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Stochastic Event-based Sensor Schedules for
Remote State Estimation in Cognitive Radio Sensor

Networks
Lingying Huang, Jiazheng Wang, Enoch Kung, Yilin Mo, Junfeng Wu and Ling Shi

Abstract—We consider the problem of communication allo-
cation for remote state estimation in a cognitive radio sensor
network (CRSN). A sensor collects measurements of a physical
plant, and transmits the data to a remote estimator as a secondary
user (SU) in the shared network. The existence of the primal
users (PUs) brings exogenous uncertainties into the transmission
scheduling process, and how to design an event-based scheduling
scheme considering these uncertainties has not been addressed
in the literature. In this work, we start from the formulation
of a discrete-time remote estimation process in the CRSN, and
then analyze the hidden information contained in the absence of
data transmission. In order to achieve a better tradeoff between
estimation performance and communication consumption, we
propose both open-loop and closed-loop schedules using the
hidden information under a Bayesian setting. The open-loop
schedule does not rely on any feedback signal but only works
for stable plants. For unstable plants, a closed-loop schedule
is designed based on feedback signals. The parameter design
problems in both schedules are efficiently solved by convex
programming. Numerical simulations are included to illustrate
the theoretical results.

Index Terms—Stochastic event-based schedule; Cognitive radio
sensor network; Minimum mean squared error; Branch-and-
bound algorithm.

I. INTRODUCTION

Recently, cognitive ratio (CR) which dynamically assigns
the radio resources is applied in 5G Internet of things (IoT)
applications [1]. CR, first proposed by Mitola et al. [2] in
1999, is a promising technology to cope with the spectrum
scarcity problem. A CR sensor network (CRSN) is a network
of dispersed wireless sensor nodes embedded with cognitive
radio capability which enables them to dynamically access
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unused licensed spectrum bands for data transmission while
performing conventional wireless sensor nodes’ tasks [3]. An
example of that is shown in Fig. 1. If the primary users (PUs),
as the licensed user (mobile phone), vacate the spectrum,
secondary users (SUs), e.g., the sink, equipped with CR
devices can then access the spectrum to transmit packets [4].
Minimizing the communication rate of the SU while satisfying
the estimation performance is worth studying in this shared
network.

Proper sensor scheduling, which is introduced to cope with
limited transmissions, could improve estimation quality. The
use of online information in event-based mechanisms to out-
perform off-line mechanisms [5]–[7], in terms of estimation
quality, has attracted increasing attention in recent years.
Astrom and Bernhardsson [8] first showed that an event-based
approach outperforms a periodic approach (Riemann sam-
pling) in a first-order stochastic system. The event-triggered
mechanisms proposed by Xia et al. [9] and Trimpe et al. [10]
require that the sensor has a computational capability to run a
local Kalman filter and obtain a local state estimate. In realistic
scenarios, however, the sensors may be primitive and have
limited computational capability. Based on that condition, Wu
et al. [11] derived a minimum mean squared error (MMSE)
estimate on the remote estimator under a deterministic event-
triggered scheduler. Since finding the exact MMSE estimate
is intractable due to the computational complexity, an approx-
imated estimator based on a Gaussian assumption is further
derived. To preserve the Gaussian property, stochastic event-
triggered sensor schedulers are proposed by Han et al. [12].

Different from traditional studies, in which the radio access
network is statically assigned, the existence of PUs introduces
an exogenous uncertainty to the SU base scheduling scheme.
There is a limited amount of works on optimizing the schedul-
ing scheme of CRSNs. Deng et al. [13] studied how to activate
successively non-disjoint sensor groups to extend the network
lifetime. Mabrouk et al. [14] introduced opportunistic time
slot assignment scheduling scheme to minimize the schedule
length and maximize the throughput. All the above setups con-
sider continuous-time measurements of the SU. Minimizing
the transmission collision from a probabilistic point of view is
important since it is very energy-consuming or even impossi-
ble to check the spectrum availability continuously. Moreover,
the above studies neglect the information’s importance?

In this paper, we consider a discrete-time remote estimation
process in a CRSN. Unlike previous studies, the SU can check
the spectrum availability before each transmission. Moreover,
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Fig. 1. Topology of a typical CRSN.(In this topology, mobile phone is a
PU and it could get the access to the network whenever it has a packet to
transmit. The sink, equipped with CR devices, is a SU base station and it
could only access the spectrum when the PU vacates it.)

we use an event-triggered mechanism to capture the informa-
tion’s importance. To the best of our knowledge, an event-
based mechanism for remote state estimation has not been
studied in this new but widely-used network structure.

The big challenge is that the exogenous uncertainty in
the shared network in addition to the stochastic property
of triggering law makes the uncertainties coupled. Kung et
al. [15] showed that the Gaussian property cannot be preserved
due to coupled uncertainty induced by packet drops. Xu et
al. [16] utilizes a Gaussian mixture model to obtain a closed-
form MMSE estimator for the packet-dropping scenarios;
however, the computational complexity grows exponentially.
To cope with this challenge, we utilize the hidden information
contained in the absence of transmission data in the CRSN to
decouple those uncertainties. To be more specific, since the
remote estimator can distinguish the source of the received
packet, not triggering is inferred when no packet is received.
Another problem is that, the exogenous uncertainty makes the
error covariance random, then deriving the error covariance
bounds is highly non-trivial. The mean error covariance and
its bounds under certain communication rate are first analyzed
with a centralized base station collecting the different SUs’
measurements within the channel coverage. This result can
be used to analyze multiple SUs without a centralized base
station as a future work, which is of great importance for 5G
IoT. The main contributions of this work are summarized as
follows.

1) Exogenous Uncertainty Model. The novelty of the
formulation is taking into account the uncertain access
to the network. When λ = 1, Section III recovers the
work in [12].

2) MMSE Estimator and Performance Bounds. We
derive the MMSE estimator for both the open-
loop and closed-loop schedulers under this new
model (Theorem 1, 3). Moreover, the (asymptotic)
upper and lower bounds on the mean error covariance
are characterized (Lemma 1, 4, 5).

3) Offline Parameter Optimization and Global Solution.
A semi-definite programming (SDP) problem consider-
ing the effect of Q and R is provided for designing
the sub-optimal event-triggered parameter in the open-
loop scenario (Theorem 2) and the gap is analyzed. For
the closed-loop scenario, a jointly constrained biconvex
problem (Theorem 4) is derived. Furthermore, we ana-
lyze the compact set of the feasible region (Lemma 7) to

Fig. 2. System structure.

ensure the boundary solutions (Lemma 6). A branch-
and-bound method (Algorithm 1, 2) is introduced to
obtain the global solution.

The remainder of this paper is organized as follows. The
system structure and problem formulation are shown in Sec-
tion II. The performance and the optimization problem in the
open-loop case are analyzed in Section III. The closed-loop
scenario is studied in Section IV, where the jointly constrained
biconvex programming and the branch-and-bound method
are introduced. Numerical examples are given in Section V.
Conclusions are summarized in Section VI and some proofs
are attached in the Appendix.

