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Schrödinger Approach to Optimal Control of

Large-Size Populations

Kaivalya Bakshi, David D. Fan and Evangelos A. Theodorou

Abstract

Large-size populations consisting of a continuum of identical and non-cooperative agents with

stochastic dynamics are useful in modeling various biological and engineered systems. This paper

addresses the stochastic control problem of designing optimal state-feedback controllers which guarantee

the closed-loop stability of the stationary density of such agents with nonlinear Langevin dynamics, under

the action of their individual steady state controls.

We represent the corresponding coupled forward-backward PDEs as decoupled Schrödinger equa-

tions, by applying two variable transforms. Spectral properties of the linear Schrödinger operator which

underlie the stability analysis are used to obtain explicit control design constraints. Our interpretation

of the Schrödinger potential as the cost function of a closely related optimal control problem motivates

a quadrature based algorithm to compute the finite-time optimal control 1.

I. INTRODUCTION

Dynamics and control of multi-agent populations consisting of a large number of identical and

non-cooperative agents are of interest in various applications including robotic swarms, macro-

economics, traffic and neuroscience. Prior works on optimal open-loop or closed-loop ensemble

(broadcast) control consider several copies of a particular deterministic [1] or stochastic ( [2], [3],

[4]) system and have applications in quantum control [5] and neuroscience [6]. A standard idea in
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engineering, economics and biology to model decision making in large-size populations of agents

with limited information is regulation using local feedback information. Optimal feedback control

applications to large-size populations of small robots with individual state-feedback controllers

have been proposed for inspection of industrial machinery [7], centralized control of hybrid

automata [8] and decentralized control of robotic bee swarms for pollinating crops [9]. In large-

size multi-agent systems wherein the dimensions of individual agents are small compared to

their region of operation, it can be assumed that the agents do not locally interact with each

other. Such problems with stochastic agents can therefore be treated within the framework of

standard stochastic optimal control.

In this paper we consider the finite and infinite-time nonlinear optimal control problem

(OCP) of a density of identical and non-cooperative agents which have individual state-feedback

controllers. The distribution of agents (referred to as population in this paper) is represented by

the density function of the state of a representative agent. The standard stochastic OCP [10] is

represented by two coupled forward-backward partial differential equations (PDEs) known as

Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP), which govern the value function and

agent density respectively. Note that although the FP equation depends on the value function, the

HJB equation does not depend on the density. The important question we address in this paper

is: how do we design the cost function of the OCP so that the steady state optimal controller

stabilizes an initial (perturbed) density of agents to the corresponding steady state density? This

question clearly relates to the stability analysis of the FP equation governing the population

density.

Mean field games (MFGs) ( [11], [12]) constituted by game-theoretic OCPs use a similar

HJB-FP PDE representation to model continuum systems in which agents interact with each

other through the dependence of their dynamics or cost function on the population density (

[13], [14], [15]). In the recent works ( [16], [17]) by some of the authors and in ( [18], [19],

[20]), local (linear) stability results were presented for certain classes of MFGs wherein agents

obey nonlinear Langevin dynamics. The presented work is therefore differentiated from these

earlier works since it is concerned with the stability analysis of the population density related

to standard stochastic OCPs in which the agents do not interact with each other.

The first contribution of this paper is the application of variable transforms which enable

the representation of the HJB and FP PDEs corresponding to a class of stochastic OCPs with

nonlinear agent dynamics, as decoupled imaginary-time linear Schrödinger equations. The fun-
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damental connection between optimal control and quantum mechanics ( [21], [22]) has been

shown through a standard Cole-Hopf transform of the value function ( [23], [24]) to represent

the HJB PDE governing the value function as the Schrödinger equation. In the presented work,

we transform both the value and density functions and represent the HJB and FP equations as

decoupled Schrödinger equations. The variable transform of the value function in this paper is

distinct from prior works including the work in [25] on MFGs of agents with simple integrator

dynamics, which utilizes a density transform similar to the what is presented in this paper, since

it reflects the nonlinear dynamics of agents with Langevin dynamics.

The second contribution of this work is to show that the Schrödinger potential is the cost

function of a closely related (fictitious) OCP subject to simple integrator dynamics. This inter-

pretation is closely related (in the case of uncontrolled stochastic dynamics) to the well known

work of Nelson [26] which shows the connection between the classical physical interpretation

of the Brownian motion and quantum mechanics.

The main contribution of the paper is the stability analysis of the optimally controlled density

of agents for a class of stochastic OCPs, wherein agents obey nonlinear dynamics. We obtain

explicit (analytical) control design constraints required for stability. This work presents more

general nonlinear stability results in contrast to the prior related works ( [16], [17], [18], [19],

[20]) in the MFG case, which rely on linearization of the PDEs representing the OCP. This is

made possible by applying two variable transforms in this paper, which enables representation of

the HJB and FP equations of the considered OCP by decoupled linear Schrödinger equations. Our

work is inspired by the work [27] which analyzes the stability of equilibrium densities of MFGs

for agents with simple integrator dynamics. Although our work is limited in contrast to [27]

since it does not address the more general MFGs, it is more general since it treats agents with

nonlinear Langevin dynamics. Further, the approach and consequent stability analysis presented

in [27], is based on the Gaussian approximation of the equilibrium density. Therefore, although

the presented stability analysis in [27] is applicable to non-Gaussian initial densities which can be

approximated by a juxtaposition of several Gaussian bumps, the case of arbitrary non-Gaussian

initial densities is beyond it’s scope. In contrast, our work treats arbitrary non-Gaussian initial

densities.

