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Abstract

The partially observed major minor LQG and nonlinear mean field game (PO MM
LQG MFG) systems where it is assumed the major agent’s state is partially observed
by each minor agent, and the major agent completely observes its own state have been
analysed in the literature. In this paper, PO MM LQG MFG problems with general
information patterns are studied where (i) the major agent has partial observations of its
own state, and (ii) each minor agent has partial observations of its own state and the major
agent’s state. The assumption of partial observations by all agents leads to a new situation
involving the recursive estimation by each minor agent of the major agent’s estimate of
its own state. For a general case of LQG MFG systems, the existence of ε-Nash equilibria
together with the individual agents’ control laws yielding the equilibria are established
via the Separation Principle.

1 Introduction
Mean field game theory (MFG) studies the existence of approximate Nash equilibria and the
corresponding individual strategies for stochastic dynamical systems in games involving a
large number of agents. Basically, the theory exploits the relationship between the large finite
and the corresponding infinite limit population problems. The equilibria are termed ε-Nash
equilibria and are generated by the local, limited information control actions of each agent in
the population. The control actions constitute the best response of each agent with respect to
the behaviour of the mass of agents. Moreover, the approximation error, induced by using the
MFG solution, converges to zero as the population size tends to infinity.
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The analysis of this set of problems originated in [1–4], and independently in [5–7]. Many
extensions and generalizations of MFGs exist, principally the probabilistic formulation [8], the
master equation approach [9] and mean-field-type control theory [10]. In [11, 12] the authors
analyse and solve the completely observed (CO) linear quadratic Gaussian (LQG) systems
case where there is a major agent (i.e. non-asymptotically vanishing as the population size
goes to infinity) together with a population of minor agents (i.e. individually asymptotically
negligible). The new feature in this case is that the mean field becomes stochastic but by minor
agent state extension the existence of closed-loop ε-Nash equilibria is established together
with the individual agents’ control laws that yield the equilibria [12]. A convex analysis
method is utilized in [13] to retrieve the solutions of [11], where no assumption is imposed
on the evolution of the mean field a priori. For such systems, among others, [14] presents a
multi-scale analysis and the notion of asymptotic solvability, [15,16] present a hybrid optimal
control approach to address switching or cessation of agents, and [17] considers the case with
a random number of minor agents. The CO MM nonlinear (NL) MFG problem is treated in
[18]. Using the probabilistic approach to MFGs, [19, 20] establish the existence of open-loop
and closed-loop ε-Nash equilibria for a general MM MFG and provide explicit solutions for
an LQG case. The works [21,22] characterize the Nash equilibrium for a general MFG system
with one major agent and an infinite number of minor agents via the MFG Master Equations.
It is to be noted that for the LQG case it has been demonstrated in [23] that the LQG MM
MFG Master Equations yield the original LQG MM MFG equations of [11]. (Another line
of research characterizes a Stackelberg equilibrium between the major agent and the minor
agents, see e.g. [24, 25].)

In the purely minor agent case the mean field is deterministic and this obviates the need for
observations on other agents’ states. This is a separate issue from that of an agent estimating
its own state from partial observations on that state, see [26]. However, when a system has
a major agent whose state is partially observed the standard MFG procedure for generating
a Nash equilibrium needs to be extended for each minor agent by including an estimate of
the major agent’s state generated by that agent. In [27, 28], partially observed LQG mean
field games with major and minor agents (PO MM LQG MFG) have been investigated and in
[29–31], a nonlinear generalization of this problem is considered. The main results in those
papers are obtained with the assumptions that (i) the major agent’s state is partially observed
by the minor agents and (ii) the major agent has complete observations on its own state.

An initial investigation of the case where assumption (i) holds but the major agent has
partial observations on its own state was presented in [32]. A thorough investigation of this
case is given in the present paper, while [33, 34] analyse the case where all agents partially
observe a common process, and [35] studies the case with two major agents and identifies the
partial information patterns which lead to tractable solutions. The main contributions of the
current paper are summarized as follows:

• PO MM LQG MFG problems with general information patterns are studied where (i)
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the major agent has partial observations of its own state, and (ii) each minor agent has
partial observations of its own state and the major agent’s state.

• In the PO MM LQG MFG theory presented here the major agent recursively estimates
its own state, and each minor agent recursively estimates its own state and the major
agent’s estimate of its own state (in order to estimate the major agent’s feedback control
input). In addition, both the major agent and minor agents generate estimates of the
system’s mean field.

We remark that an infinite regress does not happen here due to the asymmetric major
minor (MM) feature of the MFG problem.

• The existence of ε-Nash equilibria together with the individual agents’ control laws
yielding the equilibria is established; this is achieved in the PO MM LQG case by
an application of the Separation Principle which also yields computationally tractable
solutions while in the nonlinear case is far more complex (see [29, 30]).

• This extension of the situation in [28], where only assumption (ii) holds, is in particular
motivated by optimal execution problems in financial markets where there exist one
institutional trader (interpreted as major agent) and a large population of high frequency
traders (interpreted as minor agents) who attempt to maximize their own wealth. To
obtain the Nash equilibrium best response trading strategy, each minor agent estimates
the major agent’s inventory and trading rate based on its partial observations of market
state and this entails the estimation of the major agent’s self estimates. The reader is
referred to the works [36, 37] for more details on financial applications.

The rest of the paper is organized as follows. Section 2 introduces partially observed major-
minor (PO MM) LQG MFG systems. The estimation and control problems for PO MM LQG
MFG systems are addressed in Section 3. The simulation results and the concluding remarks
are presented in Section 4 and Section 5, respectively.

2 Partially Observed Major-Minor LQG MFG Systems
A class of major-minor LQG MFG (MM LQG MFG) systems including a large population of
N stochastic dynamic minor agents with a stochastic dynamic major agent is considered.
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2.1 Dynamics
The dynamics of the major and minor agents in the class of systems under consideration are,
respectively, given by

dx0 = [A0x0 +B0u0]dt+D0dw0, (1)
dxi = [A(θi)xi +B(θi)ui +Gx0]dt+Ddwi, (2)

where t ≥ 0, 1 ≤ i ≤ N < ∞, θi ∈ Θ ⊂ Rn×(n+m), where Θ is a parameter set and θi
determines the pair (A(θi), B(θi)) of i-th minor agent (Ai). Here xi ∈ Rn, 0 ≤ i ≤ N , are
the states, ui ∈ Rm, 0 ≤ i ≤ N , are the control inputs, w = {wi, 0 ≤ i ≤ N} denotes
the set of (N + 1) independent standard Wiener processes in Rr on an underlying probability
space (Ω,F , P ) which is sufficiently large that w is progressively measurable with respect to
the filtration Fw := (Fwt ; t ≥ 0) ⊂ F , and Ewi(t)wi(t)T = Ir t, with Ir denoting the identity
matrix of size r.

Assumption 1. The initial states {xi(0), 0 ≤ i ≤ N} defined on (Ω,F , P ) are identically
distributed, mutually independent and also independent of Fw∞, with Exi(0) = 0. Moreover,
supi E‖xi(0)‖2 ≤ c <∞, 0 ≤ i ≤ N <∞, with c independent of N .

The matrices A0, B0, D0, G, andD are constant matrices of appropriate dimensions. From
(2), A(.) and B(.) depend on the parameter θ which specifies the minor agent’s type. Minor
agents are given in K distinct types with 1 ≤ K <∞. The notation Ik is defined as

Ik = {i : θi = θ(k), 1 ≤ i ≤ N}, 1 ≤ k ≤ K,

where θ(k) ∈ Θ and the cardinality of Ik is denoted by Nk = |Ik|. Then, πN =
(πN1 , ..., π

N
K), πNk = Nk

N
∈ R, 1 ≤ k ≤ K, denotes the empirical distribution of the parameters

(θ1, ..., θN) sampled independently of the initial conditions and Wiener processes of the agents
Ai, 1 ≤ i ≤ N .

Assumption 2. There exists π such that limN→∞π
N = π a.s.

2.2 Cost Functionals
The individual (finite) large population infinite horizon cost functional for the major agent A0

is specified by

JN0 (u0, u−0) = E
∫ ∞

0

e−ρt
{
‖x0 − Φ(x(N))‖2

Q0
+ ‖u0‖2

R0

}
dt, (3)

Φ(x(N)) := H0x
(N) + η0,

4



where R0 > 0, and the individual (finite) large population infinite horizon cost functional for
a minor agent Ai, 1 ≤ i ≤ N , is given by

JNi (ui, u−i) =E
∫ ∞

0

e−ρt
{
‖xi −Ψ(x(N), x0)‖2

Q + ‖ui‖2
R

}
dt, (4)

Ψ(x(N), x0) := H1x0 +H2x
(N) + η,

where R > 0. We note that the major agent A0 and minor agents Ai, 1 ≤ i ≤ N , are coupled
with each other through the average term x(N) = 1

N

∑N
i=1 xi in their cost functionals given by

(3)-(4).

