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Abstract. This paper focuses on synthesizing control policies for discrete-time stochastic control systems

together with a lower bound on the probability that the systems satisfy the complex temporal properties.

The desired properties of the system are expressed as linear temporal logic (LTL) specifications over finite
traces. In particular, our approach decomposes the given specification into simpler reachability tasks based

on its automata representation. We then propose the use of so-called control barrier certificate to solve those

simpler reachability tasks along with computing the corresponding controllers and probability bounds. Finally,
we combine those controllers to obtain a hybrid control policy solving the considered problem. Under some

assumptions, we also provide two systematic approaches for uncountable and finite input sets to search for

control barrier certificates. We demonstrate the effectiveness of the proposed approach on a room temperature
control and lane-keeping of a vehicle modeled as a four-dimensional single-track kinematic model. We compare

our results with the discretization-based methods in the literature.

1. Introduction

Formal synthesis of controllers for complex dynamical systems against complex specifications has gained
significant attentions in the last decade [Tab09, BYG17]. These specifications are usually expressed using
temporal logic formulae or automata on (in)finite strings. The synthesis problem is very challenging for
systems that have continuous state spaces and are affected by uncertainties. The problem does not admit
closed-form solutions in general and is hard to be solved exactly on such systems.

There have been several results in the literature utilizing approximate finite models as abstractions of the
original stochastic dynamical systems for the formal policy synthesis. Existing results include policy syn-
thesis for discrete-time stochastic hybrid systems [APLS08, MMS20, HS20], control of switched discrete-time
stochastic systems [LAB15], and symbolic control of incrementally stable stochastic systems [ZMEM+14].
These approaches rely on the discretization of the state set together with a formal upper-bound on the ap-
proximation error. These approaches suffer severely from the curse of dimensionality (i.e., computational
complexity grows exponentially with the dimension of the state set). To alleviate this issue, sequential grid-
ding [SA13], discretization-free abstractions [ZTA17, JZ20], and compositional abstraction-based techniques
[SAM15, LSZ18] are proposed under suitable assumptions on the system dynamics (e.g., Lipschitz continuity
or incremental input-to-state stability).

For non-stochastic systems, discretization-free approaches based on barrier certificates were proposed for ver-
ification and synthesis to ensure safety [AXGT17, Jan18, NA18, Pra06, WA07]. The authors in [WTL16]
generalize the idea of the barrier certificate by combining it with the automata representation of LTL spec-
ifications for the verification of temporal property for nonlinear non-stochastic systems. The work is then
extended for the verification of hybrid dynamical systems against syntactically co-safe LTL specifications
[BD18] and for the synthesis of an online control strategy for multi-agent systems enforcing LTL specifica-
tions [SCE18]. There are a few recent results using barrier certificates on non-stochastic systems to satisfy
more general specifications. Results include the use of time-varying control barrier functions to satisfy signal
temporal logic [LD19] and control barrier certificate to design policies for reach and stay specification for non-
stochastic switched systems [RS17]. Most of the synthesis results mentioned above consider prior knowledge
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of barrier certificates to provide online control strategies using quadratic programming. These results may not
be suitable while dealing with constrained input sets which is the case in almost all real world applications.

For stochastic systems, there are very few works available in the literature to synthesize controllers against
complex specifications using discretization-free approaches. The results include the synthesis of controller
for continuous-time stochastic systems enforcing syntactically co-safe LTL specifications [HWM14], where the
authors use automata representation corresponding to the specifications to guide a sequence of stochastic opti-
mal control problems. The paper [FMPS18] considers synthesis for ensuring a lower bound on the probability
of satisfying a specification in signal temporal logic. It encodes the requirements as chance constraints and
inductively decomposes them into deterministic inequalities using the structure of the specification. Barrier
certificates are utilized in [HCL+17, ST12, PJP07] for verification of stochastic (hybrid) systems but only with
respect to the invariance property.

Our recent results in [JSZ18] present the idea of combining automata representation of a complex specification
and barrier certificates, for formal verification of stochastic systems without requiring any stability assumption
on the dynamics of the system. The current manuscript follows a similar direction to solve the problem of
formal synthesis for stochastic systems.

To the best of our knowledge, this paper is the first to utilize the notion of control barrier certificates for
the synthesis of discrete-time stochastic control systems against complex temporal logic specifications. We
consider temporal properties expressed in a fragment of LTL formulae, namely, LTL on finite traces, referred
to as LTLF [SRK+14]. We provide a systematic approach to synthesize an offline control policy together with
a lower bound on the probability that the LTLF property is satisfied over finite-time horizon. To achieve
this, we utilize the notion of control barrier certificates which in general can only provide an upper bound on
the reachability probability. Since we are looking for a lower bound, we first take the negation of the LTLF
specification and decompose satisfaction of the negation into a sequence of simpler reachability tasks based
on the structure of the automaton associated with the negation of the specification. Then, controllers and
corresponding upper bounds are obtained for these simplified reachability tasks with the help of control barrier
certificates. In the final step, we combine these controllers and probability bounds to provide a hybrid control
policy and a lower bound on the probability of satisfying the original LTLF property.

In general, there is no guarantee that barrier certificates exist for a given stochastic system. Even if we know
one exists, there is no complete algorithm for its computation. In this paper, we provide two systematic
approaches to search for control barrier certificates under suitable assumptions on the dynamics of the system
and the shape of the potential barrier certificates. The first approach utilizes sum-of-square optimization
technique [Par03] and is suitable for dynamics with continuous input sets and polynomial dynamics. The
second approach uses the counter-example guided inductive synthesis (CEGIS) scheme which is adapted from
[RS15, RS17] and is suitable for systems with finite input sets.

The remainder of this paper is structured as follows. In Section 2, we introduce discrete-time stochastic control
systems and the linear temporal logic over finite traces. Then, we formally defined the problem considered in
this paper. We discuss in Section 3 the notion of control barrier certificates and results for the computation
of upper bound on the probability of satisfying reachability specifications. Section 4 provides an algorithm
to decompose LTLF specification into sequential reachability using deterministic finite automaton (DFA)
corresponding to specification. In Section 5, we provide results on the synthesis of control policy together with
the lower bound on the probability of satisfaction of LTLF specifications using control barrier certificates.
It also provides systematic approaches to search for control barrier certificates. Section 6 demonstrates the
effectiveness of the results on two case studies: (i) room temperature control and (ii) lane keeping of a vehicle.
Finally, Section 7 concludes the paper.
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2. Preliminaries

2.1. Notations. We denote the set of nonnegative integers by N0 := {0, 1, 2, . . .} and the set of positive
integers by N := {1, 2, 3, . . .}. The symbols R, R+, and R+

0 denote the set of real, positive, and nonnegative
real numbers, respectively. We use Rn×m to denote the space of real matrices with n rows and m columns.
For a finite set A, we denote its cardinality by |A|. The logical operators ‘not’, ‘and’, and ‘or’ are denoted by
¬, ∧, and ∨, respectively.

We consider a probability space with the tuple (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-
algebra on Ω comprising the subset of Ω as events, and PΩ is a probability measure that assigns probabilities
to events. We assume that random variables introduced in this article are measurable functions of the form
X : (Ω,FΩ) → (SX ,FX) mapping measurable space (Ω,FΩ) to another measurable space (SX ,FX) and
assigns probability measure to (SX ,FX) according to Prob{A} = PΩ{X−1(A)} for any A ∈ FX . In words,
SX is the domain of the random variable X and FX is a collection of subsets of SX such that X assigns
probability to the elements of this collection. We often directly discuss the probability measure on (SX ,FX)
without explicitly mentioning the underlying probability space and the function X itself.

2.2. Discrete-time stochastic control systems. In this work, we consider discrete-time stochastic control
systems (dt-SCS) that are extensively employed as models of systems under uncertainty in economics and
finance [EA87] and in many engineering systems [BS96]. Examples of using dt-SCS include modeling inventory-
production systems [HLL96], demand response in energy networks [Sou14], and analyzing max-plus linear
systems in transportation [SAA16].