Notations: N is the set of natural numbers. R and Rn
represent the set of real numbers and n−dimensional column
vectors, respectively. When a matrix X is n×n positive semi-
definite (definite), we simply write X ≥ 0 (X > 0) and
X ∈ Sn+(Sn++). For any matrix X , tr(X) and X> are its
trace and the transpose, and ρ(X) is the spectrum radius of
X . When X > 0, we use vec(X) ∈ Rn2

(vech(X) ∈ R
n(n+1)

2 )
to denote the vectorization (half-vectorization) of X . The
identity matrix is I and its size is determined from the content.
Pr(·) and Pr(·|·) stand for the probability and conditional
probability. E[·] denotes the expectation of a random variable.
f(x|y) denotes the probability density function (pdf) of a
random variable (r.v.) x conditional on a random variable
y. N (µ,Σ) denotes a Gaussian distribution with mean µ
and covariance matrix Σ. The sequence {η0, η1, . . . , ηk} is
simplified as {ηk}k0 . We denote {η0, η1, . . .} as {ηk}∞0 . For a
compact set Ω, ∂Ω is the boundary of Ω.

II. PROBLEM FORMULATION

A. System structure

The system structure is shown in Fig. 2. Consider a discrete-
time linear time-invariant (LTI) process:

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the system state, yk ∈ Rm is the measure-
ment vector taken by the sensor at time k, and wk ∈ Rn
and vk ∈ Rm are two independent identically distributed
(i.i.d.) zero-mean Gaussian random noises with covariances
Q ≥ 0 and R > 0, respectively. The initial state x0 is a zero-
mean Gaussian r.v. that is uncorrelated with wk or vk and has
covariance Π0 ≥ 0. We assume that (A,

√
Q) is stabilizable

and (A,C) is detectable.
A sensor is equipped with a pre-designed event-based

scheduler deciding whether to send sensor’s measurement or
not. Let εk ∈ {0, 1} denote the decision variable. If εk = 1,
yk is sent; otherwise it is not sent. We consider the remote
estimation problem where the sensor output is transmitted to
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the estimator via a CRSN. The CRSN consists of M PUs,
where each PU can access one channel. When the PU is
absent, a SU base station collecting all the SUs’ states within
its coverage could send information to the remote estimator
[17]. Without loss of generality, we use the aggregated xk and
yk, thus we only need to study one SU case. Let ηk ∈ {0, 1}
represent the channel’s availability. If ηk = 0, the channel is
occupied by the PU, and vice versa. We assume ηk evolves
as an i.i.d. Bernoulli random process with E[ηk] = λ ∈ (0, 1],
which is widely used in [18]–[22].

The remote estimator can identify the packet source. If the
remote estimator receives no packet, it means that the channel
condition is idle for the sensor to transmit packet but the
scheduler decides not to send, i.e., ηk = 1 and εk = 0. If
the remote estimator receives a packet from other sensors, the
channel condition is unfavorable at this time step, i.e., ηk = 0.
In this case, there is no information of εk, and we can set it as
εk = ∅. Otherwise, the remote estimator receives the packet
from this sensor, i.e., ηk = 1 and εk = 1. The following
information is available to the estimator at time k

Ik , {ηk}k0 ∪ {εk}k0 ∪ {ηkεkyk}k0 ,

with I−1 = ∅. Further define the following notations which
will be used in subsequent analysis:

x̂−k , E[xk|Ik−1], ŷ−k , E[yk|Ik−1],

e−k , xk − x̂−k , P
−
k , E[e−k e

−>
k ],

x̂k , E[xk|Ik], ek , xk − x̂k, Pk , E[eke
>
k ].

The estimates x̂−k and x̂k are the a priori and the a posteriori
MMSE state estimate, respectively. Meanwhile, P−k and Pk
are the a priori and the a posteriori estimation error covari-
ance, respectively. Similarly, ŷ−k denotes the a priori MMSE
measurement estimate.

We adopt the stochastic event-triggered scheduling schemes
in [12] as below. At each time step, the sensor generates an
i.i.d. random variable ζk which is uniformly distributed over
[0, 1], denoted as ζk ∼ U(0, 1). The transmission decision by
the sensor, i.e., εk follows two event-triggered criteria.

1) Open-loop scheduler: The sensor makes the decision
based on the current raw measurement yk, i.e.,

εk =

{
1, if ζk > exp(− 1

2y
>
k Y yk), Y > 0,

0, otherwise. (2)

2) Closed-loop scheduler: The sensor receives a feedback
ŷ−k from the remote estimator; then the decision is based
on the measurement innovation zk , yk − ŷ−k as

εk =

{
1, if ζk > exp(− 1

2z
>
k Zzk), Z > 0,

0, otherwise. (3)

The open-loop scheduler is easier to implement since it does
not require any feedback. However, open-loop schedulers
cannot reduce the communication rate for unstable systems
since εk = 1 almost surely occurs for any given Y after a long
time [12]. Thus we need closed-loop schedulers to reduce the
communication rate for unstable systems.

Remark 1. We choose these schedulers because they preserve
the Gaussian property which will be exploited in Theorem 1

to obtain the linear recursion of update. This refrains from
nonlinear complicated and approximate estimation using the
other existing event-triggered mechanism, e.g., [11] and [23].

B. Problem of Interest

Define the average communication rate as

γ , lim sup
N→∞

1

N

N−1∑
k=0

E[ηkεk] = λ lim sup
N→∞

1

N

N−1∑
k=0

E[εk]. (4)

Since the sequence {ηk}∞0 has no relationship with the mea-
surement, the iteration of the error covariance is stochastic
and cannot be determined offline. Therefore, we are interested
in its statistical properties. Define the mean error covariance
of the system at time k as E[P−k ]. We are interested in the
following problem:

Problem 1.
min γ

s.t.E[P−k ] ≤M,

where M > 0 is a given matrix-valued bound.

We study two extreme cases to demonstrate that the event-
triggered parameter influences γ and E[P−k ]. Note that if Y =
0, εk = 0 almost surely occurs. Therefore, if γ = 0, the
mean error covariance of the remote estimator diverges for
an unstable system, i.e., E[P−k ] → ∞. On the other hand,
for sufficiently large Y such that exp(− 1

2y
>
k Y yk) = 0 almost

surely occurs, we have γ = λ. The error covariance converges
if λ > 1− 1/ρ(A)2 [24]. The same analysis applies to Z. To
avoid trivial problems, we assume this condition is satisfied in
the following analysis.

It is obvious that the parameter Y or Z introduces an
additional degree of freedom to balance the tradeoff between
the communication rate and the mean error covariance. How-
ever, it is difficult to solve Problem 1 directly since both the
objective and constraint are implicit functions of Y or Z.
One core problem lies in whether we are able to obtain the
explicit expression of the communication rate and the mean
error covariance in terms of Y or Z. If not, we expect to find
some bounds of the mean error covariance. In this paper, we
will focus on the derivation of the communication rate and the
mean error covariance in terms of Y or Z and then design the
parameters to achieve a desired tradeoff. Besides, we will also
explore an explicit MMSE estimator since it is also critical for
the system implementation.