2.3 Observation Processes
The major agent’s partial observations y0 ∈ Rp is given by

dy0 = L0[xT0 , (x(N))T ]Tdt+ σv0dv0, (5)

where v0 is a standard Wiener process in R` with E[v0(t)v0(t)T ] = I`t, and matrix L0 is given
by

L0 =
[
l10 0p×n

]
, (6)

with l10, σv0 being constant matrices of appropriate dimension. The partial observation process
yi ∈ Rp for a minor agent Ai, 1 ≤ i ≤ N , of type k, 1 ≤ k ≤ K, is given by

dyi = Lk[x
T
i , x

T
0 , (x(N))T ]Tdt+ σvdvi, (7)

where {vi, 1 ≤ i ≤ N} denotes the set of N independent standard Wiener processes in R`

with E[vi(t)vi(t)
T ] = I`t, and matrix Lk is given by

Lk =
[
l1k l2k 0p×n

]
, (8)

where l1k, l
2
k, and σv are constant matrices of appropriate dimension.

Assumption 3. {vi, 0 ≤ i ≤ N} are (N+1) independent Wiener processes that are
independent of the Wiener processes {wi, 0 ≤ i ≤ N} and the initial states {xi(0), 0 ≤
i ≤ N}.

Assumption 4 (Major Agent σ-Fields and Linear Controls). The family of partial observation
information sets Fy0 is defined to be the increasing family of σ-fields of partial observations
{Fy0,t, t ≥ 0} generated by the major agent A0’s partial observations (y0(τ), 0 ≤ τ ≤ t) on
its own state as given in (5). For the major agent A0 the set of control inputs UL0,y is defined to
be the collection of linear feedback control laws adapted to {Fy0,t, t ≥ 0}.
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Assumption 5 (Minor Agent σ-Fields and Linear Controls). The family of partial observation
information sets Fyi , 1 ≤ i ≤ N , is defined to be the increasing σ-fields {Fyi,t, t ≥ 0}
generated by the minor agent Ai’s partial observations (yi(τ), 0 ≤ τ ≤ t), on its own state
and the major agent’s state, as given in (7). For each minor agent Ai, 1 ≤ i ≤ N , the set
of control inputs ULi,y is defined to be the collection of time-invariant linear feedback control
laws adapted to {Fyi,t, t ≥ 0}.

The set of control inputs UN,Ly is defined to be the collection of linear feedback control
laws adapted to FN,yt = {

∨N
i=0F

y
i }.

We note that for simplicity of notation throughout the paper, time arguments for
deterministic and stochastic processes may be dropped, as in (1)-(7). Further, the analysis
in the next section could be directly applied to the case where matrices G, D, Q, H1, H2, η,
R, and σv depend on the type k, 1 ≤ k ≤ K, of minor agents.

3 Estimation and Control Solutions for PO MM LQG MFG
Systems

In this section we present the solution to partially observed (PO) MM LQG MFG problems
where it is assumed that the major agent partially observes its own state, and each generic
minor agent partially observes its own state and the major agent’s state. The problem is
first solved in the infinite population case which is far simpler to solve than the finite large
population problem. Because the agents in the infinite population case are decoupled and
therefore the problem reduces to the LQG tracking problem whose solution is given in
Theorem 1. Subsequently, the ε-Nash equilibrium property is established in Theorem 3 for
the system when the infinite population control laws are applied to the finite large population
PO MM LQG MFG system.

The following theorem is a restriction to the constant matrix parameter case of the general
result in [38].

Theorem 1 (Stochastic LQ Problem [38]). Let T̆ > 0 be given. For any (s̆, y̆) ∈ [0, T̆ )× Rn,
consider the following linear system

dx̆ =
[
Ăx̆+ B̆ŭ+ b̆

]
dt+

[
C̆x̆+ D̆ŭ+ σ̆

]
dw̆, (9)

where t ∈ [s̆, T̆ ], x̆(s̆) = y̆ and Ă, B̆, C̆, D̆, b̆, σ̆ are matrix valued functions of suitable sizes,
w̆(.) ∈ Rr is a standard Wiener process. Moreover, Ft = σ{w̆(τ), 0 ≤ τ ≤ t}, and ŭ(.) ∈ U ,
where U is the set of all Ft-adapted Rm-valued processes such that E

∫ T
0
‖u(t)‖2dt <∞.
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A quadratic cost functional is given by

J(s̆, y̆, ŭ(.)) = E
{1

2

∫ T̆

0

[
〈P̆ x̆(t), x̆(t)〉+ 〈N̆ x̆(t), ŭ(t)〉

+ 〈R̆ŭ(t), ŭ(t)〉
]
dt+

1

2
〈 ˘̄Px̆(T̆ ), x̆(T̆ )〉

}
, (10)

with ˘̄P ≥ 0, P̆ , N̆ and R̆ being Sn, Sn, Rm×n and Sm-valued functions of time, respectively,
and, where Sn denotes symmetric matrix space of size n. Moreover, P −NTR−1N ≥ 0.

We also denote the set of all Rn-valued continuous functions defined on [s, T ] by
C([s, T ];Rn). Then, let Π̆(.) ∈ C([s̆, T̆ ];Sn) be the solution of the Riccati equation

˙̆
Π + Π̆Ă+ ĂT Π̆ + C̆T P̆ C̆ + P̆ − (B̆T Π̆ + N̆ + D̆T Π̆C̆)T (R̆ + D̆T Π̆D̆)−1

× (B̆T Π̆ + N̆ + D̆T Π̆C̆) = 0, a.e.t ∈ [s̆, t], Π̆(T̆ ) = ˘̄P, (11)

where R̆ + D̆T Π̆D̆ > 0, a.e. t ∈ [s̆, T̆ ], and s̆(.) ∈ C([s̆, T̆ ];Rn) be the solution of the offset
equation given by

˙̆s+ [Ă− B̆(R̆ + D̆T Π̆D̆)−1(B̆T P̆ + s̆+ D̆T P̆ C̆)]T s̆+ [C̆ − D̆(R̆ + D̆T Π̆D̆)−1

(B̆T Π̆ + N̆ + D̆T Π̆C̆)]T Π̆σ̆ + Π̆b̆ = 0, a.e. t ∈ [s̆, T̆ ], s̆(T̆ ) = 0.

Let us define Ψ̆ := (R̆ + D̆T Π̆D̆)−1[B̆T Π̆ + N̆ + D̆T Π̆C̆], and ψ̆ := (R̆ + D̆T Π̆D̆)−1[B̆T s̆+
D̆T Π̆σ̆]. Then the stochastic LQ problem (9)-(10) is solvable at s̆ with the optimal control
ŭ◦(.) being in the state feedback form as in

ŭ◦(t) = −Ψ̆(t)x̆(t)− ψ̆(t), t ∈ [s̆, T̆ ].

�

Henceforth we discuss the stochastic optimal control problem for the major agent, and a
generic minor agent.

3.1 Mean Field Evolution
We introduce the empirical state average as

x(Nk) =
1

Nk

∑
j∈Ik

xkj , 1 ≤ k ≤ K,

and write (x(N))T = [(x(N1))T , ..., (x(NK))T ], where the point-wise in time quadratic mean
limit of x(N) as N →∞, when it exists, is called the mean field of the system and is denoted
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by x̄T = [(x̄1)T , ..., (x̄K)T ]. We consider for each minor agent Ai of type k, 1 ≤ k ≤ K, a
uniform (with respect to i in any subpopulation k, 1 ≤ k ≤ K) feedback control uki ∈ ULi,y,
which is a function of
(i) bounded time-invariant matrix mk ∈ Rm,
and the minor agent’s estimate of:

(ii) its own state, i.e. x̂i|Fyi := E|Fyi xi = E{xi|Fyi },

(iii) the major agent’s state, i.e. x̂0|Fyi := E|Fyi x0 = E{x0|Fyi },

(iv) xj, 1 ≤ j ≤ N, j 6= i, i.e. x̂j|Fyi := E|Fyi xj = E{xj|Fyi },

(v) the major agent’s estimate of its own state, i.e. (x̂0|Fy0 )|Fyi := E|Fyi x̂0|Fy0 = E{x̂0|Fy0 |F
y
i },

(vi) the major agent’s estimate of xj, 1 ≤ j ≤ N , i.e. (x̂j|Fy0 )|Fyi := E|Fyi x̂j|Fy0 =
E{x̂j|Fy0 |F

y
i }.

Hence uki is given by

uki = Lk1x̂
k
i|Fyi

+ Lk2x̂0|Fyi +
K∑
l=1

∑
j∈Il

Lk,l3 x̂
l
j|Fyi

+ Lk4(x̂0|Fy0 )|Fyi +
K∑
l=1

∑
j∈Il

Lk,l5 (x̂lj|Fy0
)|Fyi +mk, (12)

for bounded matrices Lk1, L
k
2, L

k,l
3 , and Lk4 of appropriate dimension, and where bounded

matrices Lk,l3 , Lk,l5 satisfy NlL
k,l
3 → L̄k,l3 , NlL

k,l
5 → L̄k,l5 as Nl → ∞ for all k, 1 ≤ k ≤ K.