A dt-SCS is given by the tuple S = (X,Vw, U, w, f), where X is the state set, Vw is the uncertainty set, and
U is the input set of the system. We denote by (X,B(X)) the measurable space with B(X) being the Borel
sigma-algebra on the state space. Notation w denotes a sequence of independent and identically distributed
(i.i.d.) random variables on the set Vw as w := {w(k) : Ω→ Vw, k ∈ N0}. The map f : X × U × Vw → X is a
measurable function characterizing the state evolution of the system. For a given initial state x(0) ∈ X, the
state evolution can be written as

(2.1) x(k + 1) = f(x(k), u(k), w(k)), k ∈ N0.

We are interested in synthesizing a control policy ρ that guarantees a potentially tight lower bound on the
probability that the system S satisfies a specification expressed as a temporal logic property. The syntax and
semantics of the class of specifications dealt with in this paper are provided in the next subsection. In this
work, we consider history-dependent policies given by ρ = (ρ0, ρ1, . . . , ρn, . . .) with functions ρn : Hn → U ,
where Hn is a set of all n-histories hn defined as hn := (x(0), u(0), x(1), u(1), . . . , x(n− 1), u(n− 1), x(n)). A
subclass of policies are called stationary and are defined as ρ = (u, u, . . . , u, . . .) with a function u : X → U .
In stationary policies, the mapping at time n depends only on the current state xn and does not change over
time.

2.3. Linear temporal logic over finite traces. In this subsection, we introduce linear temporal logic over
finite traces, referred to as LTLF [DGV13], which will be used later to express temporal specifications for our
synthesis problem. Properties LTLF use the same syntax of LTL over infinite traces given in [BKL08]. The
LTLF formulas over a set Π of atomic propositions are obtained as follows:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | �ϕ | ϕ1Uϕ2,

where p ∈ Π, � is the next operator, ♦ is eventually, � is always, and U is until. The semantics of LTLF is
given in terms of finite traces, i.e., finite words σ, denoting a finite non-empty sequence of consecutive steps
over Π. We use |σ| to represent the length of σ and σi as a propositional interpretation at the ith position in
the trace, where 0 ≤ i < |σ|. Given a finite trace σ and an LTLF formula ϕ, we inductively define when an
LTLF formula ϕ is true at the ith step (0 ≤ i < |σ|) and denoted by σ, i |= ϕ, as follows:

• σ, i |= true;
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• σ, i |= p, for p ∈ Π iff p ∈ σi;
• σ, i |= ¬ϕ iff σ, i 6|= ϕ;
• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
• σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
• σ, i |= �ϕ iff i < |σ| − 1 and σ, i+ 1 |= ϕ;
• σ, i |= ♦ϕ iff for some j such that i ≤ j < |σ|, we have σ, j |= ϕ;
• σ, i |= �ϕ iff for all j such that i ≤ j < |σ|, we have σ, j |= ϕ;
• σ, i |= ϕ1Uϕ2 iff for some j such that i ≤ j < |σ|, we have σ, j |= ϕ2, and for all k s.t. i ≤ k < j, we

have σ, k |= ϕ1.

The formula ϕ is true on σ, denoted by σ |= ϕ, if and only if σ, 0 |= ϕ. The set of all traces that satisfy
the formula ϕ is called the language of formula ϕ and is denoted by L(ϕ). Notice that we also have the
usual boolean equivalences such as ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ♦ϕ ≡ true Uϕ, and
�ϕ ≡ ¬♦¬ϕ.

Next, we define deterministic finite automata which later serve as equivalent representations of LTLF formulae.

Definition 2.1. A deterministic finite automaton (DFA) is a tuple A = (Q,Q0,Σ, δ, F ), where Q is a finite
set of states, Q0 ⊆ Q is a set of initial states, Σ is a finite set (a.k.a. alphabet), δ : Q×Σ→ Q is a transition
function, and F ⊆ Q is a set of accepting states.

We use notation q
σ−→ q′ to denote transition (q, σ, q′) ∈ δ. A finite word σ = (σ0, σ1, . . . , σn−1) ∈ Σn is

accepted by DFA A if there exists a finite state run q = (q0, q1, . . . , qn) ∈ Qn+1 such that q0 ∈ Q0, qi
σi−→ qi+1

for all 0 ≤ i < n and qn ∈ F . The set of words accepted by A is called the accepting language of A and is
denoted by L(A). We denote the set of successor states of a state q ∈ Q by ∆(q).

The next result shows that every LTLF formula can be accepted by a DFA.

Theorem 2.2 ([ZPV19, DGV15]). Every LTLF formula ϕ can be translated to a DFA Aϕ that accepts the
same language as ϕ, i.e., L(ϕ) = L(Aϕ).

Such Aϕ in Theorem 2.2 can be constructed explicitly or symbolically using existing tools, such as SPOT
[DLLF+16] and MONA [HJJ+95].

Remark 2.3. For a given LTLF formula ϕ over atomic propositions Π, the associated DFA Aϕ is usually
constructed over the alphabet Σ = 2Π. Solution process of a system S is also connected to the set of words by
a labeling function L from the state set to the alphabet Σ. Without loss of generality, we work with the set of
atomic propositions directly as the alphabet rather than its power set.

2.4. Property satisfaction by stochastic control systems. For a given dt-SCS S = (X,Vw, U, w, f) with
dynamics (2.1), the system S is connected to LTLF formulas with the help of a measurable labeling function
L : X → Π, where Π is the set of atomic propositions.

Definition 2.4. Consider a finite state sequence xN = (x(0), x(1), . . . , x(N − 1)) ∈ XN , N ∈ N, and labeling
function L : X → Π. Then, the corresponding trace is given by L(xN ) := (σ0, σ1, . . . , σN−1) ∈ ΠN if we have
σk = L(x(k)) for all k ∈ {0, 1, . . . , N − 1}.

Note that we abuse the notation by using map L(·) over the domain XN , i.e. L(x(0), x(1), . . . , x(N − 1)) ≡
(L(x(0)), L(x(1)), . . . , L(x(N−1))). Their distinction is clear from the context. Next, we define the probability
that a dt-SCS S satisfies LTLF formula ϕ over traces of length N .

Definition 2.5. Consider a dt-SCS S = (X,Vw, U, w, f) and a LTLF formula ϕ over Π. We denote by
Px0
ρ {L(xN ) |= ϕ} the probability that ϕ is satisfied by the state evolution of the system S over a finite-time

horizon [0, N) ⊂ N starting from initial state x(0) = x0 ∈ X under control policy ρ.
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Remark 2.6. The set of atomic propositions Π = {p0, p1, . . . , pM} and the labeling function L : X → Π
provide a measurable partition of the state set X = ∪Mi=1Xi as Xi := L−1(pi). We assume that Xi 6= ∅ for any
i. This assumption is without loss of generality since all the atomic propositions pi with L−1(pi) = ∅ can be
replaced by (¬true) without affecting the probability of satisfaction.

2.5. Problem formulation.

Problem 2.7. Given a dt-SCS S = (X,Vw, U, w, f) with dynamics (2.1), a LTLF specification ϕ of length
N over a set of atomic propositions Π = {p0, p1, . . . , pM}, a labeling function L : X → Π, and real value
ϑ ∈ (0, 1), compute a control policy ρ (if existing) such that Px0

ρ {L(xN ) |= ϕ} ≥ ϑ for all x0 ∈ L−1(pi) and
some i ∈ {1, 2, . . . ,M}.

