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Abstract—We design the first fully-distributed algorithm for
generalized Nash equilibrium seeking in aggregative games on
a time-varying communication network, under partial-decision
information, i.e., the agents have no direct access to the aggregate
decision. The algorithm is derived by integrating dynamic track-
ing into a projected pseudo-gradient algorithm. The convergence
analysis relies on the framework of monotone operator splitting
and the Krasnosel’skii–Mann fixed-point iteration with errors.

I. INTRODUCTION

AN aggregative game is a collection of inter-dependent
optimization problems associated with noncooperative

decision makers, or agents, where each agent is affected
by some aggregate effect of all the agents [1]. Remark-
ably, aggregative games arise in several applications, such
as demand side management in the smart grid [2], e.g. for
charging/discharging electric vehicles [3], demand-response
regulation in competitive markets [4], congestion control in
traffic and communication networks [5]. The common denomi-
nator is the presence of a large number of selfish agents, whose
aggregate actions may disrupt the shared infrastructure, e.g. the
power grid or the transportation network, if left uncontrolled.

Designing solution methods for multi-agent equilibrium
problems in noncooperative games has recently gained high
research interest. Several authors have developed semi-
decentralized and distributed equilibrium seeking algorithms
for games without coupling constraints [6] and, more recently,
for games with coupling constraints [7], [8], [9], [10].

With focus on the generalized Nash equilibrium (GNE)
problem, the formulations in [9], [10] have introduced an
elegant approach based on monotone operator theory [11]
to characterize the equilibrium solutions as the zeros of
a monotone operator. Not only is the monotone-operator-
theoretic approach general – e.g., unlike variational inequali-
ties, smoothness of the cost functions is not required – but also
computationally viable, since several algorithmic methods to
solve monotone inclusions are already well established, e.g.
operator-splitting methods [11, §26].

However, in the aforementioned literature on noncoopera-
tive equilibrium computation, it is assumed that the agents
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have direct access to the decisions of all their competitors,
allowing every agent to evaluate its cost function without the
need of extra communication. This game setup is known as
full-decision information. In aggregative games, this ideal sce-
nario is achieved via the so-called semi-decentralized commu-
nication structure, where a central node gathers and broadcasts
the aggregation variable to all the agents, see e.g. [7]-[9].

Recently, in the broader context of noncooperative games,
the authors in [12], [13] propose fully-distributed algorithms
for equilibrium seeking under partial-decision information,
i.e., each agent can only observe the decision of some neigh-
boring agents, while its cost function possibly depends on all
the other agents’ decision. In [12], to deal with the lack of
information, the agents are endowed with auxiliary variables,
namely, the estimates of the decisions of the other agents.
Then, a consensus protocol is combined with accelerated
projected-pseudo-gradient dynamics to steer the estimates to-
wards their real value and, consequently, the decisions to a
Nash equilibrium, in the same time-scale. In [13], similar
ideas are developed in the general framework of monotone
operator theory to design an algorithm for games with coupling
constraints. The algorithms proposed in [12], [13] require
a number of auxiliary variables (i.e., the estimates of the
decisions of all the other agents) which is proportional to the
number of agents in the game. From a practical perspective,
this can be regarded as a drawback in terms of memory storage
and communication requirements, especially in games with
very large number of agents.

Scalability with respect to the population size indeed mo-
tivates us to focus on aggregative games. In this context, the
authors in [14] propose an algorithm that relies on dynamic
tracking, a technique that allows a group of agents to locally
track the average of some reference inputs, extensively used in
distributed optimization for gradient tracking, e.g. [15]. Specif-
ically, the authors embed dynamic tracking of the aggregate
decision in a projected-pseudo-gradient update to compute a
Nash equilibrium in a fully-distributed fashion (i.e., without
the need of a central coordinator). In the context of aggregative
games with coupling constraints, an algorithm is proposed in
[16], however with important limitations: it requires a very
large number of distributed communication rounds before each
strategy update; convergence is guaranteed to approximate
solutions (i.e., ε−Nash equilibria) only; the communication
network must be time-invariant.

More recently, two fully-distributed algorithms [17], [18],
for generalized aggregative games over time-invariant and
connected networks, have been proposed to compute an exact
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solution (i.e., GNE), without the need of multiple communi-
cation rounds before every strategy update. To cope with the
lack of information, both algorithms introduce local estimates
and dynamic tracking of the aggregate decision. In [17],
global convergence is proved under strong monotonicity of
the pseudo-gradient, by leveraging a rescrited-monotonicity
property of this mapping in the exteneded space of strategies
and estimates. In our preliminary work [18], this assumption
is relaxed to cocoercivity at the cost of having vanishing step-
sizes, which typically imply slow convergence. Unfortunately,
the extension of both methodologies to cover time-varying
communication networks is currently missing, since the op-
erator theoretic framework on the basis of their convergence
analysis fails when the underlying mappings vary over time.

Contribution: In this paper, we solve these technical issues
and propose the first discrete-time, fully-distributed algorithm
to compute a generalized Nash equilibrium in aggregative
games with coupling constraints over a time-varying and
repeatedly-connected communication network. The algorithm
is obtained by combining dynamic tracking, projected-pseudo-
gradient and Krasnosel’skii–Mann dynamics. The key ap-
proach to prove convergence of our proposed algorithm relies
on applying and tailoring the framework of operator splitting
methods [11] and fixed-point iteration with errors [19].

Organization of the paper: In Section II, we formalize the
generalized Nash equilibrium seeking problem for aggregative
games over a time-varying communication network. In Sec-
tion III, we present a fully-distributed algorithm and discuss
its interpretation from an operator theoretic and fixed-point
perspective. In Section IV, we establish global convergence
of the proposed method. To corroborate the theory, in Section
V, we study the performance of the proposed method on a
Nash–Cournot game. Concluding remarks and future research
directions are discussed in Section VI.

Basic notation: R denotes the set of real numbers, and
R := R∪{∞} the set of extended real numbers. 0 (1) denotes
a matrix/vector with all elements equal to 0 (1); to improve
clarity, we may add the dimension of these matrices/vectors
as subscript. Given two sets, S1 and S2, we denote as S1×S2

their Cartesian product. Given N sets, S1, . . . ,SN , we denote
with conv(S1, . . . ,SN ) =

{
a1x1 + . . .+ aNxN |

∑N
i=1 ai =

1, ai ∈ R≥0, xi ∈ Si, ∀i ∈ {1, . . . , N}
}

the convex hull of
their union. A⊗B denotes the Kronecker product between the
matrices A and B. For a square matrix A = [ai,j ] ∈ Rn×n,
where ai,j is the entry in position (i, j), its transpose is
A>; A � 0 (� 0) stands for positive definite (semidefinite)
matrix; ‖A‖ denotes the largest singular value of A; ‖A‖∞ =
max1≤i≤n

∑n
i=1 |ai,j | denotes the infinity norm. If A � 0,

‖·‖A denotes the A-induced norm, such that ‖x‖A =
√
x>Ax,

we omit the subscript when A = I . Given N matrices
A1, . . . , AN , blkdiag(A1, . . . , AN ) denotes a block diagonal
matrix with A1, . . . , AN as diagonal blocks. Given N vectors
x1, . . . , xN , x := col (x1, . . . , xN ) = [x>1 , . . . , x

>
N ]>, x̄ =

1
N

∑N
i=1 xi, x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ); given a

vector z, (z,x−i) := col(x1, . . . , xi−1, z, xi+1, . . . , xN ).
Operator theoretic definitions: Id(·) denotes the identity

operator. The mapping ιS : Rn → {0, ∞} denotes the

indicator function for the set S ⊆ Rn, i.e., ιS(x) = 0 if x ∈ S,
∞ otherwise. For a closed set S ⊆ Rn, the mapping projS :
Rn → S denotes the projection onto S, i.e., projS(x) =
argminy∈S ‖y − x‖. The set-valued mapping NS : Rn ⇒ Rn
denotes the normal cone operator for the set S ⊆ Rn, i.e.,
NS(x) = ∅ if x /∈ S,

{
v ∈ Rn | supz∈S v

>(z − x) ≤ 0
}

otherwise. For a function ψ : Rn → R, dom(ψ) := {x ∈ Rn |
ψ(x) < ∞}; ∂ψ : dom(ψ) ⇒ Rn denotes its subdifferential
set-valued mapping, defined as ∂ψ(x) := {v ∈ Rn | ψ(z) ≥
ψ(x)+v>(z−x) for all z ∈ dom(ψ)}. A set-valued mapping
F : Rn ⇒ Rn is (strictly) monotone if (u−v)>(x−y) ≥ (>) 0
for all x 6= y ∈ Rn, u ∈ F(x), v ∈ F(y); F is
restricted-(strictly) monotone with respect to (w.r.t.) Y ⊂ Rn
if (z∗ − z)>(x∗ − x) ≥ (>)0 for all ∀x∗ ∈ Y , x ∈ Rn \ Y ,
z∗ ∈ F(x∗), x ∈ F(x); F is η−strongly monotone, with
η > 0, if (u− v)>(x− y) ≥ η ‖x− y‖2 for all x 6= y ∈ Rn,
u ∈ F(x), v ∈ F(y); fix (F) := {x ∈ Rn | x ∈ F(x)}
and zer (F) := {x ∈ Rn | 0 ∈ F(x)} denote the set of fixed
points and of zeros, respectively. A single-valued mapping
F : Rn → Rn is L-Lipschitz continuous, with L > 0,
if ‖F (x) − F (y)‖ ≤ L‖x − y‖ for all x, y ∈ Rn; F
is nonexpansive if it is 1-Lipschitz continuous; F is η-
averaged, with η ∈ (0, 1), if ‖F (x)− F (y)‖2 ≤ ‖x− y‖2 −
1−η
η ‖(Id− F ) (x)− (Id− F ) (y)‖2, for all x, y ∈ Rn; F is
β-cocoercive, with β > 0, if βF is 1

2 -averaged.

II. PROBLEM STATEMENT

Consider a set of N agents indexed by I = {1, . . . , N}.
The i-th agent is characterized by a local strategy set Ωi ⊂ Rn
and a cost function Ji(xi, x̄), which depends on the decision
of agent i, xi, and on the aggregate of all agent decisions, i.e.,

x̄ := 1
N

∑N
i=1 xj .

