some η∗αβ .

1) If η∗αβ = 1, then, π̄ij = {0} = [0, η∗αβ−1]. This implies

that Cji = 2, ∀δiN ∈ Xα, δ
j
N ∈ Xβ .

2) If η∗αβ > 1, then for any δj
′

N ∈ Xβ , from Lemma 1, one

can conclude that there exists some s1 such that

π̄ij + s1 := {s1 + y mod η̄ij | y ∈ π̄ij} ≡ π̄ij′ .

For any δi
′

N ∈ Xα, we can also conclude that there exists

some s2 such that

π̄ij + s2 := {s2 + y mod η̄ij | y ∈ π̄ij} ≡ π̄i′j .

Then we have that

π̄ij + s := {s+ y mod η̄ij | y ∈ πij} ≡ π̄i′j′ ,

where s := s1 − s2. This implies that |π̄i′j′ | = |π̄ij |,

∀δi
′

N ∈ Xα, ∀δ
j′

N ∈ Xβ . Then by Theorem 3, we conclude

that Cj′i′ = Cji.

Based on the Theorem 4, we can define an S × S matrix

C = (Cβα), Cβα ∈ [0, 3], where Cβα := Cji with δiN ∈ Xα

and δjN ∈ Xβ . We call C the condensation controllability

categorization matrix of BCN (1). Then Theorem 4 has the

following equivalent expression.

Theorem 4 (An alternative version). Let Xα and Xβ be two

SCCs of the state transition digraph of the BCN (1). Then, the

pair (δiN , δjN) with δiN ∈ Xα and δjN ∈ Xβ belongs to the

1) unreachable category, if and only if, Cα,β = 0;

2) transient category, if and only if, Cα,β = 1;

3) primitive category, if and only if, Cα,β = 2;

4) imprimitive category, if and only if, Cα,β = 3.

Remark 2. We note that our definition of condensation

controllability categorization matrix C is a generalization

of the so-called reduced controllability matrix B(C ) in [9].

Notably, the dimension of C may be much smaller than the

one of C, if the number of nodes of the condensation digraph

of the BCN (1) is much smaller than the number of states

of the BCN (1), i.e., S ≪ N . In other words, to save the

controllability information of BCNs, C is much better and

more economical than C.

IV. EXAMPLE

In this section, we provide an example BCN as in [9] to

illustrate our results. In particular, the algebraic form of the

BCN is

x(t+ 1) = δ8[2, 5, 3, 5, 6, 4, 8, 7, 4, 5, 4, 5, 6, 7, 8, 7]u(t)x(t),
(9)

where x(t) ∈ ∆8, u(t) ∈ ∆2. The state transition digraph

of the BCN (9) and its condensation digraph are shown in

the Fig. 1(a)-1(b). In particular, the state transition digraph

has 5 SCCs, X1 = {δ18}, X2 = {δ28}, X3 = {δ38}, X4 =
{δ48 , δ

5
8 , δ

6
8}, X5 = {δ78 , δ

8
8}, and Id(i) = i, i ∈ [1, 3], Id(j) =

4, j ∈ [4, 6], Id(k) = 5, k ∈ [7, 8]. Notably, X1 and X2 are

T1SCCs, whereas X3, X4 and X5 are T2SCCs with the indexes

of imprimitivity equal to 1, 3 and 2, respectively.

Here, we consider the pair (δ18 , δ
4
8). From the Fig. 1(a), the

path set P14 from δ18 to δ48 has only two paths with the lengths

1 and 4, respectively. In the the condensation digraph, i..e,

Fig. 1(b), there are also two paths from the node Id(1) = 1
to node Id(4) = 4. So the path set P14 can be partitioned

into two distinct sets, P 1
14 = {p114} and P 2

14 = {p214}, where

p114 : δ18 → δ48 and p214 : δ18 → δ28 → δ58 → δ68 → δ48 .

Since there is only one cycle with the length 3 in the X4, we

have η114 = 3 and η214 = 3. According to (6), we have that

π̃1
14 = π1

14 = {1} and π̃2
14 = π2

14 = {2}. Hence, η̄14 = 3
and π̄14 = π̃1

14 ⊔ π̃2
14 = {1, 2} 6= [0, 2]. This, together with the

Theorem 3, implies that C41 = 3, i.e., the pair (δ18 , δ
4
8) belongs

to the imprimitive category.

Akin to the analysis above, the controllability categories of

the other pairs can be obtained. Indeed, one can obtain the

controllability categorization matrix. Then, based on the ma-

trix C, the condensation controllability categorization matrix

can be induced. Both matrices are presented as follows,

C =















0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
3 3 1 3 3 3 0 0
3 3 1 3 3 3 0 0
3 3 1 3 3 3 0 0
2 2 1 2 2 2 3 3
2 2 1 2 2 2 3 3















, C =











0 0 0 0 0

1 0 0 0 0

0 0 2 0 0

3 3 1 3 0

2 2 1 2 3











.

V. CONCLUSIONS

In this paper, we have established a detailed analysis on

the k fixed-time controllability of all state pairs of a BCN.

The definition of the controllability categorozation matrix

is first proposed, extending the conventional controllability
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Fig. 1: This figure, originally from [9], shows (a) the state

transition digraph and (b) the condensation digraph of the

BCN (9), respectively. For simplicity, in (a), the number i
in each circle denotes the state δi8, and in (b), the number i in

each circle represents the ith SCC Xi.

matrix. By routinely using the algebraic form of BCNs

and the algebraic digraph theory, we have constructed the

controllability categorization matrix. Then, a condensation

controllability categorization matrix is also induced. Overall,

leveraging this framework may enable the development in the

control-theoretic analysis of BCNs in the future.
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