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Abstract. We study distributed optimization problems over a network when the communication
between the nodes is constrained, and so information that is exchanged between the nodes must be
quantized. Recent advances using the distributed gradient algorithm with a quantization scheme
at a fixed resolution have established convergence, but at rates significantly slower than when the
communications are unquantized.

In this paper, we introduce a novel quantization method, which we refer to as adaptive quanti-
zation, that allows us to match the convergence rates under perfect communications. Our approach
adjusts the quantization scheme used by each node as the algorithm progresses: as we approach
the solution, we become more certain about where the state variables are localized, and adapt the
quantizer codebook accordingly.

We bound the convergence rates of the proposed method as a function of the communication
bandwidth, the underlying network topology, and structural properties of the constituent objective
functions. In particular, we show that if the objective functions are convex or strongly convex, then
using adaptive quantization does not affect the rate of convergence of the distributed subgradient
methods when the communications are quantized, except for a constant that depends on the reso-
lution of the quantizer. To the best of our knowledge, the rates achieved in this paper are better
than any existing work in the literature for distributed gradient methods under finite communication
bandwidths. We also provide numerical simulations that compare convergence properties of the dis-
tributed gradient methods with and without quantization for solving distributed regression problems
for both quadratic and absolute loss functions.

1. Introduction. We consider a distributed subgradient algorithm for solving
optimization problems of the form

minimize
x∈X

f(x) ,
n∑
i=1

fi(x). (1.1)

Each functional fi in the sum above is associated with a computational node, and
these nodes have connected into a network specified by a graph. Each node has
knowledge of only their function fi, and so they must work together, communicating
only with their neighbors on the graph, to find a minimizer of (1.1). The distributed
subgradient (DSG) method, described in full in Section 2.2 below, is a popular ap-
proach for solving this type of problem. In DSG, each node keeps a local estimate
of the decision variable x and iterates by communicating the local state to its neigh-
bors on the graph, averaging the estimates it received from its neighbors, then taking
a gradient step. The convergence properties of this algorithm are well understood,
see [1] along with the other references in Section 1.2, and essentially match the rates
of standard centralized subgradient methods with a constant factor that depends on
the connectivity of the graph.

In this paper, we take a step towards understanding how imperfect communica-
tion affects the convergence of DSG. In particular, we derive convergence rates for a
modified version of the DSG algorithm when the communications between the nodes
are quantized, modeling scenarios in which the bandwidth available for communication
is often limited. Unlike previous works [2, 3], we show if the quantization intervals
are adjusted as the algorithm approaches a solution, then we can match the conver-
gence rates of unquantized DSG within a constant that depends on the number of
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bits used for quantization. We call this novel coding method adaptive quantization,
as it changes at every iteration based on the stepsize being used for the subgradient
descent.

1.1. Main Contribution. We first propose a modified version of DSG, which
directly takes into account the quantized error at every iteration. Second, we design
a novel adaptive quantization method, where the nodes quantize their values based
on the progress of their updates. The entire method is summarized in Algorithm 2.1
and described fully in Section 2 below.

Our analytical contribution is to show that the convergence rates of DSG are
unaffected when the communications use adaptive quantization, except for a factor
which captures the size of communication bandwidth.

Our analysis treats both the cases where the objective functions are convex and
strongly convex. When the fi are convex, we show that at iteration k, each node i
has an estimate zi(k) that obeys

f(zi(k))− f∗ .
∆2

(1− σ2)2
· ln k√

k
,

where 1 − σ2 is the spectral gap that quantifies the connectivity of the underlying
network and ∆ is the resolution of the quantizer. When the fi are strongly convex,
we derive a rate on the convergence of the zi to the unique solution x∗,

‖zi(k)− x∗‖2 .
∆2

(1− σ2)2
· ln k

k
.

These rates match those for the standard, unquantized verion of DSG [4].
The numerical results in Section 4 show that for stylized problems, both smooth

and not smooth, quantizing to 8 bits is essentially the same as communicating real
numbers, while using 5 or 6 bits results in only a modest increase in the number
iterations required to converge to a specified tolerance.

1.2. Related Work. The DSG algorithms for solving problem (1.1) have a long
history, probably first studied in [5] and recently received a wide attention; see for
example, [1, 6–11] and the recent survey paper [4]. Convergence results of DSG have
been explicitly studied in this literature; however, they are mostly established under
a critical assumption on the perfect communication between nodes. Such assumption
is not often held in practice, therefore, there is a necessity to study the performance
of DSG under imperfect communication. In particular, our focus in this paper is to
study the convergence rates of this method when information exchanged between the
nodes are quantized, modeling the practical applications with finite communication
bandwidth.

Distributed algorithms with random (dithered) quantization have been consid-
ered in [12] for solving network consensus problems, a special case of the problem
considered in this paper. On the other hand, different variants of distributed gradient
methods under quantized communication have been studied in [2,3,13–17]. In [13,14]
the authors only show the convergence to a neighborhood around the optimal of the
problem, while an exact convergence has been studied in [15, 16]; however, a con-
dition on the growing communication bandwidth is assumed in the latter work. To
remove such strong condition, the authors in [2,3] show the asymptotic convergence of
DSG methods under random quantization using only finite bandwidth. In particular,
in [3] the authors provide a rate in expectation O(1/k(1−γ)/2), for some γ ∈ (0, 1),
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when the problem objectives are smooth and strongly convex. On the other hand,
in [2] we study distributed subgradient methods for nonsmooth problems and an-
alyze their convergence rates by utilizing techniques from stochastic approximation
approach. Specifically, such algorithms asymptotically converge to the optimal value
in expectation at a rate O(ln(k) / k1/4) and O(ln(k) / k1/3) for convex and strongly
convex functions, respectively. The rates established in these two papers, however,
are sub-optimal and much slower than the ones in this paper as stated in Section 1.1.

The adaptive quantization studied in this paper seems to share some similarity
with the so-called “zoom in” and “zoom out” quantization to study the stability of
linear systems [18]. Moreover, this “zoom in” and “zoom out” quantization has also
been applied in distributed optimization with finite bandwidths, where an asymptotic
convergence to a solution has been derived in [17]. However, there is a lack of un-
derstanding how fast the algorithm converges, which is one of the main focus of this
paper.

We also want to note some related work [19–21] and the references therein, in
which distributed stochastic gradient with quantization under master/worker models
is considered. Such models consider a special star graph communication structure,
while consensus-based gradient methods are designed for any network topology. In
general, these two approaches are fundamentally different, therefore, the results stud-
ied in master/worker models cannot be extended to cover the problem considered in
this paper. Moreover, the quantized communication constraint studied in this paper
is one example of imperfect exchange of information between nodes. Another example
of imperfect exchange is latency in the communications. Convergence rates of DSG
optimization methods in the presence of communication delays have been studied
in [22–25].

Finally, there are some related methods based on primal-dual approach for solving
problem (1.1), such as, the accelerated primal-dual methods [26, 27], the alternating
direction method of multipliers (ADMM) [28–32], and the distributed dual methods
(mirror descent/dual averaging) [33–35]. Our focus in this paper will be on DSG
algorithms, as they are both simple and have convergence guarantees that are as
strong or stronger than those for dual methods.