All the coefficient matrices in (12) are time-invariant as per the following argument. In the
complete observations case each agent Ai’s extended state (xi, xj, 1 ≤ j ≤ N, j 6= i, x0)
is generated by the extended dynamics with constant coefficients, as defined by (1) and
(2), where it shall be assumed that all other agents are using the same feedback strategy.
Consequently, the optimal feedback gain for Ai for the discounted constant coefficient cost
function (3), depends upon the steady state solution of control Riccati and offset equations with
time invariant coefficients and hence is itself time invariant [39]. In the partial observations
case, the minor agentAi generates estimates of its extended state via a linear filter whose drift
coefficients (but not, in general, its diffusion coefficients) are the time invariant coefficients of
the original system. Hence the feedback gain coefficients in the partially observed case in (12)
are time invariant (see Appendix A and [40]).

Substituting (12) in (2) for 1 ≤ i ≤ N and 1 ≤ k ≤ K yields

dxki =
[
Akx

k
i +Gx0 +Bk

(
Lk1x̂

k
i|Fyi

+ Lk2x̂0|Fyi +
K∑
l=1

NlL
k,l
3 x̂

(Nl)

|Fyi
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+ Lk4(x̂0|Fy0 )|Fyi +
K∑
l=1

NlL
k,l
5 (x̂

(Nl)

|Fy0
)|Fyi +mk

)]
dt+Ddwi. (13)

Then we take the average over the subpopulation k to obtain

dx(Nk) =
[
Akx

(Nk) +Gx0 +Bk

(
Lk1

1

Nk

∑
i∈Ik

x̂ki|Fyi
+ Lk2

1

Nk

∑
i∈Ik

x̂0|Fyi

+
K∑
l=1

NlL
k,l
3

1

Nk

∑
i∈Ik

x̂
(Nl)

|Fyi
+ Lk4

1

Nk

∑
i∈Ik

(x̂0|Fy0 )|Fyi

+
K∑
l=1

NlL
k,l
5

1

Nk

∑
i∈Ik

(x̂
(Nl)

|Fy0
)|Fyi +mk

)]
dt+D

1

Nk

∑
i∈Ik

dwi. (14)

To compute the average of the estimation terms in (14), we use the state decomposition
x̂i|Fyi
x̂0|Fyi
x̂

(Nl)

|Fyi
(x̂0|Fy0 )|Fyi
(x̂

(Nl)

|Fy0
)|Fyi

 =


x̂i|Fyi − xi
x̂0|Fyi − x0

x̂
(Nl)

|Fyi
− x(Nl)

(x̂0|Fy0 )|Fyi − x̂0|Fy0
(x̂

(Nl)

|Fy0
)|Fyi − x̂

(Nl)

|Fy0

+


xi
x0

x(Nl)

x̂0|Fy0
x̂

(Nl)

|Fy0

 , (15)

which we denote equivalently in the compact form as in

x̂exi|Fyi
= −x̃exi + xexi , (16)

for 1 ≤ i ≤ N . Accordingly, we rewrite (14) for 1 ≤ k ≤ K as

dx(Nk) =
[
Akx

(Nk) +Gx0 +Bk

(
Lk1

1

Nk

∑
i∈Ik

xki + Lk2x0 +
K∑
l=1

NlL
k,l
3 x

(Nl)

+ Lk4x̂0|Fy0 +
K∑
l=1

NlL
k,l
5 x̂

(Nl)

|Fy0
+mk

)]
dt

−Bk

[
Lk1

1

Nk

∑
i∈Ik

(xki − x̂ki|Fyi ) + Lk2
1

Nk

∑
i∈Ik

(x0 − x̂0|Fyi )

+
K∑
l=1

NlL
k,l
3

1

Nk

∑
i∈Ik

(
x(Nl) − x̂(Nl)

|Fyi

)
+ Lk4

1

Nk

∑
i∈Ik

(
x̂0|Fy0 − (x̂0|Fy0 )|Fyi

)
+

K∑
l=1

NlL
k,l
5

1

Nk

∑
i∈Ik

(
x̂

(Nl)

|Fy0
− (x̂

(Nl)

|Fy0
)|Fyi
)]
dt+D

1

Nk

∑
i∈Ik

dwi. (17)
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From (17) as N →∞ we obtain the convergence in quadratic mean (q.m.) to the solution
to

dx̄k =
[
(Ak+BkL

k
1)x̄k+(G+BkL

k
2)x0+Bk

( K∑
l=1

L̄k,l3 x̄
l+Lk4x̂0|Fy0 +

K∑
l=1

L̄k,l5
ˆ̄xl|Fy0

+mk

)]
dt

−Bk

[
Lk1(xi − x̂i|Fyi )k + Lk2(x0 − x̂0|Fyi )k +

K∑
l=1

L̄k,l3

(
x̄l − ˆ̄xl|Fyi

)k
+ Lk4

(
x̂0|Fy0 − (x̂0|Fy0 )|Fyi

)k
+

K∑
l=1

L̄k,l5

(
ˆ̄xl|Fy0
− (ˆ̄xl|Fy0

)|Fyi
)k]

dt, (18)

where the overline symbol with superscript k, i.e. (.)
k
, denotes the infinite-population limit

of the average over subpopulation k of the corresponding terms, which are the components
of x̃k,exi in (16) (see Proposition 3.1 in [28] for the convergence analysis in q.m.). A compact
representation of (18) shall be used as in

dx̄k =
[
(Ak +BkL

k
1)x̄k + (G+BkL

k
2)x0 +Bk

( K∑
l=1

L̄k,l3 x̄
l + Lk4x̂0|Fy0

+
K∑
l=1

L̄k,l5
ˆ̄xl|Fy0

+mk

)]
dt+ J̄k ¯̃xk,exdt, (19)

where we denote by ¯̃xk,ex the average of the estimation errors of the minor agents of
subpopulation k as N → ∞. Hence, the second bracket in (18) is given by J̄k ¯̃xk,ex (Here
the term J̄k ¯̃xk,ex corrects its omission in [28].). In Section 3.4 we will derive the dynamical
equation (65) that ¯̃xk,ex satisfies.

Therefore the mean field state vector x̄ satisfies

dx̄ =
(
Āx̄+ Ḡx0 + H̄x̂0|Fy0 + L̄ˆ̄x|Fy0 + J̄ ¯̃xex + m̄

)
dt, (20)

where (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ], and the matrices Ā, Ḡ, H̄ , L̄, J̄ , and m̄ collect the
corresponding terms in (19) and have the block matrix form

Ā =

 Ā1
...
ĀK

 , Ḡ =

 Ḡ1
...
ḠK

 , H̄ =

 H̄1
...
H̄K

 ,
L̄ =

 L̄1
...
L̄K

 , m̄ =

 m̄1
...

m̄K

 , J̄ =

J̄1 0
. . .

0 J̄K

 . (21)
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with Āk, L̄k ∈ Rn×nK , Ḡk, H̄k ∈ Rn×n, m̄k ∈ Rn, J̄k ∈ Rn×(3n+2nK), 1 ≤ k ≤ K. We use
the heuristic mean field equation (20) to formulate the stochastic optimal control problems for
the agents in the infinite population limit. In Section 3.4, the mean field equation parameters
(21) are obtained through the consistency equations (69), which effectively equate (20) with
the mean field resulting from the collective action of the mass of agents.

By abuse of language, the mean value of the system’s Gaussian mean field given by the
state process (x̄)T = [(x̄1)T , ..., (x̄K)T ] shall also be termed the system’s mean field.

3.2 Major Agent: Infinite Population
The major agent’s infinite population dynamics, as the number of agents goes to infinity
(N → ∞), remain the same as in (1), while its infinite population individual cost functional
is given by

J∞0 (u0, u−0) = E
∫ ∞

0

e−ρt
{
‖x0 − φ(x̄)‖2

Q0
+ ‖u0‖2

R0

}
dt, (22)

φ(x̄) := Hπ
0 x̄+ η0, (23)

Hπ
0 = π ⊗H0 := [π1H0, π2H0, ..., πKH0], (24)

where x(N) in (3) was replaced by its L2 limit, i.e. the mean field x̄.
To solve the infinite population tracking problem for the major agent, its state is extended

with the mean field process x̄, where this is assumed to exist, i.e. (xex0 )T :=
[
xT0 , x̄

T
]
.