The fourth contribution of our work is a sampling algorithm to solve the original nonlinear

finite-time OCP using trajectories sampled from the linear (integrator) dynamics of the related

fictitious OCP. Prior path-integral based sampling control algorithms ( [28], [29]) rely on simulat-
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ing trajectories of nonlinear dynamics to numerically approximate probability distributions, thus

introducing high computational complexity and inaccuracy. Since our algorithm uses samples

from linear dynamics, we use analytic knowledge of the sample distribution via a quadrature

method to compute the control.

The paper is organized as follows. In section II we state the OCP considered, the corresponding

PDE representation and stationary solutions to it. In section III we apply two variable transforms

of the value and density functions, obtain the resulting representation of the PDEs as Schrödinger

equations and show that the Schrödinger potential of the transformed PDEs is the cost function

of a closely related OCP with integrator dynamics. In section IV we present the stability analysis

for the class of OCPs for agents with Langevin dynamics, explicit control design constraints and

prove that the population density of optimally controlled agents stabilizes to the equilibrium

density under the optimal control resulting from the solution of an OCP which obeys the

constraints. In section V we present a sampling algorithm to compute the finite-time nonlinear

stochastic control using samples from linear dynamics. In section VI we state our conclusions

and point to directions for future research.

II. CONTROL OF LARGE-SIZE POPULATIONS

We first introduce some notation and then describe the control problem considered in this

work. We denote vector inner products by a ·b, the induced Euclidean norm by |a| and its square

by a2 = |a|2. ∂t denotes partial derivative with respect to t while ∇, ∇· and ∆ denote the

gradient, divergence and Laplacian operations respectively. L2(Rd) denotes the class of square

integrable functions of Rd. The norm of a function f and inner product of functions f1, f2 in

this class is denoted by ||f ||L2(Rd) and
〈
f1, f2

〉
L2(Rd)

respectively.

A. Control problem

Let xs, u(s) ∈ Rd denote the state and control inputs of a representative agent which obeys

the controlled first order dynamics:

dxs = −∇ν(xs)ds+ u(s)ds+ σdws (1)

for every s ≥ 0, driven by standard Rd Brownian motion, with noise intensity 0 < σ on the

filtered probability space {Ω,F , {Ft}t≥0,P}. These dynamics are the controlled version of a

Langevin system in the overdamped case. The smooth function ν : Rd → R is called the
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Langevin potential and u ∈ U := U [0, T ] where U is the class of admissible controls [30]

containing functions u : [0, T ] × Rd → Rd. Consider the following optimal control problem

(OCP):

min
u∈U

J(u) := lim
T→+∞

1

T
E
[∫ T

0

q(xs)ds+
R

2
u2 ds

]
(2)

subject to (1) which we call problem (P1), wherein the expectation is calculated on the probability

density p(s, x) of xs for all s ≥ 0 and represents the distribution of the population of agents,

with the initial density being x0 ∼ p(0, x), q : Rd → R is a known deterministic function which

has at most quadratic growth and is bounded from below and R > 0 is the control cost. We

assume that ∇ν(·), q(·) and functions in the class U are measurable.

B. PDE representation

Standard application of dynamic programming [10] implies that under certain regularity con-

ditions [19] which we assume to be true, problem (P1) is equivalent to the following HJB and

FP equations governing the value and density functions respectively:

q − c− (∇v∞)2

2R
−∇v∞ · ∇ν +

σ2

2
∆v∞ =0 (3)

∇((∇ν +
∇v∞

R
)p∞) +

σ2

2
∆p∞ =0 (4)

with the constraint
∫
p∞dx = 1, where c is the optimal cost. The optimal control is given by

u∞(x) = −∇v∞/R. Under certain regularity conditions [19], which we assume to be true, the

time-varying relative value [31] function and density corresponding to problem (P1) are governed

by the following equations:

−∂tv =q − c− (∇v)2

2R
−∇v · ∇ν +

σ2

2
∆v (5)

∂tp =∇ · ((∇ν +
∇v
R

)p) +
σ2

2
∆p (6)

with the constraint
∫
p(t, x)dx = 1 for all t ≥ 0. The optimal control is given by u∗(t, x) =

−∇v/R. In this work, we assume the additional conditions [30] which are required to show that

the HJB PDEs (3) and (5) have unique solutions. Both steady state and time-varying HJB PDEs

are semilinear.

Remark 1. The finite-time OCP analogous to the infinite-time OCP (P1) given by:

min
u∈U

J(u) := E
[∫ T

0

q(xs)ds+
R

2
u2 ds

]
. (7)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

subject to the dynamics (1) has the PDE representation given by equations (5), (6) with c = 0,

initial density given by p(0, x) and constraint
∫
p(t, x)dx = 1.