1.3. Notation. We introduce here a set of definitions and notation that is used
throughout this paper. We use boldface to denote vectors in Rd to distinguish them
from scalars in R. Given a collection of vectors x1, . . . ,xn in Rd, we denote by X a
matrix in Rn×d, whose i-th row is xTi . We then denote by ‖x‖ and ‖X‖ the Euclidean
norm and the Frobenius norm of the vector x and the meatrix X, respectively. We
use 1 ∈ Rd to denote the the vector whose entries are all 1 and I ∈ Rn×n to denote
the identity matrix. Given a closed convex set X , we denote by [x]X the projection
of x to X .

Given a nonsmooth convex function f : Rd → R, we denote by ∂f(x) its subdif-
ferential at x, which is defined as the set of subgradients of f at x, i.e., ∂f(x) , {g ∈
Rd | f(y) ≥ f(x) + gT (y − x), ∀y ∈ Rd}. Since f is convex, ∂f(·) is nonempty. A
function f is said to be L-Lipschitz continuous if

| f(x)− f(y) | ≤ L‖x− y‖, ∀ x,y ∈ Rd. (1.2)

Note that the L-Lipschitz continuity of f is equivalent to the subgradients of f being
uniformly bounded by L [36]. A function f is said to be µ-strongly convex if f satisfies

f(y)− f(x)− g(x)T (y − x) ≥ µ

2
‖y − x‖2 ∀x,y. (1.3)
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Note that since the set X is compact, there exists a point x∗ which solves Problem
(1.1). However, x∗ may not be unique. We will use X ∗ to denote the set of optimal
solutions to Problem (1.1). Given a solution x∗ ∈ X ∗ we denote f∗ =

∑n
i=1 fi(x

∗).
Also, due to the compactness of X , the subgradients of fi are uniformly bounded in
X . We state this observation formally in the following proposition.

Proposition 1.1. There exists a positive constant Li, for all i ∈ V, such that
the 2-norm of subgradients gi(·) of fi are uniformly bounded by Li in X , i.e., the
following condition holds

‖gi(x)‖ ≤ Li, for all x ∈ X . (1.4)

2. Distributed Subgradient Methods. For solving problem (1.1), we are in-
terested in DSG methods [37], where each node i maintains its own version of the
decision variables xi ∈ Rd; the goal is to have all the xi converge to x∗, a solution
of problem (1.1). Each node is only allowed to interact with its neighbors that are
directly connected to it through a connected and undirected graph G = (V, E), where
V = {1, . . . , n} and E = (V ×V) are the vertex and edge sets, respectively. Each node
i then iteratively updates xi as

xi(k + 1) =

∑
j∈Ni

aijxj(k) − α(k)gi(xi(k))


X

, (2.1)

where α(k) is some sequence of stepsizes, gi(xi(k)) ∈ ∂fi(xi(k)), and N := {j ∈
V | (i, j) ∈ E} is the set of node i′s neighbors. The aij above are positive weights
that can be non-zero if there is an edge between nodes i and j, and otherwise can be
assigned by node i. We will collect these weights into a n× n matrix A, and assume
it meets the following conditions throughout.

Assumption 1. The matrix A, whose (i, j)-th entries are aij, is doubly stochas-
tic, i.e.,

∑n
i=1 aij = 1 for all j and

∑n
j=1 aij = 1 for all i. Moreover, A is irreducible

and aperiodic. Finally, the weights aij > 0 if and only if (i, j) ∈ E otherwise aij = 0.

This assumption also implies that A has a largest singular value of 1, and its other
singular values are strictly less than 1; see for example, the Perron-Frobenius theorem
[38]. We denote by σ2 ∈ (0, 1) the second largest singular value of A, which is a
key quantity in the analysis of the mixing time of a Markov chain with transition
probabilities given by A.

2.1. Adaptive Quantization. Each iteration in (2.1) requires every node to
communicate its estimate of the decision variables to its neighbors. Theorems 3.6
and 3.8 below study the convergence rate of a modified version of (2.1) when these
communications are quantized using our proposed adaptive quantization method. We
first present in this section some fundamentals of quantized communication.

To explain the main idea of our approach, we start with the uniform quantization
method to quantize a single real number x ∈ [`, u]. In particular, we divide the interval
into B bins whose end points are denoted by τi, ` = τ1 ≤ τ2 ≤ . . . ≤ τB = u. We
assume that the points τi are uniformly spaced with distance ∆, i.e., ∆ = τi+1− τi =
(u− `) / (B−1) for all i = 0, . . . , B−1. Thus b = dlog2(B)e bits can be used to index
the {τi}.

Next, given a value x ∈ [`, u] we denote by q = Q(x) its quantized value where

Q(x) , min
`
|τ` − x|. (2.2)

4



If τi and τi+1 achieve the minimal value in Eq. (2.3), then without loss of generality
we set Q(x) = τi. Also, by Eq. (2.2) the quantized error is given as

|x−Q(x)| ≤ ∆ =
u− `
B − 1

. (2.3)

When the quantized interval depends on time, i.e., [`(k), u(k)], we denote by Qk(x)
the uniform quantization of x over the time-varying interval [`(k), u(k)] at time k.
We can see from Eq. (2.3) that when B is fixed the quantized error depends directly
on the size of the interval [`(k), u(k)]. The main idea of our approach is to refine this
interval at every time step so that this interval is shrinking, which implies that the
quantized error decays to zero. We will refer to this scheme as adaptive quantization,
where a distributed implementation will be proposed in the next section.

Moreover, since the constraint set X is compact, it is contained in a rectangular
set

X ⊂ R , [`,u] = [`1, u1]× . . .× [`d, ud],

for some {(`i, ui)}. We quantize a x ∈ R by applying the procedure above indepen-
dently on each component, reusing the notation Q(x) to indicate that (2.2) is applied
component wise. Thus, in this case the total number of bits required to quantize the
whole vector is b × d. Moreover, the constants in the convergence results presented
below will be a function of the interval lengths ui − `i for each coordinate i of X .

Finally, as will be seen in Eq. (2.4) in the next section, to implement the adaptive
quantization method and update its estimate each node i ∈ V has to apply the
following two steps of its encoding/decoding scheme in each iteration k ≥ 0.

1. Node i computes the quantized interval Ri(k) to find its quantized value
qi(k) = Qk(xi(k)) by using the uniform quantization over this interval. As
mentioned, this interval has to be computed in such a way that the quantized
error ∆i(k) = xi(k)− qi(k) decays to zero.

2. We note that for each iteration k ≥ 0 node i only receives a sequence of b bits
qbj(k), e.g. qbj(k) = 01010010 a sequence of 8 bits, representing the value of

qj(k) over Rj(k). Thus, node i has to decode qbj(k) to recover qj(k). This
step can be done if node i knows Rj(k) for j ∈ Ni.

2.2. Distributed Subgradient Methods under Adaptive Quantization.
Our focus in this paper is to study the impact of quantized communication between
the nodes on the performance of DSG. In particular, at any iteration k ≥ 0 the nodes
are only allowed to send and receive the quantized values of their estimates to their
neighboring nodes. Due to the quantization, we first modify the update in Eq. (2.1)
to take into account the quantized error. That is, each node i, for all i ∈ V, now
considers the following update

xi(k + 1) =

 xi(k)− qi(k)︸ ︷︷ ︸
“quantization error”

+
∑
j∈Ni

aijqj(k) − α(k)gi(xi(k))


X

, (2.4)

where qi(k) = Qk(xi(k)), for all i ∈ V, is the quantized value of xi(k) over some
interval Ri(k) , [`i(k),ui(k)] for each step k ≥ 0. The update (2.4) has a simple
interpretation as follows. At time k ≥ 0, each node i first obtains the quantized
value qi(k) of its value xi(k). Each node i then formulates the weighted average of
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its quantized value qi(k) and the quantized values qj(k) received from its neighbors
j ∈ Nj , with the goal of seeking a consensus on their estimates. In addition, each node
also introduces its quantized error into its own update, with the goal of eliminating
the bias due to the quantized error over the network. Each node then moves along the
subgradients of its respective objective function to update its estimates, pushing the
consensus point toward the optimal set X ∗. The distributed subgradient algorithm
under random quantization is formally stated in Algorithm 2.1.