Then the Kalman filter which generates the estimates of the major agent’s state x̂0|Fy0 and
the mean field ˆ̄x|Fy0 based on its own observations are, respectively, given by

dx̂0|Fy0 = A0x̂0|Fy0 dt+B0û0dt+K1
0dν0, (25)

dˆ̄x|Fy0 = (Ḡ+ H̄)x̂0|Fy0 dt+ (Ā+ L̄)ˆ̄x|Fy0 dt+ m̄dt+K2
0dν0, (26)

where ˆ̃̄x|Fy0 = 0 is used (see Observation 4). Moreover, m̄ is a deterministic process according
to (19), K1

0 and K2
0 are the Kalman filter gains, and ν0 is the innovation process. Therefore the

Kalman filter which generates the estimates of the major agent’s extended state is given by[
dx̂0|Fy0
dˆ̄x|Fy0

]
=

[
A0 0n×nK

Ḡ+ H̄ Ā+ L̄

] [
x̂0|Fy0
ˆ̄x|Fy0

]
dt+

[
B0

0nK×m

]
û0dt

+

[
0n×1

m̄

]
dt+K0dν0, (27)

with the corresponding Kalman filter gain K0 = [(K1
0)T , (K2

0)T ]T , and the innovation process
ν0, respectively, given by

K0 = V0LT0R−1
v0
, (28)
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dν0 = dy0 − L0

[
x̂T0|Fy0

, ˆ̄xT|Fy0

]T
dt, (29)

where L0 =
[
l10 0p×nK

]
, and V0(t) is the solution to the corresponding Riccati equation

(31).
From (1), (20), and (27) we denote

A0 =

[
A0 0n×nK

Ḡ+ H̄ Ā+ L̄

]
, B0 =

[
B0

0nK×m

]
, M0 =

[
0n×1

m̄

]
,

D0 =

[
D0 0n×rK

0nK×r 0nK×rK

]
, J0 =

[
0n×(3nK+2nK2)

J̄

]
. (30)

Then to guarantee the convergence of the solution to the Riccati equation to a positive
definite asymptotically stabilizing solution, we assume:

Assumption 6. [A0,D0] is stabilizable and [L0,A0] is detectable.

The corresponding Riccati equation is then given by

V̇0 = A0V0 + V0AT
0 −K0Rv0K

T
0 + J0V̄ JT0 +Qw0 , (31)

where Qw0 = D0DT
0 , V̄ (t) = E

[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (71), and V (0) = E
[(
xex0 (0) −

(x̂ex0 (0))|Fy0
)(
xex0 (0)− (x̂ex0 (0))|Fy0

)T ].
Then, utilizing the infinite horizon discounted analogy to Theorem 1, it can be shown

(see Theorem 3 in Section 3.4) that the optimal control action for the major agent’s tracking
problem (and hence best response MFG control input) is

û◦0 = −R−1
0 BT0 [Π0(x̂T0|Fy0

, ˆ̄xT|Fy0
)T + s0], (32)

where Π0 and s0 are the solutions to the Riccati and offset equations given by

ρΠ0 = Π0A0 + AT
0 Π0 − Π0B0R

−1
0 BT0 Π0 +Qπ

0 , (33)

ρs0 =
ds0

dt
+ (A0 − B0R

−1
0 BT0 Π0)T s0 + Π0M0 − η̄0, (34)

with η̄0 = [In×n,−Hπ
0 ]TQ0η0 and Qπ

0 = [In×n,−Hπ
0 ]TQ0[In×n,−Hπ

0 ]. We note ds0
dt

= 0 in
(34), since M0, η̄0 are constant.

Finally, the joint dynamics of the major agent’s closed-loop system and its Kalman filter
system are given by

[
dxex0
dx̂ex

0|Fy0

]
=
(
A0

[
xex0
x̂ex

0|Fy0

]
+ J0

¯̃xex + M0

)
dt+ D0

[ dw0

0rK×1

]
dν0

 , (35)
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where

A0 =

 [ A0 0n×nK
Ḡ Ā

] [
−B0R

−1
0 BT0 Π0[

H̄ L̄
] ]

,

0(n+nK)×(n+nK) A0 − B0R
−1
0 BT0 Π0

 , J0 =

 [
0n×(3nK+2nK2)

J̄

]
0(n+nK)×(3nK+2nK2)

 ,
M0 =

[
M0 − B0R

−1
0 BT0 s0

M0 − B0R
−1
0 BT0 s0

]
, D0 =

[
D0 0(n+nK)×p

0(n+nK)×(r+rK) K0

]
.

3.3 Minor Agent: Infinite Population
A generic minor agent’s infinite population dynamics, as the number of agent goes to infinity
(N → ∞), remain the same as in (2), while its infinite population individual cost functional
is given as

J∞i (ui, u0) = E
∫ ∞

0

e−ρt
{
‖xi − ψ(x̄, x0)‖2

Q + ‖ui‖2
R

}
dt, (36)

ψ(x̄, x0) = H1x0 +Hπ
2 x̄+ η, (37)

Hπ
2 = π ⊗H2 := [π1H2, π2H2, ..., πKH2]. (38)

In the case where all agents have partial observations on the major agent’s state, the joint
dynamics of the major agent’s closed-loop system and its Kalman filtering recursions are
employed in order to solve the minor agent’s tracking problem. Before proceeding we
enunciate Proposition 1, where for ease of exposition, the simple case where it is assumed
that the major agent and minor agents are not coupled with the mean field (neither in their
dynamics nor in their cost functional) is considered. However, each minor agent is assumed
to be coupled with the major agent’s state in their cost functional. The results are extendable
to the more general case described by (1)-(2) and (3)-(4), in a straightforward way.

Proposition 2. (Estimates of Estimates Filter) Let the major agent’s dynamics be given by

dx0 = A0x0dt+Bu0dt+ dw0, (39)

and the major agent’s observations of its own state by

dy0 = H0x0dt+ dv0, (40)

then the estimates of the major agent’s state based on its own observation is generated by

dx̂0|Fy0 = A0x̂0|Fy0 dt+Bû0dt+K0[dy0 −H0x̂0dt] :=

A0x̂0|Fy0 dt+Bû0dt+K0[H0x0dt+ dv0 −H0x̂0|Fy0 dt]. (41)
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Next, assume the major agent’s control action is of the form

u0 = −Lx̂0|Fy0 , (42)

then in this case the joint dynamics of the major agent’s closed-loop system and its Kalman
filter system are given by[

dx0

dx̂0|Fy0

]
=

[
A0 −BL

K0H0 A0 −BL−K0H0

] [
x0

x̂0|Fy0

]
dt

+

[
0

K0dv0

]
+

[
dw0

0

]
. (43)

Finally, let the minor agent’s partial observations of the major agent’s state be given by

dyi = Hix0dt+ dvi =
[
Hi 0

] [ x0

x̂0|Fy0

]
dt+ dvi, (44)

then the process of estimates of the state of (43) based upon the observations (44) is generated
by the filtering scheme[

dx̂0|Fyi
d(x̂0|Fy0 )|Fyi

]
=

[
A0 −BL

K0H0 A0 −BL−K0H0

][
x̂0|Fyi

(x̂0|Fy0 )|Fyi

]
dt

+Ki

(
dyi −

[
Hi 0

] [ dx̂0|Fyi
d(x̂0|Fy0 )|Fyi

]
dt

)
, (45)

where x̂0|Fyi := E|Fyi x0 = E{x0|Fyi } denotes the minor agent Ai’s estimate of the major
agent’s state, and

(x̂0|Fy0 )|Fyi := E|Fyi x̂0|Fy0 = E{x̂0|Fy0 |F
y
i },

denotes the minor agent Ai’s estimate of the major agent’s estimate of its own state. �

The proof of the Proposition 2 is straightforward and will be omitted, but we observe that
the key property of the overall system which ensures its validity is that the Wiener processes
{w0, v0} are independent of the noise process vi in (45).

Returning to the main problem, the minor agent’s state is next extended to form (xexi )T :=[
xTi , x

T
0 , x̄

T , x̂T
0|Fy0

, ˆ̄xT|Fy0

]
. Specifically this yields

dxexi = (Akx
ex
i + Bkui + J¯̃xex + M) dt+ D[dwTi , dw

T
0 , 01×rK , dν

T
0 ]T , (46)

where

Ak =

[
Ak [ G 0n×(n+2nK) ]

02(n+nK)×n A0

]
, Bk =

[
Bk

02(n+nK)×m

]
,
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J =

[
0n×(3nK+2nK2)

J0

]
, M =

[
0n×1

M0

]
, D =

[
D 0n×(r+rK+p)

02(n+nK)×r D0

]
. (47)

To derive the Kalman filter equations for (46), we first define Lk =
[
l1k l2k 0p×(n+2nK)

]
.

To guarantee the convergence of the solution to the Riccati equation to a positive definite
asymptotically stabilizing solution, we assume:

Assumption 7. The system parameter set Θ = {1, ..., K} is such that [Ak,D] is stabilizable
and [Lk,Ak] is detectable for all k, 1 ≤ k ≤ K.

The Riccati equation associated with the filtering equations for (46) is then given by

V̇i = AkVi + ViAT
k −KiRvK

T
i + JV̄ JT +Qw, (48)

where Qw = DDT , V̄ (t) = E
[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (71), and Vk(0) = E
[(
xexi (0) −

(x̂exi (0))|Fyi
)(
xexi (0)− (x̂exi (0))|Fyi

)T ]. The Kalman filter gain Ki is in turn given by

Ki = ViLTkR−1
v , (49)

and the innovation process νi(t) is defined as in

dνi = dyi − Lk
[
x̂Ti|Fyi

, x̂T0|Fyi
, ˆ̄xT|Fyi

, (x̂0|Fy0 )T|Fyi
, (ˆ̄x|Fy0 )T|Fyi

]T
dt, (50)

where (x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi , respectively, denote the minor agent Ai’s estimates of the
major agent’s estimates of its own state and the mean field. Then the Kalman filter equations
for a generic minor agent Ai, 1 ≤ i ≤ N , are given as in

dx̂exi|Fyi
= Akx̂

ex
i|Fyi

dt+ Bkûidt+ Mdt+Kidνi, (51)

where ˆ̃̄xex|Fyi
= 0 (see Observation 4) is used. Clearly, (51) generates the iterated estimates

(x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi which are required to calculate x̂0|Fyi and ˆ̄x|Fyi (see Proposition 2 for
a simplified case of Estimates of Estimates Filter).