C. Stationary solution

The FP equation governing the density of an overdamped Langevin system is called the

Smoluchowski PDE. The FP PDE (4), can be interpreted as the Smoluchowski PDE for such a

Langevin system with the restoring potential ν+v∞/R. The analytical solution to this FP equation

can be obtained as a Gibbs distribution using this interpretation, under certain conditions given

below, on the solution pair (v∞, p∞) of the equations (3, 4) and the Langevin potential ν. We

denote w(x) := ν(x)+ v∞(x)
R

. We state an assumption below which is required to obtain analytic

solutions to the FP equation. Note that the stationary densities obtained using the following

lemma may be non-Gaussian.

(A0) There exist (v∞(x), p∞(x)) ∈ (C2(Rd))2 satisfying (3,4) such that lim
|x|→+∞

w(x) = +∞ and

exp
(
− 2
σ2w(x)

)
∈ L1(Rd).

Lemma II.1. Let (A0) be true. If ν(x) is a smooth functions satisfying (A0), then the unique

stationary solution to the density given by the Fokker Planck equation (4) is

p∞(x) :=
1

Z
exp

(
− 2

σ2

(
w(x)

))
(x), (8)

where Z =
∫

exp
(
− 2
σ2w(x)

)
dx.

Proof. We observe that the (4) is the Smoluchowski equation for an overdamped Langevin

system given by:

dxs = −∇(ν + v∞/R)(xs) ds+ σdws. (9)

Under the assumptions above, the proof then follows directly from proposition 4.2, pp 110 in

[32].

III. SCHRÖDINGER APPROACH

The semilinear HJB PDEs above have a linear representation in the time-varying and steady

state case. In the time-varying case it is obtained using the well-known Cole-Hopf transform

φ := exp(−v/σ2R), used in stochastic control theory by Kappen [33]:

− ∂tφ = − qφ

σ2R
−∇φ · ∇ν +

σ2

2
∆φ. (10)
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The advection-diffusion equation above has a path-integral solution [34] which is useful in

computing the control [29], [33], [35]. In this section we apply two transforms providing a

diffusion (no advection) Schrödinger PDE representation of the semilinear HJB and linear FP

equations. This facilitates a stability analysis of the steady state solution to the equations (5,

6) in section IV, based on the spectral properties of the Schrödinger operator. Further, in this

section we interpret the corresponding Schrödinger potential as the cost function of a fictitious

but intimately related OCP with integrator dynamics. This motivates a quadrature based algorithm

to solve the transformed HJB equation and compute the control in section V.

A. Application of the Cole-Hopf transform

We apply the Cole-Hopf type transform:

f(t, x) := exp(−(v(t, x) +Rν(x))/σ2R), (11)

which leads to the following representation of equation (5):

− ∂tf =
cf

σ2R
− V f

σ2R
+
σ2

2
∆f =

cf

σ2R
−Hf, (12)

where we denote the modified cost function V := q + (R/2)(∇ν)2 − (σ2R/2)∆ν and the

operator H := V
σ2R
− σ2

2
∆ is a Schrödinger operator with potential V (x)

σ2R
. The transformed PDE

can be verified by using the calculations ∂tv = −σ2R∂tf
f

, ∇f = − f
σ2R
∇(v + Rν), ∆f =

− ∇f
σ2R
· ∇(v + Rν) − f

σ2R
∆(v + Rν) and (∇v)2

2R
=
(
σ4R

2

(∇f
f

)2
+ σ2R∇f

f
· ∇ν + R

2
((∇ν)2

)
in

equation (5) thus recovering equation (12). Similarly, it can be shown that if v(t, x) is a solution

of equation (5) then f(t, x) given by (11) is a solution to equation (12).

Hermitizing [25] the density as:

g :=
p

f
, (13)

then gives the following representation of equation (6):

− ∂tg = − cg

σ2R
+

V g

σ2R
− σ2

2
∆g = − cg

σ2R
+Hg, (14)

with the initial time boundary condition g(0, x) = p
f
(0, x) and normalizing constraint

∫
f(t, x)g(t, x)dx =

1 for all t ≥ 0. This can be verified by using the derivatives ∂tp = ∂tgf+g∂tf ,∇p = f∇g+g∇f ,

∆p = f∆g+ 2∇g · ∇f + g∆f , ∇(σ2 ln f)p = σ2gf ∇f
f

= σ2g∇f and equation (12) in equation

(6), thus recovering the equation above. Similarly, it can be shown that if p(t, x) is a solution



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

of equation (6) then g(t, x) = p
f

, with f(t, x) given by (11), is a solution to equation (14). We

summarize this fact in the following theorem.

Theorem III.1. (f(t, x), g(t, x)) is a solution to the linear PDEs (12, 14) such that
∫
f(t, x)g(t, x)dx =

1 for all t ≥ 0 if and only if

v(t, x) =− σ2R ln(f)(t, x)−Rν(x) (15)

p(t, x) =f(t, x)g(t, x) (16)

are solutions to the nonlinear equations (5) and (6). Further, the optimal control is given by

u∗ = −∇v/R = σ2∇f/f .

The applied transforms ((11),(13)) correspond to a diagonalization or decoupled, linear rep-

resentation of the coupled equations ((5), (6)) as follows:

∂t

f
g

 =

 H − c
σ2R

0

0 −H + c
σ2R

f
g

 (17)

Analogously, it can be shown that the stationary value and density functions satisfying the

stationary nonlinear equations (3, 4) can be represented by the transformation variables f∞ :=

exp(−(v∞+Rν)/σ2R) and g∞ := p∞/f∞, which both satisfy the following eigenvalue problem:

He(x) =
c

σ2R
e(x) (18)

subject to the normalizing constraint
∫
f∞(x)g∞(x)dx = 1.