Moreover, we assume that the collective strategy profile x :=
col(x1, . . . , xN ) ∈ RnN must satisfy a coupling constraint,
described by the affine function x 7→ Cx − c, where C =
[C1| . . . |CN ] ∈ Rm×nN , c =

∑N
i=1 ci ∈ Rm, and Ci, ci

are local parameters known to agent i only. In summary, the
aim of each agent i, given the decision variables of the other
agents, i.e., x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ), is to
choose a strategy xi that solves its local optimization problem,
according to the game setup above, i.e., ∀i ∈ I :

argmin
xi∈Rn

Ji(xi,
1
N xi + 1

N

∑
j 6=i xj)

s.t. xi ∈ Ωi

Cixi − ci ≤
∑N
j 6=i(cj − Cjxj)

(1)

where the last constraint is equivalent to Cx− c ≤ 0.

Remark 1: Affine coupling constraints, as considered in this
paper, are very common in the literature of noncooperative
games, e.g. [8], [10], [13], [16], and cover several applications
where they typically arise in the form of upper and lower limits
on the available shared resources, e.g. [2]-[5]. �

Assumption 1: For all i ∈ I and any fixed u ∈ 1
N

∑N
j 6=i Ωj ,

the function Ji(· , 1
N ·+u) is convex and continuously differ-

entiable, Ωi ⊂ Rn is non-empty, compact and convex. The



global feasible set K := {x ∈
∏N
i=1 Ωi|Cx − c ≤ 0} is

non-empty and satisfies Slater’s constraint qualification. �

From a game-theoretic perspective, our goal is to distribu-
tively compute a generalized Nash equilibrium of the aggrega-
tive game described by the N inter-dependent optimization
problems in (1).

Definition 1 (Generalized Nash equilibrium): A collective
strategy x∗ ∈ K is a generalized Nash equilibrium (GNE)
of the game in (1) if, for all i ∈ I:

Ji (x∗i , x̄
∗) ≤ Ji

(
z, 1

N z + 1
N

∑N
j 6=i x

∗
j

)
,

∀z s.t. (z,x∗−i) ∈ K.

A. Communication networks

We consider a time-varying network to model the commu-
nications among agents over time. At each stage k, the com-
munication is described by an undirected graph Gk = (I, Ek),
where I is the set of vertices (agents) and Ek ⊆ I × I is the
set of edges. An unordered pair of vertices (i, j) belongs to
Ek if and only if agents j and i can exchange information.
The set of neighbors of agent i at stage k is defined as
Ni(k) = {j| (i, j) ∈ Ek}. Next, we assume the graphs
sequence {Gk}k∈N to be Q−connected.

Assumption 2: There exists an integer Q ≥ 1 such that the
graph (I,∪Q`=1E`+k) is connected, for all k ≥ 0. �

This assumption ensures that the intercommunication in-
tervals are bounded for agents that communicate directly. In
other words, every agent sends information to each of its
neighboring agents at least once every Q time intervals.

We consider a mixing matrix W (k) = [wi,j(k)] associated
with Gk, whose elements satisfy the following assumption.

Assumption 3: For all k ∈ N, the matrix W (k) = [wi,j(k)]
satisfies the following conditions:

(i) (Edge utilization) Let i, j ∈ I, i 6= j. If (i, j) ∈ Ek,
wi,j(k) ≥ ε, for some ε > 0; wi,j(k) = 0 otherwise;

(ii) (Positive diagonal) For all i ∈ I, wi,i(k) > ε;
(iii) (Double-stochasticity) W (k)1 = 1, 1>W (k) = 1>. �

Assumption 3 is strong but typical for multiagent coordina-
tion and optimization, e.g. [15], [20]. For an undirected graph
it can be fulfilled, for example, by using Metropolis weights:

wi,j(k) =


(max{|Ni(k)|, |Nj(k)|})−1 if (i, j) ∈ Ek,
0 if (i, j) 6∈ Ek,
1−

∑
`∈Ni

wi,`(k) if i = j.
(2)

Finally, let us introduce the so-called transition matrices
Ψ(k, s) from time s to k:

Ψ(k, s) = W (k)W (k − 1) · · ·W (s+ 1)W (s), (3)

for 0 ≤ s < k, where Ψ(k, k) = W (k), for all k. The
following statement shows the convergence properties of the
transition matrix Ψ(k, s).

Lemma 1 ([21, Lemma 5.3.1]): Let Assumptions 2, 3 hold
true. Then, the following statements hold:

(i) limk→∞Ψ(k, s) = (1/N)11>, for all s ≥ 0.

(ii) The convergence rate of Ψ(k, s) is geometric, i.e.,
‖Ψ(k, s) − (1/N)11>‖ ≤ θρk−s for all k ≥ s ≥ 0,
where θ := N(1− ε/(4N2))−2 and

ρ := (1− ε
4N2 )1/Q ∈ (0, 1), (4)

with Q as in Assumption 2 and ε as in Assumption 3. �

B. GNE as zeros of a monotone operator

As first step, we characterize a GNE of the game in terms
of the KKT conditions of the coupled optimization problems
in (1). For each agent i ∈ I, let us introduce the Lagrangian
function Li, defined as

Li(x, λi) := Ji(xi, x̄) + ιΩi(xi) + λ>i (Cx− c),

where λi ∈ Rm≥0 is the dual variable of agent i associated with
the coupling constraints, and ιΩi is the indicator function. It
follows from [22, §12.2.3] that the set of strategies x∗ is a
GNE of the game in (1) if and only if the following coupled
KKT conditions are satisfied for some λ1, . . . , λN ∈ Rm≥0:

∀i ∈ I :

{
0 ∈ ∇xiJi(x

∗
i , x̄
∗) + NΩi(x

∗
i ) + C>i λ

∗
i ,

0 ≤ λ∗i ⊥ −(Cx∗ − c) ≥ 0.
(5)

Within all the possible GNE, we focus on an important
subclass of equilibria, namely the variational GNE (v-GNE),
that enjoy some relevant structural properties, such as “larger
social stability and “economic fairness and corresponds to the
solution set of the KKT conditions in (5) with equal dual
variables, i.e., λ∗1 = . . . = λ∗N [23, Theorem 3.1]. The next
proposition characterizes the subclass of v-GNE as the solution
to a specific variational inequality problem1, or equivalently
as the zero set of the set-valued mapping

U :

[
x
λ

]
7→
[
NΩ(x) + F (x) + C>λ
NRm

≥0
(λ)− (Cx− c)

]
, (6)

where λ ∈ Rm, Ω :=
∏N
i=1 Ωi, NS = ∂ιS is the normal

cone operator associated with a set S and F is the so-called
pseudo-gradient mapping (PG) defined as

F (x) = col(∇x1J1(x1, x̄), . . . ,∇xN
JN (xN , x̄)). (7)

Proposition 1: Let Assumption 1 hold. Then, the following
statements are equivalent:

(i) x∗ is a variational GNE of the game in (1);
(ii) ∃λ∗ ∈ Rm≥0 such that, the pair (x∗i , λ

∗) is a solution to
the KKT in (5), for all i ∈ I;

(iii) x∗ is a solution to VI(F,K);
(iv) ∃λ∗ ∈ Rm≥0 such that col(x∗, λ∗) ∈ zer(U). �

Proof: The equivalences (i)⇔(ii)⇔(iii) are proven in [23,
Th. 3.1] while (iii)⇔(iv) follows by [25, Th. 3.1].

The following assumptions on the PG in (7) are standard
(e.g. [8, Th. 3], [10, Assumption 2], [26, Assumption 3]) and
sufficient to ensure the convergence of standard GNE seeking
algorithms based on projected-pseudo-gradient dynamics.

1For a single-valued mapping M : Rn → Rn and a set S ⊆ Rn, the
variational inequality problem VI(M,S) is the problem of finding a vector
ω∗ ∈ S such that M(ω∗)>(ω − ω∗) ≥ 0, for all ω ∈ S, [24, Def. 1.1.1].



Assumption 4: F in (7) is χ−cocoercive over Ω. �

When F is ξ−strongly monotone and LF−Lipschitz, then
F is also (ξ/L2

F)−cocoercive. However, in general, cocoercive
mappings are not necessarily strongly monotone, e.g. the
gradient of a (non-strictly) convex and smooth function.

To emphasize the structure of F in (7), we define

Fi(v, w) :=
(

∂
∂z1

Ji(z1, z2) + 1
N

∂
∂z2

Ji(z1, z2)
)∣∣∣ z1=v

z2=w

, (8)

that satisfies Fi(xi, x̄) = ∇xiJ1(xi, x̄), for all i ∈ I. Then,
we define the extended pseudo-gradient mapping (EPG)

F (v,w) := col
(
F1(v1, w1), . . . , FN (vN , wN )

)
, (9)

where each component mapping Fi is given by (8). With this
notation, we have F (x,1 ⊗ x̄) = F (x). Next, we assume
Lipschitz continuity of the EPG, which is usual in the context
of games under partial-decision information, see e.g. [13,
Assumption 3], [14, Assumption 3], [17, Assumption 4].

Assumption 5: Let Ω̄ := conv (Ω1, . . . ,ΩN ) be the set
whose elements are convex combination of the elements from
the local sets Ωi’s. The mapping F in (9) is uniformly
Lipschitz continuous over Ω × Ω̄, with Ω̄ =

∏N
i=1 Ω̄, i.e.,

there exists LF > 0 such that, for all v,u ∈ Ω and w, z ∈ Ω̄,

‖F (v,w)− F (u, z)‖ ≤ LF ‖ [ v
w ]− [ uz ] ‖. �

Remark 2 (Existence and uniqueness of a v-GNE): It fol-
lows by [27, Cor. 2.2.5] that VI(F ,K) has a non-empty and
compact solution set, since K is non-empty, compact and
convex and F is continuous, by Assumption 1. Furthermore,
when F is strictly monotone, then the solution to VI(F ,K),
(i.e., the v-GNE of the game), is unique [27, Th. 2.3.3]. �

C. Boundedness of the dual variables

In the next statement, we formally establish the boundedness
of the dual solution set of VI(F,K) or, equivalently, of the dual
part of the monotone inclusion col(x∗, λ∗) ∈ zer(U).

Lemma 2: Let Assumptions 1 hold true. If col(x∗, λ∗) ∈
zer(U), then λ∗ ∈ D∗, where D∗ ⊂ Rm≥0 is bounded. �

Proof: The boundedness of the dual solution set D∗

follows by [25, Proposition 3.3] since VI(F , K) has a non-
empty bounded solution set by Remark 2 and there exists a
vector x ∈ dom(F ) satisfying Slater’s constraint qualification
by Assumption 1.