Observation 1. By virtue of the asymmetric information available to the major agent and
a generic minor agent, an infinite regress does not occur in the process of estimating other
agents’ states. In fact to calculate the best response action, the major agent only estimates its
own state and hence does not estimate minor agents’ states, while each minor agent estimates
its own state and the major agent’s state.

We note that by Assumption 4 the minor agent Ai is able to estimate û◦0 whenever the
functional dependence of the major agent’s control on it’s state is available to the minor agent
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through forming the conditional expectation of the major agent’s control action which by (32)
is given by the following expression

(û◦0)|Fyi := E{û◦0|F
y
i } = −R−1BT0

[
Π0

(
(x̂0|Fy0 )T|Fyi

, (ˆ̄x|Fy0 )T|Fyi

)
+ s0

]
, (52)

and which is embedded in (51). Then, utilizing the infinite horizon discounted analogy to
Theorem 1, it can be shown (see Theorem 3) that the optimal control action for the minor
agent Ai’s tracking problem (and hence best response MFG control input) is given by

û◦i = −R−1BTk
[
Πk

(
x̂Ti|Fyi

, x̂T0|Fyi
, ˆ̄xT|Fyi

, (x̂0|Fy0 )T|Fyi
, (ˆ̄x|Fy0 )T|Fyi

)T
+ sk

]
, (53)

where the iterated estimation terms (x̂0|Fy0 )|Fyi , and (ˆ̄x|Fy0 )|Fyi explicitly appear, and the
corresponding Riccati and offset equations are given by

ρΠk = ΠkAk + AT
kΠk − ΠkBkR−1BTkΠk +Qπ, ∀k, (54)

ρsk =
dsk
dt

+ (Ak − BkR−1BTkΠk)
T sk + ΠkM− η̄, ∀k, (55)

with η̄ = [In×n, −H1, −Hπ
2 , 0n×(n+nK)]

TQη, and
Qπ = [In×n, −H1, −Hπ

2 , 0n×(n+nK)]
TQ[In×n, −H1, −Hπ

2 , 0n×(n+nK)]. We note dsk
dt

= 0
in (55), since M, η̄ are constant.

3.4 Mean Field Consistency Equations
Let us denote the components of Πk in (54) as

Πk =

[
Πk,11 Πk,12 Πk,13 Πk,14 Πk,15

Πk,21 Πk,22 Πk,23 Πk,24 Πk,25

]
, (56)

1 ≤ k ≤ K, and where Πk,11, Πk,12, Πk,14 ∈ Rn×n, Πk,13, Πk,15 ∈ Rn×nK ,
Πk,21, Πk,22, Πk,24 ∈ R2(n+nK)×n, and Πk,23, Πk,25 ∈ R2(n+nK)×nK . Let us also define the
block matrix ek,q = [0q×q, ..., 0q×q, Iq, 0q×q, ..., 0q×q] with K blocks, where the identity matrix
Iq is located at the kth block. Finally we define the block matrix 1q = [Iq, ..., Iq, ..., Iq] with
K blocks of identity matrix. Then we denote by

ēk = ek,n, (57)
ẽk = ek,(3n+2nK), (58)

1̃ = 1(3n+2nK) (59)

To obtain the mean field consistency equations, we substitute (53) in (2) to get

dxi = Akxidt+Gx0dt−BkR
−1BTk

[
Πkx̂

ex
i|Fyi

+ sk
]
dt+Ddwi. (60)
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Then x̂ex
i|Fyi

can be written as

x̂exi|Fyi
= −(xexi − x̂exi|Fyi ) + xexi ,

= −x̃exi + xexi , (61)

where x̃exi denotes the estimation error, and the governing dynamics in the steady state for
1 ≤ i ≤ N , 1 ≤ k ≤ K, are given by

dx̃k,exi = (Ak −KkLk)x̃k,exi + J¯̃xexdt−Kkσvdvi + D[dwTi , dw
T
0 , 01×rK , dν

T
0 ]T , (62)

where (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ] satisfies (67).
Next the empirical average of (60), where (61) has been substituted, over the population

of the minor agents of type k is given by

d(
1

Nk

∑
i∈Ik

xki ) = D
1

Nk

∑
i∈Ik

dwi + Ak(
1

Nk

∑
i∈Ik

xki )dt+Gx0dt

−BkR
−1BTk

[
Πk

(
− 1

Nk

∑
i∈Ik

x̃k,exi +
1

Nk

∑
i∈Ik

xk,exi

)
+ sk

]
dt. (63)

As Nk →∞, the solution to (63) converges, in quadratic mean, to the solution of

dx̄k = Akx̄
kdt+Gx0dt−BkR

−1BTk
[
Πk

(
− ¯̃xk,ex + x̄k,ex

)
+ sk

]
dt, (64)

where x̄k,ex =
[
(x̄k)T , xT0 , x̄

T , x̂T
0|Fy0

, ˆ̄xT|Fy0

]T , and from (62) ¯̃xk,ex (the average of estimation
error over subpopulation k as N →∞) satisfies

d¯̃xk,ex =
[
(Ak −KkLk)¯̃xk,ex + J¯̃xex

]
dt+ D

[
01×r, dw

T
0 , 01×rK , dν

T
0

]T
. (65)

Note that in the derivation of (65), we use the property that 1
Nk

∑
i∈Ik w0 = w0 and

1
Nk

∑
i∈Ik ν0 = ν0, since w0 and ν0 are the common processes shared between all agents

of type k. Moreover, the law of large numbers is used to obtain as Nk →∞

1

Nk

∑
i∈Ik

Kkdνi
q.m.−−→ 0,

1

Nk

∑
i∈Ik

dwi
q.m.−−→ 0.

Subsequently, from (65), (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ] satisfies

d¯̃xex =

 (A1 −K1L1)ẽ1 + J
...

(AK −KkLk)ẽK + J

 ¯̃xexdt+

D...
D




0r×1

dw0

0rK×1

dν0

 , (66)
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or equivalently in the compact form

d¯̃xex = Ã¯̃xexdt+ D̃
[
01×r, dw

T
0 , 01×rK , dν

T
0

]T
. (67)

Using (56) the mean field equation (64) can be presented as

dx̄k =
([
Ak −BkR

−1BT
k Πk,11

]
ēk −BkR

−1BT
k Πk,13

)
x̄dt+

(
G−BkR

−1BT
k Πk,12

)
x0dt

−BkR
−1
(
BT
k Πk,14x̂0|Fy0 +BT

k Πk,15 ˆ̄x|Fy0 − BTkΠk
¯̃xk,ex + BTk sk

)
dt. (68)

In order to generate a mean-field game equilibrium (68) and the kth component of (20) must
correspond to the same dynamical system generating the mean field. Consequently we obtain
the Consistency Condition equations, determining the components of Ā, Ḡ, H̄ , L̄, J̄ , and m̄
in (20), given by the following compact set of equations

Āk =
[
Ak −BkR

−1BT
k Πk,11

]
ēk −BkR

−1BT
k Πk,13,

Ḡk = G−BkR
−1BT

k Πk,12,

H̄k = −BkR
−1BT

k Πk,14,

L̄k = −BkR
−1BT

k Πk,15,

J̄k = BkR
−1BTkΠk,

m̄k = −BkR
−1BTk sk, (69)

1 ≤ k ≤ K, where Πk and sk satisfy (54) and (55), respectively. The set of equations (69)
together with (33)-(34) and (54)-(55) form a fixed point problem which must be solved by
each individual agent Ai, 0 ≤ i ≤ N , in order to compute the matrices in the mean field
dynamics (20).

Finally from (46) and (64)-(67) the Markovian dynamics of x̄k (i.e. the mean field of
subpopulation k, and the first component of x̄k,ex) are given by[

dx̄k,ex

d¯̃xex

]
=

[
Ak − BkR−1BTkΠk J + BkR−1BTkΠkẽk

0 Ãk

] [
x̄k,ex

¯̃xex

]
dt

+

[
M− BkR−1BTk sk

0

]
dt+

[
D
D̃

]
0r×1

dw0

0rK×1

dν0

 . (70)

Observation 2. From (65), in the infinite population limit, the average of the estimation errors
of the minor agents of type k, 1 ≤ k ≤ K, is driven by the major agent’s Wiener process w0

and the measurement noise v0 (or equivalently the innovation process ν0). In other words, it is
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driven by the non-zero quadratic variation processes in the dynamics of the common processes
xex0 , x̂

ex
0|Fy0

, with which the minor agents Ai, 1 ≤ i ≤ N , are coupled.