Finding a solution to Problem 2.7 (if existing) is difficult in general. In this paper, we give a computational
method that is sound in solving the problem. Our approach is to compute a policy ρ together with a lower
bound ϑ. We try to find the largest lower bound, which then can be compared with ϑ and gives ρ as a solution
for Problem 2.7 if ϑ ≥ ϑ. To solve this problem, we utilize the notion of control barrier certificates (discussed in
Section 3). In general, this notion is useful for providing an upper bound on the reachability probability. The
negation of LTLF properties can then be equivalently represented as a sequence of reachability problems using
a DFA. Therefore, instead of computing a control policy that guarantees a lower bound ϑ on the probability
satisfaction of the LTLF specification, we compute a policy that guarantees an upper bound on the probability
satisfaction of its negation, i.e., Px0

ρ {L(xN ) |= ¬ϕ} ≤ ϑ for any x0 ∈ L−1(pi) and some i ∈ {0, 1, . . . ,M}.
Then for the same control policy the lower bound can be easily obtained as ϑ = 1 − ϑ. This is done by
constructing a DFA A¬ϕ = (Q,Q0,Π, δ, F ) that accepts all finite words over Π satisfying ¬ϕ.

For the sake of illustrating the results better, we provide the following running example throughout the paper.

Example 1. Consider a two-dimensional dt-SCS S = (X,Vw, U, w, f) with X = Vw = R2, U = R and
dynamics

x1(k + 1) = x1(k)− 0.01x2
2(k) + 0.5w1(k),

x2(k + 1) = −0.01x1(k)x2(k) + u(k) + 0.5w2(k),(2.2)

where u(·) is a control input and w1(k), w2(k) are standard normal random variables that are independent
from each other and for any k ∈ N0. The set of atomic propositions is given by Π = {p0, p1, p2, p3}, with
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Figure 1. (a) State set and regions of interest for Example 1, (b) DFA A¬ϕ that accepts all
traces satisfying ¬ϕ where ϕ is given in (2.3).



6 P. JAGTAP, S. SOUDJANI, AND M. ZAMANI

labeling function L(x) = pi for any x ∈ Xi, i ∈ {0, 1, 2, 3}. The sets Xi are defined as

X0 = {(x1, x2) ∈ X | (x1 + 5)2 + x2
2 ≤ 2.5},

X1 = {(x1, x2) ∈ X | (x1 − 5)2 + (x2 − 5)2 ≤ 3},
X2 = {(x1, x2) ∈ X | (x1 − 4)2 + (x2 + 3)2 ≤ 2}, and

X3 = X \ (X0 ∪X1 ∪X2).

These sets are shown in Figure 1(a). We are interested in computing a control policy ρ that provides a lower
bound on the probability that the trajectories of S of length N satisfies the following specification:

• If it starts in X0, it will always stay away from X1 or always stay away from X2. If it starts in X2, it
will always stay away from X1.

This property can be expressed by the LTLF formula

(2.3) ϕ = (p0 ∧ (�¬p1 ∨�¬p2)) ∨ (p2 ∧�¬p1).

The DFA corresponding to the negation of ϕ in (2.3) is shown in Figure 1(b).

3. Control Barrier Certificates

In this section, we introduce the notion of control barrier certificate which will later serve as the core element
for solving Problem 2.7. Intuitively, control barrier certificates are relaxed versions of supermartingales that
are decreasing in expectation along the trajectories of the system up to a constant. Once a barrier certificate
is found while satisfying some conditions, it can give upper bounds on the reachability probability of system
trajectories.

Definition 3.1. A function B : X → R+
0 is a control barrier certificate for a dt-SCS S = (X,Vw, U, w, f) if

for any state x ∈ X, there exists an input u ∈ U such that

E[B(f(x, u, w)) | x, u] ≤ B(x) + c,(3.1)

for some constant c ≥ 0.

If the set of control inputs U is finite, one can rewrite Definition 3.1 as follows.

Definition 3.2. A function B : X → R+
0 is a control barrier certificate for a dt-SCS S = (X,Vw, U, w, f)

with U = {u1, u2, . . . , ul}, l ∈ N, if

min
u∈U

E[B(f(x, u, w)) | x, u] ≤ B(x) + c ∀x ∈ X,(3.2)

for some constant c ≥ 0.

Remark 3.3. Note that conditions (3.1)-(3.2) are relaxed versions of so-called supermartingale condition. This
is due to the positive constant c on the right-hand side. When c = 0, the function B(·) becomes supermartingale
for S.

Remark 3.4. The above definitions associate a stationary policy u : X → U to a control barrier certificate.
Definition 3.1 gives such a policy according to the existential quantifier on the input for any state x ∈ X.
Definition 3.2 gives the policy as the arg min of the left-hand side of inequality (3.2). In case of discrete
inputs, u(x) can be selected as an element of {u ∈ U | E[B(f(x, u, w)) | x, u] ≤ B(x) + c}. In other words,
Definition 3.2 provides regions of state-set in which the particular control input is valid and is given as Xi :=
{x ∈ X | E[B(f(x, ui, w)) | x, ui] ≤ B(x) + c} for all i ∈ {1, 2, . . . , l} and

⋃
i Xi = X.

We provide the following lemma and use it in the sequel. This lemma is a direct consequence of [Kus67,
Theorem 3] and is also utilized in [ST12, Theorem II.1].
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Lemma 3.5. Consider a dt-SCS S = (X,Vw, U, w, f) and let B : X → R+
0 be a control barrier certificate as

given in Definition 3.1 (or Definition 3.2) with constant c and stationary policy u : X → U as discussed in
Remark 3.4. Then for any constant λ > 0 and any initial state x0 ∈ X,

Px0
u { sup

0≤k<Td

B(x(k)) ≥ λ | x(0) = x0} ≤
B(x0) + cTd

λ
.(3.3)

Proof. The proof is similar to that of Theorem 3 in [Kus67] and is omitted here. �

Next theorem shows that a control barrier certificate can give an upper bound on the probability of sat-
isfying reachability specification. This theorem is inspired by the result of [PJP07, Theorem 15] that uses
supermartingales for reachability analysis of continuous-time stochastic systems.

Theorem 3.6. Consider a dt-SCS S = (X,Vw, U, w, f) and sets Xa, Xb ⊆ X. Suppose there exist a control
barrier certificate B : X → R+

0 as defined in Definition 3.1 (or Definition 3.2) with constant c ≥ 0 and
stationary policy u : X → U as discussed in Remark 3.4. If there is a constant γ ∈ [0, 1] such that

B(x) ≤ γ ∀x ∈ Xa,(3.4)

B(x) ≥ 1 ∀x ∈ Xb,(3.5)

then the probability that the state evolution of S starts from any initial state x0 ∈ Xa and reaches Xb under
policy u(·) within time horizon [0, Td) ⊆ N0 is upper bounded by γ + cTd.

Proof. Since B(x(k)) is a control barrier certificate, we conclude that (3.3) in Lemma 3.5 holds. Now using
(3.4) and the fact that Xb ⊆ {x ∈ X | B(x) ≥ 1}, we have Px0

u {x(k) ∈ X1 for some 0 ≤ k < Td | x(0) = x0}
≤ Px0

u {sup0≤k<Td
B(x(k)) ≥ 1 | x(0) = x0} ≤ B(x0) + cTd ≤ γ + cTd, which concludes the proof. �

Theorem 3.6 enables us to formulate an optimization problem for finding a sound solution of the policy
synthesis problem 2.7 with reachability specifications. We can minimize the values of γ and c in order to find
an upper bound for finite-horizon reachability that is as tight as possible.

Remark 3.7. If one succeeds in finding a control barrier certificate B(·) with c = 0 satisfying conditions of
Theorem 3.6, the result of the theorem holds for an unbounded time horizon. However, considering relaxed
supermartingale condition as discussed in Remark 3.3, makes it easier to find B(·) satisfying conditions in
Theorem 3.6 and makes out results applicable to larger classes of systems.

4. Decomposition into Sequential Reachability

In this section, we discuss how to translate the synthesis problem 2.7 for any LTLF specification into a sequence
of simple reachability tasks that can be solvable by computing control barrier certificates as discussed in
Theorem 3.6. Consider a DFA A¬ϕ = (Q,Q0,Π, δ, F ) that accepts all finite words of length n ∈ [0, N ] ⊂ N0

satisfying ¬ϕ.