Theorem III.2. (f∞(x), g∞(x)) are both solutions to the eigenvalue problem (18) such that∫
f∞(x)g∞(x)dx = 1 if and only if

v∞(x) =− σ2R ln(f∞)(x)−Rν(x) (19)

p∞(x) =f∞(x)g∞(x) (20)

are solutions to the nonlinear equations (3) and (4)). Further, the optimal control is given by

u∞ = −∇v∞/R = σ2∇f∞/f∞.

Given a solution pair (v∞, p∞) to the equations (3) and (4)) it is possible to obtain explicit

solutions to functions (f∞, g∞) satisfying equation (18) such that
∫
f∞g∞dx = 1. The result in

theorem II.1 and the applied transforms can be used to verify the following corollary to theorem

III.2.
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Corollary III.2.1. Let p∞ := 1
Z

exp

(
− 2
σ2

(
w(x)

))
(x) with w(x) := ν(x) + v∞(x)

R
and Z

the normalizing constant where (v∞, p∞) is a pair satisfying (A0). Then f∞ :=
√
Zp∞ and

g∞ := f∞/Z both satisfy equation (18) such that
∫
f∞g∞dx = 1.

B. Interpretation

The Schrödinger potential V (x)
σ2R

defined earlier can be interpreted as the cost function of the

following fictitious OCP which has an intimate connection with the original OCP (P2):

min
û∈U

J(u) := lim
T→+∞

1

T
E
[∫ T

0

V (x̂s)ds+
R

2
û2 ds

]
(21)

subject to the simple integrator dynamics:

dx̂s = û(s)ds+ σdws. (22)

We refer to the OCP (21) subject to (22) as problem (P2). The time-varying PDE representation

of problem (P2) is given by:

−∂tv̂ =V − ĉ− (∇v̂)2

2R
+
σ2

2
∆v̂ (23)

∂tp̂ =∇ · (∇v̂
R
p) +

σ2

2
∆p̂ (24)

where ĉ is the optimal cost.

It is easily observed that if v is the solution to the HJB equation (5), then v̂ = v + Rν is

a solution to the HJB equation (23). Therefore, the time-varying optimal controls: u∗ of the

OCP (P1) and û∗ of the OCP (P2), are related as û∗ = u∗ − ∇ν. Similarly, by substituting

∇v̂ = ∇v + R∇ν into equation (24), we can see that the PDEs (6), (24) satisfied by the

densities p(s, x), p̂(s, x) respectively, are identical. Therefore, given identical initial conditions

p̂(0, x) = p(0, x), lemma II.1 implies that p̂(s, x) = p(s, x) for all s ≥ 0 where p(s, x) is the

density of optimally controlled agents associated with the OCP (P1). To summarize, solving

the equations (5, 6) corresponding to the OCP (P1) (subject to nonlinear passive dynamics) is

equivalent to solving the equations (23, 24) corresponding to the OCP (P2) (subject to simple

integrator dynamics). This fact is used in section V to synthesize a solver to compute the finite-

time optimal control.
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IV. CONTROL DESIGN

The decay of an initial density of particles under open loop (uncontrolled) overdamped

Langevin dynamics to a stationary density is a classic topic in statistical physics [36]. In this

section we analyze the decay of a perturbed density of agents under the action of the steady state

controller obtained in problem (P1) to the corresponding stationary density. Since the HJB and FP

equations (5) and (6)) are coupled one-way, the perturbation analysis corresponds to that of the

FP equation. In the presented approach, evolution of a perturbed density governed by equation

(6) is analyzed through the evolution of its hermitized form (13) governed by equation (14).

Diagonalization (17) of the PDE representation facilitates stability analysis based on the spectral

properties of the Schrödinger operator, using which we obtain analytical design constraints on

the cost function q(x) and control parameter R to guarantee stability of the equilibrium density.

Note that our approach does not require the assumption of small (local) density perturbations or

a Gaussian equilibrium as in [25] which treated the stability of equilibrium densities in related

MFG case, and applies to general perturbations to Gaussian or non-Gaussian stationary densities

in the case of standard OCPs. Additionally, while the study in [25] is limited to agents which

have simple integrator dynamics the proposed framework applies to the broader class of nonlinear

Langevin dynamics.

A. Perturbations of the equilibrium density

Consider a large-size population expressed by problem (P1), which is controlled by the

optimal steady state control u∞ = −∇v∞/R corresponding to the equation (3) with a unique

equilibrium density p∞ satisfying (4) and (A0). Theorem III.2 then implies that the value and

density functions can be written as (19), (20), in terms of a pair of functions (f∞, g∞), both

satisfying equation (18) and
∫
f∞g∞dx = 1. Corollary III.2.1 gives formulae for the function

pair (f∞(x), g∞(x)) in terms of the steady state solution pair (v∞, p∞) satisfying equations (3,

4). Time-varying value and density functions can be calculated as (15), (16) in terms of the

corresponding transformation variables (f(t, x), g(t, x)).

Time-varying densities, perturbed from the steady state density of agents can be written using

the hermitization transform (13) as p(t, x) = p∞(x) + p̃(t, x) = f∞(x)g∞(t, x) + f∞(x)g̃(t, x).

Since we are studying stability of the steady state controller, there are no perturbations in the

value function v∞ nor consequently, in the transformation variable f∞. Here, the function g̃(t, x)

corresponds to a perturbation in the hermitized density given as g(t, x) = g∞(x)+ g̃(t, x), which
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obeys the time-varying PDE (14). In this section we study the decay of a perturbed density

p∞ + p̃ to its steady state density p∞. We state the following corollary to theorem III.1 which

provides the perturbation equation for the hermitized density.

Corollary IV.0.1. If g∞(x) is a solution to the stationary PDE (18) and g(t, x) = g∞(x)+g̃(t, x)

is a solution to the PDE (14) where g̃(t, x) ∈ C1,2([0,+∞),Rd), then g̃(t, x) is governed by the

linear PDE

∂tg̃ = −
(
H − c

σ2R

)
g̃. (25)

B. Stability

We define the following Hilbert space and class of density perturbations for which we study

stability.

Definition IV.1. Let (A0) hold. Denote p∞ := 1
Z

exp

(
− 2
σ2

(
w(x)

))
(x) with w(x) := ν(x) +

v∞(x)
R

and Z the normalizing constant where (v∞, p∞) is the unique pair satisfying (A0). We

denote by f∞ :=
√
Zp∞ and g∞ := f∞/Z two solutions to equation (18) such that

∫
f∞g∞dx =

1. We denote the Hilbert space of L2(R) byH. The class of mass preserving density perturbations

is defined as S0 :=

{
π(x) ∈ H

∣∣∣∣ 〈π, f∞〉H = 0

}
.

Definition IV.2. We define the class of initial perturbed densities as S :={
p(0, x) = f∞(g∞(x) + g̃(0, x))

∣∣∣∣g̃(0, x) ∈ S0

}
. We say that the steady state density p∞(x) =

f∞(x)g∞(x) corresponding to the nonlinear equations (3, 4) is asymptotically stable with respect

to S if there exists a solution g̃(t, x) to the perturbation equation (25) such that lim
t→+∞

||g̃(t, x)||H =

0.

Lemma IV.1. If there exists a positive, even and continuous function Q(x) on R which is non-

decreasing for all x ≥ 0 such that V (x)
σ2R
≥ −Q(x) for all x ∈ R and

∫
dx√
Q(2x)

dx = +∞ then

the closure of H is self adjoint.

We omit the proof since it follows directly from theorem 1.1, pp 50 in [37]. In particular,

if V (x)
σ2R

≥ k ∈ R then it follows that H is self adjoint. The following assumption implies

discreteness of the spectrum of H .

(A1) lim
|x|→+∞

V (x) = lim
|x|→+∞

q + R
2

(∇ν)2 − σ2R
2

∆ν = +∞.
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Lemma IV.2. If (A1) is true then the closure of H has a discrete spectrum.

The proof of this theorem follows from theorem 3.1, pp 57 of [37]. This theorem implies

that under assumption (A1), the spectrum of H denoted by {λn}0≤n≤+∞ has the property that

λn → +∞ as n→ +∞ and the corresponding eigenfunctions denoted as {en(x)}0≤n≤+∞ form

a complete orthonormal system on L2(R). The eigenproperty is explicitly written as Hen(x) =

λnen(x). Further from proposition 3.2, pp 65 in [37] the eigenvalues have the property λ0 <

λ1 < · · · < λn < · · · . We state the following assumption on the Schrödinger potential required

to prove stability of the stationary density.

(A2) V (x) = q + R
2

(∇ν)2 − σ2R
2

∆ν ≥ 0.

In view of (A1), (A2) can be satisfied for given q and ν functions without affecting the equilibrium

solutions (v∞, p∞), by adding a constant to the cost function. This condition is required to apply

the Krein-Rutman theorem in the proof of the main theorem below as in (section 1.A, pp 2,

[38]). The proof of the theorem uses standard techniques from spectral analysis of linear operators

and is presented here for the purposes of completeness and explaining the precise role of the

assumptions (A1, A2) in providing the guarantee of stability. We do not lay any claims of

originality to the techniques of the proof.

Theorem IV.3. Let (A0, A1, A2) be true. Let (v∞(x), p∞(x)) be the unique stationary solution to

the equations (3, 4) and denote by (f∞, g∞) the two solutions to problem (18) given in corollary

III.2.1. If g̃(0, x) ∈ S0 and {gn}0≤n≤+∞ are determined by

ġn(t) = −
(
λn −

c

σ2R

)
gn(t), (26)

then g̃(t, x) =
∑+∞

n=1 gn(t)en(t) is the unique H solution to the perturbation equation (25). p∞(x)

is asymptotically stable with respect to S.

Proof. Since g̃(0, x) ∈ H we have the unique representation g̃(0, x) =
∑+∞

n=0 gn(0)en(x) where

gn(0) = 〈g̃(0, x), en(x)〉H < +∞ for all n. Since {en}0≤n<+∞ is a complete basis on H, any

solution in H to the PDE (25) must have the form
∑+∞

n=0 gn(t)en(x) where {gn(t)}0≤n≤+∞ are

finite for all t ∈ [0,+∞). Substituting the selected form of the solution in the perturbation equa-

tion (25) and using the eigenproperty Hen = λnen, we obtain the ODEs (26). Due to assumption

(A1) the eigenproperties of the Schrödinger operator given in lemmas IV.1, IV.2 hold. Using

the eigenproperty yields the ODEs (26) with the unique solutions gn(t) = gn(0)e−(λn− c
σ2R

)t.
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Therefore g̃(t, x) =
∑+∞

n=0 gn(t)en(x) wherein gn(t) = gn(0)e−(λn− c
σ2R

)t is the unique H solution

to the perturbation equation (25).

From the Krein-Rutman theorem [38], under the assumption V (x) ≥ 0 given by (A2), the

first eigenvalue is c
σ2R

= λ0 so that ġ0(t) = 0 for all t ≥ 0 and the first eigenfunction is

0 < f∞(x) = e0(x) corresponding to the eigenproblem (18). Further, g̃(0, x) ∈ S0 implies that

g0(0) = 〈g̃(0, x), e0(x)〉H = 〈g̃(0, x), f∞(x)〉H = 0 implying that g0(t) = 0 for all t ≥ 0, which

completes the first part of the proof.

We can see that λ0 > 0 since the infinite horizon optimal cost c > 0 or using integration by

parts, 〈He0, e0〉L2(R) =
〈

V
σ2R

e0, e0

〉
L2(R)

+ σ2

2
||∇e0||2L2(R) = λ0 = c

σ2R
> 0 since V (x) ≥ 0. From

assumption (A2) and λ0 < λ1 < · · · due to assumption (A1) wherein c
σ2R

= λ0, we conclude

that λn − c
σ2R

> 0 for all n > 1. Using Parseval’s identity ||g̃(t, x)||L2(R) =
(∑+∞

n=0 gn(t)2
) 1

2 ,

noting that g0(t) = 0, gn(t)2 = gn(0)2e−2(λn− c
σ2R

)t where λn − c
σ2R

> 0 for all n > 1 and using

the Lebesgue dominated convergence theorem for the limit t → +∞, we have that p∞(x) is

nonlinearly asymptotically stable with respect to S.

From the theorem above, we note that assumption (A1) is the key explicit design constraint

on the cost function q(x) and control parameter R, which guarantees stability of an initially

perturbed density of agents to the corresponding steady state density, under the action of the

steady state controller. In figure 1 we show stabilization of an initially (perturbed) uniform density

of agents to the stationary density corresponding to the steady state controls. The agent dynamics

are unstable with the Langevin potential ν(x) = −x3/3 and the system is stabilized using a cost

function q(x) = (5/2) · x2 such that conditions (A1, A2) are satisfied. Equation (18) is solved

using a spectral solver [39] for the parameters σ = R = 1/2 and the steady state density is

obtained using equation (9). Initial states of agents are sampled from a uniform density over the

interval [−2, 2]. Trajectories for N = 500 agents are simulated with 100 stochastic realizations

each, using the steady state control. In the left panel we observe the density evolve over time

steps t = 0 (black), t = T/5 (blue), t = T/2 (pink) to the final time t = T (red) at which the

stationary density computed by the spectral solver is recovered.

V. CONTROL ALGORITHM

For practical applications of the control of large-scale systems, it will be advantageous to

pre-compute a finite-time, feedback control law whose domain spans the region of state space

that we are interested in. The optimal control can be obtained by solving the corresponding HJB
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Fig. 1. Stabilization of a density of unstable Langevin agents with potential ν = −x3/3 to a equilibrium density by designing

an OCP which satisfies the stability constraints (A1,A2). Left pane: Monte-Carlo simulation of density evolution under steady

state controls from the perturbed initial density (black, t = 0) - blue (t = T/5) - pink (t = T/2) - terminal (red, t = T ) density.

Note that the terminal (red) density obtained via Monte-Carlo co-incides with the equilibrium density computed by the spectral

solver (green). Right pane: Stochastic realizations of ten optimally controlled agent trajectories.

PDE by using finite difference, finite element, spectral or path-integral approaches. In this work,

we apply a path-integral approach to solve this PDE in the finite-time case and introduce an

efficient quadrature method for evaluating the path-integrals. Although our quadrature method

could be applied to either (P1) or (P2), the implementation becomes computationally efficient

in the case of (P2) due to our analytic knowledge of the density for the underlying integrator

sampling dynamics, in contrast to to prior path-integral sampling control algorithms ( [28], [29])

which require simulation of trajectories of nonlinear dynamics to numerically approximate the

probability density. The result is an efficient method for computing the feedback control law.

We consider the finite horizon OCP (7) with the HJB equation given by (5), c = 0 as explained

in remark 1. The optimal control can then be solved by treating the equivalent problem (P2)

with HJB equation (12). The path-integral representation of this PDE (via Feynman-Kac) is as
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follows:

f(t, x̄) = Eτ

[
exp

(∫ T

t

− V

σ2R
(xs)ds

)
f(T, xT )

]
(27)

with the expectation over trajectories τ of brownian motions over the finite-time horizon [t, T ],

that is:

dxs = σdωs, xt = x̄ (28)

First we approximate everything in discrete time with N timesteps of duration δt, with δt =

(T − t)/N , so that

f(t, x̄) ≈ Eτ

[
exp

(N−1∑
n=0

− V

σ2R
(xn)δt

)
f(T, xN)

]
(29)

with xn governed by the discrete dynamical system xn+1 = xn+σ
√
δtε, x0 = x̄, and ε ∼N (0, I),

with the associated transition probability p(xn+1|xn) ∼ N (xn, σ
2δtI). Let wn(xn) := exp

(
−

V
σ2R

(xn)δt
)

for n = 0, · · · , N − 1, and let wN(xN) := f(T, xN), and w :=
∏N

n=0wn(xn).

From equation (29) we have that f(t, x̄) =∫
· · ·
∫
wN(xN)

[
N−1∏
n=2

wn(xn)p(xn+1|xn)

]
×[∫

w0(x̄)p(x1|x0 = x̄)w1(x1)p(x2|x1)dx1

]
dx2 · · · dxN .

(30)

The second integral in the brackets above is approximated by Gaussian quadrature with M

grid points {ξi1}Mi=1 and weights αi1 as:
M∑
i=1

p(x2|x1 = ξi1)︸ ︷︷ ︸
φi1(x2)

αi1w1(x1 = ξi1)︸ ︷︷ ︸
γi1

w0(x̄)p(x1 = ξi1|x0 = x̄)︸ ︷︷ ︸
φi0(x̄)

. (31)

Define the M dimensional vectors Φ1(x2), γ1, and Φ0(x̄) to have elements φi1(x2), γi1, φi0(x̄), re-

spectively and define Γ1 = diag(γ1), and write (31) as a set of vector products
∫
w0(x̄)p(x1|x0 =

x̄)w1(x1)p(x2|x1)dx1 = Φ1(x2)ᵀΓ1Φ0(x̄). Recall that p(x1 = ξi1|x0 = x̄) is a Gaussian density,

so that each element of Φ0(x̄) is Gaussian weighted by w0(x̄). Plugging this back into (30)

yields:

=

∫
· · ·
∫
wN(xN)

[
N−1∏
n=3

wn(xn)p(xn+1|xn)

]
[∫

w2(x2)p(x3|x2)Φ1(x2)ᵀΓ1Φ0(x̄)dx2

]
dx3 · · · dxN .

(32)
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Performing another quadrature on the integral within the brackets at points {ξi2}Mi=1 with weights

αi2 we obtain:
M∑
i=1

p(x3|x2 = ξi2)︸ ︷︷ ︸
φi(x3)

αi2w2(x2 = ξi2)︸ ︷︷ ︸
γi2

Φ1(x2 = ξi2)ᵀΓ1Φ0(x̄) (33)

Let Φ̃n be an M ×M transition matrix with elements {Φ̃}ij = p(xn+1 = ξin+1|xn = ξjn). Then

we can write (33) as Φ2(x3)ᵀΓ2Φ̃1Γ1Φ0(x̄). Plugging this back into (32), we can perform the

nested integrals recursively. At each timestep xn we use a different quadrature grid, with points

{ξin}Mi=1 and weights αin. The entire integral will therefore be:

f(t, x̄) ≈ γᵀN

[
N−1∏
n=1

(Φ̃nΓn)

]
Φ0(x̄) (34)

where we have used the definitions:

γn =
[
{αiwn(ξin)}Mi=1

]ᵀ
(35)

Γn = diag(γn) (36)

{Φ̃n}ij = p(xn+1 = ξin+1|xn = ξjn) (37)

φi0(x̄) = w0(x̄)p(x1 = ξi1|x0 = x̄) (38)

Φ0(x̄) =
[
{φi0(x̄)}Mi=1

]ᵀ
(39)

Since V (x) is time invariant and one chooses the same quadrature grid points at each timestep,

γn and Φ̃n are the same for all n = 1, · · · , N − 1. So (34) can be simplified to:

f(t, x̄) ≈ γᵀN(Φ̃Γ)N−1Φ0(x̄). (40)

We consider a two dimensional Langevin potential ν = 1/2 cos(x1x2)2− 1/24(x4
1 + x4

2), with

resulting dynamics:

dx1 = (cos(x1x2) sin(x1x2)x2 − 1/6x3
1 + u1(s))ds+ σdw1

dx2 = (cos(x1x2) sin(x1x2)x1 − 1/6x3
2 + u2(s))ds+ σdw2.

In Figure 2 we first plot the potential ν along with several uncontrolled trajectories of agents

initialized at random locations. The agents collect into 4 stable and attracting equilibria. We

design a cost function q(x) = 1
2
Q((x1 − 1)2 + (x2 − 1)2)((x1 + 1)2 + (x2 + 1)2) to encourage

the agents to move into two locations at (−1,−1) and (1, 1). We let R = 1, Q = 0.1, σ = 0.2,

T = 4.0s, and dt = 0.1. We solve for f(t, x) at each timestep using our quadrature method with a

fixed 2-d Gauss-Hermite grid spanning [−2, 2] in both x1 and x2. We found 20 grid points in each
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dimension to yield good results. We then plot the modified value v̂(x, t) = −σ2/2 log(f(x, t)).

With this method we are able to find an optimal feedback control law for the entire domain of

integration (Figure 2, lower four). Note that we are also able to solve the problem by calculating

controls for each agent locally and independently using our quadrature method, modified to use

a smaller grid (with width 4σ(T − t)/
√
dt in each dimension), centered at the agent’s current

position. Unlike with PDE solver-based solutions, we are able to find optimal controls for each

agent locally. This is advantageous when the size of the state space is large and the number

of agents is small. The results of the simulation show that early on (t = 1.0s), the agents are

pushed towards the center of the space. As time progresses, the agents are controlled towards

the goal position at (1, 1) and (−1,−1) for (t = 2.0s, 3.0s). At the final time, the agents are

mainly concentrated around the goal regions (t = 4.0s). The modified value v̂ is smallest at

the goal state but also has valleys around the four stable equilibria. We make our code publicly

available at https://github.com/ddfan/pi quadrature. On an Intel(R) Core(TM) i7-4980HQ CPU

@ 2.80GHz machine, calculating the value function and simulating the agents took 21.7 seconds,

using Python and Numpy’s linear algebra library.

VI. CONCLUSIONS

We have presented an imaginary-time, linear and decoupled Schrödinger equation repre-

sentation of the HJB and FP equations of a class of stochastic OCPs for agents with multi-

dimensional nonlinear Langevin dynamics. This representation is obtained by introducing novel

variable transforms of the value and density functions. Both the HJB and FP equations become

Schrödinger equations with identical potential, in the transformed variables.

We interpret the Schrödinger potential as the cost function of a related OCP with simple

integrator dynamics. This motivates a quadrature based algorithm to compute the finite-time

control and is demonstrated on a two dimensional example.

The Schrödinger representation of the HJB and FP PDEs facilitates a stability analysis of the

density without having to relying on linearization of the FP equation at the equilibrium density.

The proposed approach provides a framework for closed-loop nonlinear stability analysis of the

(in general) non-Gaussian steady state density, using which, we obtain explicit, analytic control

design constraints to guarantee stability. It is observed that spectral properties of the Schrödinger

operator associated with the HJB and FP equations underlie the stability of equilibrium density.

https://github.com/ddfan/pi_quadrature
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Fig. 2. Top: Langevin potential ν for 2 dimensional problem. Trajectories of 40 agents under no control (black lines) along

with their final position after T = 4.0 seconds (white dots) are plotted. Lower 4: Optimally controlled agents and value for

2 dimensional finite-horizon problem (T=4.0s). Color denotes plot of v̂(x, t) = −σ2/2 log(f(x, t)). 4 snapshots in time are

shown. Note that the agents move towards the regions of lowest cost at (−1,−1) and (1, 1) but are affected by the other

potential wells at (±1,±1).

The connection between the nonlinear Schrödinger equation and MFGs was used in combi-

nation with the theory of solitons [25] to study reduced order, quaratic-Gaussian approximations

of the solutions of MFGs for agents with simple integrator dynamics. A topic of future work is

to extend and apply the Schrödinger representation introduced in this work, to the case of MFGs

for agents with nonlinear Langevin dynamics. The theory of solitons can then be leveraged

as in [25] to create a reduced order computational tool for this broader class of MFGs, with

the ultimate goal of designing phase transitions (operating regimes) in multi-agent networked
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systems, such as agile swarms [40] and electrical micro-grids [41].

Generalization of the presented approach to the case of second order Langevin systems is a

natural extension, which is a work currently underway by the authors.

Finally, we will introduce sparse grids [42] in the proposed quadrature based finite-time optimal

control solver in a forthcoming publication, with the goals of speeding up computation and

scaling to high dimensional systems.
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[8] D. Milutinović. Utilizing Stochastic Processes for Computing Distributions of Large Size Robot Population Optimal

Centralized Control, volume 83 of Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, 2013.

[9] Hanjun Li, Chunhan Feng, Henry Ehrhard, Yijun Shen, Bernardo Cobos, Fangbo Zhang, Karthik Elamvazhuthi, Spring

Berman, Matt Haberland, and Andrea L. Bertozzi. Decentralized stochastic control of robotic swarm density: Theory,

simulation, and experiment. In IROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems,

volume 2017-September, pages 4341–4347, United States, 12 2017. Institute of Electrical and Electronics Engineers Inc.

[10] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions. Applications of mathematics.

Springer, New York, 2nd edition, 2006.

[11] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, Mar 2007.

[12] M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled lqg problems with nonuniform agents:

Individual-mass behavior and decentralized 949;-nash equilibria. IEEE Transactions on Automatic Control, 52(9):1560–

1571, Sept 2007.

[13] Pushkin Kachroo, Shaurya Agarwal, and Shankar Sastry. Inverse problem for non-viscous mean field control: Example

from traffic. IEEE Transactions on Automatic Control, 61(11):3412–3421, 2016.

[14] Rene Carmona, Jean-Pierre Fouque, and Li-Hsien Sun. Mean field games and systemic risk. arXiv:1308.2172, 2013.

[15] Romain Couillet, Samir M Perlaza, Hamidou Tembine, and Mérouane Debbah. Electrical vehicles in the smart grid: A

mean field game analysis. IEEE Journal on Selected Areas in Communications, 30(6):1086–1096, 2012.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 20

[16] Kaivalya Bakshi, Piyush Grover, and Evangelos A Theodorou. On mean field games with langevin dynamics. Transactions

on Control of Networked Systems (to appear), page 061103, 2018.

[17] Piyush Grover, Kaivalya Bakshi, and Evangelos A Theodorou. A mean-field game model for homogeneous flocking.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(6):061103, 2018.
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