From (67), V̄ (t) = E
[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies

˙̄V = ÃV̄ + V̄ ÃT + Q̃Q̃T , (71)

where D̃ = 1̃TD is used and

Q̃Q̃T = 1̃TD


0n×n 0 0 0

0 In 0 0
0 0 0nK×nK 0
0 0 0 L0V0LT0 +Rv0

DT 1̃. (72)

To guarantee the convergence of the solution to the corresponding Lyapunov equation to a
unique, symmetric and positive definite solution, we assume:

Assumption 8. The pair (Ã, Q̃) is controllable. �

Observation 3. For the case where the major agent has complete observations on its own state,
and each minor agent has complete observations on their own state and the major agent’s state,
we have (i) E{x0|Fy0 } = x0, (ii) E{x̄|Fy0 } = x̄, (iii) ¯̃xk,ex(t) = 0, t ≥ 0, 1 ≤ k ≤ K; where
(ii) holds since the major agent can compute the real value of x̄ by observing its own state.
Hence the mean field equation (20) reduces to that of completely observed major- minor LQG
MFG systems (see [11]). �

Observation 4 (Estimate of Average Estimation Error: Inf. Pop.). The solution to (67) is given
by

¯̃xex(t) = Φ(t, 0)¯̃xex(0) +

∫ t

0

Φ(t, τ)D̃[01×r, dw
T
0 , 01×rK , dν

T
0 ]Tdτ, (73)

where Φ(t, τ) = exp
(
Ã(t − τ)

)
. The initial estimation error of the minor agent Ai is given

by

x̃k,exi (0) = −


x̂i|Fyi (0)− xi(0)

x̂0|Fyi (0)− x0(0)
ˆ̄x|Fyi (0)− x̄(0)

(x̂0|Fy0 )|Fyi (0)− x̂0|Fy0 (0)

(ˆ̄x|Fy0 )|Fyi (0)− ˆ̄x|Fy0 (0)

 =


xi(0)
x0(0)
0nK×1

0n×1

0nK×1

 , (74)

since the partial observation information sets Fyi , 0 ≤ i ≤ N , at time t0 = 0 are null sets, the
conditional expectations turn into total expectations which according to Assumption 1 their
value is zero. Hence, the infinite-population limit of the average initial estimation error of
the minor agents of type k is given by (¯̃xk,ex(0))T = [01×n, x

T
0 (0), 01×nK , 01×n, 01×nK ], where
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Assumption 1 is again used, and hence E[¯̃xk,ex(0)|Fyi ] = 0. Then the conditional expectation
of ¯̃xex(t) with respect to Fyi , 0 ≤ i ≤ N , i.e. ˆ̃̄xex|Fyi

(t), is given by

ˆ̃̄xex|Fyi
(t) := E[¯̃xex(t)|Fyi ] = Φ(t, 0)E[¯̃xex(0)|Fyi ]

+ E
[ ∫ t

0

Φ(t, τ)D̃
[
01×r, dw

T
0 , 01×rK , dν

T
0

]T
dτ
∣∣∣Fyi ] = 0, (75)

where the second term is zero due to Assumption 3. �

Observation 5. The setup under consideration yields, in particular, the time invariance of the
coefficient J̄ of ¯̃xex in (20), where ¯̃xex is generated by the dynamics (67). However, due to
Observation 4, ¯̃xex does not appear in the filter equations (27) and (51). �

The final set of assumptions is as follows:

Assumption 9. The pair (La,A0 − (ρ/2)In+nK) is detectable, and for each k, 1 ≤ k ≤
K, the pair (Lb,Ak − (ρ/2)I3n+2nK) is detectable, where La = Q

1/2
0 [In,−Hπ

0 ] and
Lb = Q1/2[In,−H1,−Hπ

2 , 0n×(n+nK)]. The pair (A0 − (ρ/2)In+nK ,B0) is stabilizable and
(Ak − (ρ/2)I3n+2nK ,Bk) is stabilizable for each k, 1 ≤ k ≤ K.

Assumption 10. The parameters in (1)-(4) belong to a non-empty set which yields the
existence and uniqueness of the solutions (Π0, s0, Πk, sk, Āk, Ḡk, H̄k, L̄k, J̄k, m̄k) to the
resulting set of mean-field fixed-point equations consisting of (69), (33)-(34), and (54)-(55),
for which

sup
t≥0,1≤k≤K

e−
ρ
2
t (|s0(t)|+ |sk(t)|+ |m̄k(t)|) <∞. (76)

Theorem 3 (ε-Nash Equilibria for PO LQG MM MFG Systems). Subject to Assumption 1-
Assumption 10, the KF-MFG state estimation scheme (27)-(31) and (48)-(51) together with
the Consistency Condition equations (69), (33)-(34), (54)-(55) generate an infinite family
of stochastic control laws Û∞MF , with finite sub-families ÛNMF := {u◦i ; 0 ≤ i < N},
1 ≤ N <∞, given by (32) and (53), such that

(i) Û∞MF yields a unique Nash equilibrium within the set of linear controls U∞,Ly such that

J∞i (u◦i , u
◦
−i) = inf

ui∈U∞,L
y

J∞i (ui, u
◦
−i);

(ii) All agent systems 0 ≤ i ≤ N , are e−
ρ
2
t discounted second order stable in the sense that

for C independent of N

sup
t≥0, 0≤i≤N

e−
ρ
2
tE
(
‖x̂i|Fyi ‖

2 + ‖x̂0|Fyi ‖
2 + ‖ˆ̄x|Fyi ‖

2
+ ‖(x̂0|Fy0 )|Fyi ‖

2 + ‖(ˆ̄x|Fy0 )|Fyi ‖
2
)
< C;
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(iii) {ÛNMF ; 1 ≤ N < ∞} yields a unique ε-Nash equilibrium within the class of linear
control laws UN,Ly for all ε, i.e. for all ε > 0, there exists N(ε) such that for all
N ≥ N(ε);

Js,Ni (û◦i , û
◦
−i)− ε ≤ inf

ui∈UN,Ly

Js,Ni (ui, û
◦
−i) ≤ Js,Ni (û◦i , û

◦
−i),

where the major agent’s and the generic minor agent’s performance function
Js,Ni (u◦i , u

◦
−i), 0 ≤ i ≤ N , is given by

JNi (ui, u−i) + ÊN ,

where JNi (ui, u−i) is as in the completely observed case, ÊN > 0, and when ui = û◦i
the following limits hold:

• limN→∞ J
N
i (û◦i , û

◦
−i) = J∞i (û◦i , û

◦
−i),

• limN→∞ ÊN =
∫∞

0
e−ρttr[QπV ]dt,

where V (t) is the solution to (31) for the major agent and the solution to (48) for
a generic minor agent.

Proof. Generalizing the standard methodology in [40] and [41], we first decompose the state
processes into their estimates and their estimation errors orthogonal to the corresponding
estimates. Substituting the decomposed states into the performance functions and applying
the smoothing property of conditional expectations with respect to the increasing filtration
families Fyi and Fy0 to the major and minor cost functionals respectively, we obtain the
separated performance functions. This technique is applied to both finite and infinite
population cases which yields the best response controls {û◦i , 0 ≤ i ≤ N} as optimal tracking
controls for the major and minor agents in the infinite population case (see [28] for the case
where only the minor agent has partial observations on the major agent’s state). Specifically
we form the following decompositions where the superscript ’s’ on the resulting performance
functions indicates the separation into control dependent and control independent summands.

1. Major Agent’s State Decomposition
Finite Population: [

x0

x(N)

]
=

[
x̂0|Fy0
x̂

(N)

|Fy0

]
+

[
x0 − x̂0|Fy0
x(N) − x̂(N)

|Fy0

]
.

Infinite Population: [
x0

x̄

]
=

[
x̂0|Fy0
ˆ̄x|Fy0

]
+

[
x0 − x̂0|Fy0
x̄− ˆ̄x|Fy0

]
.
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2. Major Agent’s Cost Functional Separation
Finite Population:

Js,N0 (u0, u−0) = E
[ ∫ ∞

0

e−ρt
{∥∥x̂0|Fy0 −H0x̂

(N)

|Fy0
− η0

∥∥2

Q0
+ ‖u0‖2

R0

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(x0 − x̂0|Fy0 )−H0(x(N) − x̂(N)

|Fy0
)
∥∥2

Q0
dt

]
. (77)

Infinite Population:

Js,∞0 = E
[ ∫ ∞

0

e−ρt
{∥∥x̂0|Fy0 −H

π
0

ˆ̄x|Fy0 − η0

∥∥2

Q0
+ ‖u0‖2

R0

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(x0 − x̂0|Fy0 )−Hπ

0 (x̄− ˆ̄x|Fy0 )
∥∥2

Q0
dt

]
. (78)

3. Minor Agent’s State Decomposition
Finite Population:  xi

x0

x(N)

 =

 x̂i|Fyi
x̂0|Fyi
x̂

(N)

|Fyi

+

 xi − x̂i|Fyi
x0 − x̂0|Fyi
x(N) − x̂(N)

|Fyi

 .
Infinite Population:  xi

x0

x̄

 =

 x̂i|Fyi
x̂0|Fyi
ˆ̄x|Fyi

+

 xi − x̂i|Fyi
x0 − x̂0|Fyi
x̄− ˆ̄x|Fyi

 .
4. Minor Agent’s Cost Functional Separation

Finite Population:

Js,Ni (ui, u−i) = E
[ ∫ ∞

0

e−ρt
{∥∥x̂i|Fyi −H1x̂0|Fyi

−H2x̂
(N)

|Fyi
− η
∥∥2

Q
+ ‖ui‖2

R

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(xi − x̂i|Fyi )

−H1(x0 − x̂0|Fyi )−H2(x(N) − x̂(N)

|Fyi
)
∥∥2

Q
dt

]
. (79)
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Infinite Population:

Js,∞i = E
[ ∫ ∞

0

e−ρt
{∥∥x̂i|Fyi −H1x̂0|Fyi

−Hπ
2

ˆ̄x|Fyi − η
∥∥2

Q
+ ‖ui‖2

R

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(xi − x̂i|Fyi )

−H1(x0 − x̂0|Fyi )−Hπ
2 (x̄− ˆ̄x|Fyi )

∥∥2

Q
dt

]
. (80)

As can be seen, the first integral expressions in (77), (78), (79) and (80) depend on the
estimated states generated by the estimation schemes (27) and (51) for the major agent
and minor agents respectively, and the second integral expressions depend only upon the
respective estimation errors and on the solutions to the associated Riccati equations. The
latter expressions are independent of the control actions and generate the additional cost ÊN
in the finite population case incurred by the errors in the estimation process.

Next, the resulting infinite population tracking problems are solved for the major and minor
agents in their separated forms. The control dependent summands in (78) have exactly the
same structure in terms of the functional dependence on the estimated states as the infinite
population cost functionals in the complete observation case have on the states. Moreover, the
control dependent summands in (80) have exactly the same structure in terms of the functional
dependence on the estimated states as the infinite population cost functional for the system (46)
with complete observations on its own state, the major agent’s state, and the major agent’s
estimates of its own state and the mean field. Hence, by the Separation Principle the infinite
population Nash Certainly Equivalence equilibrium controls are given by {û◦i , 0 ≤ i ≤ N} in
the theorem statement. Finally the infinite population control actions are applied to the finite
population systems and the fact that these yield (i) e−

ρ
2
t second order system stability, and (ii)

ε-Nash equilibrium property, is established by the standard approximation analysis parallel to
that of completely observed major-minor LQG MFG systems (see [4], [11]).

Observation 6. We note that (x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi do not appear in the minor agent’s state
decomposition and in its separated performance function but that they are used in the extended
estimated state recursion (51) and hence appear in the control action for a minor agent in (53).

Observation 7. The non-uniqueness of Nash equilibria which may occur in classical LQG
stochastic dynamic games with specified information sets [42, 43] does not occur in this
analysis. This holds since, for the specified maximal individual information sets, and subject
to the hypotheses of Theorem 3 giving unique solutions to the MFG Consistency equations (as
functions of the system parameters), a unique linear best response function is obtained for each
agent with respect to its stochastic control problem arising from its performance function in the
infinite population limit. We note that any set of controls generating a Nash equilibrium will
yield the same consistency equations whose solution depends only on the system parameters.
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Figure 1: The Major agent’s true and estimated trajectories.

4 Simulations
Consider a system of 100 minor agents and a single major agent. The system matrices
{Ak, Bk, 1 ≤ k ≤ 100} for the minor agents are uniformly defined as

A :=

[
−0.05 −2

1 0

]
, B :=

[
1
0

]
,

and for the major agent we have

A0 :=

[
−1 −1
1 0

]
, B0 :=

[
1
0

]
.

The parameters used in the simulation are: tfinal = 25 sec, ∆t = 0.01 sec, σw0 = σwi =
0.009, σv0 = σvi = 0.0003, ρ = 0.9, η0 = η = [0.25, 0.25]T , Q0 = Q = I2×2, R0 = R =
1, H0 = H1 = H2 = 0.6 × I2×2, G = 02×2. The true and estimated state trajectories, and
the estimation errors for a single realization can be displayed for the entire population of 101
agents together, but in figures 1-6 only 10 minor agents are shown for the sake of clarity.
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Figure 2: 10 Minor agents’ true and estimated trajectories.

Figure 3: The mean field true and estimated trajectories.
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Figure 4: The estimation errors of the major agent’s trajectory.

Figure 5: The estimation errors of the mean field trajectory.
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Figure 6: The estimation errors of 10 minor agents’ trajectories.

5 Conclusions
In this paper, PO MM LQG MFG problems with general information patterns are studied
where (i) the major agent has partial observations on its own state, and (ii) each minor agent
has partial observations on its own state and the major agent’s state. For a general case LQG
MFG systems, the existence of ε-Nash equilibria together with the individual agents’ control
laws generating them are established via the Separation Principle. The assumption of partial
observations for all agents leads to a new situation involving the recursive estimation by each
minor agent of the major agent’s estimate of its own state. To the best of our knowledge, the
dynamic game theoretic equilibrium which is established in this paper constitutes a rare case
wherein agents explicitly generate estimates of another agent’s beliefs. Moreover, this does
not give rise to an infinite regress due to the information asymmetry of the major and minor
agents.
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A Time-Invariance of Finite-Population State Feedback
Controls

If we write down the extended linear dynamics and quadratic cost functionals for the agents
in the finite-population case, the system matrices and the control matrix coefficients in the
dynamics (or filter equations) are time invariant. Moreover, the weight matrices in the
cost functionals are time-invariant, and hence we have time-invariant infinite-horizon cost
functionals. The optimal state linear feedback controls for classical time-invariant infinite-
horizon linear quadratic problems would have time-invariant coefficients [33]. Therefore when
we want to obtain an ansatz for the mean field equation, we consider the most general time-
invariant state feedback controls for each agent. To make this more clear, we write down
the finite-population extended systems for minor agents for both the complete and partial
observations case. For the purpose of illustration we assume that all minor agents are of the
same type.

A.1 Complete Observations Case
The extended finite-population system for the major agent and a generic minor agent is given
by stacking dynamics (1) and (2) as follows.

dx0

dx1
...
dxi

...
dxN


=



A0 0 0 . . . 0 . . . 0
G A 0 . . . 0 . . . 0
...

...
...

G 0 0 . . . A . . . 0
...

...
...

G 0 0 . . . 0 . . . A





x0

x1
...
xi
...
xN


dt+



B0 0 0 . . . 0 . . . 0
0 B 0 . . . 0 . . . 0
...

...
...

0 0 0 . . . B . . . 0
...

...
...

0 0 0 . . . 0 . . . B



×



u0

u1
...
ui
...
uN


dt+



D0 0 0 . . . 0 . . . 0
0 D 0 . . . 0 . . . 0
...

...
...

0 0 0 . . . D . . . 0
...

...
...

0 0 0 . . . 0 . . . D





dw0

dw1
...
dwi

...
dwN


. (81)

Equivalently the above system can be written as

dxex = (Axex +
N∑
i=0

Biui)dt+ DdW, (82)
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where {Bi, 0 ≤ i ≤ N} correspond to the N + 1 columns of the control matrix coefficient in
(81). The cost functional for each agent in terms of the extended state xex can be written as

JN,exi (ui, u−i) = E
∫ ∞

0

e−ρt
{
‖xex‖2

Qi − 2(xex)Tγi + ‖ui‖2
R

}
dt, 0 ≤ i ≤ N. (83)

Given that A and Bi, 1 ≤ i ≤ N , in the linear dynamics (82) are time-invariant, and the
cost functional (83) is quadratic, infinite-horizon and time-invariant, the Nash-equilibrium
strategies ui, 0 ≤ i ≤ N , are given by

ui = −R−1BT
i (Πix

ex + si), 0 ≤ i ≤ N, (84)

subject to the set of coupled Riccati equations

ρΠi = F T
i Πi + ΠiFi − ΠiBiR

−1BT
i Πi + Qi, (85)

and the set of coupled offset equations

ρsi = F T
i si + ΠiM−γi, (86)

where Fi = A−
∑N

j=0,j 6=i BjR
−1BT

j Πj .
Therefore, when we want to obtain an ansatz for the mean field equation for the completely

observed major minor LQG mean field game (MM LQG MFG) systems, we consider the most
general time-invariant state feedback controls for a generic minor agent as

ui = L1xi + L2x0 + L3

N∑
j=1

xj +m. (87)

Then we substitute (87) in the dynamics of each agent, take the average over population and
then its limit as N →∞, to obtain the ansatz for the mean field equation as

dx̄ = (Āx̄+ Ḡx0 + m̄)dt, q.m. (88)

A.2 Partial Observations Case
We note that for the information patterns considered in this paper, the problem of partially
observed MM LQG MFG systems in the finite population case is an open problem. This is
because in order to compute its best response strategy (i.e. feedback control actions yielding
a Nash equilibrium), an agent requires estimates of other agents’ states, and for that they need
to estimate other agents’ strategies; this leads to the generation of second-order and higher-
order estimates. Hence each agent will have an infinite-dimensional extended system. We
remark that still in this case the system matrix and the control matrix coefficient would be
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time-invariant. Moreover, the weight matrices in the infinite-horizon extended cost functional
are time-invariant.
The alternative is to solve the infinite-population limit of the problem, where the major agent
is not impacted by the individual minor agents but each minor agent is impacted by the major
agent. Hence, in the infinite-population limit, to compute their best response strategies (i.e.
those yielding a Nash equilibrium) the major agent does not estimate the minor agents’ states
but the mean field. This is while each minor agent estimates the major agent’s state and
the mean field, for which it estimates the major agent’s strategy leading to the generation of
the second-order estimates. Therefore, in the infinite population case the major agent only
generates first-order estimates, and each minor agent generates first-order and second-order
estimates. Using this fact to obtain an ansatz for the mean field equation, only first-order
estimates generated by the major agent, and first-order and second-order estimates generated
by minor agents play a role. Accordingly, in the following we give the filter equations for the
major agent and minor agents in the finite-population case, and subsequently show that in the
finite population case time-invariant linear state feedback controls are optimal (in the sense of
yielding a Nash equilibrium) for the agents’ extended systems.