Accepting state run of A¬ϕ. For any n ∈ N0, sequence q = (q0, q1, . . . , qn) ∈ Qn+1 is called an accepting

state run if q0 ∈ Q0, qn ∈ F , and there exist a finite word σ = (σ0, σ1, . . . , σn−1) ∈ Πn such that qi
σi−→ qi+1

for all i ∈ {0, 1, . . . , n−1}. We denote the set of such finite words by σ(q) ⊆ Πn and the set of accepting state
runs by R. We also indicate the length of q ∈ Qn+1 by |q|, which is n+ 1.

Self-loops in the DFA play a central role in our decomposition. Let Qs ⊆ Q be a set of states of A¬ϕ having

self-loops, i.e., Qs := {q ∈ Q | ∃p ∈ Π, q
p−→ q}. Let RN be the set of all finite accepting state runs of lengths

less than or equal to N + 1 excluding self-loops,

(4.1) RN := {q = (q0, q1, . . . , qn) ∈ R |n ≤ N, qi 6= qi+1, ∀i < n}.
Computation of RN can be done efficiently using algorithms in graph theory by viewing A¬ϕ as a directed
graph. Consider G = (V, E) as a directed graph with vertices V = Q and edges E ⊆ V ×V such that (q, q′) ∈ E
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Algorithm 1 Computation of sets Pp(q), q ∈ RpN , p ∈ Π

Require: G, Qs, N , Π
1: Initialize:

Pp(q)← ∅, ∀p ∈ Π
2: Compute set RN by depth first search on G
3: for all q = (q0, q1, . . . , qn) ∈ RN and p ∈ Π do
4: if p = σ(q0, q1) then
5: RpN ← {q}
6: for all p ∈ Π and q ∈ RpN and |q| ≥ 3 do
7: for i = 0 to |q| − 3 do
8: Ptemp(q)← {(qi, qi+1, qi+2)}
9: if qi+1 ∈ Qs then

10: Pp(q)← {(qi, qi+1, qi+2, N + 2− |q|)}
11: else
12: Pp(q)← {(qi, qi+1, qi+2, 1)}

return Pp(q), ∀p ∈ Π

if and only if q′ 6= q and there exist p ∈ Π such that q
p−→ q′. For any (q, q′) ∈ E , we denote the atomic

proposition associated with the edge (q, q′) by σ(q, q′). From the construction of the graph, it is obvious that
the finite path in the graph of length n+1 starting from vertices q0 ∈ Q0 and ending at qF ∈ F is an accepting
state run q of A¬ϕ without any self-loop thus belongs to RN . Then one can easily compute RN using variants
of depth first search algorithm [RNC+03]. For each p ∈ Π, we define a set RpN as

(4.2) RpN := {q = (q0, q1, . . . , qn) ∈ RN | σ(q0, q1) = p ∈ Π}.

Note that we use the superscript p ∈ Π to represent the atomic proposition corresponding to the initial region
from which the state evolution starts. We use a similar notation throughout the paper.
Decomposition into sequential reachability is performed as follows. For any q = (q0, q1, . . . , qn) ∈ RpN , we
define Pp(q) as a set of all state runs of length 3 augmented with a horizon,

(4.3) Pp(q) := {(qi, qi+1, qi+2, T (q, qi+1)) | 0 ≤ i ≤ n− 2},

where the horizon is defined as T (q, qi+1) = N + 2 − |q| for qi+1 ∈ Qs and 1 otherwise. Note that the state
runs of length 3 in (4.3) corresponds to two atomic propositions associated with respective edges which will
later serve as regions Xa and Xb and the term T (q, qi+1) in (4.3) will serve as Td in Theorem 3.6. We denote
P(A¬ϕ) =

⋃
p∈Π

⋃
q∈Rp

N
Pp(q).

Remark 4.1. Note that Pp(q) = ∅ for |q| = 2. In fact, any accepting state run of length 2 specifies a subset
of the state set such that the system satisfies ¬ϕ whenever it starts from that subset. This gives trivial zero
probability for satisfying the specification, thus neglected in the sequel.

The computation of sets Pp(q), q ∈ RpN , p ∈ Π, is illustrated in Algorithm 1 and demonstrated below for our
running example.

Example 1. (continued) For LTLF formula ϕ given in (2.3), Figure 1(b) shows a DFA A¬ϕ that accepts all
words that satisfy ¬ϕ. From Figure 1(b), we get Q0 = {q0}, Π = {p0, p1, p2, p3} and F = {q3}. We consider
traces of maximum length N = 5. The set of accepting state runs of lengths at most N + 1 without self-loops
is

R5 = {(q0, q4, q3), (q0, q1, q2, q3), (q0, q1, q4, q3), (q0, q3)}.
The sets Rp5 for p ∈ Π are as follows:

Rp0

5 = {(q0, q1, q2, q3), (q0, q1, q4, q3)}, Rp1

5 = {(q0, q3)}, Rp2

5 = {(q0, q4, q3)}, Rp3

5 = {(q0, q3)}.
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The set of states with self-loops is Qs = {q1, q2, q4}. Then the sets Pp(q) for q ∈ Rp5 are as follows:

Pp0(q0, q1, q2, q3) = {(q0, q1, q2, 3), (q1, q2, q3, 3)},
Pp0(q0, q1, q4, q3) = {(q0, q1, q4, 3), (q1, q4, q3, 3)},
Pp1(q0, q3) = Pp3(q0, q3) = ∅, Pp2(q0, q4, q3) = {(q0, q4, q3, 4)}.

For every q ∈ Rp5, the corresponding finite words σ(q) are listed as follows:

σ(q0, q3) = {p1}, σ(q0, q4, q3) = {(p2, p1)},
σ(q0, q1, q2, q3) = {(p0, p1, p2)}, σ(q0, q1, q4, q3) = {(p0, p2, p1)}.

5. Controller Synthesis using Control Barrier Certificates

Having Pp(q) defined in (4.3) as the set of state runs of length 3 augmented with a horizon, in this section, we
provide a systematic approach to compute a policy with a (potentially tight) lower bound on the probability
that the state evolutions of S satisfies ϕ. Given DFA A¬ϕ, our approach relies on performing a reachability
computation over each element of P(A¬ϕ) (i.e.,

⋃
p∈Π

⋃
q∈Rp

N
Pp(q)), where reachability probability is upper

bounded using control barrier certificates along with appropriate choices of control inputs as mentioned in The-
orem 3.6. However, computation of control barrier certificates and the policies for each element ν ∈ P(A¬ϕ),
can cause ambiguity while utilizing controllers in closed-loop whenever there are more than one outgoing edges
from a state of the automaton. To make it more clear, consider elements ν1 = (q0, q1, q2, T ((q0, q1, q2, q3), q1))
and ν2 = (q0, q1, q4, T ((q0, q1, q4, q3), q1)) from Example 1, where there are two outgoing transitions from state
q1 (see Figure 1(b)). This results in two different reachability problems, namely, reaching sets L−1(σ(q1, q2))
and L−1(σ(q1, q4)) starting from the same set L−1(σ(q0, q1)). Thus computing different control barrier cer-
tificates and corresponding controllers in such a scenario is not helpful. To resolve this ambiguity, we simply
merge such reachability problems into one reachability problem by replacing the reachable set Xb in Theo-
rem 3.6 with the union of regions corresponding to the alphabets of all outgoing edges. Thus we get a common
control barrier certificate and a corresponding controller. This enables us to partition P(A¬ϕ) and put the
elements sharing a common control barrier certificate and a corresponding control policy in the same partition
set. These sets can be formally defined as

µ(q,q′,∆(q′)) := {(q, q′, q′′, T ) ∈ P(A¬ϕ) | q, q′, q′′ ∈ Q and q′′ ∈ ∆(q′)}.
The control barrier certificate and the control policy corresponding to the partition set µ(q,q′,∆(q′)) are denoted
by Bµ(q,q′,∆(q′))(x) and uµ(q,q′,∆(q′))(x), respectively. Thus, for all ν ∈ P(A¬ϕ), we have

(5.1) Bν(x) = Bµ(q,q′,∆(q′))(x) and uν(x) = uµ(q,q′,∆(q′))(x), if ν ∈ µ(q,q′,∆(q′)).

5.1. Control policy. From the above discussion, one can readily observe that we have different control
policies at different locations of the automaton which can be interpreted as a switching control policy. Next,
we define the automaton representing the switching mechanism for control policies. Consider the DFA A¬ϕ =
(Q,Q0,Π, δ, F ) corresponding to ¬ϕ as discussed in Section 4, where ∆(q) denotes the set of all successor
states of q ∈ Q. Now, the switching mechanism is given by a DFA Am = (Qm, Qm0,Πm, δm, Fm), where
Qm := Qm0 ∪ {(q, q′,∆(q′)) | q, q′ ∈ Q \ F} ∪ Fm is the set of states, Qm0 := {(q0,∆(q0)) | q0 ∈ Q0} is a set of
initial states, Πm = Π, Fm = F , and the transition relation (qm, σ, q

′
m) ∈ δm is defined as

• for all qm = (q0,∆(q0)) ∈ Qm0,

– (q0,∆(q0))
σ(q0,q

′′)−→ (q0, q
′′,∆(q′′)), where q0

σ(q0,q
′′)−→ q′′;

• for all qm = (q, q′,∆(q′)) ∈ Qm \ (Qm0 ∪ Fm),

– (q, q′,∆(q′))
σ(q′,q′′)−→ (q′, q′′,∆(q′′)), such that q, q′, q′′ ∈ Q, q′′ ∈ ∆(q′) and q′′ /∈ F ; and

– (q, q′,∆(q′))
σ(q′,q′′)−→ q′′, such that q, q′, q′′ ∈ Q, q′′ ∈ ∆(q′) and q′′ ∈ F .
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The control policy that is a candidate for solving Problem 2.7 is given as

(5.2) ρ(x, qm) = uµ(q′m)
(x), ∀(qm, L(x), q′m) ∈ δm.

In the next subsection, we discuss the computation of bound on the probability of satisfying the specification
under such a policy, which then can be used for checking if this policy is indeed a solution for Problem 2.7.

Remark 5.1. The control policy in (5.2) is a Markov policy on the augmented space X ×Qm. Such a policy
is equivalent to a history dependent policy on the state set X of the system as discussed in Subsection 2.2 (see
[TMKA13] for a proof).

Example 1. (continued) The DFA Am = (Qm, Qm0,Πm, δm, Fm) modeling the switching mechanism between
policies for the system in Example 1 is shown in Figure 2. �

p0

p2

:p2

p1

p1

:p1

p1

p2
p0 _ p3

(q0;∆(q0))

(q0; q1;∆(q1))

(q0; q4;∆(q4))

(q1; q2;∆(q2)) (q1; q4;∆(q4))

q3

:p1

p2

Figure 2. DFA Am representing switching mechanism for controllers for Example 1.

5.2. Computation of probabilities. Next theorem provides an upper bound on the probability that the
state evolution of the system satisfies the specification ¬ϕ.

Theorem 5.2. For a given LTLF specification ϕ, let A¬ϕ be a DFA corresponding to its negation. For p ∈ Π,
let RpN be the set defined in (4.2), and Pp be the set of runs of length 3 augmented with a horizon defined
in (4.3). The probability that the state evolution of S starting from any initial state x0 ∈ L−1(p) under the
control policy in (5.2) satisfies ¬ϕ within time horizon [0, N) ⊆ N0 is upper bounded by

(5.3) Px0
ρ {L(xN ) |= ¬ϕ} ≤

∑
q∈Rp

N

∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ Pp(q)} ,

where γν + cνT is computed via Theorem 3.6 which is the upper bound on the probability of the trajectories of
S starting from Xa := L−1(σ(q, q′)) and reaching Xb := L−1(σ(q′, q′′)) within time horizon [0, T ) ⊆ N0.

Proof. For p ∈ Π, consider an accepting run q ∈ RpN and set Pp(q) as defined in (4.3). We apply Theorem 3.6
to any ν = (q, q′, q′′, T ) ∈ Pp(q). The probability that the state evolution of S starts from any initial state
x0 ∈ L−1(σ(q, q′)) and reaches L−1(σ(q′, q′′)) under control input uν(x) within time horizon [0, T ] ⊆ N0 is
upper bounded by γν + cνT . Now the upper bound on the probability of the trace of the state evolution (i.e.,
L(xN )) reaching accepting state following trace corresponding to q is given by the product of the probability
bounds corresponding to all elements ν = (q, q′, q′′, T ) ∈ Pp(q) and is given by

(5.4) P{σ(q) |= ¬ϕ} ≤
∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ Pp(q)} .

Note that, the way we computed time horizon T , we always get the upper bound for the probabilities for all
possible combinations of self-loops for accepting state runs of length less than or equal to N + 1. The upper
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bound on the probability that the state evolution of the system S starting from any initial state x0 ∈ L−1(p)
violating ϕ can be computed by summing the probability bounds for all possible accepting runs as computed
in (5.4) and is given by

Px0
ρ {L(xN ) |= ¬ϕ} ≤

∑
q∈Rp

N

∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ Pp(q)} .

�

Theorem 5.2 enables us to decompose the computation into a collection of sequential reachability, compute
bounds on the reachability probabilities using Theorem 3.6, and then combine the bounds in a sum-product
expression. Note that the upper bound provided in (5.3) could be replaced by min

{
1,
∑

q∈Rp
N

∏
{(γν +

cνT ) | ν=(q, q′, q′′, T )∈Pp(q)}
}

, to prevent it from being greater than one. This bound is useful only if it is
less than one.

Remark 5.3. In case we are unable to find control barrier certificates for some of the elements ν ∈ Pp(q) in
(5.3), we replace the related term (γν + cνT ) by the pessimistic bound 1. In order to get a non-trivial bound
in (5.3), at least one control barrier certificate must be found for each q ∈ RpN .

Corollary 5.4. Given the result of Theorem 5.2, the probability that the trajectories of S of length N starting
from any x0 ∈ L−1(p) satisfies LTLF specification ϕ is lower-bounded by

Px0
ρ {L(xN ) |= ϕ} ≥ 1− Px0

ρ {L(xN ) |= ¬ϕ}.

5.3. Computation of control barrier certificate. Proving the existence of a control barrier certificate and
finding one are in general hard problems. But if we restrict the class of systems and labeling functions, we
can construct computationally efficient techniques to search for control barrier certificates and corresponding
control policies of specific forms. In this subsection, we provide two possible approaches for computing control
barrier certificates and corresponding control policies for a dt-SCS S with respectively continuous and discrete
input sets.

5.3.1. Continuous input sets. We propose a technique using sum-of-squares (SOS) optimization [Par03], re-
lying on the fact that a polynomial is non-negative if it can be written as a sum of squares of different
polynomials. In order to utilize an SOS optimization, we raise the following assumption.

Assumption 5.5. System S has a continuous state set X ⊆ Rn and a continuous input set U ⊆ Rm. Its
vector field f : X×U×Vw → X is a polynomial function of state x and input u for any w ∈ Vw. Partition sets
Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M}, are bounded semi-algebraic sets, i.e., they can be represented by polynomial
equalities and inequalities.

Under Assumption 5.5, we can formulate conditions in Theorem 3.6 as an SOS optimization to search for
a polynomial control barrier certificate B(·), a polynomial control policy u(·) and a upper bound (γ + cTd).
The following lemma provides a set of sufficient conditions for the existence of such control barrier certificate
required in Theorem 3.6, which can be solved as an SOS optimization.

Lemma 5.6. Suppose Assumption 5.5 holds and sets Xa, Xb, X can be defined by vectors of polynomial
inequalities Xa = {x ∈ Rn | g0(x) ≥ 0}, Xb = {x ∈ Rn | g1(x) ≥ 0}, and X = {x ∈ Rn | g(x) ≥ 0}, where
the inequalities are defined element-wise. Suppose there exists a sum-of-square polynomial B(x), constants
γ ∈ [0, 1) and c ≥ 0, polynomials λui

(x) corresponding to the ith input in u = (u1, u2, . . . , um) ∈ U ⊆ Rm,
and vectors of sum-of-squares polynomials λ0(x), λ1(x), and λx(x, u) of appropriate size such that following
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expressions are sum-of-squares polynomials

−B(x)− λT0 (x)g0(x) + γ(5.5)

B(x)− λT1 (x)g1(x)− 1(5.6)

−E[B(f(x,u,w))|x,u]+B(x)−
m∑
i=1

(ui−λui(x))−λTx(x,u)g(x)+c.(5.7)

Then, B(x) satisfies conditions in Theorem 3.6 and any ui ≥ λui
(x) is the corresponding control input.

Proof. Since the entries B(x) and λ0(x) in −B(x)− λT0 (x)g0(x) + γ are sum-of-squares, we have 0 ≤ B(x) +
λT0 (x)g0(x) ≤ γ. Since the term λT0 (x)g0(x) is non-negative over Xa, (5.5) implies condition (3.4) in The-
orem 3.6. Similarly, we can show that (5.6) implies condition (3.5) in Theorem 3.6. Now consider (5.7).
If we choose control input ui = λui(x) and since the term λT (x)g(x) is non-negative over set X, we have
E[B(f(x, u, w))|x, u] ≤ B(x) + c which implies that the function B(x) is a control barrier certificate. This
concludes the proof. �

Remark 5.7. Assumption 5.5 is essential for applying the results of Lemma 5.6 to any LTLF specification.
For a given specification, we can relax this assumption and allow some of the partition sets Xi to be unbounded.
For this, we require that the labels corresponding to unbounded partition sets should only appear either on self-
loops or on accepting runs of length less than 3. For instance, Example 1 has an unbounded partition set X3

and its corresponding label p3 satisfies this requirement (see Figure 1), thus the results are still applicable.

Based on Lemma 5.6, for any ν ∈ P(A¬ϕ), a polynomial control barrier certificate Bν(x) and controller uν(x)
as in (5.1) can be computed using SOSTOOLS [PPP02] in conjunction with a semidefinite programming
solver such as SeDuMi [Stu99]. The computed barrier certificate will satisfy conditions in Theorem 3.6 while
minimizing constants γν and cν . Having values of γν and cν for all ν ∈ P(A¬ϕ), one can simply utilize
results of Theorem 5.2 and Corollary 5.4 to compute a lower bound on the probability of satisfying the given
specification to check the solution to Problem 2.7.

Remark 5.8. To minimize the values of γν and cν for each ν ∈ P(A¬ϕ), one can simply utilize the bisection
procedure by iteratively fixing γν and minimizing over cν and then fixing the obtained cν and minimizing over
γν . In this way, we give priority to minimizing cν to obtain a tight upper bound (γν + cνTd) which is less
sensitive to the finite time horizon Td.

Remark 5.9. The procedure discussed above may result in a more conservative probability bounds due to the
computation of common control barrier certificate in some cases. To obtain less conservative bounds one can
simply substitute the constructed control policy in dynamics of the system and recompute barrier certificates
minimizing constants γν and cν for each ν ∈ P(A¬ϕ) using Lemma 5.6. Then utilize these values to compute
ϑ in Problem 2.7 using Theorem 5.2 and Corollary 5.4.

Example 1. (continued) To compute control policy uν(x) and values of γν and cν for each ν ∈ P(A¬ϕ),
we use SOS optimization according to Lemma 5.6 and minimize values of γ and c using bisection method.
The optimization problem is solved using SOSTOOLS and SeDuMi. We choose barrier certificates B, SOS
polynomials λ0, λ1, λ, and polynomial controller λu of orders 4, 2, 2, 2 and 2, respectively. The obtained
controllers uν(x) and values of γν and cν are listed in Table 1. Now using Theorem 5.2, one gets

Px0
ρ {L(xN ) |= ¬ϕ} ≤ 4.883e-4× 0.002 + 4.883e-4× 9.766e-4 = 1.453e-6, for all x0 ∈ L−1(p0);

Px0
ρ {L(xN ) |= ¬ϕ} ≤ 9.766e-4, for all x0 ∈ L−1(p2); and

Px0
ρ {L(xN ) |= ¬ϕ} = 1, for all x0 ∈ L−1(p1) ∪ L−1(p3).

The control policy is given by ρ(x, qm) = uµ(q′m)
(x), where (qm, L(x), q′m) ∈ δM is a transition in DFA Am

shown in Figure 2. �
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Table 1. Controllers uν(x), constants γν , and cν for all ν ∈ P(A¬ϕ), where cν = 0.

µ(q,q′,∆(q′))
uν(x) = a0x

2
1 + a1x1x2 + a2x1 + a3x

2 + a4x2 + a5

[a0, a1, a2, a3, a4, a5]
γν

{(q0, q1, q2, 3), (q0, q1, q4, 3)} [1.745e-3, 3.664e-6, −1.884e-4, 1.938e-3, 3.886e-4, 0.161] 4.883e-4
{q1, q2, q3, 3} [1.321e-3, 3.252e-5, 2.544e-4, 1.828e-3, 4.212e-3, 0.228] 0.002
{q1, q4, q3, 3} [1.754e-3, −6.636e-6, 1.636e-4, 1.934e-3, −2.170e-3, 0.163] 9.766e-4
{q0, q4, q3, 4} [1.754e-3, −6.636e-6, 1.636e-4, 1.934e-3, −2.170e-3, 0.163] 9.766e-4

5.3.2. Finite input sets. We use a counter-example guided inductive synthesis (CEGIS) framework to find con-
trol barrier certificates for the system S with a finite input set U . The approach uses satisfiability (feasibility)
solvers for finding barrier certificate of a given parametric form that handles quantified formulas by alternat-
ing between series of quantifier-free formulas using existing satisfiability modulo theories (SMT) solvers (viz.,
Z3 [dMB08], dReal [GKC13], and OptiMathSAT [ST15]). In order to use CEGIS framework, we raise the
following assumption.

Assumption 5.10. System S has a compact state set X ⊂ Rn and a finite input set U = {u1, u2, . . . , ul},
where ui ∈ Rm, i ∈ {1, 2, . . . , l}. Partition sets Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M}, are bounded semi-algebraic
sets.

Under Assumption 5.10, we can formulate conditions of Theorem 3.6 as a satisfiability problem which can
search for parametric control barrier certificate using CEGIS approach. The following Lemma gives a feasibility
condition that is equivalent to conditions of Theorem 3.6.

Lemma 5.11. Suppose Assumption 5.10 holds and X0, X1, X are bounded semi algebraic sets. Suppose there
exists a function B(x), constants γ ∈ [0, 1], and c ≥ 0, such that following expression is true∧

x∈X
B(x) ≥ 0

∧
x∈X0

B(x) ≤ γ
∧
x∈X1

B(x) ≥ 1
∧
x∈X

( ∨
u∈U

(E[B(f(x, u, w)) | x, u] ≤ B(x) + c)
)
.(5.8)

Then, B(x) satisfies conditions of Theorem 3.6 and any u : X → U with u(x) ∈ {ui ∈ U | E[B(f(x, ui)) |
x, ui] ≤ B(x) + c} is a corresponding control policy.

Now, we briefly explain the idea of CEGIS framework for computation of such a function B(x).

1. Define a parameterized control barrier certificate of the form B(p, x) =
∑r
i=1 pibi(x), where basis

functions bi(x) are monomials, pi ∈ R are unknown coefficients, and i ∈ {1, 2, . . . , r}.
2. Select a finite set of samples X ⊂ X, a constant γ ∈ [0, 1], and c ≥ 0.
3. Compute a candidate control barrier certificate B(p, x) (i.e., coefficients pi) such that the following

expression is true.

ψ(p, x) :=
∧
x∈X

B(p, x) ≥ 0
∧

x∈X∩X0

B(p, x) ≤ γ
∧

x∈X∩X1

B(p, x) ≥ 1

∧
x∈X

( ∨
u∈U

(E[B(p, f(x, u, w)) | x, u] ≤ B(p, x) + c)
)
.

The above expression results in linear arithmetic formula that involves boolean combinations of linear
inequality constraints in pi, which can be efficiently solved with the help of SMT solvers Z3 [dMB08]
or OptiMathSAT [ST15].

4. Search for a counter example xc ∈ X such that the candidate solution B(p, x) obtained in the previous
step satisfies ¬ψ(p, x). Note that for a given p, satisfaction of ¬ψ(p, x) is equivalent to the feasibility
of a nonlinear constraint over x. If ¬ψ(p, x) has no feasible solution, the obtained candidate solution is
a true control barrier certificate for all x ∈ X which terminates the algorithm. Otherwise, if ¬ψ(p, x)
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is feasible for some x = xc ∈ X, then we add that counter-example xc to the finite set, X := X ∪{xc},
and reiterate Steps 3–4.
There are two possible ways to search for counter-examples:
(a) Using SMT solvers: To check satisfiability of ¬ψ(p, x), one can use an SMT solver that can

handle nonlinear constraints. For example, dReal [GKC13] is a general purpose nonlinear delta-
satisfiability solver suitable for solving quantifier-free nonlinear constraints involving polynomials,
trigonometric, and rational functions over compact sets X. We refer the interested readers to
[RS17] for a more detailed discussion.

(b) Using nonlinear optimization toolboxes: To find counter-examples, one can alternatively solve a
nonlinear optimization problem and check satisfaction of the following condition

If
(

min
x∈X

B(p, x) < 0, OR min
x∈X0

−B(p, x) + γ < 0, OR min
x∈X1

B(p, x)− 1 < 0,

OR min
x∈X

max
u∈U
−E[B(p, f(x, u, w)) | x, u] +B(p, x) + c < 0

)
Then x is a counter-example.

To solve nonlinear optimization problems, one can use existing numerical optimization techniques
such as sequential quadratic programming. Note that, the methods may run into local optima,
however, one can utilize multi-start techniques [Mar03] to obtain global optima. For the final
rigorous verification step, one can use tools like RSolver1 which extends a basic interval branch-
and-bound method with interval constraint propagation. A detailed discussion on the verification
algorithm used in RSolver can be found in [Rat06, Rat17].

This CEGIS algorithm is then iterated to minimize the values of γ and c in (5.8) as discussed in Remark 5.8.
Note that, the CEGIS procedure either (i) terminates after some finite iterations with a control barrier
certificate satisfying (5.8), (ii) terminates with a counter example proving that no solution exists, or (iii) runs
forever. In order to guarantee termination of the algorithm, one can set an upper bound on the number of
unsuccessful iterations.

5.4. Computational Complexity. Characterizing the computational complexity of the proposed approaches
is a very difficult task in general. However, in this subsection, we provide some analysis on the computational
complexity.

From the construction of directed graph G = (V, E), explained in Section 4, the number of triplets and hence
the number of control barrier certificates needed to be computed are bounded by |V|3 = |Q|3, where |V| is the
number of vertices in G. However, this is the worst-case bound. In practice, the number of control barrier
certificates is much less. In particular, it is given by the number of all unique successive pairs of atomic
propositions corresponding to the elements ν ∈ P (A¬ϕ). Further, it is known that |Q| is at most |¬ϕ|2|¬ϕ|,
where |¬ϕ| is the length of formula ¬ϕ in terms of number of operations [BKL08], but in practice, it is much
smaller than this bound [KB06].

In the case of sum-of-squares optimization, the computational complexity of finding polynomials B, λ0, λ1, λui
,

and λx in Lemma 5.6 depends on both the degree of polynomials appearing in (5.5)-(5.6) and the number
of state variables. It is shown that for fixed degrees, the required computations grow polynomially with
respect to the dimension [WTL16]. Hence, we expect that this technique is more scalable in comparison
with the discretization-based approaches, especially for large-dimensional systems. For the CEGIS approach,
due to its iterative nature and lack of guarantee on termination, it is difficult to provide any analysis on the
computational complexity.

1http://rsolver.sourceforge.net
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Figure 3. DFA A¬ϕ that accept all traces of ¬ϕ, where ϕ = p0 ∧�¬(p1 ∨ p2).

6. Case Studies

In this section, we consider two case studies to demonstrate the effectiveness of our results.

6.1. Temperature control of a room. We consider evolution of a room temperature given by stochastic
difference equation

x(k + 1) = x(k) + τs(αe(Te − x(k)) + αH(Th − x(k))u(k)) + 0.1w(k),(6.1)

where x(k) denotes the temperature of the room, u(k) represents ratio of the heater valve being open, w(k) is
a standard normal random variable that models environmental uncertainties, τs = 5 minutes is the sampling
time, Th = 55◦C is the heater temperature, Te = 15◦C is the ambient temperature, and αe = 8 × 10−3 and
αH = 3.6× 10−3 are heat exchange coefficients. All the parameters are adopted from [JZ17].
The state set of the system is X ⊆ R. We consider regions of interest X0 = [21, 22], X1 = [0, 20], X2 = [23, 45],
and X3 = X \ (X0 ∪X1 ∪X2). The set of atomic propositions is given by Π = {p0, p1, p2, p3} with labeling
function L(xi) = pi for all xi ∈ Xi, i ∈ {0, 1, 2, 3}. The objective is to compute a control policy with a
potentially tight lower bound on the probability that the state evolution of length N = 50 satisfies the LTLF
formula ϕ = p0 ∧ �¬(p1 ∨ p2). The DFA A¬ϕ corresponding to ¬ϕ is shown in Figure 3. One can readily
see that, we have sets Pp0 = {(q0, q1, q2, 49)} and Pp1 = Pp2 = Pp3 = ∅. Next, we discuss the computational
results for two cases of finite and continuous input sets.

6.1.1. Finite input set. We consider that the control input u(k) takes value in the set U = {0, 0.5, 1} (the
heater valve is either closed, half open, or full open) and the temperature lies in the bounded set X = [0, 45].
We compute a control barrier certificate of order 4 using the CEGIS approach discussed in Subsection 5.3.2
as the following:

B(x) = 0.2167x4 − 18.6242x3 + 6.0032e2x2 − 8.5998e3x+ 4.6196e4.

The corresponding control policy is

(6.2) u(x) = min{ui ∈ U | E[B(f(x, ui)) | x, ui] ≤ B(x) + c}.

One can readily see that the DFA of switching mechanism Am contains only three states Qm = {(q0,∆(q0)),
(q0, q1,∆(q1)), q2}, thus we have control policy ρ(x, qm) ≡ u(x). The lower bound Px0

ρ {L(xN ) |= ϕ} ≥ 0.9766

for all x0 ∈ L−1(p0) is obtained using SMT solver Z3 and employing sequential quadratic programming for
computing counterexamples as described in Subsection 5.3.2. Values of γ and c are obtained as 0.008313 and
0.0003125, respectively. The implementation performed using Z3 SMT solver along with sequantial quadratic
program in Python on an iMac (3.5 GHz Intel Core i7 processor) and it took around 4 minutes to find
a control barrier certificate and the associated lower bound. Figure 4 depicts the barrier certificate and the
corresponding conditions in Theorem 3.6: condition (3.4) is shown in a snippet in the top figure, condition (3.5)
is shown in the top figure, and condition (3.2) for the control barrier certificate with control input u(x) is
shown in the bottom figure. Figure 5 presents the control policy u : X → U in (6.2) and Figure 6 shows a few
realizations of the temperature under this policy.
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Figure 4. Room temperature control: barrier certificate and the associated conditions from
Theorem 3.6. Condition (3.4) is shown in the snippet in the top figure, condition (3.5) is
shown in the top figure, and condition (3.2) for the control barrier certificate under policy
u(x) is shown in the bottom figure.
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Figure 5. Room temperature control: control policy u : X → {0, 0.5, 1} as given in (6.2).

6.1.2. Continuous input set. Let us assume the system has the state space X = R and the continuous input
set U = [0, 1] (the heater valve can be positioned continuously from fully closed to fully open). As described
in Subsection 5.3.1, using Lemma 5.6 we compute a control barrier certificate of order 4 as follows

B(x) = 0.1911x4
1 − 16.4779x3

1 + 532.6393x2
1 − 7651.3308x1 + 41212.3666,

and the corresponding control policy of order 4 as

(6.3) u(x) = −1.018e-6x4 + 7.563e-5x3 − 0.001872x2 + 0.02022x+ 0.3944.

The values γ = 0.015625, c = 0.00125, and the lower bound Px0
ρ {L(xN ) |= ϕ} ≥ 0.9281 is obtained using

SOSTOOLS and SeDuMi for all x0 ∈ L−1(p0), as discussed in Subsection 5.3.1. The bound in this case is
more conservative than the previous case with a finite input set. This is mainly due to the optimization
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Figure 6. Room temperature control: temperature evolution under control policy in (6.2).
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Figure 7. Room temperature control: control policy u : X → [0, 1] as given in (6.3).

algorithm that assumes fixed-degree polynomials B(·), λ0(·), λ1(·), λx(·), and λu(·). The computed lower
bound can be improved by increasing the polynomial degrees but will result in a larger computational cost.
The control policy and a few realizations of the temperature under this policy are shown in figures 7 and 8,
respectively.

Discretization-based approaches provide a policy that is generally time-dependent. So it is not possible to
directly compare our approach with them. However, using these techniques, we can validate the lower bound
provided by our approach a posteriori. For this purpose, we combine our synthesized policy with the system
to obtain an autonomous system and then use the toolbox FAUST2 [SGA15] that computes an interval for
the probability based on finite abstractions of the system. The toolbox takes around 4 minutes to verify the
system using 314 abstract states. The probability satisfies

Px0
ρ {L(xN ) |= ϕ} ∈ [1− 5.458× 10−4, 1− 3.612× 10−4],

for all x0 ∈ L−1(p0), which confirms the lower bound provided by our approach. For the purpose of comparison,
we run the example using FAUST2 to synthesize a time-dependent policy. In this case, the toolbox takes
around 7 minutes and provides probability interval as

Px0
ρ {L(xN ) |= ϕ} ∈ [1− 1.5434× 10−7, 1− 4.277× 10−8],

for all x0 ∈ L−1(p0).
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Figure 8. Room temperature control: temperature evolution under control policy in (6.3).

6.2. Lane keeping of a vehicle. For the second case study, we consider a kinematic single-track model of a
vehicle, specifically, BMW 320i, adopted from [AKM17] by discretizing the model and adding noises to capture
the effect of uneven road. The corresponding nonlinear stochastic difference equation is

x1(k + 1) = x1(k) + τsv cos(x4(k)) + 0.1w1(k)

x2(k + 1) = x2(k) + τsv sin(x4(k)) + 0.01w2(k)

x3(k + 1) = x3(k) + τsu(k)

x4(k + 1) = x4(k) +
τsv

lwb
tan(x3(k)) + 0.0005w3(k),

where states x1, x2, x3, and x4 represent x, y, the steering angle δ, and the heading angle Ψ, respectively.
The schematic showing states in the single-track model is shown in Figure 9. The control input representing
steering velocity is denoted by u. The terms w1, w2, and w3 are noises in position and heading generated due
to uneven road modeled using standard normal distribution. The parameters τs = 0.01s, lwb = 2.578m, and
v = 10m/s represent the sampling time, the wheelbase, and velocity, respectively.
We consider the state set X = [0, 50]× [−6, 6]× [−0.05, 0.05]× [−0.1, 0.1], finite input set U = {−0.5, 0, 0.5},
regions of interestX0 = [0, 5]×[−0.1, 0.1]×[−0.005, 0.005]×[−0.05, 0.05], X1 = [0, 50]×[−6,−2]×[−0.05, 0.05]×
[−0.1, 0.1], X1 = [0, 50]× [2, 6]× [−0.05, 0.05]× [−0.1, 0.1], and X3 = X \ (X0 ∪X1 ∪X2). The set of atomic
propositions is given by Π = {p0, p1, p2, p3} with labeling function L(xi) = pi for all xi ∈ Xi, i ∈ {0, 1, 2, 3}.
Our goal is to design a control policy to keep the vehicle in the middle lane for the time horizon of 4 seconds
(i.e., N = 400). The specification can be written as an LTLF formula ϕ = p0 ∧ �¬(p1 ∨ p2). Using CEGIS
approach discussed in Subsection 5.3.2, we compute a control barrier certificate as the following:

B(x) =2.1794e-6x2
1 + 6.2500e-2x2

2 − 15.3131x2
3 + 1.0363x2

4 + 1.3088e-4x1

− 4.4330e-5x2 + 0.3592x3 − 0.2488x4 + 5.9126e-2,

and the corresponding control policy as

(6.4) u(x) ∈ {ui ∈ U | E[B(f(x, ui)) | x, ui] ≤ B(x) + c},

which guarantees Px0
ρ {L(xN ) |= ϕ} ≥ 0.8688 with values γ = 0.03125 and c = 0.00025. Figure 10 shows a few

realizations of the system under the control policy (6.4). The implementation performed using the Z3 SMT
solver along with the sequential quadratic program in Python on an iMac (3.5 GHz Intel Core i7 processor)
and it took around 30 hours to find a control barrier certificate and the associated lower bound. Note that,
since the procedure described in Subsection 5.3.2 is highly parallelizable, the execution time can be reduced
significantly. Note that due to the large dimension of the state set, FAUST2 is not able to give a lower bound
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Figure 9. Single-track model
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Figure 10. Several closed-loop realization using controller in (6.3).

on the probability of satisfaction. However, for the sake comparison, we employ the Monte-Carlo approach to
obtain the empirical probability interval as Px0

ρ {L(xN ) |= ϕ} ∈ [0.9202, 0.9630] with the confidence 1− 10−10

using 105 realizations with the controller in (6.4), which confirms the lower bound obtained using our approach.

7. Conclusion

In this paper, we proposed a discretization-free approach for the formal synthesis of discrete-time stochastic
control systems. The approach computes a control policy together with a lower bound on the probability of
satisfying a specification encoded as LTL over finite traces. It utilizes computation of control barrier certificates
and uses sum-of-squares optimization or counter-example guided inductive synthesis to obtain such policies.
Currently, our approach is restricted to LTLF properties and is computationally applicable only to systems
with dynamics that can be transformed into polynomial (in)equalities. The outcome of the approach is also
restricted to stationary policies.

Our approach can easily be extended to synthesize policies for continuous-time stochastic control systems
enforcing LTLF specifications by excluding the next operator. The results may become more conservative in
this case since an efficient computation of the temporal horizon T (·) as in (4.3) is not possible and one needs
to consider the worst-case T = N . Although the proposed approach seems scalable in comparison with the
discretization-based ones, we are actively working on improving scalability further by providing a compositional
construction of control barrier certificates for large-scale systems (see [JSZ20] for our recent work providing
compositional construction of control barrier certificates for non-stochastic interconnected systems). From the
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implementation point of view, we plan to provide an efficient toolbox leveraging parallel computations for
solving these synthesis problems.
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