Algorithm 2.1 Distributed Subgradient Algorithm Under Adaptive Quantization

1. Initialize: Let L =
∑
i∈V

Li, γ = 96+48L
1−σ2

.

Each node i ∈ V initializes
a. Divide [`,u] (that contains X ) into Bd rectangular bins uniformly componen-

twise as described above, i.e., ` = τ 1 ≤ . . . ≤ τBd = u .

b. Set xi(0) = qi(0) = τm for some arbitrarily index m ∈ [1, Bd]. Compute
qbi (0) using the quantization scheme Q0(xi(0)) over the set [`,u].

c. A sequence of positive and nonincreasing step sizes {α(k)}.

2. Iteration: For k = 0, 1, . . . , node i ∈ V implements
a. Send qbi (k) to node j ∈ Ni
b. Receive qbj(k) from node j ∈ Ni

– If k = 0 then Rj(0) = [`,u], otherwise

Rj(k) ,
[
qj(k − 1)− γ

2
α(k − 1)1, qj(k − 1) +

γ

2
α(k − 1)1

]
– Recover qj(k) from qbj(k) by using uniform quantization over Rj(k)

c. Use qj(k) and update

xi(k + 1) =

xi(k)− qi(k) +
∑
j∈Ni

aijqj(k) − α(k)gi(xi(k))


X

.

d. Compute qbi (k + 1) and qi(k + 1) by using Qk+1(xi(k + 1)) over the interval

Ri(k + 1) ,
[
qi(k)− γ

2
α(k)1, qi(k) +

γ

2
α(k)1

]
e. Update the output

zi(k) =

∑k
t=0 α(t)xi(t)∑k
t=0 α(t)

· (2.5)

Steps (a)-(d) in Algorithm 2.1 are to guarantee the conditions in the two steps
(1) and (2) mentioned in the preceding subsection. In particular, step (d) shows how
each node i defines its quantized interval Ri(k) and computes qi(k) and qbi (k). In
addition, it is clear from the definition of Ri(k) that

‖∆i(k)‖ = ‖xi(k)− qi(k)‖ . O(α(k)),

which decays to zero. On the other hand, step (b) shows how node i can recover the
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quantized value qj(k) from the encoded bits, qbj(k) and Rj(k). Note that the interval
Rj(k) can be calculated locally at node i at any time k since node i knows the
previous value qj(k − 1) for j ∈ Ni. Thus, Algorithm 2.1 is fully distributed, that is,
the updates at the nodes are executed in parallel and based only on local interactions
between nodes. Finally, we show in the next section that by executing Eq. (2.4) we
have xi(k) ∈ Ri(k) for all k ≥ 0. This observation explains our motivation in defining
Ri(k) in step (d).

3. Main Results. This section establishes rates of convergence for Algorithm 2.1
in the cases where fi are convex and strongly convex. These results show that under
adaptive quantization, the convergence rates of the distributed subgradient algorithm
are essentially unaffected by the finite communication bandwidths, except for a con-
stant factor that captures the size of these bandwidths.

The main steps of our analysis are as follows. As we observed in the previous
section, the adaptive quantization scheme forces the quantization error ∆i(k) to decay
to zero at the same rate as the step sizes α(k). Our first step is to use this fact to
show that the distance between the estimates xi(k) to the average x̄(k) converges
to zero, implying the nodes eventually reach consensus. Next we will show that the
update of (descent on) x̄(k) mirrors the update of standard centralized subgradient
methods. This allows us to study the convergence rate of Algorithm 2.1 using the
standard outline for the analysis of centralized subgradient methods.

When the fi are convex, and we use stepsizes α(k) = 1/
√
k + 1, we show that

the time-weighted average zi(k) in (2.5) obeys

f(zi(k))− f∗ .
1

(2b − 1)2(1− σ2)
· ln k√

k
,

where 1 − σ2 is the spectral gap that quantifies the connectivity of the underlying
network, and 1 / (2b−1) is the resolution of the quantizer using b communication bits.
When the objective function is strongly convex, using stepsizes α(k) = a/ (k + 1) for
appropriately chosen constant a, we have a refined rate on the convergence of the
decision variables themselves,

‖zi(k)− x∗‖2 .
1

(2b − 1)2(1− σ2)
· ln k

k
.

Aside from the constant 1 / (2b − 1), these results match the standard results for
the distributed subgradient method with perfect communication, meaning that the
quantization does not qualitatively affect the behavior of the algorithm.

3.1. Preliminaries. Given a vector v ∈ Rd we denote by ξ(v) the error due to
the projection of v on to X ,

ξ(v) = v − [v]X ,

and rewrite Eq. (2.4) as

vi(k) =

∑
j∈Ni

aijxj(k)

+ xi(k)− qi(k) +
∑
j∈Ni

aij(qj(k)− xj(k))− α(k)gi(xi(k)),

xi(k + 1) = [vi(k)]X = vi(k)− ξi(vi(k)).

(3.1)
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Stacking the xTi as rows in the n×d matrix X (and doing likewise with the vi,qi, ξi),
we can write the above in matrix form as

V(k) = AX(k) + (I−A)(X(k)−Q(k))− α(k)G(X(k)),

X(k + 1) = V(k)−Ξ(V(k)),
(3.2)

where A is the adjacency matrix in Assumption 1. Let x̄(k) and ξ̄(k) be the averages
of xi(k) and ξi(vi(k)) across all nodes at time k:

x̄(k) =
1

n

n∑
i=1

xi(k) =
1

n
XT1 ∈ Rd and ξ̄(k) =

1

n

n∑
i=1

ξi(vi(k)) =
1

n
Ξ(V(k))T1 ∈ Rd.

Since 1TA = 1T , (3.2) gives

v̄(k) = x̄(k)− α(k)

n

n∑
i=1

gi(xi(k)),

x̄(k + 1) = v̄(k)− ξ̄(k).

(3.3)

Recall that ∆i(k) = xi(k)− qi(k) ∈ Rd and let ∆(k) be defined as

∆(k) =

 − ∆1(k)T −
· · ·

− ∆n(k)T −

 ∈ Rn×d·

We now consider the following sequence of lemmas, which provides fundamental
preliminaries for our main results given in the next sections. In the sequel, we will
consider two choices of the step sizes α(k), that is, α(k) = 1/

√
k + 1 or α(k) =

1/(k + 1). These choices of step sizes also are used to establish our main results in
the next section. For ease of exposition we delay all the proofs of the results in this
section to Appendix A.

We first provide an upper bound for the projection error ξi in the following lemma.

Lemma 3.1. Suppose that Assumption 1 holds. Let the sequence {xi(k)}, for all
i ∈ V, be generated by Algorithm 2.1. Then for all i ∈ V we have

‖ ξi(vi(k)) ‖ ≤
∑
j∈Ni

aij ‖∆i(k)−∆j(k)‖+ Liα(k). (3.4)

In addition, let L =
∑
i∈V Li. Then, we obtain

n∑
i=1

‖ ξi(vi(k)) ‖2 ≤ 8

n∑
i=1

‖∆i(k)‖2 + 2L2α2(k). (3.5)

Next we provide an upper bound for the consensus errors ‖xi(k) − x̄(k)‖ in the
following lemma.

Lemma 3.2. Suppose that Assumption 1 holds. Let the sequence {xi(k)}, for
all i ∈ V, be generated by Algorithm 2.1. In addition, let {α(k)} be a nonnegative
nonincreasing sequence of stepsizes. Then, we have

‖X(k + 1)− 1x̄(k + 1)T ‖ ≤ 6

k∑
t=0

σk−t2 ‖∆(t)‖+ 3L

k∑
t=0

σk−t2 α(t). (3.6)
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As mentioned, the main motivation of the adaptive quantization is to eliminate
the impact of quantized errors. In particular, we will show that the quantized errors
produced by Algorithm 2.1 decrease to zero at the same rate with the step size α(k).
To do that, we require the following technical condition.

Assumption 2. Let γ = 48(2 + L) / (1 − σ2). Then the number bits b of the
communication bandwdith satisfies

√
ndγ ≤ 2b − 1. (3.7)

The following lemma is to show that the quantized error ‖∆i(k)‖ . α(k), for all
i ∈ V, for the case σk2 ≤ α(k) for all k ≥ 0. When σk2 ≥ α(k) for some small k, e.g., σ2
is closed to 1 but not equal, one can show from our analysis that ‖∆i(k)‖ . σk2 , which
is eventually converge to zero faster than α(k). Since this issue has been captured by
the rate of consensus in Eq. (3.6), we skip it here for simplicity.

Lemma 3.3. Suppose that Assumption 1 and 2 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. Let α(k) be either α(k) = 1 /

√
k + 1 or

α(k) = 1 / (k + 1). Then we have all k ≥ 0

xi(k + 1) ∈ Ri(k + 1) ,
[
qi(k)− γ

2
α(k)1, qi(k) +

γ

2
α(k)1

]
. (3.8)

In addition, we also have

‖∆i(k)‖ ≤
√
dγ

2b − 1
α(k). (3.9)

The following lemma is a consequence of Lemmas 3.2 and 3.3.

Lemma 3.4. Suppose that Assumptions 1 and 2 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. Let α(k) be either α(k) = 1 /

√
k + 1 or

α(k) = 1 / (k + 1). Then, we have

lim
k→∞

xi(k) = lim
k→∞

xj(k), ∀ i, j ∈ V. (3.10)

In addition, if α(k) is also square-summable, i.e.,

∞∑
k=0

α2(k) <∞, (3.11)

then for all k ≥ 0 we have

k∑
t=0

α(t)‖X(t)− 1x̄(t)T ‖ ≤

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
k∑
t=0

α2(t) <∞. (3.12)

If α(k) = 1 /
√
k + 1 then we have for all k ≥ 0,

k∑
t=0

α(t)‖X(t)− 1x̄(t)T ‖ ≤

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
(ln(k + 1) + 1). (3.13)

Finally, we provide an upper bound for the optimal distance ‖x̄(k) − x∗‖2 in the
following lemma.
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Lemma 3.5. Suppose that Assumptions 1 and 2 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. In addition, let x∗ ∈ X ∗ be a solution of
problem (1.1). Let α(k) be either α(k) = 1 /

√
k + 1 or α(k) = 1 / (k + 1). Then, we

have

‖x̄(k + 1)− x∗‖2 ≤ ‖x̄(k)− x∗‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

+
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)· (3.14)

3.2. Convergence Results of Convex Functions. We now present the first
main result of this paper, which is the rate of convergence of Algorithm 2.1 to the
optimal value of problem (1.1) when the local functions fi are convex. Since the
update of x̄(k) in Eq. (3.3) can be viewed as a variant of a centralized projected
subgradient methods used to solve problem (1.1), we utilize standard techniques in
the analysis of these methods to derive the rate of convergence of Algorithm 2.1.
Specifically, at any time k ≥ 0 if each node i ∈ V maintains a variable zi(k) to
compute the time-weighted average of its estimate xi(k) and if the stepsize α(k)
decays as α(k) = 1/

√
k + 1, the objective function value f in Eq. (1.1) estimated at

each zi(k) converges to the optimal value with a rate O
(
η ln(k + 1) /

√
k + 1

)
, where

η is some constant depending on the algebraic connectivity 1−σ2 of the network, the
number of quantized bits b, and the Lipschitz constants Li of fi. We also note that
this condition on the stepsizes is also used to study the convergence rate of centralized
subgradient methods [39]. The following theorem is used to show the convergence rate
of Algorithm 2.1.

Theorem 3.6. Suppose that Assumptions 1 and 2 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. In addition, let α(k) = 1 /

√
k + 1.

Moreover, suppose that each node i, for all i ∈ V, stores a variable zi ∈ Rd initiated
arbitrarily in X and updated as

zi(k) =

∑k
t=0 α(t)xi(t)∑k
t=0 α(t)

, ∀i ∈ V. (3.15)

Then for all i ∈ V and k ≥ 0 we have

f(zi(k))− f∗ ≤ n‖x̄(0)− x∗‖2

2
√
k + 1

+

√
n(6
√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
(ln(k + 1) + 1)√

k + 1
· (3.16)

Proof. For convenience, let r(k) = x̄(k) − x∗, where x∗ ∈ X ∗ is a solution of
problem (1.1). By Eq. (3.14) we have

‖r(k + 1)‖2 ≤ ‖r(k)‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗) +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖,
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which by the convexity of fi yields

‖r(k + 1)‖2 ≤ ‖r(k)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

− 2α(k)

n

(∑
i=1

fi(xi(k))− fi(x∗))

)
, (3.17)

We now analyze the last term on the right-hand side of Eq. (3.17). Indeed, by Eq.
(1.4) and using f =

∑n
i=1 fi and f∗ = f(x∗), we have for a fixed ` ∈ V

−
n∑
i=1

fi(xi(k))− fi(x∗) = −
n∑
i=1

(
fi(xi(k))− fi(x̄(k)) + fi(x̄(k))− fi(x∗)

)
≤

n∑
i=1

Li|xi(k)− x̄(k) | −
(
f(x̄(k))− f∗

)
≤ L‖X(k)− 1x̄(k)T ‖ −

(
f(x̄(k))− f(x`(k)) + f(x`(k))− f∗

)
≤ 2L‖X(k)− 1x̄(k)T ‖ −

(
f(x`(k))− f∗

)
, (3.18)

which when substituting into Eq. (3.17) yields

‖r(k + 1)‖2 ≤ ‖r(k)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)− 2

n
α(k)

(
f(x`(k))− f∗

)
+

2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

) +
4L

n

α(k)‖X(k)− 1x̄(k)T ‖

= ‖r(k)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)− 2

n
α(k)

(
f(x`(k))− f∗

)
+

2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖, (3.19)

which when iteratively updating over k = 0, . . . ,K for some K ≥ 0 we have

‖r(K + 1)‖2 ≤ ‖r(0)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

K∑
k=0

α2(k)

+
2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

K∑
k=0

α(k)‖X(k)− 1x̄(k)T ‖

− 2

n

K∑
k=0

α(k)
(
f(x`(k))− f∗

)
.

11



Since α(k) = 1/
√
k + 1 we now use Eq. (3.13) into the preceding relation to have

‖r(K + 1)‖2 ≤ ‖r(0)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

(ln(K + 1) + 1)

+
2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
(ln(K + 1) + 1)

− 2

n

K∑
k=0

α(k)
(
f(x`(k))− f∗

)
≤ ‖r(0)‖2 +

4(6
√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
√
n

(ln(K + 1) + 1)

− 2

n

K∑
k=0

α(k)
(
f(x`(k))− f∗

)
.

Rearranging the preceding relation and dropping the nonnegative ‖r(K+1)‖ we obtain

K∑
k=0

α(k)
(
f(x`(k))− f∗

)
≤ n‖r(0)‖2

2
+

2
√
n(6
√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
(ln(K + 1) + 1),

which by dividing both sides by
∑K
k=0 α(k) and using the convexity of f gives Eq.

(3.16), i.e.,

f(z`(K))− f∗ ≤ n‖r(0)‖2

2
√
K + 1

+
2
√
n(6
√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
(ln(K + 1) + 1)√

K + 1
,

where in the last inequality we use the integral test for K ≥ 0 to have

K∑
k=0

α(k) =

K∑
k=0

1√
k + 1

≥
∫ K+1

t=0

1√
t+ 1

dt = 2(
√
K + 2− 1) ≥

√
K + 1.

It is worth to mention that under the choice of α(k) = 1 / (k+1), for all k ≥ 0, one can
show that xi(k) asymptotically converges to x∗ for all i ∈ V. This is a consequence
of Lemmas 3.2 and 3.5, and some standard analysis. The following lemma states this
result. The analysis is omitted and can be found in [16, Theorem 3].

Lemma 3.7. Suppose that Assumptions 1 and 2 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. Let α(k) = 1 / (k + 1). Then we obtain

lim
k→∞

xi(k) = x∗, for all i ∈ V, (3.20)

for some x∗ that is a solution of problem (1.1).

3.3. Convergence Results of Strongly Convex Case. In this section, our
goal is to study the convergence rate of Algorithm 2.1 when the local functions fi are
strongly convex, that is, we make the following assumption on fi

Assumption 3. Each function fi is strongly convex with some positive constant
µi, i.e., the condition (1.3) holds.

12



Under this assumption, we show that if each node i ∈ V maintains a variable zi(k)
to compute the time average of its estimate xi(k) and if the stepsize α(k) decays as
α(k) = a / (k+1) for some properly chosen constant a, the variable zi(k) converges to
the optimal solution x∗ of problem (1.1) with a rate O (η ln(k + 1) / (k + 1)), where η
is some constant depending on the algebraic connectivity 1 − σ2 of the network, the
number of quantized bits b, and the constants Li and µi of fi. The following theorem
is used to show the convergence rate of Algorithm 1 under Assumption 3.

Theorem 3.8. Suppose that Assumptions 1 and 3 hold. Let the sequence {xi(k)},
for all i ∈ V, be generated by Algorithm 2.1. We denote by µ = mini∈V µi. In addition,
let {α(k)} = a / k + 1 for some a ≥ 1 / µ. Moreover, suppose that each node i, for all
i ∈ V, stores a variable zi ∈ R initiated arbitrarily in X and updated as

zi(k) =

∑k
t=0 xi(t)

k + 1
, ∀i ∈ V. (3.21)

Let x∗ ∈ X ∗ be a solution of problem (1.1). Then for all i ∈ V and k ≥ 0 we have

‖zi(k)− x∗‖2 ≤ 4
√
nα(0)(6

√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
1 + ln(k + 1)

k + 1
· (3.22)

Proof. Let x∗ be a solution of problem (1.1). For convenience, let r(k) = x̄(k)−x∗.
By Eq. (3.14) we have

‖r(k + 1)‖2 ≤ ‖r(k)‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

+
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

≤ ‖r(k)‖+
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

− 2α(k)

n

n∑
i=1

(
fi(xi(k))− fi(x∗) +

µi
2
‖xi(k)− x∗‖2

)
, (3.23)

where the last inequality is due to the strong convexity of fi, i.e., Eq. (1.3). First,
using the Jensen’s inequality on quadratic function (·)2 we have

− 1

n

n∑
i=1

µi‖xi(k)− x∗‖2 ≤ −µ 1

n

n∑
i=1

‖xi(k)− x∗‖2 ≤ −µ‖x̄(k)− x∗‖2 = −µ ‖r(k)‖2.

Fix some ` ∈ V. Then, substituting the preceding relation into Eq. (3.23) and using
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Eq. (3.18) yield

‖r(k + 1)‖2 ≤ (1− µα(k)) ‖r(k)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

− 2α(k)

n

n∑
i=1

(
fi(xi(k))− fi(x∗)

)
(3.18)

≤ (1− µα(k)) ‖r(k)‖2 +
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

− 2

n
α(k)

(
f(x`(k))− f∗

)
,

Note that α(k) = a / (k + 1) with a ≥ 1 / µ, implying µα(k) ≥ 1 / (k + 1). Thus, the
preceding equation gives

‖r(k + 1)‖2 ≤ k

k + 1
‖r(k)‖2 +

2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k)

+
2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

− 2

n
α(k)

(
f(x`(k))− f∗

)
.

Multiplying both sides of the preceding equation by k + 1, and using (k + 1) / k ≤ 2
and α(k) = α(0)/(k + 1) we have

(k + 1)‖r(k + 1)‖2 ≤ k‖r(k)‖2 +
4α(0)(4

√
ndγ + 3L2b)2

(2b − 1)2
√
n

α(k)

+
2
(

4
√
ndγ + 5L2b

)
√
n(2b − 1)

‖X(k)− 1x̄(k)T ‖

− 2α(0)

n

(
f(x`(k))− f∗

)
, (3.24)

By Eq. (3.6) and using ‖∆(t)‖ ≤ α(t) we have

K∑
k=0

‖X(k)− 1x̄(k)T ‖ ≤ (3L+ 6)

K∑
k=0

k−1∑
t=0

σk−t2 α(t)

≤ (3L+ 6)

K−1∑
k=0

α(k)

K∑
t=k+1

σt2 ≤
3L+ 6

1− σ2

K−1∑
k=0

α(k). (3.25)

Next, summing up both sides of Eq. (3.24) over k = 0, . . . ,K for some K ≥ 0, using
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the preceding relation, and rearranging we obtain

2α(0)

n

K∑
k=0

(
f(x`(k))− f∗

)
≤ 2α(0)(6

√
ndγ + 5L2b)2√

n(1− σ2)(2b − 1)2

K∑
k=0

α(k)

≤ 2α(0)(6
√
ndγ + 5L2b)2√

n(1− σ2)(2b − 1)2
(ln(K + 1) + 1),

which when dividing both sides by (K + 1) / n and using the convexity of f yields

2α(0)
[
f(z`(K))− f∗

]
≤ 2
√
nα(0)(6

√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
1 + ln(K + 1)

K + 1
.

Since the functions fi are strongly convex with constant µi, f is strongly convex with
constant µ. Thus, using the preceding equation and α(0) = a ≥ 1 / µ gives Eq. (3.22),
i.e.,

‖z`(K)− x∗‖2 ≤ 2

µ
[f(z`(K))− f∗] ≤ 2

√
nα(0)(6

√
ndγ + 5L2b)2

(1− σ2)(2b − 1)2
1 + ln(K + 1)

K + 1
·

4. Simulations. In this section, we apply Algorithm 2.1 for solving linear re-
gression problems, the most popular technique for data fitting [40, 41] in statistical
machine learning, over a network of processors under random quantization. The goal
of this problem is to find a linear relationship between a set of variables and some real
value outcome. That is, given a training set S = {(ai, bi) ∈ Rd × R} for i = 1, . . . , n,
we want to learn a parameter x that minimizes

min
x∈X

n∑
i=1

fi(x; ai, bi),

where X = [−1 , 1]d and d = 10, i.e., x, ai ∈ R10. Here, fi are the loss functions
defined over the dataset. For the purpose of our simulation, we will consider two loss
functions, namely, quadratic loss and absolute loss functions. While the quadratic
loss is strongly convex, the absolute loss is only convex.

First, when fi are quadratic, we have the well-known least square problem

min
x∈X

n∑
i=1

(aTi x− bi)2.

Second, regression problems with absolute loss functions (or L1 norm) is often referred
to as robust regression, which is known to be robust to outliers [42], given as follows

min
x∈X

n∑
i=1

|aTi x− bi |.

We consider simulated training data sets, i.e., (ai, bi) are generated randomly with
uniform distribution between [0, 1]. We consider the performance of the distributed
subgradient methods on an undirected connected graph of 50 nodes, i.e., G = (V, E)
and n = |V| = 100. Our graph is generated as follows.

1. In each network, we first randomly generate the nodes’ coordinates in the
plane with uniform distribution.
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(a) Quadratic loss functions (b) Absolute loss functions

Fig. 1: The convergence of function values using distributed subgradient methods without
( ) [37], with random ( ) [2], with time-varying ( ) [16], and with adaptive ( )
quantization for n = 100 and d = 10 are illustrated.

2. Then any two nodes are connected if their distance is less than a reference
number r, e.g, r = 0.4 for our simulations.

3. Finally we check whether the network is connected. If not we return to step
1 and run the program again.

To implement our algorithm, the adjacency matrix A is chosen as a lazy Metropolis
matrix corresponding to G, i.e.,

A = [aij ] =


1

2(max{|Ni|,|Nj |}) , if (i, j) ∈ E
0, if (i, j) /∈ E and i 6= j

1−
∑
j∈Ni

aij , if i = j

It is obvious to see that the lazy Metropolis matrix A satisfies Assumption 1.

4.1. Convergence of Function Values. In this simulation, we apply variants
of distributed subgradient methods for solving the linear regression problems. In par-
ticular, we compare the performance of such methods for three different scenarios,
namely, DSG with no quantization (i.e., Eq. (2.1)), DSG with time-varying quantiza-
tion in [16], distributed stochastic approximation under random quantization [2], and
the proposed Algorithm 2.1 with adaptive quantization. In addition, we use 8 bits
as the size of the nodes’ communication bandwidths. The plots in Fig. 1 show the
convergence of these four methods for both quadratic and absolute loss functions.

Note that, DSG with time-varying quantization [16] achieves the same rate of con-
vergence as the one with no quantization [37], but requires that the nodes eventually
exchange an infinite number of bits. On the other hand, DSG with random quantiza-
tion [2] only requires a finite number of bits, but achieves a slow rate of convergence.
The adaptive quantization in this paper achieves both benefits of time-varying quanti-
zation [16] and random quantization [2], i.e., it achieves the same rate as the algorithm
without quantization but only using a finite number of bits. In addition, as observed
in Fig.1a for quadratic loss and in Fig. 1b for absolute loss, Algorithm 2.1 performs
almost as well as the one without quantization [37], and significantly better than the
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(a) Quadratic loss functions (b) Absolute loss functions

Fig. 2: The number of iterations as a function of b using distributed subgradient methods
with adaptive quantization for n = 100 and d = 10 are illustrated.

algorithms in [2, 16]

4.2. Impact of the Number of Bits, b. We now consider the impact of the
number of bits b on the performance of Algorithm 2.1. In Fig. 2 we plots the number
of iterations, needed to obtain the relative error f(zi(k))−f∗ / f∗ ≤ 0.05, as a function
of b. We see that the more bits we use, the faster the algorithm converges. Moreover,
even when only a very small number of bits, for example, b= 4 are used, the algorithm
still works very well. Finally, these plots appear to describe the curve 1/(2b−1)2 upto
some constant in the upper bound of convergence rates given in Theorems 3.6 and
3.8. This implies that the simulation seems to agree with our results.

5. Concluding Remarks. In this paper, we consider distributed optimization
over networks of nodes under finite bandwidths, and so information exchanged across
the network must be quantized. For solving such problems, we consider distributed
subgradient methods under quantization. Our main contribution is to propose a novel
adaptive quantization, which quantizes the nodes’ estimates based on the progress of
the algorithm. Under this adaptive quantization, we show that the rates of con-
vergence of DSG are unaffected by communication constraints. A natural question
from this work is to ask whether the proposed adaptive quantization can be extended
to study other distributed algorithms under finite bandwidths, such as, distributed
primal-dual, ADMM, dual averaging, and mirror-descent. Indeed, it is not obvious
whether we can meet the conditions presented in Section 2.2. We leave such an
interesting question for our future research.
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Appendix A. Proofs of Results in Section 3.1 .

A.1. Proof of Lemma 3.1.

Proof. For convenience, we use wi(k) to denote
∑
j∈Ni

aijxj(k) only in this proof.
Since xi(k) ∈ X , by convexity of X , we have that wi(k) ∈ X . Recall that ∆i(k) =
xi(k) − qi(k). By the definition of the projection and using Eqs. (1.4) and (3.1) we
obtain Eq. (3.4), i.e.,

‖ξi(vi(k))‖ = ‖vi(k)− [vi(k)]X ‖
2 ≤ ‖vi(k)−wi(k)‖2

=

∥∥∥∥∥∥∆i(k)−
∑
j∈Ni

aij∆j(k)− α(k)gi(xi(k))

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∆i(k)−
∑
j∈Ni

aij∆j(k)

∥∥∥∥∥∥+ Liα(k)

≤
∑
j∈Ni

aij ‖∆i(k)−∆j(k)‖+ Liα(k).

Using the preceding inbequality also yields Eq. (3.5), i.e.,

n∑
i=1

‖ξi(vi(k))‖2 ≤ 2

n∑
i=1

∥∥∥∥∥∥∆i(k)−
∑
j∈Ni

aij∆j(k)

∥∥∥∥∥∥
2

+ 2

n∑
i=1

L2
iα

2(k)

≤ 2

n∑
i=1

∑
j∈Ni

aij ‖∆i(k)−∆j(k)‖2 + 2L2α2(k)

≤ 8

n∑
i=1

‖∆i(k)‖2 + 2L2α2(k),

where the second inequality follows from using Jensen’s inequality.

A.2. Proof of Lemma 3.2 .

Proof. For convenience let W = I− 1/n11T and Y(k) be defined as

Y(k) = X(k)− 1x̄(k)T = WX(k).

Using A1 = 1 and Eqs. (3.2) and (3.3) we consider

Y(k + 1) = X(k + 1)− 1x̄(k + 1)T

= AX(k) + (I−A)(X(k)−Q(k))− α(k)G(X(k))−Ξ(V(k))

− 1x̄(k)T +
α(k)

n
1

n∑
i=1

gi(xi(k))T + 1ξ̄(k)T

= AWX(k) + (I−A)∆(k)− α(k)WG(X(k))−WΞ(V(k)),

which by taking the Frobenius norm on both sides yields

‖Y(k + 1)‖ = ‖AWX(k) + (I−A)∆(k)− α(k)WG(X(k))−WΞ(V(k))‖
≤ ‖AWX(k)‖+ ‖(I−A)∆(k)‖+ ‖α(k)WG(X(k))−WΞ(V(k))‖
≤ σ2 ‖WX(k)‖+ 2 ‖∆(k)‖+ α(k) ‖G(X(k))‖+ ‖Ξ(V(k))‖ , (A.1)
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where the last inequality is because the largest singular values of W and A are smaller
than 1 and using the Courant-Fisher theorem [38], i.e.,

‖AWX(k)‖ =

∥∥∥∥A(I− 1

n
11T

)
X(k)

∥∥∥∥ ≤ σ2 ∥∥∥∥(I− 1

n
11T

)
X(k)

∥∥∥∥ = σ2 ‖WX(k)‖ .

First, using L =
∑n
i=1 Li Eq. (1.4) gives

‖G(X(k))‖ ≤

√√√√ n∑
i=1

‖gi(xi(k))‖2 ≤

√√√√ n∑
i=1

L2
i ≤ L. (A.2)

Second, Eq. (3.5) yields

‖Ξ(V(k))‖ ≤ 2
√

2‖∆(k)‖+
√

2Lα(k). (A.3)

Thus using Eqs. (A.2) and (A.3) into Eq. (A.1) yields Eq. (3.6), i.e.,

‖Y(k + 1)‖ ≤ σ2‖Y(k)‖+ 6‖∆(k)‖+ 3Lα(k)

≤ σk+1
2 ‖Y(0)‖+ 6

k∑
t=0

σk−t2 ‖∆(t)‖+ 3L

k∑
t=0

σk−t2 α(t)

= 6

k∑
t=0

σk−t2 ‖∆(t)‖+ 3L

k∑
t=0

σk−t2 α(t),

where the last equality is due to xi(0) = xj(0) for all i, j ∈ V, implying Y(0) = 0.

A.3. Proof of Lemma 3.3.

Proof. For convenience, just in this proof, we define wi(k) as

wi(k) =

∑
j∈Ni

aijqj(k)


X

=
∑
j∈Ni

aijqj(k)− pi(k),

where pi(k) ,
∑
j∈Ni

aijqj(k) − wi(k). Using the definition of the projection and
since

∑
j∈Ni

aijxj(k) ∈ X we have

‖pi(k) ‖ =

∥∥∥∥∥∥
∑
j∈Ni

aijqj(k)−wi(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j∈Ni

aijxj(k)−
∑
j∈Ni

aijqj(k)

∥∥∥∥∥∥
≤
∑
j∈Ni

aij ‖∆j(k)‖ , (A.4)

which implies

‖pi(k)− p̄(k)‖ ≤
∥∥P(k)− 1p̄(k)T

∥∥ ≤ ‖P(k)‖

≤

√√√√√ n∑
i=1

∑
j∈Ni

aij ‖∆j(k)‖

2

≤ ‖∆(k)‖. (A.5)
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Moreover, since ∆i(k) = xi(k)− qi(k) we have

‖qi(k)− q̄(k)‖ ≤ ‖Q(k)− 1q̄(k)T ‖ ≤ ‖X(k)− 1x̄(k)T ‖+ ‖∆(k)‖. (A.6)

Using the triangle inequality we now consider

‖xi(k + 1)− qi(k)‖ ≤ ‖xi(k + 1)−wi(k)‖+ ‖wi(k)− w̄(k)‖+ ‖w̄(k)− qi(k)‖.
(A.7)

We now provide an upper bound for each term on the right-hand side of Eq. (A.7).
First, by the nonexpansiveness of the projection, and Eqs. (1.4) and (2.4) we have

‖xi(k + 1)−wi(k)‖ ≤ ‖∆i(k)− α(k)gi(xi(k))‖ ≤ ‖∆i(k)‖+ Liα(k). (A.8)

Second, using Eqs. (A.5) and (A.6) we have

‖wi(k)− w̄(k)‖ =

∥∥∥∥∥∥
∑
j∈Ni

aijqj(k)− q̄(k)− pi(k) + p̄(k)

∥∥∥∥∥∥
≤
∑
j∈Ni

aij‖qj(k)− q̄(k)‖+ ‖pi(k)− p̄(k)‖

≤ ‖X(k)− 1x̄(k)T ‖+ 2‖∆(k)‖. (A.9)

Third, using Eq. (A.6) we consider

‖w̄(k)− qi(k)‖ = ‖q̄(k)− qi(k) + p̄(k)‖ ≤ ‖qi(k)− q̄(k)‖+ ‖p̄(k)‖
≤ ‖X(k)− 1x̄(k)T ‖+ 2‖∆(k)‖. (A.10)

Substituting Eqs. (A.8)–(A.10) into Eq. (A.7) yields

‖xi(k + 1)− qi(k)‖ ≤ 2‖X(k)− 1x̄(k)T ‖+ 5‖∆(k)‖+ Lα(k),

which by Eq. (3.6) gives

‖xi(k + 1)− qi(k)‖ ≤ 12

k−1∑
t=0

σk−1−t2 ‖∆(t)‖+ 6L

k−1∑
t=0

σk−1−t2 α(t)

+ 5‖∆(k)‖+ Lα(k)

≤ 12

k∑
t=0

σk−t2 ‖∆(t)‖+ 6L

k∑
t=0

σk−t2 α(t). (A.11)

Recall that γ = 48(2 + L) / (1− σ2) and

Ri(k + 1) ,
[
qi(k)− γ

2
α (k) 1, qi(k) +

γ

2
α (k) 1

]
.

We now show that xi(k + 1) ∈ Ri(k + 1) by induction. First, when k = 0 we have
‖∆i(0)‖ = 0 since xi(0) = qi(0) for all i ∈ V. By definition, we have xi(0) ∈ Ri(0).
Suppose it is true for some k > 0, that is, xi(k) ∈ Ri(k). We now show that
xi(k+ 1) ∈ Ri(k+ 1). Indeed, since α(k) is nonincreasing, by the definition of Ri(k)
we have ∆i(k) is nonincreasing and

∆i(t) ≤
γα (t)

2b − 1
1, ∀i ∈ V, t ∈ [0, k].
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Using Assumption 2, i.e.,
√
ndγ/(2b − 1) ≤ 1, we have ‖∆(t)‖ ≤ α(t) for all t ∈ [0, k].

Thus, by using α(k) ≤ α(t) ≤ α(0) = 1 for t ∈ [0, k], Eq. (A.11) gives

‖xi(k + 1)− qi(k)‖ ≤ 12

k∑
t=0

σk−t2 α(t) + 6L

k∑
t=0

σk−t2 α(t)

= 6(2 + L)

bk/2c∑
t=0

σk−t2 α(t) +

k∑
t=dk/2e

σk−t2 α(t)


≤ 6(2 + L)

(
α(0)σ

dk/2e
2

1− σ2
+
α(dk/2e)

1− σ2

)

≤ 24(2 + L)

1− σ2
α(k) =

γ

2
α(k),

where in the last inequality is due to σk2 ≤ α(k), α(0) = 1, α(dk/2e) ≤ 2α(k) since we
only consider α(k) = 1/(k + 1) or α(k) = 1/

√
k + 1. This concludes our proof.

A.4. Proof of Lemma 3.4.

Proof. First, Eq. (3.9) yields

‖∆(k)‖ ≤
√
ndγ

2b − 1
α(k),

which using Eq. (3.6) gives

‖X(k + 1)− 1x̄(k + 1)T ‖ ≤ 6
√
ndγ

2b − 1

k∑
t=0

σk−t2 α(t) + 3L

k∑
t=0

σk−t2 α(t)

≤

(
6
√
ndγ + 3L2b

2b − 1

)bk/2c∑
t=0

σk−t2 α(t) +

k∑
t=dk/2e

σk−t2 α(t)


≤

(
6
√
ndγ + 3L2b

2b − 1

)bk/2c∑
t=0

σk−t2 + α(dk/2e)
k∑

t=bk/2c

σk−t2


≤

(
6
√
ndγ + 3L2b

2b − 1

)(
1

1− σ2
σ
dk/2e
2 +

1

1− σ2
α(dk/2e)

)
,

which since limk→∞ α(k) = 0 gives Eq. (3.10).
Suppose now that the condition (3.11) is held. Then, for some K ≥ 0 we have

Eq. (3.12), i.e.,

K∑
k=0

α(k)‖X(k)− 1x̄(k)T ‖ ≤

(
6
√
ndγ + 3L2b

2b − 1

)
K∑
k=0

α(k)

k−1∑
t=0

σk−1−t2 α(t)

≤

(
6
√
ndγ + 3L2b

2b − 1

)
K∑
k=0

k−1∑
t=0

σk−1−t2 α2(t) =

(
6
√
ndγ + 3L2b

2b − 1

)
K∑
t=0

α2(t)

K∑
k=t+1

σk2

≤

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
K∑
t=0

α2(t)
(3.11)
< ∞.
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Suppose now that α(k) = 1/
√
k + 1. Then by the inequality above we have Eq. (3.13),

i.e.,

K∑
k=0

α(k)‖X(k)− 1x̄(k)T ‖ ≤

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
K∑
t=0

1

t+ 1

≤

(
6
√
ndγ + 3L2b

(1− σ2)(2b − 1)

)
(1 + ln(K + 1)),

where we use the integral test in the last inequality to have

K−1∑
t=0

1

t+ 1
≤ 1 +

∫ K

0

1

t+ 1
dt ≤ 1 + ln(K + 1).

A.5. Proof of Lemma 3.5.

Proof. Let x∗ be a solution of problem (1.1). For convenience, let r(k) = x̄(k)−x∗.
First, recall from Eq. (3.5) that

‖Ξ(V(k))‖2 ≤ 8‖∆(k)‖2 + 2L2α2(k). (A.12)

Second, by the definition of the projection we have

ξi(vi(k))T (x∗ − vi(k)) ≤ −‖ξi(vi(k))‖2. (A.13)

We now use Eq. (3.3) to have

‖r(k + 1)‖2 =

∥∥∥∥∥x̄(k)− x∗ − α(k)

n

n∑
i=1

gi(xi(k))− ξ̄(k)

∥∥∥∥∥
2

= ‖r(k)‖2 − 2(x̄(k)− x∗)T ξ̄(k)− 2α(k)

n
(x̄(k)− x∗)T

n∑
i=1

gi(xi(k))

+

∥∥∥∥∥α(k)

n

n∑
i=1

gi(xi(k)) + ξ̄(k)

∥∥∥∥∥
2

≤ ‖r(k)‖2 − 2(x̄(k)− x∗)T ξ̄(k)− 2α(k)

n
(x̄(k)− x∗)T

n∑
i=1

gi(xi(k))

+ 2

∥∥∥∥∥α(k)

n

n∑
i=1

gi(xi(k))

∥∥∥∥∥
2

+ 2
∥∥ξ̄(k)

∥∥2
(A.12)

≤ ‖r(k)‖2 − 2(x̄(k)− x∗)T ξ̄(k)− 2α(k)

n
(x̄(k)− x∗)T

n∑
i=1

gi(xi(k))

+
16∆2(k) + 6L2α2(k)

n
· (A.14)

We now analyze the second term on the right-hand side of Eqs. (A.14) by using Eqs.

24



(A.12) and (A.13)

− 2(x̄(k)− x∗)T ξ̄(k) = − 2

n

n∑
i=1

ξi(vi(k))T (x̄(k)− x∗)

= − 2

n

n∑
i=1

ξi(vi(k))T (x̄(k)− vi(k) + vi(k)− x∗)

≤ 2

n

n∑
i=1

‖ξi(vi(k))‖ ‖x̄(k)− vi(k)‖ − 2

n

n∑
i=1

ξi(vi(k))T (vi(k)− x∗)

(A.12)

≤
(A.13)

2
(
2
√

2‖∆(k)‖+
√

2Lα(k)
)

n

n∑
i=1

‖x̄(k)− vi(k)‖ − 2

n

n∑
i=1

‖ξi(vi(k))‖2

≤
2
(
2
√

2‖∆(k)‖+
√

2Lα(k)
)

√
n

‖X(k)− 1x̄(k)T ‖

+
2
(
2
√

2‖∆(k)‖+
√

2Lα(k)
)

(2
√
n‖∆(k)‖+ Lα(k))

n
, (A.15)

where the last inequality is due to

n∑
i=1

‖x̄(k)− vi(k)‖

≤
n∑
i=1

∥∥∥∥∥∥x̄(k)−
n∑
j=1

aijxj(k) + ∆i(k)−
∑
j∈Ni

aij∆j(k)− α(k)gi(xi(k))

∥∥∥∥∥∥
≤
√
n‖X(k)− 1x̄(k)T ‖+ 2

√
n‖∆(k)‖+ Lα(k),

which uses the Jensen’s inequality. Next, we analyze the third term on the right-hand
side of Eq. (A.14)

− 2α(k)

n
(x̄(k)− x∗)T

n∑
i=1

gi(xi(k))

= −2α(k)

n

n∑
i=1

gi(xi(k))T (x̄(k)− xi(k))− 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

≤ 2Lα(k)

n
‖X(k)− 1x̄(k)T ‖ − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗). (A.16)

Substituting Eqs. (A.15) and (A.16) into (A.14) we obtain

‖r(k + 1)‖2 ≤ ‖r(k)‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

+
2
(
2
√

2‖∆(k)‖+
√

2Lα(k)
)

√
n

‖X(k)− 1x̄(k)T ‖

+
2
(
2
√

2‖∆(k)‖+
√

2Lα(k)
)

(2
√
n‖∆(k)‖+ Lα(k))

n

+
2Lα(k)

n
‖X(k)− 1x̄(k)T ‖+

16∆2(k) + 6L2α2(k)

n
,
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which gives us Eq. (3.14), i.e.,

‖r(k + 1)‖2 ≤ ‖r(k)‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

+
2 (4‖∆(k)‖+ 3Lα(k))√

n
‖X(k)− 1x̄(k)T ‖

+
32‖∆(k)‖2 + 10L2α2(k) + 12Lα(k)‖∆(k)‖√

n

≤ ‖r(k)‖2 − 2α(k)

n

n∑
i=1

gi(xi(k))T (xi(k)− x∗)

+
2
(

4
√
ndγ + 3L2b

)
√
n(2b − 1)

α(k)‖X(k)− 1x̄(k)T ‖

+
2(4
√
ndγ + 3L2b)2

(2b − 1)2
√
n

α2(k),

where the last inequality we use Eq. (3.9) to have

‖∆(k)‖ ≤
√
ndγ

2b − 1
α(k).
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