A.2.1 Major Agent:

The filter equation for the major agent in the finite population case is given by

dx̂0|Fy0
dx̂1|Fy0...
dx̂i|Fy0...
dx̂N |Fy0


=



A0 0 0 . . . 0 . . . 0
G A 0 . . . 0 . . . 0
...

...
...

G 0 0 . . . A . . . 0
...

...
...

G 0 0 . . . 0 . . . A





x̂0|Fy0
x̂1|Fy0...
x̂i|Fy0...
x̂N |Fy0


dt

+



B0 0 0 . . . 0 . . . 0
0 B 0 . . . 0 . . . 0
...

...
...

0 0 0 . . . B . . . 0
...

...
...

0 0 0 . . . 0 . . . B





û0|Fy0
û1|Fy0...
ûi|Fy0...
ûN |Fy0


dt+K0dν0, (89)

Equivalently the above system can be written as

dx̂ex|Fy0
= (Ax̂ex|Fy0 +

N∑
i=0

Biûi|Fy0 )dt+K0dν0 (90)
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The cost functional of the major agent in the finite population case is given by

JN,ex0 (u0, u−0) = E
∫ ∞

0

e−ρt
{
‖x̂ex|Fy0 ‖

2
Q0
− 2(x̂ex|Fy0

)Tγ0 + ‖u0‖2
R0

}
dt

+ E
∫ ∞

0

e−ρt
{
‖xex − x̂ex|Fy0 ‖

2
Q0
− 2(xex − x̂ex|Fy0 )Tγ0

}
dt, (91)

Following the results of Section A.1, given that A and Bi, 1 ≤ i ≤ N , in the linear dynamics
(90) are time-invariant, and the cost functional (91) is quadratic, infinite-horizon and time-
invariant, we consider the following time-invariant linear state feedback controls as ansatze
for the optimal controls ûi|Fy0 , 0 ≤ i ≤ N ,

û0|Fy0 = L0
1x̂0|Fy0 + L0

2

N∑
j=1

x̂j|Fy0 + L0
3 (92)

ûi|Fy0 = L0
4x̂i|Fy0 + L0

5x̂0|Fy0 + L0
6

N∑
j=1

x̂j|Fy0 + L0
7 (93)

Note that all coefficients L0
1, L

0
2, L

0
3, L

0
4, L

0
5, L

0
6, L

0
7, are time-invariant.

31



A.2.2 Minor Agent:

The filter equation for a minor agent Ai, 1 ≤ i ≤ N , in the finite population case is given by

dx̂0|Fyi
dx̂1|Fyi...
dx̂i|Fyi...
dx̂N |Fyi

d(x̂0|Fy0 )|Fyi
d(x̂1|Fy0 )|Fyi...
d(x̂N |Fy0 )|Fyi



=



A0 0 . . . 0 . . . 0 B0L
0
1 B0L

0
2 . . . B0L

0
2

G A . . . 0 . . . 0 0 0 . . . 0
...

...
...

G 0 . . . A . . . 0 0 0 . . . 0
...

...
...

G 0 . . . 0 . . . A 0 0 . . . 0
0 0 . . . 0 . . . 0 A0 +B0L

0
1 B0L

0
2 . . . B0L

0
2

0 0 . . . 0 . . . 0 G+BL0
5 A+B(L0

4 + L0
6) . . . BL0

6
...

...
...

0 0 . . . 0 . . . 0 G+BL0
5 BL0

6 . . . A+B(L0
4 + L0

6)



×



x̂0|Fyi
x̂1|Fyi...
x̂i|Fyi...
x̂N |Fyi

(x̂0|Fy0 )|Fyi
(x̂1|Fy0 )|Fyi...
(x̂N |Fy0 )|Fyi



dt+



0 . . . 0 . . . 0
B . . . 0 . . . 0

...
...

0 . . . B . . . 0
...

...
0 . . . 0 . . . B
0 . . . 0 . . . 0
0 . . . 0 . . . 0

...
...

0 . . . 0 . . . 0




û1|Fyi...
ûi|Fyi...
ûN |Fyi

 dt+



L0
3

0
...
0
...
0
L0

3

L0
7

...
L0

7


dt+Kidνi, 1 ≤ i ≤ N,

(94)

where (92) and (93) have been substituted. Equivalently, the above system can be written as

d

[
x̂ex|Fyi

(x̂ex|Fy0
)|Fyi

]
=

(
A

[
x̂ex|Fyi

(x̂ex|Fy0
)|Fyi

]
+

N∑
j=0

Bjûj|Fyi + M

)
dt+Kidνi. (95)

The cost functional of the minor agent in the finite population case is given by

JN,exi (ui, u−i) = E
∫ ∞

0

e−ρt

{∥∥∥∥
[

x̂ex|Fyi
(x̂ex|Fy0

)|Fyi

]∥∥∥∥2

Qi

− 2

([
x̂ex|Fyi

(x̂ex|Fy0
)|Fyi

])T
Γi + ‖ui‖2

R

}
dt

E
∫ ∞

0

e−ρt

{∥∥∥∥
[

xex − x̂ex|Fyi
x̂ex|Fy0
− (x̂ex|Fy0

)|Fyi

]∥∥∥∥2

Qi

− 2

([
xex − x̂ex|Fyi

x̂ex|Fy0
− (x̂ex|Fy0

)|Fyi

])T
Γi

}
dt, 1 ≤ i ≤ N.

(96)
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Following the results of Section A.1, given that A, Bi, 1 ≤ i ≤ N , and M in the linear
dynamics (95) are time-invariant, and the cost functional (96) is quadratic, infinite-horizon
and time-invariant, we consider the following time-invariant linear state feedback controls as
an ansatz for the optimal controls ûi|Fyi , 1 ≤ i ≤ N ,

ûi|Fyi = L1x̂i|Fyi + L2x̂0|Fyi + L3

N∑
j=1

x̂j|Fyi + L4(x̂0|Fy0 )|Fyi + L5

N∑
j=1

(x̂j|Fy0 )|Fyi +m. (97)

Then we substitute (12) in the dynamics of each agent, take the average over population and
then its limit as N →∞, to obtain the ansatz for the mean field equation as (for the details of
the derivation see Section III.A of the manuscript.)

dx̄ = Āx̄dt+ Ḡx0dt+ H̄x̂0|Fy0 dt+ L̄ˆ̄x|Fy0 dt+ J̄ ¯̃xexdt+ m̄dt. (98)

We note that the only time-varying coefficient in (90)-(91) and (95)-(96) is the Kalman
filter gain Ki (diffusion coefficient) due to the the time-varying nature of the estimation error
covariance matrix Vi. However, due to the Certainty Equivalence Principle the diffusion
coefficient does not play a role in determining the coefficients of the control action as shown
in Section A.1. Therefore, the coefficients in the mean field equation (20) do not depend
parametrically on the filter gain, and hence do not depend on the estimation error covariance
and the observation noise covariance.
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[42] T. Başar, “On the uniqueness of the Nash solution in linear-quadratic differential games,”
International Journal of Game Theory, vol. 5, no. 2, pp. 65–90, 1976.

[43] ——, “Informationally nonunique equilibrium solutions in differential games,” SIAM
Journal on Control and Optimization, vol. 15, no. 4, pp. 636–660, 1977.

37


	1 Introduction
	2 Partially Observed Major-Minor LQG MFG Systems
	2.1 Dynamics
	2.2 Cost Functionals
	2.3 Observation Processes

	3 Estimation and Control Solutions for PO MM LQG MFG Systems
	3.1 Mean Field Evolution
	3.2 Major Agent: Infinite Population
	3.3 Minor Agent: Infinite Population
	3.4 Mean Field Consistency Equations

	4 Simulations
	5 Conclusions
	A Time-Invariance of Finite-Population State Feedback Controls
	A.1 Complete Observations Case
	A.2 Partial Observations Case
	A.2.1 Major Agent:
	A.2.2 Minor Agent:



