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Minimum Cost Feedback Selection in Structured Systems: Hardness

and Approximation Algorithm

Aishwary Joshi, Shana Moothedath and Prasanna Chaporkar

Abstract—In this paper, we study output feedback selection
in linear time invariant structured systems. We assume that the
inputs and the outputs are dedicated, i.e., each input directly
actuates a single state and each output directly senses a single
state. Given a structured system with dedicated inputs and
outputs and a cost matrix that denotes the cost of each feedback
connection, our aim is to select an optimal set of feedback
connections such that the closed-loop system satisfies arbitrary
pole-placement. This problem is referred as the optimal feedback
selection problem for dedicated i/o. We first prove the NP-hardness
of the problem using a reduction from a well known NP-hard
problem, the weighted set cover problem. In addition, we also
prove that the optimal feedback selection problem for dedicated
i/o is inapproximable to a constant factor of logn, where n denotes
the system dimension. To this end, we propose an algorithm to
find an approximate solution to the optimal feedback selection
problem for dedicated i/o. The proposed algorithm consists of a
potential function incorporated with a greedy scheme and attains
a solution with a guaranteed approximation ratio. Then we
consider two special network topologies of practical importance,
referred as back-edge feedback structure and hierarchical net-
works. For the first case, which is NP-hard and inapproximable to
a multiplicative factor of logn, we provide a (logn)-approximate
solution, where n denotes the system dimension. For hierarchical
networks, we give a dynamic programming based algorithm to
obtain an optimal solution in polynomial time.

Index Terms—Linear dynamical systems, arbitrary pole-
placement, network analysis and control, minimum cost feedback
selection, dynamic programming, hierarchical networks.

I. INTRODUCTION

The emergence of large-scale networks as physical models

capturing the structural properties of real networks presents

new challenges in design, control and optimization. Large-

scale dynamical systems have applications in diverse areas,

including biological networks, transportation networks, water

distribution networks, multi-agent systems and internet. Most

of the real world networks are often too complex and of large

system dimension that employing conventional control theo-

retic tools to analyse various properties of these systems are

computationally infeasible. Recently, there has been immense

research advance in the area of large-scale dynamical sys-

tems collectively using concepts from various interdisciplinary

fields including control theory, network science and statistical

physics. These studies emphasise on the relationship between

the topology and the dynamics of complex networks.

This paper deals with feedback selection in linear time

invariant (LTI) systems. Feedback selection problem is a clas-

sical problem in control theory which resisted much advances

due to the inherent hardness of the problem. We address

the feedback selection problem for a complex system whose

graph pattern is known and parameter values are unknown.
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More specifically, this paper discusses optimal feedback se-

lection for structured LTI systems. Given a structured system

with specified state, input and output structures and a cost

matrix that denotes the cost of each feedback connection,

our objective is to design an optimal feedback matrix that

satisfies arbitrary pole-placement of the closed-loop system.

The cost associated with the feedback connections comes

from installation and monitoring cost associated with the

network. The motivation for this problem comes from the

recent interest and developments in the control of large-scale

systems modeled with a very large number of variables, where

implementing control strategies that affect all or many of the

variables in the system is not economical or rather not feasible.

Structural analysis of dynamical systems is a well studied

area since the introduction of structural controllability (see

[1], [2], [3], [4], [5] as representatives). The strength of

this analysis lies in the fact that many structural properties

are ‘generic’ in nature, i.e., these properties hold for almost

all systems with the same structure [2], [6]. Over last few

decades, various design and optimization problems in complex

networks are addressed using structural analysis in many

papers. These papers mainly use concepts of bipartite matching

and graph connectivity. For a detailed reading on various

problems in this area see [7] and references therein.

Optimal feedback selection for structured systems is pre-

viously addressed in many papers [8]. Given a structured

state matrix, an optimal input-output and feedback co-design

problem is addressed in [5]. As structure of input, output and

feedback matrices are unconstrained, the problem considered

in [5] is solvable in polynomial time complexity. Paper [9]

considered the input-output and feedback co-design problem

for constrained input, output and feedback structures. This

problem turns out be NP-hard as a subproblem, namely the

constrained minimum input selection problem, is NP-hard

[9]. Due to the NP-hardness of the problem, the class of

irreducible1 systems is considered in [9]. Later in [10], an

order-optimal approximation algorithm is given for the input-

output and feedback selection co-design problem.

This paper deals with optimal feedback selection for struc-

tured systems with specified state, input and output matrices.

Note that, here input and output matrices are specified and

there is no selection of inputs and outputs. The structure of

the feedback pattern is constrained and each feedback edge

is associated with a cost. Our aim is to design an optimal

feedback matrix that satisfies the prescribed structure and also

of minimum cost. Depending on the nature of inputs and

outputs, dedicated2 and non-dedicated, and the nature of the

1A structured system is said to be irreducible if there exists a directed path
between any two arbitrary nodes in the state digraph D(Ā) (see Section III).

2An input (output, resp.) is said to be dedicated if it can actuate (sense,
resp.) a single state only.
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costs of the feedback connections, uniform and non-uniform,

different formulations of this problem is addressed before.

Table below summarizes the associated results. Constrained

TABLE I
ALGORITHMIC COMPLEXITY RESULTS OF THE OPTIMAL FEEDBACK SELECTION

PROBLEM

Input
and Output

Feedback costs

Uniform Non-uniform

Dedicated P [11] NP-hard (this paper)

Non-dedicated NP-hard [12] NP-hard [12]

feedback selection with non-dedicated inputs and outputs is

considered in [12]. In [12], the authors show the NP-hardness

of the problem for non-dedicated i/o case and later propose

a polynomial time algorithm for a special graph topology so-

called line graphs. Optimal feedback selection problem with

dedicated inputs and outputs and uniform cost feedback edges

is considered in [13], [11] and a polynomial time algorithm

is given in [11]. In this paper, we consider optimal feedback

selection for dedicated inputs and outputs and non-uniform

cost feedback edges.

Remark 1. NP-hardness result for non-dedicated i/o case

relies heavily on the non-dedicated nature of i/o’s, and hence

the NP-hardness proved in [12] does not automatically imply

NP-hardness of a special case with dedicated i/o’s. Note that,

for non-dedicated i/o’s, Problem 1 is NP-hard even when the

feedback costs are uniform. However, for uniform cost setting,

the dedicated i/o case is solvable in polynomial time [11].

In this scenario, we make the following contributions:

• We prove that the optimal feedback selection problem with

dedicated input-output set and non-uniform cost feedback

edges is NP-hard (Theorem 1).

• We prove that the optimal feedback selection problem with

dedicated inputs and outputs, and feedback edges with non-

uniform cost is inapproximable to a multiplicative factor of

logn, where n denotes the system dimension (Theorem 2).

• We propose an approximation algorithm with a guaranteed

approximation ratio for solving the problem (Algorithm 4 and

Theorem 4).

• We show that the proposed algorithm has computational

complexity polynomial in the number of cycles in the system

digraph and the system dimension (Theorem 5).

• We consider a special class of systems with a constraint

on the structure of the feedback matrix, referred as back-edge

feedback selection, and propose an approximation algorithm

to solve the problem with a guaranteed approximation ratio

of logn, where n denotes the system dimension (Algorithm 5

and Theorem 7).

• We consider another special class of systems referred as hi-

erarchical networks and propose a polynomial time algorithm

based on dynamic programming to obtain an optimal solution

to the problem (Algorithm 6 and Theorem 8).

The organization of the rest of the paper is as follows:

Section II gives the formulation of the optimization problem

addressed in this paper. Section III describes preliminaries and

few existing results used in the sequel. Section IV analyzes the

complexity of the problem and proves the NP-hardness and the

inapproximability of the problem. Section V reformulates the

problem to a graph theoretic equivalent. Section VI gives an

approximation algorithm to solve the problem. Section VII

explores two special topologies of structured systems and

gives an approximation algorithm and an optimal algorithm,

respectively, to solve the two cases. Finally, Section VIII gives

the concluding remarks and future directions.

II. PROBLEM FORMULATION

Consider an LTI system ẋ = Ax+Bu, y=Cx, where
A∈Rn×n, B ∈Rn×m and C ∈Rp×n. Here the matrices A,B
and C denote the state, input and output matrices respectively
and R denotes the set of real numbers. The structured matrices
Ā, B̄ and C̄ corresponding to this system are such that

Āij = 0 whenever Aij = 0,

B̄ij = 0 whenever Bij = 0,

C̄ij = 0 whenever Cij = 0. (1)

For (A,B,C) that satisfy equation (1), (Ā, B̄, C̄) is referred

as the structured system of (A,B,C) and the system (A,B,C)
is called a numerical realization of the structured system

(Ā, B̄, C̄). Here Ā ∈ {0, ⋆}n×n, B̄ ∈ {0, ⋆}n×m and C̄ ∈
{0, ⋆}p×n. The 0 entries in the structured system correspond

to fixed zeros and the ⋆ entries correspond to unrelated

indeterminate. Let P ∈ Rm×p be a cost matrix, where Pij

denotes the cost of feeding the jth output to the ith input. Our

objective here is output feedback selection. A feedback edge is

said to be infeasible if the corresponding output can not be fed

to the corresponding input. All infeasible feedback connections

are assigned infinity cost. In other words, Pij = ∞ implies

that the jth output can not be fed to the ith input, or the

feedback edge (yj , ui) is infeasible. We define the feedback

matrix K̄ ∈ {0, ⋆}m×p, where K̄ij = ⋆ only if Pij =∞. Our

aim is to design an optimal output feedback matrix such that

the closed-loop system guarantees arbitrary pole-placement. A

graph theoretic necessary and sufficient condition for check-

ing whether arbitrary pole-placement is feasible or not in a

structured system is given in [14]. This condition depends on

the existence of structurally fixed modes (SFMs) in the closed-

loop structured system. Hence to address the pole-placement

problem in structured systems, the concept of SFMs is used in

this paper. Let [K] := {K : Kij = 0, if K̄ij = 0}. Structured

systems with no SFMs are defined as follows:

Definition 1. The structured system (Ā, B̄, C̄) and feedback

matrix K̄ is said to have no structurally fixed modes if there

exists a numerical realization (A,B,C) of (Ā, B̄, C̄) such that

∩K∈[K]σ(A + BKC) = ∅, where σ(T ) denotes the set of

eigenvalues of a square matrix T.

Given a structured system (Ā, B̄, C̄) and a cost matrix P ,

our aim is to find a minimum cost set of feedback edges such

that the closed-loop system denoted by (Ā, B̄, C̄, K̄) has no

SFMs. The set of all feedback matrices K̄ that satisfies the

no-SFMs criteria is denoted by the set K. In other words,

K := {K̄ ∈ {0, ⋆}m×p: (Ā, B̄, C̄, K̄) has no SFMs} is the set

of all feasible solutions to the optimization problem discussed

in this paper. The cost associated with the feedback matrix K̄
is denoted by P (K̄), where P (K̄) =

∑
(i,j):K̄ij=⋆ Pij . The

optimization problem addressed in this paper is given below.



Problem 1. Given a structured system (Ā, B̄ = Im, C̄ = Ip),
find K̄⋆ ∈ arg min

K̄∈K
P (K̄).

Here Im and Ip denote m dedicated inputs and p dedicated

outputs, respectively. A dedicated input is an input which

actuates a single state directly and a dedicated output is an

output that senses a single state directly. Thus there is exactly

one ⋆ entry in each column of Im and exactly one ⋆ entry

in each row of Ip. Problem 1 is referred to as the optimal

feedback selection for dedicated i/o problem. If P (K̄⋆) =∞,

then we say that arbitrary pole-placement is not possible for

(Ā, Im, Ip) and cost matrix P . In the section below, we give

few notations and preliminaries used in the sequel.

III. NOTATIONS, PRELIMINARIES AND EXISTING RESULTS

For describing various graph theoretic conditions used in the

analysis of structured systems, we first elaborate on few nota-

tions and constructions. A digraph D(Ā) := (VX , EX), where

VX = {x1, . . . , xn} and an edge (xj , xi) ∈ EX if Āij = ⋆.

The edge (xj , xi) directed from xj towards xi implies that

state xj can influence state xi. Hence the influence of states

on other states is captured in the digraph D(Ā). Similarly,

we define D(Ā, B̄, C̄) := (VX ∪ VY ∪ VU , EX ∪ EY ∪ EU ),
where VU = {u1, . . . , um} and VY = {y1, . . . , yp}. An edge

(uj , xi) ∈ EU if B̄ij = ⋆ and an edge (xj , yi) ∈ EY

if C̄ij = ⋆. Next, we define D(Ā, B̄, C̄, K̄) := (VX ∪
VY ∪ VU , EX ∪ EY ∪ EU ∪ EK), where a feedback edge

(yj , ui) ∈ EK if K̄ij = ⋆. Thus D(Ā, B̄, C̄, K̄) captures the

influence of states, inputs, outputs and feedback connections.

The digraphs D(Ā) and D(Ā, B̄, C̄, K̄) are referred to as the

state digraph and the closed-loop system digraph, respectively.

A digraph is said to be strongly connected if there exists a path

from vi to vk for each ordered pair of vertices (vi, vk) in the

digraph. A strongly connected component (SCC) is a subgraph

that consists of a maximal set of strongly connected vertices.

Necessary and sufficient condition for the no-SFMs criteria is

described below.

Proposition 1. [14, Theorem 4]: A structured system

(Ā, B̄, C̄) has no SFMs with respect to an information pattern

K̄ if and only if the following conditions hold:

(a) in the digraph D(Ā, B̄, C̄, K̄), each state node xi is

contained in an SCC which includes an edge from EK ,

(b) there exists a finite node disjoint union of cycles Cg =
(Vg, Eg) in D(Ā, B̄, C̄, K̄), where g belongs to the set

of natural numbers such that VX ⊂ ∪gVg.

The conditions given in Proposition 1 thus serve as condi-

tions for checking existence of SFMs in the closed-loop sys-

tem. For verifying condition (a), one has to find all the SCCs in

the digraph D(Ā, B̄, C̄, K̄). If each SCC has atleast one feed-

back edge present in it, then condition (a) is satisfied. Concern-

ing condition (b), an equivalent matching3 condition using the

bipartite4 graph B(Ā, B̄, C̄, K̄) exists [10]. The construction

of bipartite graph B(Ā, B̄, C̄, K̄) is as follows. We first define

3A matching is a set of edges such that no two edges share the same end
point. For a bipartite graph GB = ((VB , V ′

B), EB), a perfect matching is a
matching whose cardinality is equal to min(|VB |, |V ′

B|).
4 A bipartite graph GB = ((VB , V ′

B), EB) is a graph satisfying VB∩V ′
B =

∅ and EB ⊆ VB × V ′
B .

state bipartite graph B(Ā) := ((VX′ , VX), EX), where VX′ =
{x′

1, . . . , x
′
n}, VX = {x1, . . . , xn} and (x′

j , xi) ∈ EX ⇔
(xi, xj) ∈ EX . Now, we define B(Ā, B̄, C̄, K̄) := ((VX′ ∪
VU ′ ∪ VY ′ , VX ∪ VU ∪ VY ), E ′), where VU ′ = {u′

1, . . . , u
′
m},

VY ′ = {y′1, . . . , y
′
p}, VU = {u1, . . . , um}, VY = {y1, . . . , yp}

and E ′ = (EX ∪ EU ∪ EY ∪ EK ∪ EU ∪ EY). Also, (x′
i, uj) ∈

EU ⇔ (uj , xi) ∈ EU , (y′j , xi) ∈ EY ⇔ (xi, yj) ∈ EY and

(u′
i, yj) ∈ EK ⇔ (yj , ui) ∈ EK . Moreover, EU includes edges

(u′
i, ui), for i = 1, . . . ,m and EY includes edges (y′i, yi), for

i = 1, . . . , p.

Proposition 2. [10, Theorem 3] Consider a closed-loop struc-

tured system (Ā, B̄, C̄, K̄). The bipartite graph B(Ā, B̄, C̄, K̄)
has a perfect matching if and only if all state nodes are

spanned by disjoint union of cycles in D(Ā, B̄, C̄, K̄).

If B(Ā) has a perfect matching, then B(Ā, B̄, C̄, K̄) has a

perfect matching without using any feedback edge. This im-

plies that condition (b) is satisfied without using any feedback

edge. This is because in B(Ā, B̄, C̄, K̄), (u′
i, ui) ∈ EU, for

all i ∈ {1, . . . ,m}, and (y′i, yi) ∈ EY, for all i ∈ {1, . . . , p}.
Thus a perfect matching in B(Ā) is a sufficient condition for

satisfying condition (b).

Since m = O(n) and p = O(n), finding SCCs in

D(Ā, B̄, C̄, K̄) has O(n2) complexity [15]. Verifying condi-

tion (b) has a complexity O(n2.5) using the matching condition

given in Proposition 2 [16]. Hence, given (Ā, B̄, C̄) and feed-

back matrix K̄, verifying the conditions in Proposition 1 has

complexity O(n2.5). Our objective in this paper is to obtain an

optimal (in the sense of cost) set of feedback connections that

guarantees arbitrary pole-placement. In other words, we need

to obtain an optimal set of feedback edges that satisfies the

no-SFMs criteria. Even though verifying existence of SFMs

is of polynomial complexity, identifying an optimal feedback

matrix may not be computationally easy. Specifically, in large

scale systems of huge system dimension, an exhaustive search

based technique to obtain an optimal solution to Problem 1 is

not computationally feasible. Before proposing a framework to

solve Problem 1, we first analyze the tractability of Problem 1

in the section below.

IV. COMPLEXITY OF OPTIMAL FEEDBACK SELECTION

PROBLEM WITH DEDICATED INPUTS AND OUTPUTS

In this section, we prove the NP-hardness of Problem 1.

The hardness result is obtained using a reduction of a known

NP-hard problem, the weighted set cover problem, to an

instance of Problem 1. The weighted set cover problem is

a standard NP-hard problem with numerous applications [17].

It is described here for the sake of completeness. Given a

universe U of N elements U = {1, . . . , N}, and a collection

of sets P = {S1,S2, ....Sr}, where Si ⊆ U and ∪Si∈PSi = U
and a weight function w : P → R, the objective is to find a

set S⋆ ⊆ P such that ∪Si∈S⋆Si = U and
∑
Si∈S⋆ w(Si) 6∑

Si∈S̃
w(Si), where ∪Si∈S̃ = U .

The pseudo-code showing a polynomial time reduction of

the weighted set cover problem to an instance of Problem 1

is presented in Algorithm 1. From a general instance of

the weighted set cover problem, we construct an instance

of Problem 1. The structured system (Ā, B̄, C̄) has states

x1, . . . , xN+r+1, inputs u1, . . . , ur+1 and outputs y1, . . . , yr.



Algorithm 1 Pseudo-code for reducing the weighted set cover

to an instance of Problem 1

Input: A weighted set cover problem with universe U =
{1, 2, . . . , N}, sets P = {S1, . . . ,Sr} and a weight function

w associated with each set in P
Output: A structured system (Ā, B̄ = Im, C̄ = Ip) and a

feedback cost matrix P

1: We define a structured system (Ā, B̄, C̄) as follows:

2: Āij ←



















⋆, for i = j,

⋆, for i ∈ {1, . . . , N} and j = N+r+1,

⋆, for i ∈ {N+1, . . . , N+r}, j ∈ Si−N ,

0, otherwise.

3: B̄ij ←

{

⋆, for i ∈ {N+1, . . . , N+r+1} and j = i−N,

0, otherwise.

4: C̄ij ←

{

⋆, for j ∈ {N+1 . . . , N+r} and i = j −N,

0, otherwise.

5: Pij ←











w(Sj), j ∈ {1, . . . r} and i = r+1,

0, for i, j ∈ {1, . . . , r} and i=j,

∞, otherwise.

6: Let K̄ be a solution to Problem 1 for (Ā, B̄, C̄) and cost matrix

P constructed above

7: Sets selected under K̄,S(K̄)←{Sj−N : K̄ij = ⋆ & i 6= j}

8: Weight of the set w(S(K̄))←
∑

Si∈S(K̄) w(Si)

The structured state matrix Ā ∈ {0, ⋆}(N+r+1)×(N+r+1) is

constructed as follows. For ease of understanding, we refer

x1, . . . , xN , as the element nodes and xN+1, . . . , xN+r, as

the set nodes. The element nodes correspond to the elements

of the universe U and every node in {x1, . . . , xN} has an edge

from the node xN+r+1. The set nodes correspond to the sets

of the weighted set cover problem. A set node xN+k has an

edge from element node xj if element j ∈ U belongs to set

Sk ∈ P . This completes the construction of Ā (Step 2).

The structured matrix B̄ ∈ {0, ⋆}(N+r+1)×(r+1) corre-

sponds to the (r + 1) dedicated input nodes which are fed

to set nodes xN+1, . . . , xN+r and xN+r+1 (Step 3). The

structured matrix C̄ ∈ {0, ⋆}r×(N+r+1) corresponds to the

r dedicated output nodes which come out from the r set

nodes xN+1, . . . , xN+r respectively (Step 4). Thus for the

constructed structured system, n = N + r+1, m = r+1 and

p = r. Corresponding to the (r+1) inputs and r outputs, the

feedback cost matrix P ∈ R+
(r+1)×r is defined as follows.

We assign Pij = 0, for i, j ∈ {1, . . . , r} and i = j. For

i = r + 1 and j ∈ {1, . . . , r}, Pij is assigned the weight of

the set Sj (Step 5). The motive for defining such a feedback

cost structure is the following. In a solution to Problem 1,

if we select a feedback edge connecting output connected

to the set node xN+k to ur+1, it is analogous to selecting

the set Sk in the weighted set cover problem. The zero cost

feedback edges take into account the set nodes xN+j for

which the feedback edge going from output of xN+j to ur+1

is not selected. Given a solution K̄ to Problem 1, the sets

selected under K̄ is defined as S(K̄). Here S(K̄) consists of

all those sets whose corresponding set node has its dedicated

output connected to the input ur+1 in K̄ (Step 7). Further, the

weight w(S(K̄)) is defined as shown in Step 8. An illustrative

x1 x2

x9

x3 x4 x5

u4

u1 u2 u3x6 x7 x8

y1 y2 y3

Fig. 1. Digraph D(Ā, B̄, C̄)
constructed using
Algorithm 1 for a
weighted set cover problem
with U = {1, . . . , 5},
P = {S1,S2,S3}, where
S1 = {1, 2}, S2 = {2, 3}
and S3 = {3, 4, 5}.

example demonstrating the construction given in Algorithm 1

is given in Figure 1.

Lemma 1. Consider the weighted set cover problem with U =
{1, . . . , N}, sets P = {S1, . . . ,Sr} and weight function w.

Let (Ā, B̄ = Im, C̄ = Ip) and P be the structured system and

feedback cost matrix constructed using Algorithm 1. If K̄ is a

solution to Problem 1, then S(K̄) covers U .

Proof. Here we assume that a K̄ is a solution to Problem 1 and

then show that S(K̄) is a solution to the weighted set cover

problem. Consider an arbitrary element j ∈ U . We show that

S(K̄) covers the element j. Consider node xj . Since K̄ is a

solution to Problem 1, it follows that xj must lie in an SCC

with atleast one feedback edge in it. Notice that node xj does

not have an input or output connected directly to it. Thus the

only way for node xj to satisfy condition (a) in Proposition 1

is using a feedback edge connecting the output of some set

node xk, where k ∈ {N + 1, . . . , N + r}, to the input node

ur+1 such that (xj , xk) ∈ EX , i.e., j ∈ Sk−N . Using Step 7

of Algorithm 1, this implies that set Sk−N ∈ S(K̄). Thus

element j is covered by S(K̄). Since element j is arbitrary,

the proof follows.

Theorem 1. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and a feedback cost matrix P . Then, Problem 1 is NP-hard.

Proof. The reduction of the weighted set cover problem given

in Algorithm 1 is used for proving the NP-hardness. Let K̄
be a solution to Problem 1. Now we show that S(K̄⋆) is an

optimal solution to the weighted set cover problem, where K̄⋆

is an optimal solution to Problem 1. By Lemma 1, S(K̄⋆) is a

solution to the weighted set cover problem. Hence feasibility

holds. To prove optimality, assume that K̄⋆ denotes an optimal

solution to Problem 1. The proof follows if S(K̄⋆) is an

optimal solution to the weighted set cover problem. We prove

this using a contradiction argument. Let the set S ′ be a cover

to the weighted set cover problem, i.e., ∪Si∈S′Si = U , such

that w(S ′) < w(S(K̄⋆)). Corresponding to the set S ′, we

construct K̄ ′ ∈ {0, ⋆}(r+1)×r as follows:

K̄′

ij =











⋆, for i = r + 1 and j : Sj ∈ S ′,

⋆, for i = j,

0, otherwise.

Notice that the cost P (K̄ ′) = w(S ′) because the feed-

back edges selected in K̄ ′ of the form (yk, ur+1) have cost

w(Sk) and other feedback edges of the form (yk, uk) have

zero cost. To show that K̄ ′ ∈ K, for an arbitrary node

xj consider the following three cases: 1) j ∈ {1, . . . , N},
2) j ∈ {N + 1, . . . , N + r}, and 3) j = N + r + 1.

For case 1), consider node xj . Since S ′ is a solution to

the weighted set cover problem, there exists a set Sk ∈ S ′

such that j ∈ Sk. Corresponding to the set Sk, K̄ ′
(r+1)k = ⋆.



Hence, xj lies in an SCC with the feedback edge (yk, ur+1).
For case 2), notice that K̄ ′

ii = ⋆ for all i. Hence, xN+k, for

k = 1, . . . , r, lies in an SCC with the zero cost feedback

edge (yk, uk). For case 3), since we have shown that element

nodes are part of SCC with feedback edges connected to

ur+1 which is connected to node xN+r+1, node xN+r+1 also

belongs to an SCC with a feedback edge. Thus all nodes

lie in an SCC with a feedback edge and condition (a) in

Proposition 1 is satisfied. Since B(Ā) has a perfect matching,

condition (b) in Proposition 1 is satisfied. Hence K̄ ′ ∈ K.

By Steps 7 and 8 of Algorithm 1, P (K̄⋆) = w(S(K̄⋆)).
Further, we know that P (K̄ ′) = w(S ′) and by assumption

w(S ′) < w(S(K̄⋆)). Thus P (K̄ ′) < P (K̄⋆), which is a

contradiction to the optimality of K̄⋆. As a result, given an

optimal solution K̄⋆, an optimal solution to the weighted set

cover problem S(K̄⋆) can be obtained. Hence, Problem 1 is

NP-hard.

Remark 2. Problem 1 is NP-hard even when the cost of the

feedback edges are restricted to 1, 0, and ∞. For this case,

one can reduce the minimum set cover problem to an instance

of Problem 1 in polynomial time using Algorithm 1. In this

reduction all the feedback edges from {y1, . . . , yr} to ur+1

are of uniform cost.

Notice that in the reduction given in Algorithm 1, Ā has all

diagonal entries as ⋆’s. Hence B(Ā) has a perfect matching.

Thus, even without using any feedback edges, condition (b) is

satisfied and hence the optimization in Problem 1 is now to

satisfy condition (a) optimally. The following result holds.

Corollary 1. Consider the structured system (Ā, B̄ =
Im, C̄ = Ip) and feedback cost matrix P . Then, finding a

minimum cost feedback matrix that satisfies condition (a) in

Proposition 1 is NP-hard.

By Theorem 1, Problem 1 is atleast as hard as the weighted

set cover problem. Hence there does not exist a polynomial

time algorithm to solve Problem 1, unless P=NP. However,

approximation algorithms may exist. Before investigating this,

the inapproximability of Problem 1 is analyzed in Theorem 2.

Theorem 2. Consider a general instance of the weighted

set cover problem and a structured system (Ā, B̄, C̄) and

feedback cost matrix P constructed using Algorithm 1. Let

S⋆ and K̄⋆ be optimal solutions to the weighted set cover

problem and Problem 1, respectively. For ǫ > 1, if K̄ ′

is an ǫ-optimal solution to Problem 1, then S(K̄ ′) is an

ǫ-optimal solution to the weighted set cover problem, i.e.,

P (K̄ ′) 6 ǫ P (K̄⋆) implies w(S(K̄ ′)) 6 ǫ w(S⋆). Moreover,

Problem 1 is inapproximable to a multiplicative factor of logn,

where n denotes the number of state nodes.

Proof. Given K̄ ′ is an ǫ-optimal solution to problem 1, i.e.,

P (K̄ ′) 6 ǫ P (K̄⋆). From Steps 7 and 8 of Algorithm 1, we

have w(S(K̄ ′)) = P (K̄ ′) and w(S(K̄⋆)) = P (K̄⋆). Also,

by Theorem 1, S(K̄⋆) is an optimal solution to the weighted

set cover problem. Therefore, w(S⋆) = w(S(K̄⋆)) = P (K̄⋆).
Hence w(S(K̄ ′)) 6 ǫ w(S⋆). Thus an ǫ-optimal solution to

Problem 1 gives an ǫ-optimal solution to the weighted set cover

problem. The weighted set cover problem is inapproximable

to a factor of (1 − o(1)) logN [18], where N denotes the

cardinality of the universe. Thus Problem 1 is inapproximable

to a multiplicative factor of logn.

In the following Sections (Section V and VI), we ex-

plore approximation algorithm to solve Problem 1. Later in

Section VII, we consider Problem 1 on two special graph

topologies, which are of practical importance, and propose

polynomial time algorithms to obtain a solution.

V. REFORMULATING OPTIMAL FEEDBACK SELECTION

PROBLEM TO OPTIMAL CYCLE SELECTION PROBLEM

In this section, we reformulate Problem 1 to a graph

theoretic equivalent. The following assumption holds.

Assumption 1. The structured system (Ā, B̄ = Im, C̄ = Ip)
satisfies the following condition: B(Ā) has a perfect matching.

The motivation to make this assumption comes from the fact

that there exists a wide class of systems called as self-damped

systems that have a perfect matching in B(Ā), for example

consensus dynamics in multi-agent systems and epidemic

equations [19]. Self-damped systems are the systems with

all diagonal entries of Ā as nonzero. All systems with non-

singular state matrix also satisfy Assumption 1. Consider a

structured system (Ā, B̄ = Im, C̄ = Ip) that satisfies Assump-

tion 1 and a cost matrix P . Recall that under Assumption 1,

condition (b) in Proposition 1 is satisfied without using any

feedback edge. Hence, for solving Problem 1 we need to

satisfy only condition (a) in Proposition 1. The approximation

Algorithm 2 Pseudo-code reducing Problem 1 to a cycle

formulation

Input: Structured system (Ā, B̄ = Im, C̄ = Ip) and feedback

cost matrix P
Output: Cycles C = {C1, . . . , Ct} of digraph DR

1: Construct D(Ā) and find SCCs in D(Ā), say N =
{N1, . . . ,Nℓ}

2: Condense each SCC into a single node, say node set N =
{N1, . . . ,Nℓ}

3: Define EN := {(Na,Nb) : xi ∈ Na , xj ∈ Nb and

(xi, xj) ∈ EX}
4: Define E′

U := {(uj,Nk) : xi ∈ Nk and (uj, xi) ∈ EU}
5: Define E′

Y := {(Nk, yj) : xi ∈ Nk and (xi, yj) ∈ EY }
6: Construct DF ← (N ∪ VU ∪ VY , EN ∪E′

U ∪E
′
Y ∪EK)

7: Eab ← {(yi, uj) : (uj ,Na) ∈ E′
U and (Nb, yi) ∈ E′

Y }
8: eab ← {(yi′ , uj′) : (i′, j′) ∈ argmin(yi,uj)∈Eab

Pji}
9: Emin ← {eab : a, b ∈ {1, . . . , ℓ}}

10: Construct DR ← (N ∪VU ∪VY , EN ∪E
′
U ∪E

′
Y ∪Emin)

11: Find all the cycles in DR, C = {C1, . . . , Ct}
12: Each cycle Ci ∈ C has the following structure: Ci ←

({Ni ⊆ N } : [Ei ⊆ Emin])

algorithm given in this paper is based on cycle formulation

of Problem 1. Given (Ā, B̄ = Im, C̄ = Ip) and cost matrix

P , the pseudo-code showing reformulation of Problem 1 to a

cycle based problem is presented in Algorithm 2. Algorithm 2

constructs digraph DF and the reduced digraph DR as defined

below and gives as output the cycles in digraphDR. The cycles

in a directed graph can be found using the algorithm in [20].



Consider the directed graph D(Ā). We first find the set of

all SCCs, N = {N1, . . . ,Nℓ}, in D(Ā) (Step 1). Each SCC

is now condensed to a node. With a slight abuse of notation,

N = {N1, . . . ,Nℓ} is used to denote the set of condensed

nodes (Step 2). The construction of the digraph DF = (N ∪
VU ∪VY , EN ∪E′

U ∪E
′
Y ∪EK) is as follows. In DF , an edge

(Na,Nb) ∈ EN if there exists an xi ∈ Na and xj ∈ Nb

and Āji = ⋆ (Step 3). Given the input edge set EU , the edge

set E′
U is constructed in such a way that (ui,Na) ∈ E′

U ⇔
xj ∈ Na and (ui, xj) ∈ EU (Step 4). Similarly, the edge set

E′
Y is constructed such that (Na, yi) ∈ E′

Y ⇔ xj ∈ Na and

(xj , yi) ∈ EY (Step 5). Thus E′
U consists of edges from an

input to SCCs in N and E′
Y consists of edges from SCCs

in N to an output. Recall that EK is the set of all feedback

edges for which Pij is finite. Thus, EK consists of all feasible

feedback edges.

Next we construct the reduced edge set Emin and the

directed graph DR = (N ∪VU ∪VY , EN ∪E′
U ∪E

′
Y ∪Emin)

from DF . Corresponding to each SCC node in N , there

are possibly multiple input and output nodes. Thus for an

arbitrary node pair Na,Nb ∈ N there are numerous feedback

edges possible between them. In such a situation, we only

consider a least cost feedback edge between these nodes

and ignore others. Corresponding to an arbitrary node pair

Na,Nb ∈ N , we define the set Eab as the set of all

feasible feedback edges from Nb to Na (Step 7). For all

Na,Nb ∈ N , if a feedback edge exists between (Nb,Na),
select a minimum cost edge from edge set Eab and include

it in edge set Emin. This simplification results in a digraph

DR := (N ∪VU∪VY , EN ∪E′
U∪E

′
Y ∪Emin) (Step 10). Next,

the directed cycle set C = {C1, . . . , Ct} in DR is obtained. A

cycle consists of two sets: node set Ni ⊆ N and feedback

edge set Ei ⊆ Emin. Also, the cost of an edge set Ê ⊆ Emin,

denoted by c(Ê) is the sum of the costs of the individual

edges present in it, i.e., c(Ê) =
∑

ei∈Ê
c(ei), where c(ei)

denotes the cost of the feedback edge ei as defined by the

feedback cost matrix P . Below we define Problem 2, which

is an optimization problem on DR and later show that this

formulation indeed solves Problem 1.

Problem 2 (Optimal cycle selection problem). Consider a

structured system (Ā, B̄ = Im, C̄ = Ip) and feedback cost ma-

trix P . Let Emin denotes the set of feedback edges constructed

using Algorithm 2. Then, find Eopt ∈ arg min
Ê⊆Emin

c(Ê),

such that each node, Ni ∈ N , lies in atleast one cycle in the

digraph Dopt = (N ∪ VU ∪ VY , EN ∪ E′
U ∪ E′

Y ∪ Eopt).

We show that Problem 2 is equivalent to optimal feedback

selection problem for dedicated i/o.

Theorem 3. Consider a structured system (Ā, B̄, C̄) and

feedback cost matrix P . Let DR be the digraph constructed

using Algorithm 2. Then, E′ is a solution to Problem 2 if and

only if K̄ ′ := {K̄ ′
ij = ⋆ : (yj , ui) ∈ E′} is a solution to

Problem 1. Moreover, for ǫ > 1, if E′ is an ǫ-optimal solution

to Problem 2, then K̄ ′ is an ǫ-optimal solution to Problem 1,

i.e., c(E′) 6 ǫ c(Eopt) implies P (K̄ ′) 6 ǫ P (K̄⋆).

Proof. Only-if part: We assume that E′ is a solution to

Problem 2 and then show that K̄ ′ is a solution to Problem 1.

Since E′ is a solution to Problem 2, each Ni ∈ N lies in a

cycle with some feedback edge, say (yb, ua) ∈ E′. Consider

an arbitrary node xj ∈ Ni. Since xj lies in the SCC Ni and

Ni lies in a cycle with some feedback edge (yb, ua), xj lies

in an SCC in D(Ā, B̄, C̄, K̄ ′) with feedback edge (yb, ua).
Since xj is arbitrary, all nodes lie in an SCC with a feedback

edge. Hence K̄ ′ is a solution to Problem 1.

If-part: We assume that K̄ ′ is a solution to Problem 1 and

show that E′ := {(yj , ui): K̄ ′
ij = ⋆} is a solution to

Problem 2. Let xj ∈ Ni be an arbitrary state in SCC Ni

of D(Ā). Since K̄ ′ is a solution to Problem 1, xj lies in an

SCC in D(Ā, B̄, C̄, K̄ ′)with some feedback edge, say (yb, ua).
Hence there exists a directed path L in D(Ā, B̄, C̄, K̄ ′) from

xj to itself, with node repetitions allowed, which includes

feedback edge (yb, ua). Let the set of state nodes that lie

in this path be denoted by NL. Consider the digraph D′ =
(N ∪VU ∪VY , EN ∪E′

U ∪E
′
Y ). If NL ⊆ Ni, then Ni lies in

a cycle with feedback edge (yb, ua). If NL * Ni, then since

all the state nodes in L lie in some SCC in D(Ā, B̄, C̄, K̄ ′)
there exists a path that originates at SCC Ni and returns to Ni

including the feedback edge (yb, ua). For this path, the SCC

node repetitions are not allowed because D′ is a DAG. Thus

the directed path L along with feedback edge (yb, ua) forms

a cycle in D′ and hence Ni lies in the cycle formed by path

L which includes the feedback edge (yb, ua). This concludes

the if-part of the proof.

Next, we show the ǫ-optimality. Given E′ is a solution

to Problem 2 and c(E′) 6 ǫ c(Eopt). By only-if part of

Theorem 3, K̄ ′ := {K̄ ′
ij = ⋆ : (yj , ui) ∈ E′} is a feasible

solution to Problem 1. Also, by definition of K̄ ′, c(E′) =
P (K̄ ′). Similarly, K̄opt := {K̄opt

ij = ⋆: (yj , ui) ∈ Eopt} is a

feasible solution to Problem 1 and P (K̄opt) = c(Eopt). Thus,

P (K̄ ′) 6 ǫ P (K̄opt). Now we show that K̄opt is an optimal

solution to Problem 1. Suppose not, i.e., P (K̄⋆) < P (K̄opt).
Then, by if-part of Theorem 3, E⋆ := {(yj, ui) ∈ E⋆: K̄⋆

ij =
⋆} is a feasible solution to Problem 2. Also, c(E⋆) = P (K̄⋆).
Thus c(E⋆) < c(Eopt). This contradicts the optimality of

Eopt. Hence P (K̄opt) = P (K̄⋆). Now, since P (K̄ ′) 6

ǫ P (K̄opt) and P (K̄opt) = P (K̄⋆), P (K̄ ′) 6 ǫ P (K̄⋆). This

completes the proof.

Theorem 3 thus concludes that an ǫ-optimal solution to

Problem 2 gives an ǫ-optimal solution to Problem 1. We

elaborate our approach to solve Problem 2 below.

VI. APPROXIMATION ALGORITHM FOR THE OPTIMAL

FEEDBACK SELECTION PROBLEM

This section discusses a greedy algorithm and later an

approximation algorithm to find an approximate solution to

Problem 2, which in turn gives an approximate solution to

Problem 1 (Theorem 3). Recall C as the set of cycles in DR.

Definition 2. Consider the set of cycles in DR, C =
{C1, . . . , Ct}. Given a set of cycles C ′ ⊆ C in DR, the node

set N ′ covered by C ′ is defined as N ′ := ∪Ci∈C′Ni, where

Ci = ({Ni} : [Ei]). Here N ′ ⊆ N , where N is the set of

SCCs in D(Ā). In other words, we say C ′ covers N ′. Further,

the cost of the cover of cycle set C ′ is defined as c(∪Ci∈C′Ei).
Also, C ′ is said to be an optimal cycle cover if N ′ = N and



the cost of the cover C ′ is equal to c(Eopt), where Eopt is an

optimal solution to Problem 2.

Our approach to solve Problem 2 incorporates a greedy

algorithm presented in Algorithm 3 with a potential function

presented in Algorithm 4. Algorithm 3 is described below.

The pseudo-code to find a greedy solution to Problem 2

Algorithm 3 Pseudo-code for subroutine GREEDY(·, ·)

Input: Cycle set Cinp ⊆ C in DR, where Ci ∈ Cinp := ({Ni} :
[Ei]), and an edge set Einp ⊆ EK

Output: Set of feedback edges H

1: GREEDY(∪Ci∈CinpNi, Einp):
2: Initialize the set of covered nodes, I ← emptyset
3: Initialize the set of selected edges, H ← ∅
4: Ninp ← ∪Ci∈CinpNi

5: Ei ← Ei \ Einp, for all Ci ∈ Cinp
6: while I 6= Ninp do

7: Calculate ρ(Ck)← c(Ek)/|Nk|, for all Ck ∈ Cinp
8: Select Cj ∈ argminCi∈Cinp ρ(Ci)
9: Update I ← I ∪Nj , H ← H ∪Ej

10: Nk ← Nk \ I , Ek ← Ek \H , for all Ck ∈ Cinp
11: for Ck ∈ Cinp do

12: if Nk = {} then

13: Cinp ← Cinp \ Ck
14: end if

15: end for

16: end whilereturn H

is presented in Algorithm 3. Consider a structured system

(Ā, B̄, C̄) and feedback cost matrix P . Let DR denotes the

digraph corresponding to the structured system constructed

using Algorithm 2. Given a set of cycles Cinp and an edge set

Einp as input, Algorithm 3 outputs a set of feedback edges H
such that H ⊆ Emin, H ∩Einp = ∅ and all nodes Ni ∈ Ninp,

where Ninp = ∪Ci∈CinpNi (Step 4), lie in atleast one cycle

in the digraph (N ∪ VU ∪ VY , EN ∪ E′
U ∪ E′

Y ∪ H). At

each step of the while loop (Step 6), the sets I and H are

defined as the set of nodes covered and the set of feedback

edges selected, respectively (Steps 2 and 4). Our purpose is

to make I = Ninp. In other words, given a set of cycles Cinp
in DR, our aim is to choose a set of cycles Csol ⊆ Cinp such

that Csol is a cover (Definition 2) of Ninp. For each cycle

Ci ∈ Cinp, we define price of a cycle as the average cost

per node, i.e., ρ(Ci) = c(Ei)/|Ni| (Step 7). A cycle which

has a minimum price, say Cj , is selected (Step 8). We call

this selection as a greedy selection of the cycle Cj . If there

are multiple cycles with minimum price, select any one of

them. Based on this selection, the sets I and H are updated

by including the nodes and the edges of Cj , respectively

(Step 9). Further, all the covered nodes (I) and all the selected

edges (H) are removed from the node set and the edge set

of each cycle, respectively (Step 10). The set of cycles Cinp
is now updated by removing all the cycles with empty node

set (Step 13). These set of operations are performed until

we cover all the nodes in Ninp, i.e., I = Ninp. The cost

of this greedy approach is denoted by c(H), where H is

the set of feedback edges selected by the greedy algorithm

satisfying H ∩ Einp = ∅. Let Carb be an arbitrary set of

cycles. Then, for each edge ei ∈ Emin, we define multiplicity

mi(Carb) as mi(Carb) = |{Cj : Cj ∈ Carb and ei ∈ Ej}|.
In other words, mi(Carb) is the number of cycles in Carb

in which the feedback edge ei is present. Now we define

k1(Carb) := maxei∈Emin
mi(Carb) and is referred as the first

highest multiplicity of an edge in cycle set Carb. Also, for

every cycle Cj ∈ Carb, kj1(Carb) := maxei∈Emin\Ej
mi(Carb).

Then, k2(Carb) := minCj∈Carb
kj1 and is referred as the second

highest multiplicity of an edge in cycle set Carb. Next, let Cset

denotes the set that consists of all possible optimal solutions

to Problem 2. Note that, C (j) ∈ Cset is a set of cycles

in DR. Then, we define k̃1 = minC (j)∈Cset
k1(C (j)) and a

corresponding cycle set C 1
opt ∈ argminC (j)∈Cset

k1(C (j)).

Similarly, k̃2 = minC (j)∈Cset
k2(C (j)) and a corresponding

cycle set C 2
opt ∈ argminC (j)∈Cset

k2(C (j)). Further, E1
opt and

E2
opt denote the set of feedback edges present in set of cycles

C 1
opt and C 2

opt, respectively. Note that, k̃1 and k̃2 may not

necessarily be from the same cycle set in Cset. Also, since

C 1
opt ∈ Cset and C 2

opt ∈ Cset, c(E
1
opt) = c(E2

opt) = c(Eopt).

We describe an example using Figure 2 to demonstrate the

values of variables k1, k2 for a cycle set and k̃1, k̃2 for the
structured system illustrated. Consider the following cycles:

C1 : ({N1,N2,N3} : [(y3, u2), (y2, u1)])

C2 : ({N1,N2,N4} : [(y4, u2), (y2, u1)])

C3 : ({N1,N2,N5} : [(y1, u5), (y2, u1)])

C4 : ({N5,N6,N8} : [(y5, u6), (y6, u8)])

C5 : ({N5,N6,N7} : [(y5, u6), (y7, u5)])

C6 : ({N3} : [(y3, u3)])

C7 : ({N6} : [(y6, u6)])

C8 : ({N7} : [(y7, u7)])

C9 : ({N8} : [(y8, u8)]). (2)

Let the feedback cost matrix P associated with the structured
system given in Figure 2 be

P =









10 1 10 10 10 10 10 10
10 10 1 1 10 10 10 10
10 10 1 10 10 10 10 10
10 10 10 10 10 10 10 10
1 10 10 10 10 10 1 10
10 10 10 10 1 1 10 10
10 10 10 10 10 10 1 10
10 10 10 10 10 1 10 1









For the structured system given in Figure 2, the

set of all possible optimal solutions to Problem 2

Cset = {C (1),C (2),C (3),C (4)}. Here, C (1) =
{C1, C2, C3, C7, C8, C9}, C (2) = {C2, C3, C4, C5, C6}, C (3) =
{C1, C2, C3, C4, C5} and C (4) = {C2, C3, C6, C7, C8, C9}. In

the cycle set C (1), the feedback edge (y2, u1) is present

in 3 cycles, which is the first highest multiplicity of an

edge in cycle set C (1). The second highest multiplicity of

an edge in C (1) is 1 because all the other feedback edges

are present in only one cycle. Hence k1(C (1)) = 3 and

k2(C (1)) = 1. In C (2), the feedback edges (y2, u1) and

(y5, u6) are both present in 2 cycles each. Therefore, the

first highest multiplicity of an edge in C (2) is 2. Also, the

second highest multiplicity of an edge in C (2) is also 2. In

C (3), the edge (y2, u1) is present in 3 cycles, which is the

first highest multiplicity of an edge in cycle set C (3), and

the edge (y5, u6) is present in 2 cycles. Therefore, the first

highest multiplicity of an edge in C (3) is 3 and the second

highest multiplicity of an edge in C (3) is 2. In C (4), the
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Fig. 2. Illustrative figure demon-

strating the variables k̃1 and k̃2.

Cset = {C (1), C (2), C (3) and

C (4)}. Then, k1(C (1)) = 3,

k1(C (2)) = 2, k1(C (3)) =
3, k1(C (4)) = 2. Similarly

k2(C (1)) = 1, k2(C (2)) = 2,

k2(C (3)) = 2, k2(C (4)) = 1.

Thus, k̃1 = 2 and k̃2 = 1.

feedback edges (y2, u1) is present in 2 cycles and all the

other feedback edges are present in one cycle. Thus, the first

highest multiplicity of an edge in C (4) is 2 and the second

highest multiplicity of an edge in C (4) is 1. Therefore,

k̃1 = min{k1(C (1)), k1(C (2)), k1(C (3)), k1(C (4))} =

min{3, 2, 3, 2} = 2 and k̃2 = min{k2(C (1)), k2(C (2)),
k2(C (3)), k2(C (4))} = min{1, 2, 2, 1} = 1. Note that, only

the feedback edges which lie in the cycles present in the sets

C (1),C (2),C (3) and C (4) are shown in Figure 2.

Lemma 2. Consider a structured system (Ā, B̄, C̄) and cost

matrix P . Let C 1
opt be an optimal cycle cover and H ⊆ EK

be the output of Algorithm 3, which takes as input a set of

cycles and a set of feedback edges. Then, c(H) 6 k̃1 (1 +
log |N |) c(Eopt), where k̃1 is the highest multiplicity of an

edge in the cycle set C 1
opt and Eopt is an optimal solution to

Problem 2.

Proof. Given C 1
opt is an optimal solution to Problem 2. We

define the total cost of cycles ctot as

ctot =
∑

Ci∈C 1
opt

c(Ei). (3)

Since k̃1 is the highest multiplicity edge, in the edge set

E1
opt := ∪Ci∈C 1

opt
Ei, corresponding to C 1

opt, from (3)

ctot 6
∑

ẽi∈E1
opt

(k̃1 c(ẽi)) = k̃1(
∑

ẽi∈E1
opt

c(ẽi)) = k̃1 × c(E1
opt).

(4)

Let in vth iteration of the while loop (Steps 7-13), C̃ns(v) =
{C̃1ns(v), . . . , C̃

z
ns(v)} ⊆ C 1

opt, where C̃ins(v) = ({Ñ i
ns(v)} :

[Ẽi
ns(v)]), be the set of cycles not yet selected by the greedy

scheme described in Algorithm 3. Since C̃ns(v) ⊆ C 1
opt,

ctot >
∑

C̃ins(v)∈C̃ns(v)

c(Ẽi
ns(v)). (5)

From (4) and (5), we get

k̃1 × c(E1
opt) >

∑

C̃ins(v)∈C̃ns(v)

c(Ẽi
ns(v)),

= c(Ẽ1
ns(v)) + · · ·+ c(Ẽz

ns(v)),

= |Ñ1
ns(v)|

c(Ẽ1
ns(v))

|Ñ1
ns(v)|

+ · · ·+ |Ñz
ns(v)|

c(Ẽz
ns(v))

|Ñz
ns(v)|

The ratio of the cost of each cycle Ci to the number of nodes

it will cover is denoted by ρ(Ci) (Step 7 of Algorithm 3), i.e.,

c(Ei)/|Ni| = ρ(Ci). Let the cycle Cj with minimum price

is selected greedily in the current iteration. Then, ρ(Cj) 6

ρ(C̃ins(v)), for i = 1, . . . , z. So,

k̃1 × c(E1
opt) >

∑

C̃ins(v)∈C̃ns(v)

ρ(Cj)× |Ñ
i
ns(v)|,

= ρ(Cj)× (
∑

C̃ins(v)∈C̃ns(v)

|Ñ i
ns(v)|),

> ρ(Cj)× (| ∪C̃ins(v)∈C̃ns(v)
Ñ i

ns(v)|).

Notice that C̃ns(v) covers nodes N \ I , where I is the set of

nodes in N covered till the vth iteration of the while loop. Let

N \ I = Nns(v). Thus |Nns(v)| = | ∪C̃ins(v)∈C̃ns(v)
Ñ i

ns(v)|.

k̃1 × c(E1
opt) > ρ(Cj)× |Nns(v)|,

ρ(Cj) 6 k̃1 ×
c(E1

opt)

|Nns(v)|
. (6)

Let the sequence of cycles selected by Algorithm 3 be Ĉ =
{Ĉ1, . . . , Ĉd}. In vth iteration, let the number of nodes covered

by cycle Ĉv be given by n̂v. Here |Nns(v)| is the number of

nodes yet to be covered after (v−1) iterations. Thus Nns(1) =

N . Also, by (6), ρ(Ĉv) 6 k̃1
c(E1

opt)

|Nns(v)|
. The cost incurred when

selecting cycle Ĉv is ρ(Ĉv)× n̂v . So, the total cost incurred

c(H) =
∑

Ĉv∈Ĉ

ρ(Ĉv)× n̂v,

6 k̃1 c(E
1
opt)

( n̂1

|Nns(1)|
+ . . .+

n̂d

|Nns(d)|

)
,

= k̃1 c(E
1
opt)

( n̂1

|N |
+ . . .+

n̂d

|Nns(d)|

)
,

= k̃1 c(E
1
opt)

(
1

|N |
+ · · ·+

1

|N |︸ ︷︷ ︸
n̂1 times

+
1

|N | − n̂1
+ · · ·+

1

|N | − n̂1︸ ︷︷ ︸
n̂2 times

+ . . .+
1

|N | −
d−1∑
i=1

n̂i

+ . . .+
1

|N | −
d−1∑
i=1

n̂i

︸ ︷︷ ︸
n̂d times

)
,

6 k̃1 c(E
1
opt)

(
1 + log(|N |)

)
,

= k̃1 c(Eopt)
(
1 + log(|N |)

)
.

Thus c(H) 6 k̃1 c(Eopt)(1 + log |N |).

Remark 3. Let C 1
opt be an optimal cycle set that solves

Problem 2 and the highest multiplicity of a feedback edge

in C 1
opt be k̃1. Notice that |C 1

opt| 6 |N | because in optimal

solution each cycle covers atleast one different node. Hence,

k̃1 ≤ |N |.

The pseudo-code for finding an approximate solution to

Problem 2 is presented in Algorithm 4. This algorithm in-

corporates the greedy algorithm given in Algorithm 3 with

a potential function. Here, IA and HA are defined as the

set of nodes covered and the set of feedback edges selected,

respectively. Our purpose is to make IA = N . Consider a

cycle Ci ∈ C . The potential of a cycle is defined in the

following way. We apply the greedy scheme discussed in

Algorithm 3 with input (∪tj=1Nj/Ni, Ei) and let the solu-

tion obtained be the edge set HA(Ci) (Step 3). Notice that

HA(Ci) ∩ Ei = ∅ because we removed the edge set Ei from



Algorithm 4 Pseudo-code to find an approximate solution to

Problem 2

Input: Cycle set C = {C1, . . . , Ct}, where Ci := ({Ni} : [Ei])
Output: Set of feedback edges HA

1: Initialize the set of covered nodes as IA ← ∅

2: Initialize the set of selected edges as HA ← ∅

3: Define HA(Ci)← GREEDY

(

∪t
j=1 Nj \Ni, Ei

)

4: Define POT(Ci)← c(Ei) + c(HA(Ci))
5: while I 6= N do

6: Calculate POT(Ck), for k = 1, . . . , |C|
7: Select Cj ∈ argminCi∈C POT(Ci)

8: IA ← IA ∪Nj , HA ← HA ∪ Ej

9: Nk ← Nk/IA, Ek ← Ek/HA, for k = 1, . . . , |C|
10: end while

11: Return HA

all Ej ’s before applying the greedy scheme (see Algorithm 3).

The potential of cycle Ci is then defined as the sum of c(Ei)
and c(HA(Ci)) (Step 4). Also, the edge set Ei ∪HA(Ci) is a

feasible solution to Problem 2, as Ei covers Ni and HA(Ci)
covers (∪tj=1Nj/Ni). After calculating the potential for each

Ci ∈ C , we select a cycle with minimum potential value, say

Cj (Step 7). The node set covered and the edge set selected

till current iteration is updated as in Step 8. Also, the edge set

Ej is removed from remaining edge sets for all Ck ∈ C \ Cj
(Step 9). In Theorem 4, we prove that Algorithm 4 gives an

approximate solution to Problem 2 with approximation ratio

k̃2(1 + log |N |).

Theorem 4. Algorithm 4 which takes as input a cycle set C =
{C1, . . . , Ct} outputs a solution HA to Problem 2 such that

c(HA) 6 k̃2 (1 + log|N |) c(Eopt), where Eopt is an optimal

solution to Problem 2. In other words, output of Algorithm 4

is a k̃2 (1 + log|N |)-optimal solution to Problem 2.

Proof. Let C 2
opt be an optimal solution of Problem 2. Recall

the definition of k̃2. Let the highest multiplicity of a feedback

edge in C 2
opt be k′ and the corresponding edge be e′. Consider

the cycle C̃1 ∈ C 2
opt, where C̃1 = ({Ñ1} : [Ẽ1]) such that e′ ∈

Ẽ1. Let HA(C̃1) := GREEDY(∪tj=1Nj/Ñ1, Ẽ1). The potential

of cycle C̃1 is given by POT(C̃1) = c(Ẽ1) + c(HA(C̃1)).
Let E2

opt be the set of feedback edges corresponding to C 2
opt.

Note that, an optimal edge set to cover the nodes N \Ñ1 is

E2
opt\Ẽ1 and the optimal cost is c(E2

opt)−c(Ẽ1). Also, since

C̃1 ∈ C 2
opt, where C 2

opt is an optimal cycle cover, the highest

multiplicity of an edge in C 2
opt\C̃1 is k̃2. Hence by Lemma 2,

we have

c(HA(C̃1)) 6 k̃2 (1 + log|N \ Ñ1|) (c(E
2
opt)− c(Ẽ1)),

6 k̃2 (1 + log|N |) (c(E2
opt)− c(Ẽ1)).

Algorithm 4 greedily selects a cycle, say Ck, with minimum

potential. Then, POT(Ck) 6 POT(C̃1). Hence,

POT(Ck) 6 c(Ẽ1) + k̃2 (1 + log|N |)
(
c(E2

opt)− c(Ẽ1)
)
,

6 k̃2 (1 + log|N |) c(E2
opt). (7)

Equation (7) holds since k̃2 (1 + log|N |) > 1. Notice that
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Fig. 3. Illustrative figure demonstrating the merging operation. Each
state vertex xk has input uk and output yk connected which are
omitted for many xk’s for the sake of clarity, i.e, feedback edges
(yk, uk) for all k = 1, . . . , 20 are present in the system.

POT(Ck) is the cost of the edge set obtained by selecting

cycle Ck and then applying greedy scheme on the remaining

N \Nk nodes. Hence, edge set Ek ∪HA(Ck) is a solution to

Problem 2. Therefore, after the first iteration of the while loop

of Algorithm 4, we obtain a solution to Problem 2, the cost

of which is bounded by k̃2 (1 + log|N |) c(E2
opt) = k̃2 (1 +

log|N |) c(Eopt). Thus Algorithm 4 gives an approximate so-

lution to Problem 2 with approximation ratio k̃2(1+log|N |)).
This completes the proof.

The result below gives the computational complexity of

Algorithm 4.

Theorem 5. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and feedback cost matrix P . Algorithm 4, which takes

as input a set of cycles C and gives as output the feedback

edge set HA, has complexity O(n2 |C|2), where n denotes the

system dimension and |C| is the number of cycles in DR.

Proof. Finding all cycles in the digraph DR has complexity

O(n2|C|) [20] as the number of SCCs in D(Ā) are in O(n),
where n is the number of state nodes in the structured system

(Ā, B̄, C̄). Algorithm 3 finds the price for |C| cycles in each

iteration and the number of iterations are O(n). Hence, Algo-

rithm 3 has complexity O(n |C|). In Algorithm 4, Algorithm 3

is called as a subroutine O(n |C|) times. All the other steps in

Algorithm 4 are of linear complexity. Hence, the complexity

of Algorithm 4 is (n2 |C|2).

Remark 4. Cycle merging: A cycle merging operation can

be performed on the cycle set C in DR before applying

Algorithm 4. For all Ca, Cb ∈ C , if Ea ⊂ Eb, then we merge

the cycle Ca with cycle Cb, i.e., Cb = ({Na ∪Nb} : [Eb]).

Notice that after the merging operation, the cost c(Eb) of

selecting the cycle Cb does not change, but the number of

nodes covered can increase resulting in a better ratio of cost

to nodes covered, ρ(Cb). The bound achieved in Algorithm 4

has a factor of k̃2. As a result of this merging operation,

the optimal edge set does not change, but the multiplicity k̃2
can decrease resulting in a better approximation and lower

complexity of Algorithm 4. An illustrative example showing

merging operation is shown in Figure 3. Assume that an

optimal solution to the given system is the set of edges

(y20, u1) and (y20, u10). Then both k̃1 and k̃2 are 8 and

can possibly be very high as the number of nodes increases.

If we perform the merging operation as mentioned above,

k̃2 becomes 1. Broadly, the merging operation simplifies the

proposed algorithm and requires more detailed analysis.



Remark 5. Notice that in Algorithm 4, only the first it-

eration of the while loop is used to prove an approxi-

mation ratio of k̃2 (1 + log(|N |)). The cost of the final

edge set obtained when Algorithm 4 terminates will be

atmost k̃2 (1 + log(|N |)) (c(Eopt)), i.e., lesser cost than

k̃2 (1 + log(|N |)) (c(Eopt)).

The following section considers two special cases of Prob-

lem 1 of practical importance and we propose polynomial time

algorithms to obtain approximate and optimal solutions to the

two cases, respectively.

VII. SPECIAL CASES

In this section, we consider two special graph topologies:

(i) structured systems with back-edge feedback structure and

(ii) hierarchical network.

A. Structured systems with back-edge feedback structure

In this subsection, we consider a special class of structured

systems with a constraint on the structure of the feedback

matrix. We assume that the only feasible feedback edges

(yj , ui)
′s are those edges where there exists a directed path

from input ui to output yj in D(Ā, B̄, C̄). In other words, the

assumption states that an output from a state is fed back to

an input which can directly or indirectly influence the state

associated with that output. A feedback structure that satisfies

this constraint is referred as a back-edge feedback structure.

Note that, inputs and outputs are dedicated here. For this

class of systems we propose a polynomial time algorithm to

find an approximate solution to Problem 1 with an optimal

approximation ratio. We describe below the graph topology

considered in this subsection.

Definition 3. Consider a digraph DG := (VG, EG). Let the

nodes vi, vj ∈ VG be such that there exists a directed path

from vi to vj . Then, vi is referred as an ancestor of vj . Also,

node vj is referred as a descendant of node vi.

Assumption 2. Consider a structured system (Ā, B̄ =
Im, C̄ = Ip) and a feedback cost matrix P ∈ Rm×p, where

Pij denotes the cost of feeding the jth output to the ith input.

Then, Pij =∞, if the input node ui is not an ancestor of the

output node yj in D(Ā, B̄, C̄).

Recall that if Pij = ∞, then the feedback edge K̄ij is

infeasible. Thus Assumption 2 concludes that an output yj
can be fed to an input ui only if ui is an ancestor of yj in

D(Ā, B̄, C̄). If ui is not an ancestor of yj , then (yj , ui) is

an infeasible feedback link. An illustrative example showing

feasible and infeasible feedback connections in a structured

system is presented in Figure 4.

Corollary 2. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and a feedback cost matrix P that satisfies Assumption 2.

For this structured system the following hold:

(i) Problem 1 is NP-hard,

(ii) Problem 1 is inapproximable to a multiplicative factor of

logn, where n is the number of states in the system.

The above corollary is a consequence of the fact that the

structured system and the feedback cost matrix obtained in
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Fig. 4. Illustrative figure
demonstrating feasible
feedback connections. Under
Assumption 2, feedback edge
(y1, u1) is feasible while
(y2, u2) is infeasible.

the reduction given in Algorithm 2 and the NP-hardness proof

given in Theorem 1 satisfy Assumption 2.

In this subsection, we present a polynomial time approx-

imation algorithm that finds a (log n)-approximate solution

to Problem 1. This algorithm is based on a reduction of

Problem 1 to an instance of the weighted set cover problem.

We reduce a general instance of Problem 1 satisfying Assump-

tion 2 to an instance of the weighted set cover problem in

such a way that an approximation algorithm of the weighted

set cover problem will serve as an approximation algorithm

for Problem 1. To achieve this, we reduce the weighted set

cover problem to Problem 1 and prove in Theorem 6 that any

ǫ-optimal solution of the weighted set cover problem is an

ǫ-optimal solution to Problem 1.

Algorithm 5 Pseudo-code for reducing a general instance

of Problem 1 following Assumption 2 to an instance of the

weighted set cover problem denoted by (Us,Ps, ws).

Input: Structured system (Ā, B̄ = Im, C̄ = Ip) and

feedback cost matrix P
Output: Weighted set cover problem (Us,Ps, ws)

1: Define K̄P := {K̄P
ij = ⋆ if Pij 6=∞}

2: Define an instance of the weighted set cover problem as:

3: Universe Us ← {x1, . . . , xn}
4: Set Ps = {S1, . . . ,S|E

KP |}
5: for ed = (yj , ui) ∈ EKP do

6: Sd := {xa: xa lies in an SCC in the digraph formed by

adding the feedback edge ed = (yj , ui) to D(Ā, B̄, C̄)}
7: Weight ws(Sd) = Pij

8: end for

9: Let S ′ be a solution to the weighted set cover problem

(Us,Ps, ws)
10: The feedback matrix K̄(S ′) selected under S ′, K̄(S ′)←
{K̄(S ′)ij = ⋆ : Sd ∈ S ′ and ed = (yj , ui)}

11: Cost of the edge set K̄(S ′), P (K̄(S ′)) =∑
(i,j):K̄(S′)ij=⋆ Pij

Algorithm 5 gives the pseudo-code for reducing a general

instance of Problem 1 to an instance of the weighted set cover

problem denoted by (Us,Ps, ws). We define a feedback matrix

K̄P , such that K̄P consists of all feasible feedback edges

(Step 1). The universe Us of the weighted set cover problem

consists of all states {x1, . . . , xn} of the system (Step 3).

The set Ps is defined in such a way that a set Sd ∈ Ps

corresponds to a feedback edge (yj, ui) = ed (Step 4). Thus

|Ps| = |EKP | and each set Sd consists of state nodes in

D(Ā) that lie in an SCC in the digraph formed by adding the

feedback edge (yj , ui) to D(Ā, B̄, C̄) (Step 6). The weight of

the set Sd is assigned the cost of the feedback edge (yj , ui)



(Step 7). We denote a solution to the weighted set cover

problem (Us,Ps, ws) by S ′ (Step 9). With respect to S ′ the

feedback matrix selected is denoted by K̄(S ′) (Step 10) and

its cost is denoted by P (K̄(S ′)) (Step 11). The result below

proves that K̄(S ′) is a solution to Problem 1.

Theorem 6. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and cost matrix P such that Assumption 2 holds. Also, let

B(Ā) has a perfect matching. Then,

(i) S ′ is a solution to the weighted set cover problem

(Us,Ps, ws) constructed using Algorithm 5 if and only if

K̄(S ′) is a solution to Problem 1.

(ii) S⋆ is an optimal solution to the weighted set cover prob-

lem (Us,Ps, ws) implies K̄(S⋆) is an optimal solution

to Problem 1, i.e., P (K̄(S⋆)) = P (K̄⋆).
(iii) For ǫ > 1, if S ′ is an ǫ-optimal solution to the weighted

set cover problem, then K̄(S ′) is an ǫ-optimal solution to

Problem 1, i.e., ws(S ′) 6 ǫ ws(S⋆) implies P (K̄(S ′)) 6
ǫ P (K̄⋆).

Proof. (i) Only-if part: Here we assume that S ′ is a solution

to the weighted set cover problem and then show that K̄(S ′)
is a solution to Problem 1. Note that in B(Ā) there exists a

perfect matching, and hence condition (b) in Proposition 1

is satisfied without using any feedback edge. As a result,

only condition (a) has to be satisfied. Since S ′ is a solution

to the weighted set cover problem, ∪Sd∈S′Sd = Us =
{x1, . . . , xn}. Consider an arbitrary state xi such that xi ∈ Sj
for some Sj ∈ S ′. We now show that xi lies in an SCC

in D(Ā, B̄, C̄, K̄(S ′)). Note that xi ∈ Sj implies that xi

lies in an SCC in a digraph obtained by adding feedback

edge ej = (yb, ua) to D(Ā, B̄, C̄, K̄P ) (see Step 6). By

construction of K̄(S ′) (see Step 10), K̄(S ′)ab = ⋆. This

concludes that xi lies in an SCC with a feedback edge in

K̄(S ′). As xi is arbitrary the only-if part follows.

(i) If part: Here we assume that ˜̄K is a solution to Problem 1

and then show that S̃ , where S̃ := {Sj ∈ Ps: ej = (yb, ua)

and ˜̄Kab = ⋆}, is a solution to the weighted set cover problem.

Consider an arbitrary element xi ∈ Us. Since ˜̄K is a solution

to Problem 1, there exists some ej = (yb, ua) such that
˜̄Kab = ⋆ and xi lies in an SCC in D(Ā, B̄, C̄, ˜̄K) with

feedback edge ej . By Step 6 of Algorithm 5, this implies that

xi ∈ Sj . Since ˜̄Kab = ⋆ and ej = (yb, ua), by definition of

S̃ , Sj ∈ S̃ . Hence S̃ covers the element xi ∈ Us. Since xi is

arbitrary, the if-part follows. This completes the proof of (i).
(ii): Given S⋆ is an optimal solution to (Us,Ps, ws). By

Theorem 6 (i), K̄(S⋆) is a solution to Problem 1. We need to

show that K̄(S⋆) is an optimal solution to Problem 1. Suppose

not. Then there exists K̄ ′ ∈ K, i.e., a solution to Problem 1,

and P (K̄ ′) < P (K̄(S⋆)). From if-part of Theorem 6 (i),

corresponding to K̄ ′ there exists S̃ := {Sj : ej = (yb, ua) and

K̄ ′
ab = ⋆} which a solution to (Us,Ps, ws). Using Steps 7, 10

and 11, ws(S⋆) = P (K̄(S⋆)) and ws(S̃) = P (K̄ ′).

As P (K̄ ′) < P (K̄(S⋆)), this implies ws(S̃) < ws(S⋆).
This contradicts the fact that S⋆ is an optimal solution to

(Us,Ps, ws). Thus K̄(S⋆) is an optimal solution to Problem 1.

(iii): Let S⋆ and K̄⋆ be optimal solutions of the weighted

set cover problem (Us,Ps, ws) and Problem 1, respec-

tively. Given ws(S ′) 6 ǫ ws(S⋆). Now we need to show
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Fig. 5. Illustrative figure of a
structured system with ded-
icated inputs and outputs to
demonstrate Algorithm 5.

that P (K̄(S ′)) 6 ǫ P (K̄⋆). Since S ′ and S⋆ are feasi-

ble solutions to the weighted set cover problem, by The-

orem 6 (i), K̄(S ′) and K̄(S⋆) are feasible solutions to

Problem 1. By Steps 7, 10 and 11 of Algorithm 5, ws(S ′) =
P (K̄(S ′)) and ws(S⋆) = P (K̄(S⋆)). Hence P (K̄(S ′)) 6

ǫ P (K̄(S⋆)). From Theorem 6 (ii), P (K̄(S⋆)) = P (K̄⋆).
Thus P (K̄(S ′)) 6 ǫ P (K̄⋆). This completes the proof.

Theorem 7. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and feedback cost matrix P such that Assumption 2 holds.

Then,

(i) There exists an algorithm that approximates Problem 1

to factor logn, where n is the system dimension.

(ii) Further, the logn approximation ratio is optimal.

Proof. (i): Using Algorithm 5, any general instance of Prob-

lem 1 satisfying Assumption 2 can be reduced to an instance

of the weighted set cover problem. Notice that Algorithm 5

iterates over all the feasible feedback edges and each iteration

has O(n) complexity. Since m = O(n) and p = O(n), number

of feedback edges in the system are O(n2). The remaining

steps of Algorithm 5 are of linear complexity. Hence the

complexity of Algorithm 5 is O(n3). This concludes that the

reduction given in Algorithm 5 is a polynomial time reduction.

From Theorem 6 (iii), an ǫ-optimal solution to the weighted set

cover problem gives an ǫ-optimal solution to Problem 1. For

solving weighted set cover problem there exists a polynomial

time greedy algorithm which gives a (log N)-optimal solution,

where N denotes the cardinality of the universe [17]. Thus

Problem 1 is approximable to factor log n, using Algorithm 5

and the greedy algorithm given in [17], in polynomial time.

(ii): For a structured system satisfying Assumption 2, Prob-

lem 1 is inapproximable to multiplicative factor of log n
(Theorem 2). Theorem 7 (i) proves that one can find (log n)-
optimal solution to Problem 1. Thus, the above approximation

bound is optimal bound for Problem 1.

We explain Algorithm 5 using an illustrative example below.
Illustrative example for structured systems with back-edge

feedback structure: In this section, we describe Algorithm 5
using the example given in Figure 5. Let the feedback cost
matrix P associated with the structured system given in
Figure 5 be

P =

[

1 10 10 2 10
∞ 3 ∞ ∞ ∞

∞ 10 4 ∞ ∞

∞ 10 ∞ 2 8
∞ ∞ ∞ ∞ 5

]

.

Notice that an output yj can be given as feedback to an

input ui if there exists a directed path from ui to yj in

D(Ā, B̄, C̄). We reduce this instance of Problem 1 to an

instance of the weighted set cover problem (Us,Ps, ws) as

follows. Here, the universe Us = {x1, . . . , x5}. As per P , there

are 12 feasible feedback edges. Corresponding to these edges,

the sets of the weighted set cover problem Ps = {S1, . . . , S12}
are constructed as follows: S1 = {x1}, S2 = {x1, x2, x3, x4},

S3 = {x1, x3}, S4 = {x1, x4}, S5 = {x1, x4, x5}, S6 = {x2},



S7 = {x2, x3}, S8 = {x3}, S9 = {x2, x4}, S10 = {x4},

S11 = {x4, x5}, and S12 = {x5}. The respective weights for

the sets defined by matrix P given above are given by, ws =

{1, 10, 10, 2, 10, 3, 10, 4, 10, 2, 8, 5}. Solving weighted set cover

problem for (Us,Ps, ws) given above using approximation

algorithm given in [17] gives a (log n)-optimal solution to

Problem 1 (Theorem 7). The next section discusses the second

graph topology.

B. Hierarchical Network

In this subsection, we consider a special graph topology

referred as layered graphs in the literature [21]. Many real-

world systems such as power grids, drinking water networks,

biological cell regulation networks, online social networks,

and road traffic control can be described and modeled using

a layered network structure where the states in the system

interact with each other in a layered fashion [22]. Each layer

in the layered structure is influenced5 by the nodes in the

previous layer and hence the network follows a directed tree

structure called as arborescence. A directed graph following

a tree structure such that every node except the root node

has exactly one incoming edge is referred as a hierarchical

network. Here, we aim to solve the minimum cost feedback

selection problem for dedicated i/o satisfying Assumption 2

for structured systems whose DAG of SCCs is a hierarchical

network.

Hierarchical network structure is common in real-life net-

works [21]. A power distribution system follows a hierarchical

network structure and finding an optimal control strategy aims

towards designing a least cost feedback pattern to maintain the

system parameters such as voltages and frequency at different

layers of the network at specified levels [22], [23]. In a water

distribution network, optimization techniques in controlling

the network contribute towards developing a smart manage-

ment strategy for implementing drinking water networks [24].

In case of road traffic control, a hierarchical network is a

natural choice to structure the control problems [25]. Next, we

discuss few notations and constructions required to describe a

hierarchical network.

Definition 4. Consider a directed graphDG := (VG, EG). Let

nodes vi, vj ∈ VG be such that there exists an edge (vi, vj) ∈
EG from vi to vj . Then, vi is referred as a parent of vj .

Let the DAG of SCCs in D(Ā) be denoted by DA :=
(VA, EA). Here the node set VA = {N1, . . . ,Nℓ} is the set

of all SCCs in D(Ā) and (Ni,Nj) ∈ EA if there exists a

directed edge in D(Ā) from a state in Ni to a state in Nj .

Then we have the following assumption on the digraph DA.

Assumption 3. Consider the DAG DA = (VA, EA) which

consists of SCCs in D(Ā). Then, each node Ni ∈ VA except

the root node has a unique parent, where root node is a vertex

which has no incoming edge.

Under Assumption 3, the DAG DA is a hierarchical net-

work. For a hierarchical network, we define the notion of layer

which corresponds to the position of a set of nodes in the

network arrangement.

5In a directed graph a node vi is said to be influenced by node vj , if there
exists a directed path from vj to vi.
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Fig. 6. A structured sys-
tem whose DAG of SCCs
forms a hierarchical net-
work. Each vertex N

j
i

in the figure corresponds
to an SCC of D(Ā).
The subgraph enclosed
in the dashed box illus-
trates a subtree rooted
at node N

2
2 denoted by

Tree(N 2
2 ).

Definition 5. Consider Ni,Nj ∈ VA such that there exists a

directed path from Ni to Nj in DA. The distance from Ni

to Nj in DA is the number of edges in the shortest directed

path from Ni to Nj . Then, a layer Li is defined as the set of

all nodes which are at a distance i− 1 from the root node in

DA. Note that Li ⊆ N . The node set Li is represented as

Li = {N i
1 , . . . ,N

i
hi
}, where a node N i

j ∈ VA denotes the

jth node in Li and hi denotes the number of nodes in Li.

An illustrative example of a hierarchical network is pre-

sented in Figure 6. Under Definition 5, the root node of the

hierarchical network is denoted by N 1
1 and it is the only

node present in the top layer. Next, we define a subtree of

a hierarchical network which is a subgraph of the system

digraph. For DA = (VA, EA), DS := (VS , ES) denotes a

subgraph of DA whose vertex set VS ⊆ VA and edge set

ES ⊆ EA, such that endpoints of ES are nodes from VS .

Definition 6. Consider a node N
f
k ∈ VA in the layer Lf .

Then, a subtree rooted at node N
f
k , denoted by Tree(N f

k ),
is defined as the subgraph in the hierarchical network which

consists of the node N
f

k and all of it’s descendants.

Note that Tree(N 1
1 ) denotes the entire hierarchical net-

work, where N 1
1 is the top node in the network. An illustrative

example of a subtree is shown enclosed in the dashed box

with respect to the hierarchical network in Figure 6. In this

paper, we propose a dynamic programming based algorithm

to solve the minimum cost feedback selection problem for

dedicated i/o when the structured system is a hierarchical

network. The approach is based on dividing the network into

smaller subtrees (Definition 6) and finding an optimal solution

for the subtrees in a bottom up fashion. Eventually we merge

the solutions obtained for the smaller subtrees and find an

optimal solution to the bigger network.

Consider a hierarchical network DA. Our aim is to find a

set of minimum cost feedback edges such that the hierarchical

network along with these feedback edges satisfies condition (a)

in Proposition 1. Consider a node N
f
k , where N

f
k denotes

the kth node in layer Lf . Recall that N
f
k lies in DA which

is a DAG. For N
f
k , let Af

k denotes the set of all feedback

edges such that each edge in Af
k makes N

f
k lie in a cycle.

For a feedback edge (yb, ua) to be in Af
k , (yb, ua) has to be

directed from an output yb which is a descendant of N
f
k to

an input ua which is an ancestor of N
f
k . To characterize all

the edges in Af
k , we give the following definition.

Definition 7. Consider DA and N
f
k ∈ VA. The set A

f
k

denotes the set of all state nodes that lie in the SCCs of D(Ā)



which are ancestors of N
f
k . Similarly, the set D

f
k denotes the

set of all state nodes which lie in some SCC of D(Ā) which

are descendants of N
f
k . We denote Uf

k as the set of input

nodes ui’s which are connected to the state nodes in A
f
k .

Similarly, Y f
k denotes the set of output nodes yj’s which are

connected from the state nodes in D
f
k . Then, with respect to

N
f
k , a feedback edge (yj , ui) belongs to the edge set Af

k if

yj ∈ Y f
k and ui ∈ Uf

k . A feedback edge (yb, ua) is said to

cover N
f
k if (yb, ua) ∈ Af

k .

We need to find an optimal solution to the minimum cost

feedback selection problem for hierarchical networks, i.e., we

need to find a set of feedback edges which cover the entire

network represented by Tree(N 1
1 ). The proposed algorithm

is based on dynamic programming where we find solutions

to the subproblems and merge them to obtain a solution for

the original problem. The subproblem is to find an optimal

feedback edge set to cover a general subtree Tree(N f
k ) in the

network. Next, we describe the procedure to cover a subtree

Tree(N f
k ) optimally. Consider Tree(N f

k ) and (yb, ua) ∈
Af

k . Since Tree(N f
k ) includes N

f
k , an edge in Af

k is essential

to cover the nodes in Tree(N f
k ). Suppose we select (yb, ua)

that covers N
f
k . Note that there might be a set of nodes in

Tree(N f
k ) other than N

f
k which are covered by the edge

(yb, ua). We need to cover the rest of the nodes in Tree(N f
k )

which are not covered by the edge (yb, ua). These nodes lie in

a subgraph of Tree(N f
k ) and form a set of disjoint subtrees

denoted by Forest(N f
k , (yb, ua)).

Definition 8. Consider node N
f
k and a feedback edge

(yb, ua) ∈ Af
k . Then, Forest(N f

k , (yb, ua)) is defined as

the subgraph of Tree(N f
k ) which consists of the nodes in

Tree(N f
k ) which are not covered by the feedback edge

(yb, ua). The Forest(N f
k , (yb, ua)) is composed of disjoint

subtrees in Tree(N f
k ).

Consider an example of forest presented in Figure 7. With

respect to the node N 2
2 and the feedback edge (yb, ua) cov-

ering the node N 2
2 , the Forest(N 2

2 , (yb, ua)) is represented

by subtrees consisting of the node set {N 3
3 ,N 4

4 ,N 5
3 ,N 5

4 }
(highlighted in green colour). Here, there are two subtrees,

namely Tree(N 3
3 ) and Tree(N 4

4 ), in Forest(N 2
2 , (yb, ua)).

Consider Forest(N f
k , (yb, ua)), where (yb, ua) ∈ Af

k . The

cost to cover the disjoint subtrees in Forest(N f
k , (yb, ua))

is the sum of the cost to cover the subtrees individually

(Corollary 4) and is denoted by c(F (N f
k , (yb, ua))), where

F (N f
k , (yb, ua)) is an optimal set of feedback edges to cover

all the individual subtrees in Forest(N f
k , (yb, ua)). Next, we

give a dynamic programming algorithm to find an optimal

solution to Problem 1 under Assumptions 2 and 3. The

pseudo-code to find an optimal solution to Problem 1 for

hierarchical networks satisfying Assumption 2 is presented

in Algorithm 6. Here Lf (Step 2) denotes the f th layer

in the network and N
f
k (Step 3) denotes the kth node in

layer Lf . We denote Uf
k (Step 4) as the set of input nodes

from which there exists a directed path to the states in SCC

N
f
k , and we denote Y f

k (Step 5) as the set of output nodes

which have a directed path from the states in the SCC N
f
k .
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Fig. 7. Illustrative figure
demonstrating forest
corresponding to a
node and a feedback
edge in the hierarchical
network given in
Figure 6. Figure shows
Forest(N 2

2 , (yb, ua))
whose node set is
{N 3

3 ,N 4
4 ,N 5

3 ,N 5
4 }.

Algorithm 6 Pseudo-code to solve Problem 1 for structured

systems satisfying Assumptions 2 and 3

Input: Structured system (Ā, B̄ = Im, C̄ = Ip) and cost

matrix P satisfying Assumptions 2 and 3

Output: Set of optimal feedback edges Hopt

1: Find SCCs in D(Ā), N = {N1, . . . ,Nℓ}
2: Define set Lf ← nodes in DA which are at distance f−1

from the root node

3: Define N
f
k ← kth node in layer Lf

4: Define Uf
k ← {ui : B̄ri = ⋆ and xr ∈ A

f
k }

5: Define Y f
k ← {yj : C̄jr = ⋆ and xr ∈ D

f
k }

6: for f = {∆, . . . , 1} do

7: for k ∈ {1, . . . , |Lf |} do

8: F (N f
k , (yj , ui)) ← minimum cost edge set to

keep the nodes in Forest(N f
k , (yj , ui)) in cycles

9: c(F (N f
k , (yj, ui))) ← cost of the edge set

F (N f
k , (yj , ui))

10: Af
k ← {(yj , ui) : yj ∈ Y f

k and ui ∈ Uf
k }

11: c(Z(N f
k ))← min

(yj ,ui)∈A
f

k

{Pij+c(F (N f
k , (yj , ui)))}

12: If c(Z(N f
k )) = Pab + c(F (N f

k , (yb, ua))), then

Z(N f
k ) ← (yb, ua) ∪ F (N f

k , (yb, ua)), where a ∈
{1, . . . ,m}, b ∈ {1, . . . , p}

13: end for

14: end for

15: Hopt = Z(N 1
1 ) return Hopt and c(Z(N 1

1 )

The algorithm iterates over two nested for-loops, where the

first loop (Step 6) iterates over the layers in the network

and the second loop (Step 7) iterates over the nodes in a

particular layer. We start with the bottom most layer L∆

and find the optimal cost to cover each node in layer L∆.

At layer Lf , consider a particular node N
f

k . For an edge

(yj , ui) ∈ Af
k (Step 10), the algorithm finds the cost to cover

Tree(N f
k ) using (yj , ui) (Step 11). The cost is computed as

the sum of the cost of the feedback edge (yj , ui) ∈ Af
k and

the cost of the edge set to cover the Forest(N f
k , (yj , ui)).

The feedback edge set F (N f
k , (yj , ui)) denotes an optimal

feedback edge set to cover Forest(N f
k , (yj, ui)) (Step 8)

and c(F (N f
k , (yj , ui))) denotes the corresponding cost of

the edge set F (N f
k , (yj , ui)) (Step 9). The cost to cover

Forest(N f
k , (yj , ui)) is already found as the subtrees in

Forest(N f
k , (yj , ui)) are rooted at some descendants of the

node N
f

k and the costs to cover these subtrees individually



are already computed. Next, we perform a minimization over

all the feedback edges present in Af
k and select the feedback

edge (yb, ua) which results in the minimum cost to cover

Tree(N f
k ). The set of feedback edges to cover Tree(N f

k ) is

then obtained by taking the union of the optimal edge (yb, ua)
and an optimal edge set to cover the Forest(N f

k , (yb, ua))
(Step 12). Eventually, the algorithm reaches the top most

layer where we find the optimal cost to cover Tree(N 1
1 )

(Step 15), which is in fact the cost to cover the entire

hierarchical network. Next, we give the main result regarding

the optimality of Algorithm 6.

Theorem 8. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and a feedback cost matrix P satisfying Assumptions 2

and 3. Let B(Ā) has a perfect matching. Then, output of

Algorithm 6 is an optimal solution to Problem 1.

To prove Theorem 8, we state and prove the following

lemma. Further, we state two corollaries extending the result

of Lemma 3. Finally, we give a proof for Theorem 8.

Lemma 3. Consider the nodes N
f
i ,N g

j ∈ VA such that there

does not exist a path directed from N
f
i to N

g
j . Let the set of

feedback edges which cover the nodes N
f

i and N
g

j be Af
i

and Ag
j , respectively. Then Af

i ∩ Ag
j = ∅.

Proof. We prove by contradiction. Let (yb, ua) be a feedback

edge such that (yb, ua) ∈ Af
i ∩A

g
j . The feedback edge (yb, ua)

is directed from output node yb to an input node ua and

covers the nodes N
f
i and N

g
j . Note that, since yb and ua are

dedicated inputs and outputs and they belong to a hierarchical

network, there exists atmost one directed path between ua and

yb. Since (yb, ua) covers N
f
i , there exists a directed path from

node ua towards node yb through the node N
f
i . Similarly,

there exists a path directed from node ua towards node yb
through the node N

g
j . Since there exists exactly one directed

path from node ua towards node yb, the nodes N
f
i and N

g
j

must lie in single path directed from node ua to node yb. This

is a contradiction to our assumption that the nodes N
f
i and

N
g
j do not lie in a directed path. Hence Af

i ∩ Ag
j = ∅.

Corollary 3. Consider a hierarchical network corresponding

to the structured system (Ā, B̄ = Im, C̄ = Ip) and the

feedback cost matrix P . Consider the nodes N
f
i and N

f
k

in a layer Lf . Let Af
i and Af

k be the set of all feedback

edges which cover the nodes N
f
i and N

f
k , respectively. Then,

Af
i ∩ Af

k = ∅.

Proof. Note that since the nodes N
f
i and N

f
k belong to the

same layer, there does not exist a directed path between them.

Hence the proof follows from Lemma 3.

The following corollary states that an optimal feedback edge

set to cover a forest composed of disjoint subtrees is the union

of the optimal edge sets to cover the subtrees individually.

Moreover, these edge sets are disjoint and hence their cost is

equal to the sum of the costs of edge sets to cover the subtrees

individually.

Corollary 4. Consider nodes N
f
i ,N g

j ∈ VA, such that

there does not exist a path directed from node N
f
i to node

N
g
j . Let Z ′(N f

i ) and Z ′(N g
j ) be some arbitrary maximal

feedback edge sets which cover Tree(N f
i ) and Tree(N g

j ),

respectively. Then, Z ′(N f
i )∩Z ′(N g

j ) = ∅. Also, the optimal

cost to cover Tree(N f
i ) and Tree(N g

j ) together is equal to

the sum of the cost of covering Tree(N f
i ) and Tree(N g

j )

optimally, i.e., c(Z(N f
i )) + c(Z(N g

j )).

Proof. Given there exists no directed path from node N
f
i

to N
g
j . Therefore, there exists no directed path between any

node in Tree(N f
i ) to any node in Tree(N g

j ). Since the edge

set Z ′(N f
i ) covers the nodes in Tree(N f

i ) and Z ′(N g
j )

covers the nodes in Tree(N g
j ), from Lemma 3, it follows

that Z ′(N f
i ) ∩ Z ′(N g

j ) = ∅. Therefore, the cost to cover

Tree(N f
i ) and Tree(N g

j ) is equal to the sum of the costs of

the feedback edge sets Z ′(N f
i ) and Z ′(N g

j ) separately. Let

Z(N f
i ) and Z(N g

j ) be optimal edge sets to cover Tree(N f
i )

and Tree(N g
j ), respectively. Since Z(N f

i ) ∩ Z(N g
j ) = ∅,

the optimal cost to cover Tree(N f
i ) and Tree(N g

j ) is

c(Z(N f
i )) + c(Z(N g

j )). This completes the proof.

Next, we prove Theorem 8 to show the optimality of Algo-

rithm 6 and give complexity of Algorithm 6 in Theorem 9.

Proof of Theorem 8: We prove Theorem 8 using an induction

argument. The induction hypothesis states that Z(N f
i ) is

an optimal set of feedback edges such that the nodes in

Tree(N f
i ) lie in cycles with feedback edges in Z(N f

i ).
Base Step: We consider k = ∆ as the base case. Consider

node N ∆
j in layer L∆ and the feedback edge set A∆

j . Note

that A∆
j consists of all feedback edges that can make the node

N ∆
j lie in a cycle with a feedback edge. For k = ∆, we

find the minimum cost to cover the subtree rooted at N ∆
j .

Since L∆ is the lowest layer in the hierarchical network,

N ∆
j is a leaf node in DA. Thus, for any feedback edge

(yb, ua) ∈ A∆
j , the Forest(N ∆

j , (yb, ua)) = ∅. Hence the

edge set F (N ∆
j , (yb, ua)) = ∅ and c(F (N ∆

i , (ya, ub))) = 0.

Thus we need to find the minimum cost to cover the node N ∆
j

only. Therefore, the minimum cost edge set Z(N ∆
j ) to cover

the node N ∆
j is given by Z(N ∆

j ) = argmin(yb,ua)∈A∆
j
Pab.

Thus, for each node N ∆
j in the lowest layer L∆, Algo-

rithm 6 selects a minimum cost feedback edge in A∆
j for each

N ∆
j ∈ L∆. As a consequence of Corollary 3, the algorithm

finds a minimum cost feedback edge to cover each node in

L∆ independently. This completes the base step.

Induction Step: For the induction step, we assume that the

algorithm gives an optimal feedback edge set to cover all the

nodes in layers Lk+1, . . . , L∆, i.e., the cost to cover each

subtree rooted at nodes in ∪∆s=k+1Ls. Then the collection

{Z(N s
j ): s ∈ 1, . . . , k + 1 and j ∈ 1, . . . , |Ls|} is the

collection of optimal edge sets to cover all the subtrees whose

root nodes are nodes present in layer Lk+1 and below it. Now,

we will prove that Z(N k
j ) is an optimal set of feedback edges

to cover subtree Tree(N k
j ) for each node N k

j in layer Lk,

i.e., the algorithm gives the optimal cost to cover the subtrees

rooted at the nodes in layer Lk. Note that Ak
j consists of

all the feedback edges which can cover N k
j . Since N k

j lies

in Tree(N k
j ), an edge (yb, ua) ∈ Ak

j is essential to cover
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Tree(N k
j ). Then, cost to cover Tree(N k

j ) using some feed-

back edge (yb, ua) ∈ Ak
j is given by c(F (N k

j , (yb, ua))) +

Pab, where c(F (N k
j , (yb, ua))) is the optimal cost to cover

Forest(N k
j , (yb, ua)). As a consequence of Corollary 4, the

optimal cost of covering Forest(N k
j , (yb, ua)) is the sum of

the optimal costs of covering the subtrees present in the forest

independently and since the optimal costs to cover these sub-

trees are already found (induction step assumption), we have

the optimal cost to cover Forest(N k
j , (yb, ua)). Therefore,

the optimal cost to cover Tree(N k
j ) using a particular feed-

back edge (yb, ua) ∈ Ak
j is given as c(F (N k

j , (yb, ua)))+Pab.

Since we perform the minimization of the cost over all the

feedback edges in Ak
j , we obtain the optimal cost to cover

Tree(N k
j ). Further, Z(N k

j ) is the union of the feedback

edge (yb, ua) selected in the minimization step and the edge

set F (N k
j , (yb, ua)). Thus Z(N k

j ) is an optimal feedback

edge set to cover Tree(N k
j ). After the final iteration for the

top layer L1, we obtain an optimal edge set Z(N 1
1 ) to cover

Tree(N 1
1 ), which in fact is the hierarchical network. This

completes the proof of Theorem 8.

Theorem 9. Consider a structured system (Ā, B̄ = Im, C̄ =
Ip) and the feedback cost matrix P . Then, Algorithm 6 which

takes as input the hierarchical network corresponding to

(Ā, B̄ = Im, C̄ = Ip) and feedback cost matrix P and outputs

an optimal cost feedback edge set to solve Problem 1 has

complexity of O(n3), where n denotes the system dimension.

Proof. The number of subtrees possible in the hierarchical

network is equal to the number of SCCs in D(Ā) which is

of the order of n. The minimization step in Algorithm 6 is

performed for all the feedback edges which cover a node

N
f
i ∈ VA, which is of the order of |EK |. Therefore, the

complexity of Algorithm 6 is O(n|EK |). Since m = O(n)
and p = O(n), the number of feedback edges in the system

is O(n2). Thus the complexity of Algorithm 6 is O(n3).

Illustrative example for hierarchical network: In this
section, we describe Algorithm 6 using the example
illustrated in Figure 8. In the hierarchical network,
there are three layers, {L1, L2, L3}, and six SCCs,
{N 1

1 ,N 2
1 ,N 2

2 ,N 3
1 ,N 3

2 ,N 3
3 }. Corresponding to the six

input and output nodes, let the feedback cost matrix be

P =





1 10 10 2 10 10
∞ 3 ∞ ∞ ∞ 2
∞ ∞ 1 10 10 ∞

∞ ∞ ∞ 1 ∞ ∞

∞ ∞ ∞ ∞ 1 ∞

∞ ∞ ∞ ∞ ∞ 1





We need to select an optimal set of feedback edges such
that the six SCCs in this network satisfies condition (a) in

Proposition 1 optimally. For each SCC N
f
k , the corresponding

set of feedback edges Af
k covering N

f
k are as follows:

A
1
1 = {(y1, u1), (y2, u1), (y3, u1), (y4, u1), (y5, u1), (y6, u1)}

A
2
1 = {(y3, u1), (y4, u1), (y5, u1), (y3, u3)}

A
2
2 = {(y2, u1), (y6, u1), (y6, u2), (y2, u2)}

A
3
1 = {(y4, u1), (y4, u3), (y4, u4)}

A
3
2 = {(y5, u1), (y5, u3), (y5, u5)}

A
3
3 = {(y6, u1), (y6, u2), (y6, u6)}

In the first iteration (f = 3) we select the layer L3. Our aim
is to cover each subtree rooted at some node in layer L3, i.e.,
subtrees rooted at each SCC N 3

k ∈ L3.
For Tree(N 3

1 ), c(Z(N 3
1 )) =

min







P14 + c(F (N 3
1 , (y4, u1)))

P34 + c(F (N 3
2 , (y4, u3)))

P44 + c(F (N 3
3 , (y4, u4)))







= min







2 + 0
10 + 0
1+ 0







= 1

and Z(N 3
1 ) = (y4, u4). For Tree(N 3

2 ), c(Z(N 3
2 )) =

min







P15 + c(F (N 3
2 , (y5, u1)))

P35 + c(F (N 3
2 , (y5, u3)))

P55 + c(F (N 3
2 , (y5, u5)))







= min







10 + 0
10 + 0
1+ 0







= 1

and Z(N 3
2 ) = (y5, u5). For Tree(N 3

3 ), c(Z(N 3
3 )) =

min







P16 + c(F (N 3
3 , (y6, u1)))

P26 + c(F (N 3
3 , (y6, u2)))

P66 + c(F (N 3
3 , (y6, u6)))







= min







10 + 0
2 + 0
1+ 0







= 1

and Z(N 3
3 ) = (y6, u6). In the next iteration (f = 2), our

aim is to cover each subtree rooted at some node in layer L2.
For Tree(N 2

1 ), c(Z(N 2
1 ))=

min































P14 + c(F (N 2
1 , (y4, u1)))

P34 + c(F (N 2
1 , (y4, u3)))

P15 + c(F (N 2
1 , (y5, u1)))

P35 + c(F (N 2
1 , (y5, u3)))

P33 + c(F (N 2
1 , (y3, u3)))

P13 + c(F (N 2
1 , (y3, u1)))































=min



























2+1

10+1
10+1
10+1
1+1+1
10+1+1



























=3

and Z(N 2
1 )={(y4, u1)} ∪ F (N 2

1 , (y4, u1))
={(y4, u1), (y5, u5)}. For Tree(N 2

2 ), c(Z(N 2
1 )) =

min















P16 + c(F (N 2
2 , (y6, u1)))

P26 + c(F (N 2
2 , (y6, u2)))

P12 + c(F (N 2
2 , (y2, u1)))

P22 + c(F (N 2
2 , (y2, u2)))















= min











10 + 0
2+ 0

10 + 1
3 + 1











= 2

and Z(N 2
2 ) = {(y6, u2)}∪F (N 2

2 , (y6, u2)) = {(y6, u2)}. In
the final iteration (f = 1), our aim is to cover each subtree
rooted at some node in layer L1, i.e., Tree(N 1

1 ) which is the
entire hierarchical network. For Tree(N 1

1 ), c(Z(N 1
1 ) =

min































P16 + c(F (N 1
1 , (y6, u1)))

P15 + c(F (N 1
1 , (y5, u1)))

P14 + c(F (N 1
1 , (y4, u1)))

P13 + c(F (N 1
1 , (y3, u1)))

P12 + c(F (N 1
1 , (y2, u1)))

P11 + c(F (N 1
1 , (y1, u1)))
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=5

and Z(N 1
1 ) = {(y4, u1)} ∪ F (N 1

1 , (y4, u1)) =
{(y4, u1), (y5, u5), (y6, u2)}. Thus Z(N 1

1 ) is an optimal
feedback edge set to cover all the nodes in the digraph using
a feedback edge and the optimal solution to Problem 1 is
given by

K̄
⋆ =





0 0 0 ⋆ 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ⋆ 0
0 0 0 0 0 0



 .



Remark 6. Consider a structured system (Ā, B̄, C̄) and

feedback cost matrix P such that the DAG of SCCs of the

system consists of multiple hierarchical networks with distinct

root nodes and disjoint node sets. Then all the analysis and

results discussed in Subsection VII-B still hold. In such a case,

Algorithm 6 is implemented separately on each of the hierar-

chical networks and by combining the solutions obtained gives

an optimal solution to Problem 1. This gives a generalization

of the structured systems considered in Subsection VII-B.

VIII. CONCLUSION

This paper addressed the following optimization problem:

given a structured system with dedicated inputs and outputs

and a feedback cost matrix, where each entry denotes the

cost of the individual feedback connection, the objective is

to obtain an optimal set of feedback edges that guarantees

arbitrary pole-placement of the closed-loop structured system.

This problem is referred as the optimal feedback selection

problem with dedicated inputs and outputs. We proved the NP-

hardness of this problem using a reduction from a known NP-

hard problem, the weighted set cover problem (Theorem 1).

Later it is also shown that the problem is inapproximable to

a multiplicative factor of logn, where n denotes the number

of states in the system (Theorem 2). We then proposed an

algorithm that incorporates a greedy scheme with a potential

function to solve this problem (Algorithm 4). This algorithm is

shown to attain a solution with guaranteed approximation ratio

in pseudo-polynomial time (Theorem 4). The proposed algo-

rithm has limitations regarding the pseudo-polynomial time

complexity. We then considered two special cases, namely

structured systems with a back-edge feedback structure and

structured systems satisfying a hierarchical network topology.

These topologies find application in many real time networks

like power networks, water distribution networks and social

organization networks. For the first class of systems, we

show that Problem 1 is NP-hard and also inapproximable to

multiplicative factor of log n (Corollary 2). We then provide a

(log n)-optimal approximation algorithm for this class of sys-

tems (Algorithm 5 and Theorem 7). For hierarchical networks,

a polynomial time algorithm based on dynamic programming

is proposed (Algorithm 6) and the optimality of the solution is

proved (Theorem 8). Investigating other network topologies of

practical importance and developing computationally efficient

algorithms is part of future work.
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