Let us denote with BD∗ = maxλ∈D∗ ‖λ‖∞ the largest entry
of all the optimal dual vectors. The agents can locally build
a bounded superset Di of the optimal dual set D∗ as follows:
Di := {µ ∈ Rm≥0 | ‖µ‖∞ ≤ BD∗ +r, with r > 0} [28, p. 21].
In the context of distributed constrained optimization, a local
estimate of BD∗ can be constructed based on a Slater’s vector,
see [29, §4.2], [30, §3.A (2)]. The extension of these estimation
methods to generalized noncooperative games would rely on
Lagrangian duality theory for variational inequalities [25]. In
practice, each agent does not need an accurate estimate of the
optimal dual solution set D∗ and can simply construct a local
superset Di by taking r large enough.

D. A standard semi-decentralized algorithm

It follows by Proposition 1 that the original GNE seeking
problem corresponds to the following monotone inclusion
problem:

find ω∗ = col(x∗, λ∗) s.t. 0 ∈ U(ω∗). (10)

Next, we recall a standard semi-decentralized GNE seeking
algorithm obtained by solving the monotone inclusion problem
in (10) by means of a preconditioned forward-backward (pFB)
splitting [26, Alg. 1].

ALGORITHM 1. Semi-decentralized v-GNE seeking

Iterate until convergence

In parallel, for all i ∈ I :∣∣∣∣∣∣
xk+1
i = projΩi

(
xki − αi(Fi(xki , x̄k) + C>i λ

k)
)

dk+1
i = 2Cix

k+1
i − Cixki − ci

Central coordinator:∣∣∣ λk+1 = projRm
≥0

(
λk + βNd̄ k+1

)
Remark 3: The local auxiliary variables di’s are introduced

to cast Algorithm 1 in a more compact form. The average
d̄ k+1 := 1

N

∑N
i=1(2Cix

k+1
i −Cixki − ci) measures the viola-

tion of the coupling constraints, technically, is the “reflected
violation” of the constraints at iteration k. �

If the step sizes {αi}i∈I and β are chosen small enough,
then the sequence (col(xk, λk))k∈N generated by Algorithm
1 converges to some col(x∗, λ∗) ∈ zer(U), where x∗ is a
v-GNE, see [26, Th. 1] for a formal proof of convergence.

We note that Algorithm 1 is not distributed. In fact, at each
iteration k, a central coordinator is needed to:

(i) gather and broadcast the average strategy x̄k;
(ii) gather the average quantity d̄k;

(iii) update and broadcast the dual variable λk.

III. A DISTRIBUTED GNE SEEKING ALGORITHM

A. Towards a fully distributed algorithm

A first step towards a fully-distributed algorithm consists
of endowing each agent with a copy, λi, of the dual variable
and enforcing consensus on the local copies. Consider the set-
valued mapping T , obtained by augmenting U in (6) with the
local copies of the dual variable:

T :

[
x
λ

]
7→
[

NΩ(x) + F (x) + 1
NC

>
f λ

NRmN (λ) + Łmλ− 1
N (Cf x− cf)

]
, (11)

where λ = col(λ1, . . . , λN ), Cf = 1N ⊗ C, cf = 1 ⊗ c,
Łm = Ł⊗ Im and Ł := IN − 1

N 11> represents the projection
onto the disagreement space.

Remark 4: When the local copies of the dual variable are
equal, i.e., λ ∈ E‖ := {1N ⊗ λ, |λ ∈ Rm}, where E‖ is the
consensus subspace of dimension m, the first row block of T
corresponds to that of U , while each of the N components of
the second row block of T describes the same complementarity
condition, namely, the second row block of U . �



We note that the mapping T in (11) can be written as the
sum of two operators, i.e.,

T1 : col(x,λ) 7→ col(F (x),Łmλ+ 1
N cf), (12)

T2 : col(x,λ) 7→ NΩ(x)×NRmN
≥0

(λ) + S col(x,λ), (13)

where S is a skew-symmetric linear mapping defined as

S :=
1

N

[
0 C>f
−Cf 0

]
. (14)

The formulation T = T1 +T2 is called splitting of T , and will
be exploited in different ways later on. The next lemma shows
that T2 is maximally monotone and that T1 is cocoercive and
strictly monotone with respect to the consensus subspace of
the dual variables, i.e., Ω×E‖.

Lemma 3: Let Assumptions 1, 4 hold true. The following
statements hold:

(i) T2 in (13) is maximally monotone on Ω× RmN≥0 ;
(ii) T1 in (12) is δ−cocoercive, with 0<δ≤min{1, χ} and

restricted-strictly monotone w.r.t. Θ‖ := Ω × E‖, i.e.,
for all ω‖ ∈ Θ‖, ω ∈ (Ω × RmN≥0 ) \ Θ‖, it holds that
(T1(ω)− T1(ω‖))>(ω − ω‖) > 0;

(iii) T is maximally monotone on Ω× RmN≥0 and restricted-
strictly monotone w.r.t. Θ‖. �

Proof: See Appendix A.
The next proposition exploits the restricted-strict mono-

tonicity of T to shows that the v-GNE of the original game
are fully characterized by the zeros of T .

Proposition 2: Let Assumption 1 hold true. The following
statements hold:

(i) zer(T ) 6= ∅,
(ii) If col(x∗,λ∗) ∈ zer(T ), then x∗ is a v-GNE and λ∗ =

col(λ∗, . . . , λ∗), with λ∗ ∈ Rm≥0. �

Proof: See Appendix B.
To find a zero of T , we exploit a preconditioned version

of the forward-backward method [11, §25.6] on the splitting
(12)-(13), similarly to [10], [26], thus obtaining Algorithm 2.

The next theorem establishes global convergence of Algo-
rithm 2 to a v-GNE if the step-sizes are chosen according to
the following choices.

Assumption 6: Take 0 < δ ≤ min{1, χ}, where χ as in
Assumption 4. Set the global parameter τ > 1

2δ and denote
ν := 2δτ

4δτ−1 ∈ (1/2, 1). Set the step-sizes as follows:
(i) 0 < αi ≤ (‖Ci‖+ τ)−1, for all i ∈ I,

(ii) 0 < βi ≤ ( 1
N

∑N
j=1 ‖Cj‖+ τ)−1, for all i ∈ I,

(iii) (γk)k∈N such that γk ∈ [0, ν−1] for all k ∈ N and∑∞
k=0 γ

k(1− νγk) =∞. �

Note that the design choice γk = 1, for all k ∈ N, always
satisfies Assumption 6 (iii).

Theorem 1: Let Assumptions 1, 4 hold. If the step-sizes
{αi, βi}i∈I and (γk)k∈N are set as in Assumption 6, then
the sequence (col(xk,λk))k∈N generated by Algorithm 2
converges to some col(x∗,λ∗) ∈ zer(T ), where x∗ is a v-
GNE of the game in (1). �

Proof: See Appendix C.

ALGORITHM 2. Distributed (Full-decision Information)

Initialization: For all i ∈ I: set x0
i ∈ Ωi, λ0

i ∈ Rm≥0; set αi,
βi and (γk)k∈N as in Assumption 6.

Iterate until convergence:
For all i ∈ I∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Local projected pseudo-gradient update :∣∣∣∣∣∣∣
x̃ki = projΩi

(xki − αi(Fi(xki , x̄k) + C>i λ̄
k)),

dki = 2Cix̃
k
i − Cixki − ci,

λ̃ki = projRm
≥0

(
λki + βi(d̄

k − λki + λ̄k)
)
,

Local Krasnosel’skii–Mann process:∣∣∣∣∣ xk+1
i = xki + γk(x̃ki − xki ),

λk+1
i = λki + γk(λ̃ki − λki ),

Remark 5 (Algorithm 2 as a fixed-point iteration): Our
convergence analysis is based on the same operator theoretic
framework in [10]-[26]. Specifically, we recast the dynamics
generated by Algorithm 2 as the fixed-point iteration

ωk+1 = ωk + γk(R(ωk)− ωk), (k ∈ N) (15)

where ωk = col(xk,λk) is the stacked vector of the iterates
and R is the so-called pFB operator, defined as

R := (Id + Φ−1T2)−1 ◦ (Id− Φ−1T1), (16)

where T1, T2 in (12)-(13) characterize the splitting of T , and
Φ is the so-called preconditioning matrix, here chosen as

Φ :=

[
α−1

d − 1
NC

>
f

− 1
NCf β−1

d

]
, (17)

αd := diag(α1, . . . , αN ) ⊗ In, βd := diag(β1, . . . , βN ) ⊗ In.
Then, we show that, if the step sizes in the main diagonal
of Φ are set according to Assumption 6, the mapping R is
averaged with respect to the Φ-induced norm, i.e., ‖ · ‖Φ.
Hence, the fixed-point iteration (15) converges to some ω∗ :=
col(x∗,λ∗) ∈ fix(R) = zer(T ), where x∗ is a v-GNE. See
Appendix C for a complete convergence analysis. �

To conclude this section, we note that the projected-pseudo-
gradient updates in Algorithm 2 can be cast compactly as

x̃k = projΩ
(
xk − αd(F (xk, x̄k) + C>d λ̄

k
)
)
, (18)

λ̃
k

= projRmN
≥0

(
λk + βd(d̄

k − λk + λ̄
k
)
)
, (19)

where

x̄k = 1⊗ x̄k, λ̄
k

= 1⊗ λ̄k, d̄
k

= 1⊗ d̄k

and Cd := blkdiag(C1, . . . , CN ).
Unlike Algorithm 1, Algorithm 2 does not directly rely on

the actions of a central coordinator, namely, dual update and
broadcast communication. However, it requires an all-to-all
information exchange (or, equivalently, a complete communi-
cation graph) at each iteration k, since the local updating rule
of each agent necessitates the knowledge of:

(i) the average strategy x̄k,
(ii) the average dual variable λ̄k,

(iii) the average quantity d̄k.



B. A fully-distributed algorithm via dynamic tracking

To implement Algorithm 2 fully-distributively under the
more realistic communication assumptions in Section II-A,
we approximate its updates by endowing each agent i with
some surrogate variables (or estimates), i.e., σi, yi and zi, that
dynamically track the averages x̄k, d̄k and λ̄k, respectively.
Then, to mitigate the errors due to the inexactness of the
surrogate variables, we relax the projected-pseudo-gradient
iterations by means of a Krasnosel’skii–Mann (KM) process
[11, eq.(5.12)], whose step-sizes are set according to the
following design choice.

Assumption 7: The sequence (γk)k∈N satisfies the follow-
ing conditions:

(i) (non-increasing) 0 ≤ γk+1 ≤ γk ≤ 1, for all k ≥ 0;
(ii) (non-summable)

∑∞
k=0 γ

k =∞;
(iii) (square-summable)

∑∞
k=0 (γk)

2
<∞. �

For example, Assumption 7 is satisfied for step sizes of the
form γk = (k + 1)−b where 1

2 < b ≤ 1.

The proposed algorithm relies on agents constructing an
estimate of the averages by mixing information drawn from
local neighbors and making a subsequent relaxed projected-
pseudo-gradient step, as in Algorithm 2. To build the estimates
σi, yi, zi, at every iteration k, agent i receives σkj ’s, ykj ’s, zkj ’s
from its neighbors, j ∈ Ni(k), and aligns its intermediate
estimates according to the following rules:

σ̂ki :=

N∑
j=1

wi,j(k)σkj , ŷki :=

N∑
j=1

wi,j(k)ykj

ẑki :=

N∑
j=1

wi,j(k)zkj

Then, on the basis of σ̂ki , ŷki and ẑki , agent i updates its
strategy xk+1

i , its dual variable λk+1
i and the new estimates

σk+1
i , yk+1

i , zk+1
i as formalized in Algorithm 3.

Note that the projected-pseudo-gradient updates in Algo-
rithm 3 can be recast in a compact form as

x̃k = projΩ
(
xk − αd(F (xk, σ̂k) + C>d ẑ

k), (20)

λ̃
k

= projRmN
≥0

(
λk + βd(yk+1 − λk + ẑk)

)
(21)

where

σ̂k = Wn(k)σk, ẑk = Wm(k)zk, ŷk = Wm(k)yk,

yk+1 = ŷk + Cd(2x̃k − xk)− Cd(2x̃k−1 − xk−1).

and W`(k) := W (k)⊗ I` for some ` ∈ N.

IV. CONVERGENCE ANALYSIS

To prove the convergence of Algorithm 3, we rely on
the framework of the inexact Krasnosel’skii–Mann fixed-point
iteration [19, Alg. 5.4]. Informally speaking, our goal is to
show that the error deriving from the inexactness of the
estimates σi’s, yi’s and zi’s vanishes to zero fast enough, in
which case, also (xk)k∈N generated by Algorithm 3 globally
converges to a v-GNE. Technically, we aim at exploiting [19,

ALGORITHM 3. Distributed (Partial-decision Information)

Initialization: For all i ∈ I: set x−1
i , x0

i , x̃
−1
i ∈ Ωi, λ0

i ∈ Rm≥0,
σ0
i = x0

i , z0
i = λ0

i , y0
i = 2Cix̃

−1
i − Cix

−1
i − ci; αi, βi as in

Assumption 6 and (γk)k∈N as in Assumption 7.

Iterate until convergence:
For all i ∈ I∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Communication and distributed averaging:∣∣∣∣∣∣∣
σ̂ki =

∑N
j=1 wi,j(k)σkj ,

ŷki =
∑N
j=1 wi,j(k)ykj ,

ẑki =
∑N
j=1 wi,j(k)zkj ,

Local strategy update and dynamic tracking of d̄k :∣∣∣∣∣∣∣
x̃ki = projΩi

(xki − αi(Fi(xki , σ̂ki ) + C>i ẑ
k
i )),

yk+1
i = ŷki + Ci(2x̃

k
i − xki )− Ci(2x̃k−1

i − xk−1
i ),

λ̃ki = projRm
≥0

(
λki + βi(y

k+1
i − λki + ẑki )

)
,

Local Krasnosel’skii–Mann process:∣∣∣∣∣ xk+1
i = xki + γk(x̃ki − xki ),

λk+1
i = λki + γk(λ̃ki − λki ),

Local dynamic tracking of x̄k+1 and λ̄k+1 :∣∣∣∣ σk+1
i = σ̂ki + xk+1

i − xki ,
zk+1
i = ẑki + λk+1

i − λki .

Th. 5.5], which establishes convergence of an inexact version
of the KM iteration in (15), i.e.,

ωk+1 = ωk + γk(R(ωk) + ek − ωk), ∀k ≥ 0, (22)

when R is nonexpansive and the step-size and error sequences,
(γk)k∈N and (ek)k∈N, respectively, satisfy

(C.1)
∑∞
k=0 γ

k(1− γk) =∞,

(C.2)
∑∞
k=0 γ

k
∥∥ek∥∥ <∞.

Note that Algorithm 3 can be written as the KM with errors
in (22) where ωk = col(xk,λk) and the error at stage k is

ek = col(x̃k, λ̃
k
)− col(x̃kA2, λ̃

k

A2), (23)

where x̃kA2 and λ̃
k

A2 denote the iterates generated by Algorithm
2 (defined in (18) and (19), respectively). In other words, ek

represents the distance between the iterates in the ideal case of
full-decision information (i.e., where the agents have an exact
knowledge of the averages x̄k, d̄k and λ̄k) and the iterates
of Algorithm 3, in which the averages are replaced by the
estimates σ̂ki , ŷki and ẑki , built on-line by mixing information
drawn from local neighboring agents only.

The main technical challenge to invoke [19, Th. 5.5] and, in
turn, prove the convergence of Algorithm 3 is to find a step-
size sequence (γk)k∈N, that complies with (C.1), such that
the relaxed error sequence (γk‖ek‖)k∈N satisfies (C.2). We
immediately note that if (γk)k∈N is chosen as in Assumptions
7, then it already satisfies (C.1). In the following subsection,
we show that (C.2) is also satisfied.



A. Analysis of the relaxed error sequence
In the next lemma, we recall a fundamental invariance prop-

erty of dynamic tracking, namely, at each stage k, the averages
among the estimates σki ’s, yki ’s, and zki ’s are equivalent to the
correspondent averages we aim to track.

Lemma 4: Let Assumption 3 hold true and set the initial
conditions σ0

i , y
0
i , z

0
i as in Algorithm 3, for all i ∈ I. Then,

the following equations hold for all k ≥ 0:
(i) σ̄k = 1

N

∑N
i=1 σ

k
i = x̄k;

(ii) ȳk = 1
N

∑N
i=1 y

k
i = d̄k;

(iii) z̄k = 1
N

∑N
i=1 z

k
i = λ̄k. �

Proof: See Appendix D.
The following assumption on the dual sequences generated

by Algorithm 3 is instrumental for the subsequent lemma.
Assumption 8: The sequence (λk)k∈N generated by Algo-

rithm 3 is bounded, i.e., there exists BD > 0 such that
‖λk‖ ≤ BD, for all k ≥ 0. �

For example, in the context of distributed constrained opti-
mization, Assumption 8 can be enforced by changing the local
dual updates by projecting onto a local bounded set Di that
contains the optimal dual set D∗ [29], [30]. See Section II-C
for a discussion on how to locally build such supersets.

The next lemma provides upper bounds for the estimation
errors at each stage k of Algorithm 3.

Lemma 5: Let Assumptions 1-3, 8 hold true. Then, there
exist some positive constants BΩ, BD, BY , δ1 and δ2 and a
vanishing scalar sequence (φk)k∈N defined as

φk = δ1ρ
k−1 + δ2

∑k
`=1 ρ

k−`γ`−1, (24)

with ρ as in (4) and (γk)k∈N as in Assumption 7, such that
the following upper bounds hold for all k ∈ N:

(i) ‖σ̂k − 1⊗ x̄k‖ ≤ θBΩρ
k + θBΩ

∑k
s=1 ρ

k−sγs−1;
(ii) ‖ẑk − 1⊗ λ̄k‖ ≤ θBDρk + θBD

∑k
s=1 ρ

k−sγs−1;
(iii) ‖yk+1 − 1⊗ d̄k‖ ≤ θBY ρk +

∑k
s=1 ρ

k−sφs−1 + φk.
Proof: See Appendix E.

By exploiting the upper bounds in Lemma 5 and a result on
the convergence of scalar sequences, which is recalled next,
we can show that the estimates asymptotically converge to
their correspondent aggregate true values.

Lemma 6 ([31, Lemma 3.1]): Let (δk)k∈N be a sequence.
(a) If limk→∞ δk = δ and 0 < τ < 1, then

limk→∞
∑k
`=0 τ

k−`δ` = δ/(1− τ).
(b) If δk ≥ 0 for all k,

∑∞
k=0 δ

k < ∞ and 0 < τ < 1, then∑∞
k=0

∑k
`=0 τ

k−`δ` <∞. �

Proposition 3: Let Assumptions 1-3 hold true. Then, the
following statements hold:

(i) limk→∞ ‖σ̂k − 1⊗ x̄k‖ = 0;
(ii) limk→∞ ‖ẑk − 1⊗ λ̄k‖ = 0;

(iii) limk→∞ ‖yk+1 − 1⊗ d̄k‖ = 0. �
Proof: (i) From the upper bound in Lemma 5 (i), we have

lim sup
k→∞

‖(W (k)⊗ In)σk − 1⊗ x̄k‖

≤ lim sup
k→∞

(
θBΩρ

k + θBΩ

k∑
s=1

ρk−sγs−1

)
≤ 0,

where limk→∞ ρk = 0, since 0 < ρ < 1 by Lemma 1,
and limk→∞

∑k
s=1 ρ

k−sγs−1 = 0 by Lemma 6 (a), since
0 < ρ < 1 and limk→∞ γk = 0 by Assumption 7. Hence,
limk→∞ ‖σ̂k − 1 ⊗ x̄k‖ = 0. The proofs of (ii) and (iii) are
analogous.

Next, we derive an upper bound for the error ek in (23) that
directly depends on the estimation errors in Lemma 5.

Lemma 7: Let Assumptions 1-3, 8 hold true. Then, the
following bound holds for all k ∈ N:

‖ek‖ ≤ LF̃ ‖αd‖‖σ̂k − 1⊗ x̄k‖+ ‖βd‖‖yk+1 − 1⊗ d̄k‖
+ (‖αd‖‖Cd‖+ ‖βd‖) ‖ẑk − 1⊗ λ̄k‖.

Proof: See Appendix F.

Finally, by combining the upper bounds in Lemma 5 and 7
and exploiting a result on the convergence of scalar sequences,
i.e., Lemma 6 (b), we show that condition (C.2) holds, namely,
the relaxed error sequence (γk‖ek‖)k∈N is summable.

Lemma 8: Let Assumptions 1-3, 8 hold true. The sequence
(γk‖ek‖)k∈N, with ek as in (23), is summable, i.e.,

∞∑
k=0

γk‖ek‖ <∞.

Proof: See Appendix G.

Now, we can prove the convergence of Algorithm 3.

Theorem 2: Let Assumptions 1-5, 8 hold true, the step sizes
{αi, βi}i∈I be set as in Assumption 6, and (γk)k∈N as in
Assumption 7. Then, the sequence (col(xk,λk))k∈N generated
by Algorithm 3 globally converges to some col(x∗,λ∗) ∈
zer(T ), where x∗ is a v-GNE of the game in (1). �

Proof: For all k ∈ N, the iterations of Algorithm 3 can be
cast as the Krasnosel’skii–Mann process with errors ωk+1 =
ωk + γk(R(ωk) + ek − ωk), where ωk = col(xk,λk), R
as in (16) and ek as in (23). By [19, Th. 5.5], the sequence
(ωk)k∈N converges to some ω∗ ∈ fix(R), since R is averaged,
thus nonexpansive, by Lemma 11, and (C.1)−(C.2) hold, by
Assumption 7 and Lemma 8, respectively. To conclude, we
note that ω∗ ∈ fix(R) = zer(Φ−1T1 + Φ−1T2), by [11, Prop.
25.1 (iv)], and that zer(Φ−1T1 +Φ−1T2) = zer(T ) 6= ∅, with
T as in (11), since Φ � 0, by Lemma 9, and T1 + T2 = T .
Since ω∗ ∈ zer(T ), then x∗ is a v-GNE of the game in (1),
by Proposition 2 (ii).

V. NUMERICAL SIMULATIONS

In this section, we study the performance of the proposed
algorithm on a class of network Nash–Cournot games with
market capacity constraints. Such games represent an instance
of generalized aggregative Nash games. In Section V-A, we
describe the player cost functions and strategy sets and verify
that the necessary assumptions are satisfied. In Section V-B,
we compare the performance of our algorithm against a
standard semi-decentralized method (Algorithm 1).



A. Generalized network Nash–Cournot game

We extend the network Nash–Cournot game model pro-
posed in [14, §IV] with additional market capacity constraints.
Specifically, consider N firms that compete over m markets.
Let firm i’s production and sales at location l be denoted by gi,l
and si,l, respectively, while its cost of production at location
l is denoted by fi,l(gi,l) and defined as follows:

fi,l(gi,l) = ai,lg
2
i,l + gi,lbi,l, (25)

where ai,l and bi,l are scaling parameters for agent i.
The goods sold by firm i at location l fetch a revenue

p(s̄l)si,l, where p(s̄l) denote the sales price at location l and
s̄l =

∑N
i=1 si,l represents the aggregate sales at location l. The

market price is set according to an inverse demand function
which depends on the aggregate of the network, i.e.,

pl(s̄l) = dl − s̄l,

where dl is the overall demand for location l. Each firm i
has a production limitation at location l, described by ui,l.
Moreover, the overall production in each market l must meet
the correspondent demand dl and do not exceed a maximum
capacity rl. Hence, the coupling constraints dl ≤

∑N
i=1 gi,l ≤

rl, for all l = 1, 2, . . . ,m, have to be satisfied.
Overall, each firm i, given the strategies of the other firms,

aims at solving the following optimization problem:
argmin
{gi,l,si,l}ml=1

∑m
l=1(fi,l(gi,l)− pl(s̄l)si,l)

s.t.
∑m
l=1 gi,l ≥

∑n
l=1 si,l,

gi,j , si,j ≥ 0, gi,l ≤ ui,l, l = 1, . . . ,m,

dl ≤
∑N
i=1 gi,l ≤ rl, l = 1, . . . ,m.

Effectively, the payoff function of firm i is parametrized by
nodal aggregate sales and its constraints depend on the other
firms’ strategies, thus leading to a generalized aggregative
game. In this example, we assume that the firms communicate
over a dynamic network to cope with the lack of aggregate
information, which is necessary to compute their optimal
production and sale strategies.

Next, we show that the proposed network Nash–
Cournot game does satisfy our technical setup. Let xi =
col(gi,1, . . . , gi,m, si,1, . . . , si,m) ∈ R2m denote the strategy
vector of agent i and x = col(x1, . . . , xN ) denote the
collective strategy profile. The cost function of agent i is
quadratic, convex in xi, continuously differentiable and can
be cast in a compact form as

Ji(xi, x̄) = x>i Aixi + b>i xi + (∆x̄)>xi, (26)

where Ai := diag(ai,1, . . . , ai,m, 0, . . . , 0), ∆ = diag(0, Im)
and bi := col(bi,1, . . . , bi,m,−d1, . . . ,−dn). The local feasible
set of firm i is non-empty (for an adequate choice of ui,l’s ),
convex, compact and reads as Ωi := {xi ∈ R2n |

∑n
l=1 gi,l ≥∑n

l=1 si,l, gi,j , si,j ≥ 0, gi,l ≤ ui,l, l = 1, . . . ,m, }.
The coupling constraints are affine and can be written in

compact form as in (1), with Ci =
[

0 Im
0 −Im

]
and ci =

1
N col(r1, . . . , rm,−d1, . . . ,−dm), for all i ∈ I. Thus, As-
sumption 1 is satisfied.

The pseudo gradient mapping F is affine and reads as

F (x) = Px+ b, (27)

with
P = 2A+ 1

N I ⊗∆ + 1
N (11> ⊗∆), (28)

A = blkdiag(A1, . . . , AN ) and b = col(bi, . . . , bN ). By a
direct inspection of the eigenvalues of P , we can show that F
is strongly monotone and Lipschitz continuous, when the co-
efficients ai,j’s are positive. Hence, Assumption 4 is satisfied.
In particular, it follows by [27, p.79] that F is χ−cocoercive
with χ := ‖P‖−1. Moreover, since F is strongly monotone
and the sets Ωi are compact, it follows by Remark 2 that there
exists a unique v-GNE. The mapping F̃ is affine and reads as

F (x,σ) = (2A+ 1
N I ⊗∆)x+ (I ⊗∆)σ + b.

Similarly, it can be shown that F is LF−Lipschitz continuous
with LF := maxij{ai,j , 1}. Thus, Assumption 5 is satisfied.

B. Simulations studies

In our numerical study we consider a network Nash-Cournot
game played by 20 firms, i.e., N = 20, over 10 markets, i.e.,
m = 10. All the parameters of the game are drawn from
uniform distributions and fixed over the course of the entire
simulations. Specifically, for all i ∈ I and l ∈ {1, . . . ,m},
we set the parameters of production cost in (25) as ai,l ∈
U(2, 3) and bi,l ∈ U(2, 12), where U(t, τ) denotes the uniform
distribution over an interval [t, τ ] with t < τ . We set the
production capacities of firm i as ui,l ∈ U(50, 100) for all
l ∈ {1, . . . , n } and for all i ∈ I. Moreover, the demand at
market l is set as dl ∈ U(90, 100), while the market capacity
as rl ∈ U(dl, 2dl) for all l ∈ {1, . . . ,m }.

At each iteration k, the firms communicate according to a
randomly generated and connected small world, where each
node has 4 neighbors. To create a doubly stochastic mixing
matrix W (k), we exploit the Metropolis weighting rules in (2).
Thus, Assumptions 2 and 3 are satisfied. The agents update
their decisions and their estimates as in Algorithm 3. The step-
sizes {αi, βi}i∈I are set according to Assumption 6, where the
global parameter τ is set 5% larger than the theoretical lower
bound 1

2δ , where δ = min{1, ‖P‖} and P as in (28).

In Figure 1, we show the trajectories of the sequences
of normalized residuals ‖xk − x∗‖/‖x0 − x∗‖ for different
choices of the step-size sequence (γk)k∈N. Moreover, we
compare the trajectories of Algorithm 3 with those obtained
with Algorithm 1 [26, Alg. 1], which is a semi-decentralized
algorithm and works under the assumption of full-decision
information, i.e., the firms have access to the real aggregate
information at each stage k of the algorithm. As expected, the
semi-decentralized algorithm converges faster than the fully-
distributed counterpart. Interestingly, we notice that conver-
gence is achieved also in the case of fixed relaxation step in
the KM process, e.g. γk = 1 for all k ≥ 0, which is not
supported by our theoretical analysis.

In Figure 2, we compare the trajectories of the consensus
disagreement of the dual variables ‖(Ł ⊗ Im)λk‖ for two
choices of the step-size sequence (γk)k∈N.
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Fig. 1. The trajectories of the residual ‖xk−x∗‖/‖x0−x∗‖ for pFB [26,
Alg. 1], Alg. 3 with γk = k−0.51 and Alg. 3 with γk = 1.
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Fig. 2. The trajectories of the consensus disagreement ‖(Ł ⊗ Im)λk‖ for
Alg. 3 with γk = k−0.51 and Alg. 3 with γk = 1.

VI. CONCLUSION

For a general class of aggregative games with linear cou-
pling constraints over time-varying communication networks,
we have designed the first single-layer, fully-distributed algo-
rithm to compute a variational generalized Nash equilibrium.
Global convergence can be established via monotone-operator-
theoretic and fixed-point arguments, integrated with a dynamic
tracking methodology.

The analysis approach in this paper is genuinely novel,
hence opens up a number of new research directions. Mo-
tivated by the numerical results of Section V, it would be
valuable to explore the computational aspects of the proposed
method, e.g. how the connectivity of the communication
networks influences the convergence speed. Whether or not
the proposed algorithm converges with fixed step sizes in the
Krasnosel’skii-Mann process is currently an open question.
Finally, it would be highly valuable to relax the assumption
of double-stochasticity of the mixing matrices.

APPENDIX

A. Proof of Lemma 3

(i) T2 is the sum of two terms: S in (17) which is a linear,
skew symmetric mapping, thus maximally monotone [11, Ex.
20.30]; and NΩ×NRmN

≥0
which is maximally monotone since

is the direct sum of maximally monotone operators [11, Prop.
20.23] (i.e, the normal cones of the closed convex sets Ω and
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Fig. 3. The trajectories of the overall tracking error ‖σk−1⊗ x̄k‖ for Alg.
3 with γk = k−0.51 and Alg. 3 with γk = 1.
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Fig. 4. The trajectories of the overall tracking error ‖yk−1⊗ d̄k‖ for Alg.
3 with γk = k−0.51 and Alg. 3 with γk = 1.

RmN≥0 ). Hence, the maximal monotonicity of S+NΩ×NRmN
≥0

=

T2 follows by [11, Cor. 24.4 (i)] since dom(S) = R(n+m)N .
(ii) F is χ−cocoercive, by Assumption 4, and Łm is

1−cocoercive by [24, p.79], since Łm is a linear, positive semi-
definite mapping with ‖Łm‖ = 1. It follows that the direct sum
T1(·) = F (·) × (Łm · + 1

N cf) is δ−cocoercive, for all δ such
that 0 < δ ≤ min{1, χ}. Now, we show that T1 is restricted-
strictly monotone w.r.t. Θ‖ = Ω×E‖. Let us recall that E‖

and E⊥ are the (m-dimensional) consensus and disagreement
subspaces, respectively. Moreover, each vector v ∈ Rm, can
be split as v = v‖ + v⊥, with v‖ ∈ E‖ and v⊥ ∈ E⊥.
Consider now ω = col(x,λ) 6∈ Θ‖, hence λ = λ‖+λ⊥, with
λ‖ ∈ E‖ and 0 6= λ⊥ ∈ E⊥. Let ω′ = col(x′,λ′) ∈ Θ‖,
hence λ′ = λ′‖ ∈ E

‖ and λ′⊥ = 0. The following inequalities
show that T1 in (13) is restricted-strictly monotone w.r.t. Θ‖:

(T2(ω)− T2(ω′))>(ω − ω′)
= (F (x)− F (x′))>(x− x′) + (λ− λ′)>Łm(λ− λ′)
≥ χ‖F (x)− F (x′)‖2 + (λ⊥)>Łmλ⊥
≥ eig2(Ł)‖λ⊥‖2 > 0,

where Łm = (Ł⊗Im), with Ł projection onto the disagreement
subspace and eig2(Ł) = 1 is the second smallest eigenvalue of
Ł = I− 1

N 11>. The first inequality follows by the cocoercivity
of F (Assumption 4) and since Łmλ‖ = Łmλ′ = 0,
namely, the projection onto the disagreement subspace of the
consensual terms is zero.



(iii): The maximal monotonicity of T = T1 + T2 follows
by [11, Cor. 24.4 (i)], since T1 is cocoercive (thus maximally
monotone [11, Example 20.31]), T2 is maximally monotone
and dom(T1) = R(n+m)N . Moreover, since T1 is also
restricted-strictly monotone with respect to Θ‖ then T enjoys
the same property. �

B. Proof of Proposition 2

(i) By Proposition 1, there exists λ∗ ∈ Rm≥0 such that
col(x∗, λ∗) ∈ zer(U), where x∗ is a v-GNE. Define ω∗ =
col(x∗,λ∗), with λ∗ = 1N ⊗ λ∗, then we have T (ω∗) 3 0.
In fact, each component of the first row block of T (ω∗)
reads as NΩi

(x∗i ) + ∇xi
Ji(x

∗
i , x̄
∗) + C>i λ

∗ 3 0. While,
each component of the second row block of T (ω∗) reads as
NRm

≥0
(λ∗)− 1

N (Cx−c) 3 0, since NRm
≥0

(λ∗)−(Cx∗−c) 3 0

and 1
NNRm

≥0
= NRm

≥0
. Hence, zer(T ) 6= ∅.

(ii) From the first part of the proof, we know that there
exists ω∗ ∈ Θ‖ such that ω∗ ∈ zer(T ). Now, we show that
all the zeros of T lie in Θ‖. By contradiction, let ω′ ∈ zer(T )
and assume ω′ /∈ Θ‖. Then, 0 ∈ T (ω∗), 0 ∈ T (ω′) and
Lemma 3 (iii) yields 0 = (0 − 0)>(ω∗ − ω′) > 0, which is
impossible. Therefore, ω′ ∈ Θ‖, namely ω′ = col(x′,1⊗λ′).
Now, by substituting ω′ into T (since (Ł⊗ Im)(1⊗ λ′) = 0)
we recover that ω′ ∈ zer(T ) ⇒ col(x′, λ′) ∈ zer(U), which,
by Proposition 1, holds if and only if x′ is a v-GNE. �

C. Proof of Theorem 1

To prove convergence of Algorithm 2 we follow the same
technical reasoning of the proof in [10, Alg. 1]. Specifically,
the proof is divided in two parts to show that:
(1) Algorithm 2 corresponds to the fixed-point iteration in

(15), i.e., ωk+1 = ωk + γk(R(ωk) − ωk), where R :=
(Id + Φ−1T2)−1 ◦ (Id − Φ−1T1) is the so-called pFB
operator.

(2) If the step sizes are set as in Assumption 6, then R is
an averaged operator. Hence, (15) globally converges to
some ω∗ := col(x∗λ∗) ∈ fix(R). Since fix(R) = zer(T ),
with T as in (11), then x∗ is a v-GNE, by Proposition 2.

(1): Let us recast Algorithm 2 in a compact form as

x̃k = projΩ
(
xk − αd(F (xk, x̄k) + C>d λ̄

k
)
)
, (29)

λ̃
k

= projRmN
≥0

(
λk + βd(d̄

k − λk + λ̄
k
)
)

(30)

xk+1 = xk + γk(x̃k − xk), (31)

λk+1 = λk + γk(λ̃
k
− λk), (32)

Since projΩ = (Id + NΩ)−1, F (xk,1 ⊗ x̄k) = F (xk) and
C>d λ̄

k
= C>d (1 ⊗ λ̄k) = 1

NC
>
f λ

k, it follows from (29) that
(Id + NΩ)(x̃k) 3 xk−αd(F (xk) + 1

NC
>
f λ

k), which leads to

− F (xk) ∈ NΩ(x̃k) + 1
NC

>
f λ̃

k

+ α−1
d (x̃k − xk)− 1

NC
>
f (λ̃

k
− λk), (33)

where we used α−1
d NΩ(x̃k) = NΩ(x̃k). Similarly, since 1⊗

d̄k = 1
N (2Cfx̃

k −Cfx
k − cf) and λk − λ̄k = ((I − 1

N 11>)⊗
Im)λk = (Ł ⊗ Im)λk = Łmλk, it follows from (30) that

(Id+NRmN
≥0

)(λ̃
k
) ∈ λk+βd( 1

N (2Cfx̃
k−Cfx

k−cf)−Łmλk),
which leads to

− Łmλk − 1
N cf ∈ NRmN

≥0
(λ̃

k
)− 1

NCfx̃
k

− 1
NCf(x̃

k − xk) + β−1
d (λ̃

k
− λk). (34)

Let ωk := col(xk,λk), then the inclusions in (33)−(34) can
be cast in compact form as

−T1(ωk) ∈ T2(ω̃k) + Φ(ω̃k − ωk), (35)

where T1, T2 and Φ as in (12), (13) and (17), respectively. By
making ω̃k explicit in (35), we obtain

ω̃k = (Id + Φ−1T2)−1 ◦ (Id− Φ−1T1)(ωk), (36)

which corresponds to ω̃k = R(ωk), where R is the pFB
operator in (16). Finally, it follows by (31)−(32) that ωk+1 =
ωk + γk(R(ωk)− ωk), which concludes the proof.

(2): Next, we introduce some technical statements that we
exploit later on in this proof.

Lemma 9: Let the step-sizes {αi, βi}i∈I satisfy Assump-
tion 6. Then the following statements hold:

(i) Φ− τI � 0, with τ as in Assumption 6,
(ii) ‖Φ−1‖ ≤ τ−1. �

Proof: (i): By the generalized Gershgorin circular theo-
rem [32, Th. 2], each eigenvalue µ of the matrix Φ in (17)
satisfies at least one of the following inequalities:

µ ≥ α−1
i − ‖C

>
i ‖, ∀i ∈ I, (37)

µ ≥ β−1
i − 1

N

∑N
j=1 ‖C>j ‖, ∀i ∈ I. (38)

Hence, if we set the step-sizes αi, βi as in Assumption 6,
the inequalities (37)-(38) yield to µ ≥ τ . It follows that the
smallest eigenvalue of Φ, i.e., µmin(Φ), satisfies µmin(Φ) ≥
τ > 0. Thus, Φ− τI is positive semi-definite.

(ii): Let µmax(Φ) be the largest eigenvalue of Φ. We have
that µmax(Φ) ≥ µmin(Φ) ≥ τ . Moreover, ‖Φ‖ = µmax(Φ) ≥
µmin(Φ) = 1

‖Φ−1‖ ≥ τ . Hence ‖Φ−1‖ ≤ τ−1.
Lemma 10: Let Assumptions 1 and 4 hold and the step-

sizes {αi, βi}i∈I satisfy Assumption 6. The following prop-
erties hold in the Φ-induced norm (i.e., ‖ · ‖Φ):

(i) Φ−1T1 is δτ−cocoercive and (Id − Φ−1T1) is
1

2δτ−averaged;
(ii) Φ−1T2 is maximally monotone and (Id − Φ−1T2)−1 is

1
2−averaged. �

Proof: (i): Since T1 is single-valued and Φ−1 nonsingular,
by Lemma 9 (i), for each ω,ω′ ∈ Ω× RnN≥0

‖Φ−1T1(ω)− Φ−1T1(ω′)‖2Φ = ‖T1(ω)− T1(ω′)‖2Φ−1

≤ ‖Φ−1‖ ‖T1(ω)− T1(ω′)‖2

≤ 1
τ ‖T1(ω)− T1(ω′)‖2, (39)

where the last inequality follows by Lemma 9 (ii). By (39)
and the δ−cocoercivity of T1 (Lemma 3 (ii))

〈Φ−1T1(ω)− Φ−1T1(ω′),ω − ω′〉Φ =

〈T1(ω)− T1(ω′),ω − ω′〉 ≥ δ‖T1(ω)− T1(ω′)‖2

≥ δτ‖Φ−1T1(ω)− Φ−1T1(ω′)‖2Φ. (40)



In other words, Φ−1T1 is δτ−cocoercive in the Φ−induced
norm. It follows from [11, Prop. 4.33] that (Id − Φ−1T1) is

1
2δτ−averaged in the Φ−induced norm.

(ii): Φ−1T2 is maximally monotone in the Φ−induced
norm, since T2 is maximally monotone by Lemma 3 (i).
By [11, Prop. 23.7], the resolvent mapping (Id + Φ−1T2) is
1
2−averaged (or firmly-nonexpansive, see [11, Remark 4.24])
in the Φ−induced norm, since Φ−1T2 is maximally monotone
in the same norm.

Lemma 11: Let Assumptions 1, 4 hold and the step-sizes
{αi, βi}i∈I satisfy Assumption 6. Then, the pFB operator
R = (Id + Φ−1T2)−1 ◦ (Id − Φ−1T1) is ν−averaged in the
Φ−induced norm (i.e., ‖ · ‖Φ), with ν := 2δτ

4δτ−1 ∈ ( 1
2 , 1). �

Proof: By [11, Proposition 4.4] , the mapping R is(
2δτ

4δτ−1

)
−averaged with respect to ‖ · ‖Φ, since composition

of (Id + Φ−1T2)−1 and (Id − Φ−1T1) which are 1
2− and

1
2δτ−averaged in ‖·‖Φ, respectively, by Lemma 10. Moreover,

2δτ
4δτ−1 ∈ ( 1

2 , 1), since τ > 1
2δ , by Assumption 6.

The fixed-point iteration (15), that corresponds to Algorithm
2 by the first part of this proof, is the Krasnosel’skii-Mann
iteration on the mapping R, which is ν−averaged, with ν ∈
( 1

2 , 1), by Lemma 11. The convergence of (15) to some ω∗ :=
col(x∗,λ∗) ∈ fix(R) follows by [11, Prop. 5.15]. To conclude,
we note that ω∗ ∈ fix(R) = zer(Φ−1T1 + Φ−1T2), by [11,
Prop. 25.1 (iv)], and that zer(Φ−1T1+Φ−1T2) = zer(T ), with
T as in (11), since Φ � 0, by Lemma 9 (i), and T1 +T2 = T .
Since the limit point ω∗ ∈ zer(T ) 6= ∅, by Proposition 2 (i),
then x∗ is a v-GNE of the game in (1), by Proposition 2 (ii),
thus concluding the proof. �

D. Proof of Lemma 4

We prove equation (i) by induction. At step zero, σ̄0 = x̄0

holds if the estimates are initialized as σ0
i = x0

i , for all i ∈ I.
At step k, we assume that σ̄k = x̄k. To conclude the proof,
we show that relation (i) holds at step k + 1:

σ̄k+1 = 1
N (1> ⊗ In)((W (k)⊗ In)σk + xk+1 − xk),

= 1
N (1> ⊗ In)(W (k)⊗ In)σk + x̄k+1 − x̄k,

= σ̄k + x̄k+1 − x̄k = x̄k+1.

The first equality follows from the updating rule of the σi’s in
Algorithm 3, the second follows by definition of x̄k, i.e., x̄k =
1
N (1>⊗In)xk, the third follows since the mixing matrix W (k)
is column stochastic, i.e., 1>W (k) = 1>, by Assumption 3,
while the last equality follows from the induction step k, i.e.,
σ̄k = x̄k. The proof of equations (ii) and (iii) are analogous.

E. Proof of Lemma 5

For easy of notation, this proof is developed for the scalar
case, i.e., n = m = 1. In this case, we can write ‖σ̂k − 1 ⊗
x̄k‖ = ‖(W (k)⊗ In)σk − 1⊗ x̄k‖ = ‖W (k)σk − x̄k1‖.

(i): The update of the estimates σi’s in Algorithm 3 can be
written in a compact form as

σk+1 = W (k)σk + xk+1 − xk. (41)

By telescoping (41), we obtain

σk+1 = W (k)(W (k − 1)σk−1 + xk − xk−1)

+ xk+1 − xk

= Ψ(k, k − 1)σk−1 + Ψ(k, k)(xk − xk−1)

+ xk+1 − xk

= · · ·

= Ψ(k, 0)σ0 +
∑k
s=1 Ψ(k, s)(xs − xs−1)

+ xk+1 − xk, (42)

where the transition matrices Ψ(·, ·)’s are defined in (3). By
rearranging (41), we can write W (k)σk = σk+1−xk+1 +xk.
Then, by exploiting the equivalence in (42), we have

W (k)σk = Ψ(k, 0)σ0 +
∑k
s=1 Ψ(k, s)(xs − xs−1). (43)

Now, consider σ̄k, which may be written as follows:

σ̄k = σ̄k−1 + (σ̄k − σ̄k−1) = σ̄0 +
∑k
s=1(σ̄s − σ̄s−1).

By Lemma 4, we have that σ̄s = x̄s ∀s ≥ 0, which leads to

x̄k = σ̄k = σ̄0 +
∑k
s=1(x̄s − x̄s−1)

= 1
N 1>σ0 +

∑k
s=1

1
N 1>(xs − xs−1). (44)

From equations (43) and (44), we have the following:

‖W (k)σk − x̄k1‖

= ‖(Ψ(k, 0)− 1
N 11>)σ0

+
∑k
s=1(Ψ(k, s)− 1

N 11>)(xs − xs−1)‖
(a)
≤ ‖Ψ(k, 0)− 1

N 11>‖‖σ0‖
+
∑k
s=1 ‖Ψ(k, s)− 1

N 11>‖‖xs − xs−1‖
(b)

≤ θρk‖σ0‖+
∑k
s=1 θρ

k−s‖xs − xs−1‖, (45)

where (a) follows from the CauchySchwarz inequality, while
(b) since ‖Ψ(k, s) − 1

N 11>‖ ≤ θρk−s for all k ≥ s ≥ 0, by
Lemma 1. Next, we find an upper bound for ‖xs − xs−1‖
in (45). The update of the decisions xi’s can be written in
a compact form as xk+1 = xk + γk(x̃k − xk). We note
that x̃ki , x

k
i ∈ Ωi, for all k ≥ 0 since x̃ki is obtained by

projecting onto Ωi and xki = (1−γk)xk−1
i +γkx̃ki is a convex

combination of elements of the convex set Ωi. Since all the
sets Ωi’s are compact, by Assumption 1, it follows that for
some constant BΩ, we have

‖xs − xs−1‖ = γs−1‖x̃s−1 − xs−1‖ ≤ γs−1BΩ. (46)

By combining (46) and (45), we obtain

‖W (k)σk − x̄k1‖ ≤ θρkBΩ +
∑k
s=1 θρ

k−sγs−1BΩ,

where we exploited the initialization step of Algorithm 3, i.e.,
σ0 = x0 ∈ Ω, from which ‖σ0‖ ≤ BΩ.

(ii): The update of the estimates zi’s in Algorithm 3 can be
written in a compact form as

zk+1 = W (k)zk + λk+1 − λk. (47)



By telescoping (47), we obtain

‖W (k)zk − λ̄k1‖
≤ θρk‖z0‖+

∑k
s=1 θρ

k−s‖λs − λs−1‖, (48)

To upper bound ‖λs−λs−1‖, we note that the dual update in
Alg. 3 reads in compact form as λs = λs−1+γs(λ̃

s−1
−λs−1)

and that the dual sequence (λs)s∈N is positive and BD−norm
bounded, by Assumption 8. Hence, we have ‖λs − λs−1‖ ≤
γs−1BD, that substituted into (48) gives

‖W (k)zk − λ̄k1‖ ≤ θρkBD +
∑k
s=1 θρ

k−sγs−1BD.

(iii): The update of the estimates yi’s in Algorithm 3 can
be written in a compact form as

yk+1 = W (k)yk + Cd(2x̃k − xk)

− Cd(2x̃k−1 − xk−1), (49)

By telescoping (49) (as explained in (42)), we obtain

yk+1 = Ψ(k, 0)y0 +
∑k
s=1 Ψ(k, s)

·
(
Cd(2x̃s−1 − xs−1)− Cd(2x̃s−2 − xs−2)

)
+ Cd(2x̃k − xk)− Cd(2x̃k−1 − xk−1). (50)

Now, consider ȳk, which may be written as follows:

ȳk = ȳ0 +
∑k
s=1{ȳs−1 − ȳs−2}+ ȳk − ȳk−1.

By Lemma 4, we have that ȳs = d̄s = 1
N 1>Cd(2x̃s−xs)−c,

for all s ≥ 0, which leads to

d̄k = ȳk = 1
N 1>y0 +

∑k
s=1

1
N 1>

·
(
Cd(2x̃s−1 − xs−1)− Cd(2x̃s−2 − xs−2)

)
+ 1

N 1>
(
Cd(2x̃k − xk)− Cd(2x̃k−1 − xk−1)

)
.

(51)

From the relations (50) and (51), we have the following:

‖yk+1 − d̄k1‖
(a)
= ‖(Ψ(k, 0)− 1

N 11>)y0 +
∑k
s=1(Ψ(k, s)− 1

N 11>)

·
(
Cd(2x̃s−1 − xs−1)− Cd(2x̃s−2 − xs−2)

)
+ (IN − 1

N 11>)

·
(
Cd(2x̃k − xk)− Cd(2x̃k−1 − xk−1)

)
‖

(b)

≤ ‖Ψ(k, 0)− 1
N 11>‖‖y0‖

+
∑k
s=1 ‖Ψ(k, s)− 1

N 11>‖‖Cd‖
· ‖(2x̃s−1 − xs−1)− (2x̃s−2 − xs−2)‖
+ ‖Cd‖‖(2x̃k − xk)− (2x̃k−1 − xk−1)‖

(c)
≤ θρkBY +

∑k
s=1 θρ

k−s

· ‖Cd‖‖(2x̃s−1 − xs−1)− (2x̃s−2 − xs−2)‖
+ ‖Cd‖‖(2x̃k − xk)− (2x̃k−1 − xk−1)‖, (52)

where the first equality, (a), follows by substituting (50) and
(51) to yk+1 and d̄k, respectively, (b) follows from Cauchy–
Schwartz inequality and (c) since ‖Ψ(k, s)− 1

N 11>‖ ≤ θρk−s

for all k ≥ s ≥ 0, by Lemma 1. Now we build an upper bound
for ‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖ in (52):

‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖
(a)
≤ 2‖x̃s − x̃s−1‖+ ‖xs − xs−1‖
(b)

≤ 2‖x̃s − x̃s−1‖+ γs−1BΩ, (53)

where (a) follows from the triangular inequality and (b)
follows from (46) Next, we build an upper bound for the
term ‖x̃s − x̃s−1‖ in the right hand side of (53).

‖x̃s − x̃s−1‖
(a)
= ‖projΩ

(
xs − αd(F (xs, σ̂s) + C>d ẑ

s)
− projΩ

(
xs−1 − αd(F (xs−1, σ̂s−1) + C>d ẑ

s−1)‖
(b)

≤ ‖xs − xs−1 − αd

·
(
F (xs,W (s)σs)− F (xs−1,W (s−1)σs−1)

+ C>d W (s)zs − C>d W (s−1)zs−1
)
‖

(c)
≤ ‖xs − xs−1‖

+ LF ‖αd‖ ‖
[

xs − xs−1

W (s)σs −W (s− 1)σs−1

]
‖

+ ‖αd‖‖Cd‖‖W (s)zs −W (s− 1)zs−1‖
(d)

≤ (1 + LF ‖αd‖)‖xs − xs−1‖
+ LF ‖αd‖‖W (s)σs −W (s−1)σs−1‖
+ ‖αd‖‖Cd‖‖W (s)zs −W (s−1)zs−1‖, (54)

where (a) follows by exploiting the compact update of x̃s in
(20), (b) follows by the nonexpansiveness of the projection
operator, (c) follows by exploiting, in sequence, the triangular
inequality, the Lipschitz continuity of F (Assumption 5), and
the Cauchy-Schwartz inequality, finally (d) follows from the
relation ‖ [ ab ] ‖ =

√
‖a‖2 + ‖b‖2 ≤ ‖a‖+ ‖b‖. Now, we find

an upper bound the last two terms in (54).

‖W (s)σs −W (s−1)σs−1‖
(a)
= ‖W (s)σs − σs + xs − xs−1‖
(b)

≤ ‖W (s)σs − σs‖+ ‖xs − xs−1‖
(c)
= ‖W (s)σs − 1x̄s − (σs − 1x̄s)‖

+ ‖xs − xs−1‖
(d)

≤ ‖W (s)σs − 1x̄s‖+ ‖σs − 1x̄s‖
+ γs−1BΩ

(e)
≤ θBΩρ

s + θBΩ

∑s
`=1 ρ

s−`γ`−1

+ θBΩρ
s−1 + θBΩ

∑s−1
`=1 ρ

(s−1)−`γ`−1 + γs−1BΩ

+ γs−1BΩ

(f)
≤ 2

(
θBΩρ

s−1
)

+ 4
(
θBΩρ

−1
∑s
`=1 ρ

s−`γ`−1
)
, (55)

where (a) follows since W (s−1)σs−1 = σs − xs + xs−1

by (41), (b) from the triangular inequality, (c) by summing
and subtracting x̄s1 within the fist term, (d) by the triangular



inequality and substituting to ‖xs−xs−1‖ the bound in (46),
(e) by substituting to ‖W (s)σs−1x̄s‖ the upper bound derived
in Lemma 5 (i) and to ‖σs−1x̄s‖ a bound similarly derived,
(f) follows by noticing that ρs < ρs−1, since 0 < ρ < 1 by
Assumption 3. Similarly, for the last addend in (54), we can
derive the following bound:

‖W (s)zs −W (s−1)zs−1‖
≤ 2θBDρ

s−1 + 4θBDρ
−1
∑s
`=1 ρ

s−`γ`−1. (56)

Finally, by combining (54) with (55) and (56), we obtain an
upper bound for ‖x̃s − x̃s−1‖, i.e.,

‖x̃s − x̃s−1‖
≤ ‖αd‖2θ(LFBΩ + ‖Cd‖BD)︸ ︷︷ ︸

:=ε1

ρs−1

+ 4θρ−1‖αd‖(LFBΩ + ‖Cd‖BD)︸ ︷︷ ︸
:=ε2

∑s
`=1 ρ

s−`γ`−1

+ (BΩ + ‖αd‖LFBΩ)︸ ︷︷ ︸
:=ε3

γs−1

≤ ε1ρs−1 + (ε2 + ε3)
∑s
`=1 ρ

s−`γ`−1. (57)

Now, by substituting (57) into (53), we obtain

‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖
≤ 2ε1ρ

s−2 + 2(ε2 + ε3)
∑s
`=1 ρ

s−`γ`−1 + γs−1BΩ

≤ 2ε1︸︷︷︸
:=δ1

ρs−1 + (2ε2 + 2ε3 +BΩ)︸ ︷︷ ︸
:=δ2

∑s
`=1 ρ

s−`γ`−1

=: φs, (58)

where (φs)s∈N is the scalar (vanishing) sequence in (24), with
ρ is as in (4) and (γk)k∈N as in Assumption 7. Finally, by
combining (58) and (52), we obtain the upper bound in Lemma
5 (iii). �

F. Proof of Lemma 7

From ‖ [ ab ] ‖ =
√
‖a‖2 + ‖b‖2 ≤ ‖a‖+ ‖b‖, it follows that

‖ek‖ = ‖ col(x̃k, λ̃
k
)− col(x̃kA2, λ̃

k

A2)‖

≤ ‖x̃k − x̃kA2‖+ ‖λ̃
k
− λ̃

k

A2‖. (59)

Next, we upper bound ‖x̃k − x̃kA2‖, where x̃k and x̃kA2 are
defined in (20) and (18), respectively.

‖x̃k − x̃kA2‖

= ‖projΩ
(
xk − αd(F (xk, σ̂k) + C>d ẑ

k)
− projΩ

(
xk − αd(F (xk, x̄k1) + C>d λ̄

k
)
‖

(a)
≤ ‖αd‖ ‖F (xk, σ̂k)− F (xk, x̄k) + C>d (ẑk − λ̂

k
)‖

(b)

≤ LF ‖αd‖‖(W (k)⊗ In)σk − 1⊗ x̄k‖
+ ‖αd‖‖Cd‖‖(W (k)⊗ Im)zk − 1⊗ λ̄k‖, (60)

where the first inequality (a) follows by the nonexpansivity
of the projection operator, and (b) follows by the triangular
inequality and the Lipschitz continuity of F (Assumption 5).

Now, consider ‖λ̃
k
− λ̃

k

A2‖, where λ̃
k

and λ̃
k

A2 are defined
in (21) and (19), respectively. By exploiting the nonexpansive-
ness of the projection operator, we have

‖λ̃
k
− λ̃

k

A2‖ ≤ ‖βd‖‖(W (k)⊗ Im)zk − 1⊗ λ̄k‖
+ ‖βd‖‖yk+1 − 1⊗ d̄k‖. (61)

Finally, by combining (61) and (60) with (59) we obtain the
upper bound in Lemma 7. �

G. Proof of Lemma 8

By substituting the bounds on the estimation errors of
Lemma 5 into the error bound in Lemma 7, we obtain

γk‖ek‖ ≤ a1 γ
kρk︸ ︷︷ ︸

Term 1

+a2 γ
k

k∑
s=1

ρk−sγs−1

︸ ︷︷ ︸
Term 2

+ a3 γ
kφk︸ ︷︷ ︸

Term 3

+a4 γ
k

k∑
s=1

ρk−sφs−1

︸ ︷︷ ︸
Term4

, (62)

where a1, a2, a3 and a4 are positive constants defined as
a1 := θBΩ(‖αd‖LF +‖βd‖)+θBD(‖αd‖‖Cd‖+‖βd‖), a2 :=
θBΩ‖αd‖LF + θBD(‖αd‖‖Cd‖ + ‖βd‖), a3 := ‖βd‖‖Cd‖
and a4 := ‖βd‖. Now, we show that each term on the
right-hand side of (62) is summable, hence also the sequence
(γk‖ek‖)k∈N is such, i.e.,

∑∞
k=0 γ

k‖ek‖ <∞.
Term 1: To establish the convergence of

∑∞
k=0 γ

kρk, we
note that γk ≤ γ0, for all k ∈ N, by Assumption 7, implying
that

∑∞
k=0 γ

kρk ≤ γ0
∑∞
k=0 ρ

k < ∞, since 0 < ρ < 1 by
Lemma 1.

Term 2: Since γk ≤ γs−1, for all k ≥ s−1 (Assumption
7), the following relations hold for the second term in the
right-hand side of (62):

∞∑
k=0

γk

(
k∑
s=1

ρk−sγs−1

)
=

∞∑
k=0

k∑
s=1

ρk−sγkγs−1

≤
∞∑
k=0

k∑
s=1

ρk−s(γs−1)2.

It follows by Lemma 6 (b) that
∑∞
k=0

∑k
s=1 ρ

k−s(γs−1)2 <
∞, since

∑∞
k=0(γk)2 <∞, γk ≥ 0 for all k (Assumption 7)

and 0 < ρ < 1.
Term 3: By exploting the definition of the sequence (φk)k∈N

in Lemma 5, we can write
∞∑
k=0

γkφk =

∞∑
k=0

γk

(
δ1ρ

k−1 + δ2

k∑
`=1

ρk−`γ`−1

)

= δ1

∞∑
k=0

γkρk−1 + δ2

∞∑
k=0

γk
k∑
`=1

ρk−`γ`−1

≤ δ1γ0
∞∑
k=0

ρk−1 + δ2

∞∑
k=0

k∑
`=1

ρk−`(γ`−1)2

By exploiting the same technical reasoning in (i) and (ii), we
can show that each term on the right-hand side of the previous



inequality globally converges. Therefore, we conclude that∑∞
k=0 γ

kφk <∞.
Term 4: Since γk ≤ γs, for all k ≥ s (Assumption 7), the

following hold for the last term in the right-hand side of (62):
∞∑
k=0

γk

(
k∑
s=1

ρk−sφs−1

)
=

∞∑
k=0

k∑
s=1

ρk−sγkφs−1

≤
∞∑
k=0

k∑
s=1

ρk−s(γs−1φs−1).

It follows by Lemma 6 (b) that
∑∞
k=0

∑k
s=1 ρ

k−sγs−1φs−1 <
∞, since

∑∞
k=0 γ

kφk <∞ by (iii), and 0 < ρ < 1.
To conclude, since all the terms in the right-hand side of (62)
are summable, then we have

∑∞
k=0 γ

k‖ek‖ <∞. �
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[18] G. Belgioioso, A. Nedić, and S. Grammatico, “Distributed generalized
nash equilibrium seeking in aggregative games under partial-decision in-
formation via dynamic tracking,” in 2019 IEEE Conference on Decision
and Control (CDC). IEEE, 2019, pp. 5948–5954.
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