III. OPEN-LOOP SCENARIO

The case using the open-loop schedulers is called the open-
loop scenario. In the open-loop scenario, the main difficulty is
that, due to the randomness of {ηk}∞0 , the error covariance
is stochastic and cannot be determined a priori. Only the
mean error covariance is deduced. It is difficult to analyze
the iterative behavior of the mean error covariance because of
the nonlinearity of the error covariance’s recursion function.
The influence of the event-triggered parameter on the mean
error covariance is analyzed in this section.
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Since the open-loop scheduler (2) only reduces the commu-
nication rate for stable systems as Section II.A, we study the
stable system in the open-loop case. We assume in the sequel
that the system has already entered into the steady state, which
implies that

P−0 = Cov(xk) = Σ, Cov(yk) = Π,

where Σ = AΣA> +Q, Π = CΣC> +R.
Given Y , the average communication rate [12] is

γ = λ
(

1− (det(I + ΠY ))−
1
2

)
. (5)

Define functions h, gθ,W : Sn+ → Sn+ as follows:

h(X) ,AXA> +Q,

gθ,W (X) ,AXA> +Q− θAXC>(CXC> +W )−1CXA>,

where X > 0, W > 0 and θ ∈ (0, 1]. The function h can
be interpreted as the recursive function of the estimation error
covariance matrix when the channel is not available while the
function g is the modified algebraic Riccati equation for the
Kalman filter with intermittent observations [24]. If θ = 1,
g1,W will be written as gW for brevity. The propositions of
function gθ,W (X) are shown in Appendix A.

Theorem 1. The MMSE estimate under an open-loop sched-
uler is computed as follows. Start from the initial condition
x̂−0 = 0 and P−0 = Σ.
Measurement Update:

Kk = ηkP
−
k C

>(CP−k C> +R+ (1− εk)Y −1
)−1

x̂k = x̂−k + εkKkyk −Kkŷ
−
k = (I −KkC)x̂−k + εkKkyk,

Pk = P−k −KkCP
−
k ,

(6)

Time Update:

x̂−k+1 = Ax̂k, P
−
k+1 = h(Pk). (7)

Proof. See Appendix B.

The proof of this theorem uses the Gaussian property of
the distribution proved in [12]. By exploiting the Gaussian
property, the recursion of the update is linear, which reduces
computational complexities.

By exploiting the concavity, monotonicity and limit prop-
erty, the asymptotic upper and lower bounds on E[P−k ] are
shown as Lemma 1.

Lemma 1. The mean error covariance E[P−k ] satisfies

gkR1
(Σ) ≤ E[P−k ] ≤ gkλ,R+Y −1(Σ),

where R−1
1 = γR−1 + (λ− γ)(R+ Y −1)−1.

The asymptotic upper and lower bounds on E[P−k ] are

Xol ≤ lim inf
k→∞

E[P−k ] ≤ lim sup
k→∞

E[P−k ] ≤ X̄ol, (8)

where Xol > 0 is the unique solution to Xol = gR1
(Xol),

and X̄ol > 0 is the unique solution to X̄ol = gλ,R+Y −1(X̄ol).
For all schedules satisfied (2), we obtain thatXol ≥ X0,

where X0 > 0 is the unique solution to

X0 = gR/λ(X0). (9)

Proof. See Appendix C.

Remark 2. By applying the information filtering and exploit-
ing the convexity of X−1, we obtain a different lower bound
on E[P−k ], i.e., Xol. We plot it with respect to (w.r.t.) γ in
Fig. 7. It is different from the lower bound derived in [24]
which is denoted as Xp, where Xp = (1 − λ)AXpA

> + Q.
The matrix X0 is the lower bound of E[P−k ] for all schedulers.
When λ = 1, the lower bound derived in our paper is larger
than Xp, i.e., Xol > Q = Xp. For scalar systems, we can
choose max{Xol, Xp} to be the lower bound.

From the above analysis, we relax Problem 1 to bound
the asymptotic upper bound on the mean error covariance,
i.e., X̄ol.

Problem 2.
min
Y

γ

s.t. Y ≥ 0, X̄ol ≤M.

We observe that for the scaler case (Y ∈ R), the above
problem can be easily solved by convex programming. How-
ever, for the general vector cases, Problem 2 is not convex
since (5) is a log concave function of matrix Y . We need the
following lemma to study the general vector case.

Lemma 2. [12, Lemma 2] Given γ in (5), Π, Y ∈ Sn+, the
following inequality holds:

f1

(
tr(ΠY )

)
≤ γ ≤ f2

(
tr(ΠY )

)
, (11)

where f1(x) = λ(1− (1 + x)−
1
2 ), f2(x) = λ(1− exp(− 1

2x)).
The equality is only satisfied when tr(ΠY ) = 0.

Using Lemma 2, the objective of Problem 1 is bounded
by two increasing functions. Thus, it can be relaxed into
min tr(ΠY ).

Problem 3.
min
Y

tr(ΠY )

s.t. Y ≥ 0, X̄ol ≤M, X̄ol = gλ,R+Y −1(X̄ol).

We transform Problem 3 into an SDP problem using Theo-
rem 2.

Theorem 2. Problem 3 is equivalent to

min
S,Y

tr(ΠY )

s.t.Ψ(S, Y ) ≥ 0,

[
S I
I M

]
≥ 0, Y ≥ 0,

(12)

where Ψ(S, Y ) is defined as (10).

Proof. The proof mainly follows two steps. First we prove
equivalent LMIs to replace the implicit function gλ,R+Y −1 .
Then the function gλ,R+Y −1(X) ≤ X is transformed into an
equivalent SDP constraint. The details are shown in Appendix
D.

Remark 3. Sinopoli et al. [24] also derived an SDP constraint
from gλ,W (X) ≤ X , but they neglected the influence of Q
and W through relaxation. However, in our case, since W
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Ψ(S, Y ) ,


S

√
λSA

√
1− λSA S 0√

λA>S S + C>R−1C 0 0 C>R−1
√

1− λA>S 0 S 0 0
S 0 0 Q−1 0
0 R−1C 0 0 Y +R−1

 (10)

Fig. 3. The relationship between each problem in the open-loop case. (“⇐”
denotes that the optimal solution to this problem will satisfy the second
problem’s constraints and “⇔” represents these two problems are equivalent.)

corresponds to the decision variable Y , we cannot eliminate
the influence.

Define γ∗ as the communication rate with optimal Y ∗ in
Problem 3. Let the optimal solution to Problem 2 be Y opt

and the minimum objective be γopt. Define the gap κ as κ ,
γ∗ − γopt. By (11), one has

0 < κ < λ
(

(1 + tr(ΠY ∗))
− 1

2 − (det(I + ΠY ))
− 1

2

)
. (13)

Fig. 3 shows the relationship between the problems.

IV. CLOSED-LOOP SCENARIO

The case which feeds ŷ−k back from the remote side
and then adopts closed-loop schedulers to trigger system is
called closed-loop scenario. In closed-loop scenario, the same
difficulty lying in analyzing the mean error covariance remains
since the error covariance cannot be determined a priori. In
addition, different from Section III, the communication rate
herein depends on the event-triggered parameter as well as
the realization of the error covariance; therefore it is not able
to be determined a priori too.

A. Performance Analysis and Problem Reformulation

Theorem 3. The MMSE estimate under a closed-loop sched-
uler is as follows. Start from the initial condition x̂−0 = 0 and
P−0 = Π0.
Measurement Update:

Kk = ηkP
−
k C

>(CP−k C> +R+ (1− εk)Z−1
)−1

x̂k = x̂−k + εkKkzk,

Pk = P−k −KkCP
−
k ,

(14)

Time Update:

x̂−k+1 = Ax̂k, P
−
k+1 = h(Pk). (15)

Proof. See Appendix E.

Similar to equation (5), we obtain the average communica-
tion rate in a closed-loop scenario as the following lemma.

Lemma 3. The average communication rate γ under a closed-
loop scheduler (3) is

γ =λE
[
1−

(
det
(
I + (CP−k C

> +R)Z
))− 1

2

]
≤λ
(

1−
(
det
(
I + (CE[P−k ]C> +R)Z

))− 1
2

)
.

(16)

Proof. See Appendix F.

From the above lemma, once the upper bound of E[P−k ]
is obtained in the closed-loop scenario, we derive the upper
bound of the average communication rate. The asymptotic
upper and lower bounds on E[P−k ] under the closed-loop
scheduler are shown in Lemma 4 and Lemma 5.

Lemma 4. The mean error covariance E[P−k ] is bounded by

E[P−k ] ≤ gkλ,R+Z−1(Σ).

The asymptotic upper bound on E[P−k ] is

lim sup
k→∞

E[P−k ] ≤ X̄cl,

where X̄cl > 0 is the unique solution to X̄cl =
gλ,R+Z−1(X̄cl).

From Lemma 3 and Lemma 4, denote the upper bound of
the average communication rate as

γ̄ , λ
(

1−
(
det
(
I + (CX̄clC

> +R)Z
))− 1

2

)
. (17)

Remark 4. From (5) and (17), given the same quality con-
straints, one has the upper bound of the average communi-
cation rate using closed-loop schedules is smaller than the
average communication rate by open-loop schedules. Thus, the
closed-loop schedulers outperform the open-loop schedules.

Substituting the upper bound of the communication rate,
we further obtain the asymptotic lower bound on E[P−k ] as
follows.

Lemma 5. The mean error covariance E[P−k ] is bounded by

gkR1
(Σ) ≤ E[P−k ]

where R−1
1 = γ̄R−1 + (λ− γ̄)(R+ Z−1)−1.

The asymptotic lower bound on E[P−k ] is

Xcl ≤ lim inf
k→∞

E[P−k ],

where Xcl > 0 is the unique solution to Xcl = gR1
(Xcl).

Meanwhile, one has Xcl ≥ X0, where X0 from (9) is the
lower bound of E[P−k ] for all schedulers satisfied (3).

Proof. The proof of Lemma 4 and Lemma 5 is similar to that
of Lemma 2 as shown in Appendix C. Hence, we omit this
part.
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Fig. 4. The relationship between each problem the closed-loop case.

In the closed-loop scenario, since there is no closed-form of
γ given Z, we relax the objective in Problem 1 by the upper
bound γ̄ and the asymptotic upper bound on the mean error
covariance X̄cl.

Problem 4.
min
Z
γ̄

s.t. X̄cl ≤M,Z ≥ 0.

We also take Lemma 2 to relax Problem 4 to Problem 5
which is equivalent to Problem (18) in Theorem 4 as further
proved. Fig. 4 shows the relationship between each problem
directly.

Problem 5.
min
T,Z

tr(TZ)

s.t. X̄cl ≤M,CX̄clC +R ≤ T, X̄cl = gλ,R+Z−1(X̄cl), Z ≥ 0.

Theorem 4. Problem 5 is equivalent to

min
Z,X,S

f(X,Z) , tr
(
(CXC> +R)Z

)
s.t.(X,Z, S) ∈ S,

(18)

where S represent the constraints of the decision variables,
i.e.,

S ,{(X,Z, S) :[
X I
I S

]
≥ 0,

[
S I
I M

]
≥ 0,Ψ(S,Z) ≥ 0, Z ≥ 0}.

(19)

Proof. See Appendix G.

B. Jointly Constrained Biconvex Programming

The objective of Problem (18) is a bilinear function w.r.t.
the psd cone X and Z. Linear operations, such as matrix
vectorization, are applied to convert it into a general form
of the jointly biconvex program [25]. Define

x̃ , vec(X), ỹ , vec(Z)1.

It is obvious that x̃ and ỹ are bijections of X and Z. Thus,
the optimization parameters can be changed to (x̃, ỹ, S) and
the objective function is a bilinear function w.r.t. x̃ and ỹ as
follows

f(S, P ) = φ(x̃, ỹ) = x̃>Gỹ + g(ỹ), (20)

where
G = C> ⊗ C>, g(ỹ) = tr(RZ). (21)

1For symmetric matrix, half vectorization is a bijection of vectorization
[26]. To simplify the notation, we use vectorization throughout the paper.
In real implementation of the algorithms, half vectoeriation representation is
used to reduce the dimension of the optimization variables.

Lemma 6 (Boundary Solution). [25][Theorem 1] The jointly
biconvex Problem (18) has boundary solutions if the feasible
region is compact.

The jointly constrained biconvex problem can be solved
numerically by some methods. Branch-and-bound (B&B) al-
gorithm proposed by [25] is one of them and produces a global
optimal solution. The B&B algorithm splits the feasible region
into several subregions and produces an increasing convex
underestimator with an associated decreasing upper bound in
the subregions. With the finer splitting, it is proved that the
limit of the convex underestimator converges to the limit of
the upper bound; thus the global solution is obtained.

Note that the feasible region being compact is a neces-
sary condition to implement the jointly constrained biconvex
programming. The main difficulty remains that the initial set
S is unbounded, i.e., there is no obvious upper bound of
the elements of matrix Z (ỹ) in the constraints. The upper
bound of Z is from the objective which aims to minimize
tr
(
(CXC> +R)Z

)
. Therefore, we derive a necessary con-

dition w.r.t. Z for the optimal solution as an upper bound
requirement. The details are shown in Lemma 7.

Lemma 7. The optimal solution (X∗, Z∗) belongs to the set
Ω , {(X,Z) : jij ≤ Xij ≤ Jij , dij ≤ Zij ≤ z∗}, where

jij =

{
(X0)ii, if i = j,

−(MiiMjj)
1
2 , else,

Jij = (MiiMjj)
1
2 ,

dij =

{
0, if i = j,
−z∗, else,

and z∗ satisfies the following optimization problem

z∗ = min
Z,S

tr
(
(CMC> +R)Z

)
tr(CX0C> +R)

s.t.

[
S I
I M

]
≥ 0,Ψ(S,Z) ≥ 0, Z ≥ 0.

(22)

Proof. See Appendix H.

Adding a linear constraint z̃ = Gỹ to those defining S, the
bounds

nk = min{(Gỹ)k : dij ≤ Zij ≤ z∗},
Nk = max{(Gỹ)k : dij ≤ Zij ≤ z∗}

(23)

replace the bounds on ỹ in defining Ω.
Below we detail how to construct an increasing convex

underestimator with an associated decreasing upper bound for
the jointly constrained biconvex problem. We first introduce a
convex envelope of x̃>z̃ over Ω. It is the pointwise supremum
of all convex functions which underestimate x̃>z̃ over Ω,
denoted by VexΩ(x̃>z̃). The main results are from [25].

Lemma 8 (Convex Envelop). [25, Corollary] If x, y ∈ Rn
and (x, y) ∈ Ω, where Ω = {(x, y) : t ≤ x ≤ T, d ≤ y ≤
D},Ωi = {(xi, yi) : ti ≤ xi ≤ Ti, di ≤ yi ≤ Di},

Vex
Ω

(x>y) =

n∑
i=1

Vex
Ωi

(xiyi),

Vex
Ωi

(xiyi) = max{dixi + tiyi − diti, Dixi + Tiyi − TiDi}.
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Fig. 5. Splitting ΩI at stage 1.

Moreover, x>y ≥ VexΩ(x>y) for all (x, y) ∈ Ω, and the
“ =′′ holds iff (x, y) ∈ ∂Ω.

Let ψ1(x̃, ỹ) = VexΩ1(x̃T z̃) + g(ỹ) and Ω1 = Ω from
Lemma 7. Note that ψ1 is the convex underestimator of φ
and, furthermore, agrees with φ on ∂Ω. Solving the convex
problem υ1 = minψ1(x̃, ỹ), s.t.(X,Z, S) ∈ S ∩ Ω1 (denoted
as P1) yields the optimal value υ1(υ11) = ψ1(x̃1, ỹ1). If υ1 =
Υ1, where Υ1 = φ(x̃1, ỹ1), (x̃1, ỹ1) is a solution to (18).
Otherwise, one has

∆1
i = x̃1

i z̃
1
i −Vex

Ωi

(x̃1
i z̃

1
i ) > 0, for some i. (24)

We choose the index I which produces the largest difference
∆1
i , and split the I−th rectangle into four subrectangles Ω2t

according to the rule illustrated in Fig 5.
The result of this splitting serves to set up four new

subproblems, minψ2t(x̃, ỹ), s.t.(X,Z, S) ∈ S ∩Ω2t (denoted
as P2t) at stage 2, where ψ2t(x̃, ỹ) = VexΩ2t(x̃T z̃) + g(ỹ).
Note that each of the subproblem P2t is feasible since
(x̃1, ỹ1) ∈ S ∩ Ω2t. Moreover, by the construction of ψ2t,
one has the minimum solution of the convex underestimator
at stage 2 is larger than that at stage 1. More general, at stage
k, the convex problem denoted as Problem Pkt follows

(Pkt) min
X,Z,S

ψkt(x̃, ỹ), s.t.(X,Z, S) ∈ S ∩ Ωkt, (25)

where ψkt(x̃, ỹ) = VexΩkt(x̃T z̃)+g(ỹ). The optimal solution
to (Pkt) is υkt = ψkt(x̃kt, ỹkt) and Υkt = φ(x̃kt, ỹkt).
The decreasing upper bound at stage k is Υk , min{φ :
all the visited optimal solution at stage k}, and may be ex-
pressed recursively as

Υk = min{Υk−1,Υk1,Υk2,Υk3,Υk4} ≤ Υk−1. (26)

If υkt > Υk, the subspace will be eliminated from the further
consideration. Therefore, we only record the boundary Ωkt

and the optimal solution (x̃kt, ỹkt) as an open node (k, t) if
υkt ≤ Υk. The increasing lower bound at stage k is

νk , min{νlj : node (l, j) is open at stage k}. (27)

Moving from stage k to stage k + 1 involves the selection
of an open node (lines 1 − 3), and the creation of four new
nodes from that node (lines 4− 9) as shown in Algorithm 1.

Since the procedure converges to a globally optimal solu-
tion [25], once we have any υk = Υk, the optimal solution is
obtained as (x̃k, ỹk). Due to the computational consideration,
the algorithm can be terminated at a prespecified ε degree of
accuracy whenever υk ≥ Υk−ε. The algorithm is summarized
in Algorithm 2.

Algorithm 1 Moving from stage k to stage k + 1

1: Select an open node whose lower bound νlj = νk;
2: Ω← Ωlj , (x̃k, z̃k)← (x̃lj , Gỹlj);
3: Erase (l, j) from the open node storage;
4: for i = 1 : n2 do
5: ∆k

i ←
[
x̃ki z̃

k
i −VexΩi

(
x̃ki z̃

k
i

)]
;

6: end for{% We only need to compare n(n+1)/2 elements
if we use half-vectorization}

7: I← arg max
i

∆k
i , k ← k + 1;

8: Initialization: Ωk1,Ωk2,Ωk3,Ωk4 ← Ω;
9: Update Ωk1

I ,Ωk2
I ,Ωk3

I ,Ωk4
I by

(jk1
I , Jk1

I , nk1
I , N

k1
I )←(jI , x̃

k
I , nI , z̃

k
I ),

(jk2
I , Jk2

I , nk2
I , N

k2
I )←(x̃kI , JI , nI , z̃

k
I ),

(jk3
I , Jk3

I , nk3
I , N

k3
I )←(x̃kI , JI , z̃

k
I , NI),

(jk4
I , Jk4

I , nk4
I , N

k4
I )←(jI , x̃

k
I , z̃

k
I , NI).

Algorithm 2 ε−accuracy B&B Algorithm
Input: A,C,Q,R,W,U,Ω;
Output: X∗, Z∗, υ∗

1: Initialize: Ω1 ← Ω, k ← 1;;
2: Solve the convex problem (P1) and obtain the optimal

solution (x̃1, ỹ1) with the lower bound υ1 and the upper
bound Υ1;

3: while υk < Υk − ε do
4: Move from stage k to stage k + 1 by Algorithm 1;
5: for t = 1 : 4 do
6: Solve each of the four problem (Pkt) in turn and

obtain the point (x̃kt, ỹkt) with the value υkt and
Υkt;

6: For υkt ≤ Υk, record it as an open node (k, t);
7: end for
8: Update Υk by (26) and υk by (27);
9: end while

10: Let v∗ = υk, vec(X∗) = x̃kt and vec(Z∗) = ỹkt.

By the same method in the open-loop case, the optimality
gap

κ =γ̄∗ − γ̄opt

=λ
((

1 + υ∗)−
1
2 −

(
det
(
I + (CX∗C> +R)Z∗

))− 1
2

)
.

V. SIMULATION

A. Policy Assessment

We consider a scalar stable system with parameters A =
0.8, C = 1, Q = 1, R = 1 and λ = 0.8. We compare our
stochastic event-triggered schedulers with two other offline
schedulers as follows.

1) Random offline scheduler: The sensor transmits packets
with probability γ

λ at each time step in random schedul-
ing;

2) Periodic offline scheduler: The sensor sends the data
using the optimal offline periodic scheduling [6] with
rate γ

λ .
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Fig. 6. Empirical mean error covariance under three scheduling strategies
versus effective communication rate.

Fig. 7. Trace of the asymptotic upper bound X̄ol and the lower bound Xol
of the open-loop scheduler versus empirical data.

We adopt the Monte Carlo method with 150000 independent
iterations to calculate the mean estimation error covariance,
which is shown in Fig. 6. The stochastic event-triggered
policies proposed in our work not only outperform the random
offline scheduler, but also reduce the mean error covariance
compared to the optimal offline periodic scheduler, especially
when the communication rate is not sufficient to allow the
persistent data transmissions transmit packets. Moreover, the
closed-loop scheduler is better than the open-loop scheduler
especially for γ ∈ [0.1, 0.4] in this case.

B. Performance Bounds

We consider the network availability rate λ = 0.8. Fig 7
demonstrate the asymptotic bounds of mean error covariance
in Lemma 1 for a stable system with parameters (same
parameters as [12] for comparison)

A =

[
0.8 1
0 0.95

]
, C =

[
1 1

]
, Q =

[
1 0
0 1

]
, R = 1,

using an open-loop scheduler by 60000 simulation runs. We
observe that when the communication rate γ is closer to λ, the

Fig. 8. Comparison of the trade-off between the system performance quality
and the communication rate.

traces of the bounds for both cases are tighter. Similar results
exist for an unstable system under the closed-loop scheduler.

C. Design of Event-triggered Parameter

We assume λ = 0.8. To compare this result with the sched-
ulers proposed in [12], we use the same system parameters

A =

[
0.8 1
0 0.95

]
, C =

[
0.5 0.3
0 1.4

]
,

Q =

[
1 0
0 1

]
, R =

[
1 0
0 1

]
,

with the open-loop scheduler. Note that

X0 =

[
2.4353 0.3976
0.3976 1.3756

]
.

The system quality constraint is M = X0 +$I , where $ is
a positive real number. The suboptimal solution in Theorem
2 is obtained under different values of $, and it is shown
in Fig. 8(b) by the blue line. The same as in [12, Fig. 5],
shown in Fig. 8(a), the suboptimal solution equals the optimal
solution when $ is large, though the equivalent point of $
is larger than that in [12]. Given the same quality constraint,
the percentage of triggering the scheduling when the network
is available is higher in our paper than that in [12]. This is
consistent with the fact that due to the induced uncertainty of
the network access, more information is needed to guarantee
the same estimation quality.

Moreover, the suboptimal solution which follows Theorem
4 using a B&B algorithm is shown by purple dashed line
in Fig. 8(b). We observe that to achieve the same estimation
quality, the upper bound of the communication rate using the
closed-loop scheduler is much smaller than the communication
rate using the open-loop scheduler. The suboptimal solution is
also equivalent to the optimal solution when $ is large.This
scenario has not been addressed in [12].

D. Comparison between Different Access Probabilities λ

In this subsection, we illustrate the scheduling perfor-
mance by varying λ. A scalar stable system with parameters
A = 0.8, C = 1, Q = 1 and R = 1 by an open-loop
scheduler is considered. We adopt the Monte Carlo method
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Fig. 9. Empirical mean error covariance under different network access
probabilities and lower bounds comparision.

using 50 independent sample paths with 3000 time steps each
to calculate the mean error covariance. The results are shown
in Fig. 9. Two lower bounds are also plotted:

1) The lower bound (black filled dots) from Lemma 1 with
γ = λ, i.e., X0 (9).

2) The lower bound (red hollow dots) in [24], i.e., Xp (10)
.

The black dots in Fig. 9 are closer to the empirical results for
fixed λ compared with the red dots when λ = 0.4, 0.6, 0.8, 1.
If λ = 0.2, the red dot is better than the black one. This
coincides with the result that the lower bound derived in our
paper is larger than the previous one in [24] especially when
λ is large. The unstable system under closed-loop scheduler
has similar results.

VI. CONCLUSION

In this work, we developed stochastic event-triggered sched-
ules for remote estimation in which the network access is
uncertain. We started from the formulation of a discrete-time
remote estimation process in the CRSN, and then analyzed the
hidden information contained in the absence of data transmis-
sion. In order to achieve a better tradeoff between estimation
performance and communication consumption, we proposed
both open-loop and closed-loop schedules. Utilizing the hidden
information, the MMSE estimators for both schedules were
derived. The problem of minimizing the average communica-
tion rate while upholding a level of quality was studied. We
proposed a suboptimal expression to design event parameter
in the open-loop scenario by solving an SDP problem. Since
the closed-form of the communication rate cannot be obtained
in the closed-loop scenario, a jointly biconvex problem is
used to minimize the upper bound of the communication rate
satisfying the quality constraint; the related global optimal
boundary solution is obtained by B&B algorithm. Numerical
examples were provided to illustrate our results. Future work
includes safety issues and multiple sensor schedulings in this
system structure. It is also interesting to consider other network
channel models, e.g., multi-state Markov chain.
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APPENDIX

A. Propositions of function gθ,W

We first prove some useful properties of the matrix function
gθ,W (X).

Proposition 1. For all X1, X2 ∈ Sn+, we have the following
properties of gθ,W :

1) Monotonicity: If X1 ≥ X2, then gθ,W (X1) ≥
gθ,W (X2) ≥ Q;

2) Existence and uniqueness of a fixed point: There ex-
ists a unique positive-definite X∗θ,W such that X∗ =
gθ,W (X∗);

3) Limit property of the iterated function: gkθ,W (X) →
X∗θ,W , for any X ∈ Sn+ as k →∞;

4) Concavity: For ∀α ∈ [0, 1], gθ,W (αX1 + (1− α)X2) ≥
αgθ,W (X1) + (1− α)gθ,W (X2). Therefore, by Jensen’s
inequality, one has E(gθ,W (X)) ≤ gθ,W [E(X)];

5) Monotonicity on W : For any W1 ≥ W2, gθ,W1(X) ≥
gθ,W2

(X), X∗W1
≥ X∗W2

.

Proof. 1)- 4) are proved in [24] in detail.
5) For any W1 ≥W2, CXC> +W1 ≥ CXC> +W2 ≥ 0,

(CXC> +W1)−1 ≤ (CXC> +W2)−1, θAXC>(CXC> +
W1)−1CXA> ≤ θAXC>(CXC> + W2)−1CXA> and
gθ,W1(X) ≥ gθ,W2(X). The second equation holds because
of the monotonicity property of the iterated function.

B. Proof of Theorem 1

Since the process x0 has a prior Gaussian distribution,
i.e., x0 ∼ N (0,Σ), one can prove the MMSE estimate in
a recursive way. Assume xk has a prior Gaussian distribution
as xk ∼ N (x−k , P

−
k ). We need to prove the estimation update

of xk based on the new update ηk, εk and ηkεkyk are shown
in (6). Furthermore, the next estimation of xk+1 conditioned
on the information set Ik is shown in (7).

Consider the following two cases:
1) When ηk = 0,

x̂−k = x̂−k , Pk = P−k .

2) When ηk = 1, from [12]’s Theorem 1,

K ′k = P−k C
>(CP−k C

> +R+ (1− εk)Y −1)−1,

x̂k = (I −K ′kC)x̂−k + εkK
′
kyk,

Pk = P−k −K
′
kCP

−
k .

Hence, from the above analysis, the above recursive equations
are satisfied, where Kk = ηkK

′
k. This completes the measure-

ment update proof.
Then we consider the pdf of the time update. It is a Gaussian

process f(xk+1|Ik) = f(Axk+wk|Ik) = N (Ax̂k, APkA
>+

Q), which is directly derived given that xk and wk are
mutually independent Gaussian. This is the same as equations
in (7). Thus, the proof is completed.

C. Proof of Lemma 1

We prove Lemma 1 by induction. For simplicity, denote
Uk , gkλ,R+Y −1(Σ).

Clearly, E[P−0 ] = U0 = Σ. Assume E[P−k ] ≤ Uk. Then
the statement is equal to proving that E[P−k+1] ≤ Uk+1 From
equations (6) and (7), one obtains

E[P−k+1] =E[gλ,R+(1−εk)Y −1(P−k )] ≤ E[gλ,R+Y −1(P−k )

≤[gλ,R+Y −1E[(P−k )] ≤ gλ,R+Y −1(Uk) = Uk+1,

where the first inequality holds from the fifth statement in
Proposition 1. The second inequality holds due to the concav-
ity of function gθ,W and the last inequality holds recalling that
gθ,W is a monotonically increasing function.

From the above analysis, E[P−k ] ≤ Uk for all k by
induction. Moreover, by Proposition 1, Uk → X̄ol, as k →∞,
which implies that

lim sup
k→∞

E[P−k ] ≤ X̄ol.

On the other hand, to derive the lower bound, let us define

Sk , P−1
k , S−k , (P−k )−1.

There are three cases of the recursive function of Pk (6) as
follows

Pk =


P−k , if ηk = 0,
P−k − P

−
k C

>(R+ CP−k C
>)−1CP−k , if ηk, εk = 1,

P−k − P
−
k C

>(R+ Y −1 + CP−k C
>)−1CP−k , else.

(28)

Inverting both side of (28), we have

Sk =


S−k , if ηk = 0,
S−k + C>R−1C, if ηk = 1, εk = 1,
S−k + C>(R+ Y −1)−1C, if ηk = 1, εk = 0.

(29)

Aggregating (29), one has

Sk = S−k + ηk(1− εk)C>(R+ Y −1)−1C + ηkεkC
>R−1C.

Taking the expectation of both sides, one has

E[ηk(1− εk)] = Pr(ηk = 1, εk = 0) =λ− γ,
E[ηkεk] = Pr(ηk = 1, εk = 1) =γ.

Thus, we obtain

E[Sk] = E[S−k ] + C>R−1
1 C.

Meanwhile, the third equation in (7) is the same as

S−k+1 = (AS−1
k A> +Q)−1,
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from which S−k+1 is concave w.r.t. Sk [27]. By Jensen’s
inequality, the following inequality holds:

E[S−k+1] ≤ (AE[Sk]−1A> +Q)−1 = ΛR1
(E[S−k ]),

where ΛW (X) , [A(X + C>W−1C)−1A> +Q]−1, W > 0
for simplicity.

For any X1 ≥ X2 ≥ 0, the following equation holds:

[ΛW (X1)]−1 = gW (X−1
1 ) ≤ gW (X−1

2 ) = [ΛW (X2)]−1,

⇔ ΛW (X1) ≥ ΛW (X2).

Hence, the monotonicity of ΛW is proven.
Furthermore, [ΛW (X−1)]−1 = gW (X) holds by applying

the matrix inversion lemma and the result directly follows

[ΛkW (X−1)]−1 = gkW (X).

Based on the monotonicity of ΛR1
and S−0 = Σ−1, we obtain

E[S−k ] ≤ ΛR1
(E[S−k−1]) ≤ · · · ≤ ΛkR1

(Σ−1).

Since f(X) = X−1, X ≥ 0 is convex w.r.t X , and by Jensen’s
inequality, one has

E[P−k ] = E[(S−k )−1] ≥ E[(S−k )]−1 ≥ [ΛkR1
(Σ−1)]−1 = gkR1

(Σ).

Denote Dk , gkR1
(Σ). From the above analysis, one has

E[P−k ] ≥ Dk for all k. By Proposition 1, Dk → Xol, as
k →∞, which implies that

lim inf
k→∞

E[P−k ] ≥ Xol.

From the fifth statement in Proposition 1, Xol ≥ X0 always

holds as R1 ≥
R

λ
. The proof is done.

D. Proof of Theorem 2

The proof of Theorem 2 follows the following two steps.
First, we prove an equivalent set of constraints to replace the
implicit constraint X̄ol ≤ M . Second, the set of constraints
are transformed to an SDP constraint.

Firstly, the following two statements are equivalent:
1) X̄ol ≤M ,
2) There exists 0 < X ≤M such that gλ,R+Y −1(X) ≤ X .

“1) ⇒ 2)′′: It is obvious that the second statement can be
obtained from the first, i.e., X̄ol is a feasible solution to X .
“2)⇒ 1)′′: Recall that gλ,W (X) is a monotonically increasing
function in X from Proposition 1. We have

M ≥ X ≥ gλ,R+Y −1(X) ≥ g2
λ,R+Y −1(X)

≥ . . . ≥ lim
k→∞

gkλ,R+Y −1(X) = X̄ol.

Then the first statement is obtained from the second. Thus,
these two statements are equivalent.

The constraints of Problem 3 are rewritten as follows:

Y ≥ 0, 0 < X ≤M, gλ,R+Y −1(X) ≤ X. (30)

Secondly, the main difficulty is to transform the last inequal-
ity into an equivalent SDP constraint. Since the last inequality
cannot be changed to linear form based on X , we transform it
to linear form based on the inverse of X, i.e., S. To maintain

the parameter utility, the second inequality should also be
changed to the linear form based on S. Taking the inverse
of both sides of the second inequality in (30), we obtain
S ≥M−1. It is straightforward to see that

S ≥M−1 ⇔
[
S I
I M

]
≥ 0,

by Schur complement since S = X−1 > 0.
The left-hand part of the problem is to transform the third

inequality in (30) to an SDP form in S. By rearranging the
term, one has

X − (1− λ)AXA> −Q
− λ(AXA> −AXC>(CXC> +R+ Y −1)−1CXA>)

= X − (1− λ)AXA> −Q
− λA(S + C>(R+ Y −1)−1C)−1A> ≥ 0,

(31)

where the equality follows the matrix inversion lemma.
Since S > 0, Y ≥ 0, R > 0, the following equation holds

S + C>(R+ Y −1)−1C > 0, (32)

then by applying the Schur complement to (31), the third
inequality in (30) is the same as[
X − (1− λ)AXA> −Q

√
λA√

λA> S + C>(R+ Y −1)−1C

]
≥ 0.

(33)
We obtain X − Q − (1 − λ)AXA> ≥ 0 from (33).

Meanwhile, as S = X−1 > 0, the following inequality holds:[
X −Q

√
1− λA√

1− λA> S

]
≥ 0. (34)

Given that X − Q ≥ 0 from (34) and X > 0, it is
straightforward to see that[

X I
I Q−1

]
≥ 0. (35)

Combining (33), (34) and (35), one has

Θ ,
X

√
λA

√
1− λA I√

λA> S + C>(R+ Y −1)−1C 0 0√
1− λA> 0 S 0
I 0 0 Q−1


≥ 0.

(36)

This is equivalent to

Γ ,


S 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

Θ


S 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ≥ 0⇔


S

√
λSA

√
1− λSA S√

λA>S Γ22 0 0√
1− λA>S 0 S 0

S 0 0 Q−1

 ≥ 0,

(37)

where Γ22 , S + C>(R+ Y −1)−1C.
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Since Γ22 is not linear in Y , we expand (R + Y −1)−1 by
using the matrix inversion lemma, where

(R+ Y −1)−1 = R−1 −R−1(Y +R−1)−1R−1.

Then one has

Γ =


S

√
λSA

√
1− λSA S√

λA>S S + C>R−1C 0 0√
1− λA>S 0 S 0

S 0 0 Q−1



−


0

C>R−1

0
0

 (Y +R−1)−1


0

C>R−1

0
0


T

≥ 0.

(38)

As Y ≥ 0, R > 0, (Y + R−1)−1 > 0 holds. The above
inequality (38) can also be viewed as a Schur complement,
where

Ã ,


S

√
λSA

√
1− λSA S√

λA>S S + C>R−1C 0 0√
1− λA>S 0 S 0

S 0 0 Q−1

 ,
B̃T ,

[
0 R−1C 0 0

]
, C̃ , Y +R−1 > 0.

Given that C̃ > 0, then Γ = Ã − B̃C̃−1B̃T ≥ 0 if and only

if Ψ(S, Y ) =

[
Ã B̃

B̃T C̃

]
≥ 0 . The proof is done.

E. Proof of Theorem 3

From Theorem 1, one has

f(zk|Ik−1) =f(yk − ŷ−k |Ik−1) = f(Ce−k + vk|Ik−1)

=N (0, CP−k C
> +R),

where the second equation holds as ŷ−k = Cx̂−k from Theorem
1; the last equation holds as E[e−k |Ik−1] = 0, and e−k , vk are
mutually independent Gaussian variables.

For the measurement update, performing a similar analysis,
we can obtain (15). Note that, substituting yk by zk in (6),
x̂k = x̂−k + εkKkzk −KkE[zk|Ik−1] = x̂−k + εkKkzk, which
is consistent with (15). We omit the remainder proof as it is
straight forward.

F. Proof of Lemma 3

We have

γ =E[Pr(ηkεk = 1|Ik−1)]

=E[Pr(ηk = 1) Pr(ζk ≤ exp(−
1

2
zTk Zzk)|Ik−1)]

=λE
[
1−

(
det
(
I + (CP−k C

> +R)Z
))− 1

2

]
.

To prove the second inequality, it suffices to prove the
concavity of (16). By Jensen’s inequality, it suffices to
prove the convexity of function f(CXC>Z + RZ + I) ,(
det
(
I + (CP−k C

> +R)Z
))− 1

2 .

The convexity holds for a composition with affine functions;
therefore, it is equivalent to prove that

f(X) = [det(X)]−
1
2 , for X ≥ I,

is convex.
Define b : (0,∞) → R and b(s) , (s)−

1
2 . Lehmich el.

al. [28] states the convexity of f on the set X ∈ Sn++ is
equivalent to

nsb′′(s) + (n− 1)b′(s) ≥ 0, and b′(s) ≤ 0, for all s > 0.

Since b′(s) = − 1
2 (s)−

3
2 ≤ 0 and

nsb′′(s) + (n− 1)b′(s) =ns
3

4
(s)−

5
2 − (n− 1)

1

2
(s)−

3
2

=
3

4
(s)−

3
2 + (n− 1)

1

4
(s)−

3
2 ≥ 0,

the proof is completed.

G. Proof of Theorem 4

An equivalent statement of the constraints of Problem 5 is
as follows. The following two statements are equivalent:

1) X̄cl ≤M,CX̄clC
> +R ≤ T ,

2) There exists S−1 = X ≥M such that

Ψ(S,Z) ≥ 0, CXC> +R ≤ T.

1)⇒ 2): Let X be equal to X̄cl; it is obvious that X̄cl is a
feasible matrix satisfying the second statement.

2)⇒ 1): From the similar proof in Appendix D, one has

gλ,R+Z−1(X) ≤ X, X̄cl ≤ X ≤M ;

therefore, CX̄clC
> +R ≤ CXC> +R ≤ T .

On the other hand, it is well known that replacing
S−1 = X by S−1 ≤ X does not affect the solution to
the optimization problem (18) since tr

(
(CXC> +R)Z

)
≥

tr
(
(CS−1C> +R)Z

)
. Therefore, S−1 = X is satisfied for at

least one optimal solution to the optimization problem, which
completes the proof.

H. Proof of Lemma 7

By Lemma 4 and Lemma 5, the feasibility condition for
the problem is that X0 ≤ X̄cl. Moreover, from the proof
of Theorem 4, one has X0 ≤ X̄cl ≤ X ≤ M . It is
sufficient to obtain that lii ≤ xii ≤ mii. Furthermore, since
every principal sub-matrix is positive definite for a positive
semidefinite matrix, we have |xij | ≤ (xiixjj)

1
2 ≤ (miimjj)

1
2 .

As the objective function in equation (18) satisfies

min
Z,X,S

tr
(
(CXC> +R)Z

)
≤ min
Z,X,S

tr(Z)tr(CXC> +R)

≤ tr(Z) min
X,S

tr(CXC> +R) ≤ z∗min
X,S

tr(CXC> +R),

the following equation holds

z∗ ≥
min
Z,X,S

tr
(
(CXC> +R)Z

)
min
X,S

tr(CXC> +R)
, s.t.(X,Z, S) ∈ S, (39)

where z∗ ≥ tr(Z) is the upper bound of tr(Z)
on S. As the molecule min

Z,X,S
tr
(
(CXC> +R)Z

)
≤
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min
Z,S

tr
(
(CMC> +R)Z

)
and the denominator

min
X,S

tr(CXC> + R) ≥ tr(CX0C
> + R), let z∗ be the

solution to (22), and we can prove that z∗ satisfies (39) from

the above analysis. Therefore, one has 0 ≤ zii ≤ tr(Z) ≤ z∗.
Moreover, |zij | ≤ (ziizjj)

1
2 ≤ z∗. This completes the proof.
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