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Abstract

We pose Witsenhausen’s problem as a leader-follower game of incomplete information. The follower

makes a noisy observation of the leader’s action (who moves first) and chooses an action minimizing

her expected deviation from the leader’s action. Knowing this, leader who observes the realization of the

state, chooses an action that minimizes her distance to the state of the world and the ex-ante expected

deviation from the follower’s action. We study the perfect Bayesian equilibria of the game and identify

a class of “near piecewise-linear equilibria” when leader cares much more about being close to the

follower than the state, and the state is highly volatile. As a major consequence of this result, we prove

the existence of a set of local minima for Witsenhausen’s problem in form of slopey quantizers, which

are at most a constant factor away from the optimal cost.

Index Terms

Decentralized control, optimal stochastic control, incomplete information games, perfect Bayesian

equilibrium, asymptotic quantization theory.

I. INTRODUCTION

In his seminal work [1], Witsenhausen constructed a simple two-stage Linear-Quadratic-

Gaussian (LQG) decentralized control problem where the optimal controller happens to be

nonlinear. This example showed for the first time that linear quadratic Gaussian team problems

can have nonlinear solutions. Using this counterexample, [2] produced an example showing that

the standard decentralized static output feedback optimal control problem of linear deterministic
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systems could also admit nonlinear solutions.1 For nearly half a century, this counterexample

has been a subject of intense research across multiple communities ([5]–[10]).

The endogenous information structure of Witsenhausen’s counterexample, where the signal

observed in the second stage is a noisy version of the control action in the first stage, gives

rise to a nonclassical information structure. While the problem looks deceptively simple with

quadratic cost, it is actually a very complicated, nonconvex, functional optimization problem. This

counterexample has shed light on intricacies of optimal decisions in stochastic team optimization

problems with similar information structure. Naturally, this problem has given rise to a large

body of literature. For example, [11] provides a variant of Witsenhausen’s counterexample with

discrete primitive random variables and finite support, where no optimal solution exists. Another

interesting variant, with the same information structure but different cost function, is the Gaussian

test channel ([6], [12]) where the linear strategies can be shown to be optimal. Interestingly, [13]

shows that if the objective function in [1] is changed to a worst case induced norm, the linear

controllers dominate nonlinear policies.

Although the optimal strategy and optimal cost for Witsenhausen’s counterexample are still

unknown, it can be shown that carefully designed nonlinear strategies can largely outperform

the linear strategies (see, e.g., the multi-point quantization strategies proposed by [7]). This

result, in particular, implies the fragility of the comparative statics and policies solely derived

based on the linear strategies in problems with similar setting. A relevant line of research is

to provide error bounds on the proximity to optimality for approximate solutions. [14], [15]

use information theoretic techniques and vector versions of the original problem to provide such

bounds. In [16], authors provide a general result on when one can approximate a continuous team

decision problem with a finite one through quantized approximations, using which they show

that quantized policies are asymptotically optimal for Witsenhausen’s counterexample. There

are also several works aiming to approximate the optimal solution. [17]–[20] employ different

heuristic approaches, all confirming what one might intuitively call an almost piecewise-linear

form for the optimal controller. However, a complete optimality proof for such strategies has

been elusive.

1Another relevant setting in which nonlinear equilibria may emerge is the seminal work of Crawford and Sobel ([3]) on
signaling games where misaligned objectives of a sender and a receiver can result in quantized equilibrium strategies. Recently,
authors in [4] consider an extension of this model to a noisy channel setup and show that for a Gaussian source and scalar
signals the equilibrium encoder is linear.
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Although Witsenhausen’s counterexample has been around for half a century, a little is known

about the topological properties of its optimal solution (e.g., whether it is continuous or not,

the number of its fixed points, etc.). A breakthrough in this direction is [8], where authors view

Witsenhausen’s setup in an optimal transport theory framework. This enables them not only to

prove the existence of the optimal solution in a much more condense fashion, but also to derive

some important characteristics of the optimal solution. In particular, they show that the optimal

controller is a strictly increasing function with a real analytic left inverse.2 As a consequence,

no piecewise-linear strategy can be optimal, though not ruling out the possibility of a “near

piecewise-linear” optimal solution.

In this paper, following Witsenhausen’s original intuition, we view the problem as a leader-

follower coordination game in which the action of the leader is corrupted by an additive noise,

before reaching the follower. The leader aims to coordinate with the follower while staying close

to the observed state, recognizing that her action is not observed perfectly. As a result, she needs

to signal the follower in a manner that can be decoded efficiently. More than a mere academic

counterexample, the above setup could model a scenario where coordination happens across

generations and the insights of the leader who is from a different generation is corrupted/lost

by the time the message reaches the future generations. If the leader can internalize the fact

that her actions will not be observed perfectly, how should she act to make sure coordination

occur? When the leader cares far more about coordination with the follower than staying “on the

message”, the near piecewise-linear equilibrium strategy of the leader coarsens the observation in

well-spaced intervals, rather than merely broadcasting a linearly scaled version of the observed

state (as the linear strategy would suggest).

To this end, we analyze the perfect Bayesian equilibria of this game and show that strong

complementarity3 between the leader and the follower combined with a prior with poor enough

precision can give rise to nonlinear equilibria, and in particular, equilibria in form of what

has been deemed in the literature as slopey quantizers [22]. We subsequently show that these

equilibria are indeed local minima of the original Witsenhausen’s problem. Using some related

results from asymptotic quantization theory ([23]–[25]) together with analytical lower bounds

2Note that this does not imply the continuity of the optimal solution.
3Games of strategic complementarities are those in which the best response of each player is increasing in actions of others

[21].
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on the optimal cost of Witsenhausen’s problem derived in [15], we further show that these local

minima include near-optimal solutions in the sense that their corresponding cost is at most a

constant factor away from the optimal one. Our work thus provides an analytical support for

the local optimality of slopey quantization strategies for Witsenhausen’s counterexample for a

highly volatile state.

The main idea behind the proof is to carefully construct a class of what we informally refer

to as near piecewise-linear or slopey quantization strategies for the leader that stays invariant

under the best response operator. These strategies can be viewed as small-slope variations of

a fixed-rate scalar quantizer minimizing the mean squared quantization error ([23]–[25]). Such

an optimal quantizer is characterized by optimality conditions on the threshold levels which

determine the boundaries of the quantization cells (or segments) and quantization levels: i)

quantization levels must be the centroid of the segments, and ii) thresholds in between two

adjacent quantization levels must be equidistant from them. For any fixed number of segments,

we consider the strategies whose segments are in a vicinity of the optimal MSE quantizer, have

a unique fixed point in each segment close to the quantization level, and are almost linear within

each segment with a near-zero derivative. For such strategies, leader’s actions remain very close

to fixed points of the strategy in each segment. Therefore, well-spaced fixed points (combined

with appropriate relative prior of the state in different segments) reveal the leader’s actions to the

follower with high probability, making the “signal” easily decodable. As a consequence, we can

characterize the best response of the follower to leader’s strategy. Using this characterization, we

show that the best response of the leader to follower’s strategy also varies very little, essentially

remaining near piecewise-linear over most of the range of the observed signals.

A key challenge in deriving the invariance property for this set of strategies for the leader is

to bound and tightly control the displacement in the fixed points and endpoints of the segments

of leader’s strategy under the best response operator. One major observation here is that the

fixed points of the leader’s best responses are local minimizers of the expected deviation of the

leader’s action from the follower (which is known to be a non-convex functional [8]). This insight

allows us to show that the fixed points of the leader’s best response lie in a tight neighborhood

of the fixed points of the follower’s strategy. We then show that the fixed points of the follower’s

strategy in turn lie in a vicinity of a convex combination of the leader’s fixed points and the

expected value of the state of the world within each segment. Combining the two, we can
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derive an approximate dynamics for the displacement in the fixed points and endpoints of the

segments in leader’s strategy under the best response. Using this approximate dynamics, we then

characterize an invariant set of fixed points and interval endpoints for leader’s strategy, which

we can then use in order to prove the existence of a near piecewise-linear equilibrium strategy

for the leader.

II. MODEL

We view Witsenhausen’s problem ([1]) as a game between a leader L and a follower F . Before

the agents act, the state of the world θ is drawn from a normal distribution with zero mean and

variance σ2. The leader can observe the realization of θ and acts first. The payoff of the leader

is given as follows

uL = −rL(θ − aL)2 − (1− rL)(aF − aL)2, (1)

where aF is the action of the follower and 0 < rL < 1. The follower makes a private, noisy

observation of the leader’s action, s = aL + δ where δ ∼ N(0, 1). The payoff of the follower is

given by

uF = −(aL − aF )2. (2)

We consider the perfect Bayesian equilibria of the game and show that they reduce to the

Bayes Nash equilibria due to the Gaussian noise in the observation.4 Denote with a∗L(θ) and

a∗F (s) the equilibrium strategies, and with ν∗(·|s) the follower’s belief on leader’s action given

s. Due to the normal noise in the observation, ν∗(·|s) is fully determined by a∗L(θ) and the prior

as there are no off-equilibrium-path information sets. Equilibrium strategies should thus satisfy

a∗F (s) =Eν∗ [a∗L|s] =

∫ ∞
−∞

aLν
∗(aL|s)daL,

a∗L(θ) = argmax
aL

−rL(θ − aL)2

− (1− rL)

∫ ∞
−∞

(a∗F (s)− aL)2φ(s− aL)ds, (3)

where φ(·) denotes the standard normal density function.

4See, e.g., [26] for a definition of perfect Bayesian equilibrium and Bayes Nash equilibrium.
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Our model yields the original setup in [1] by choosing rL
1−rL

= k2. The expected control

cost then maps to the (negated) expected payoff of the leader. It is a simple exercise to find

the optimal solution to Witsenhausen’s problem in the class of linear strategies (see Lemma 11

in [1]), which is also an equilibrium of the game described above. Witsenhausen ([1]) showed

that, for sufficiently large σ, this linear solution is not optimal. In fact, the linear solution can

be extremely suboptimal in the sense that the asymptotic ratio of the corresponding cost to the

optimal one is infinity ([7]). Our objective in this paper is to characterize a set of local minima

for the problem in [1], with a near piecewise-linear strategy for the leader and a cost within

a constant factor of the optimal one, given a sufficiently large σ. To this end, we analyze the

equilibria of the game described above in regime 1
2
≤ rLσ

2 ≤ 1 and sufficiently large σ.5

III. NONLINEAR EQUILIBRIA

We first prove the existence of a collection of equilibria with a near piecewise-linear strategy

for the leader for sufficiently large values of σ. Our approach is to identify a set of such strategies

for the leader which is invariant under the best response operator. We characterize such a set in

the next section.

Given m ∈ N, consider a partition of the normal distribution N(0, σ2) into 2m+ 1 segments

∪mk=−mB
Q
k , with BQ

k = [bQ
k , b

Q
k+1) for k ∈ Nm, BQ

0 = (bQ
−1, b

Q
1 ), and BQ

−k = (bQ
−k−1, b

Q
−k], with

bQ
−k = −bQ

k and bQ
m+1 = −bQ

−m−1 = +∞. Denote with cQ
k the centroid of segment BQ

k , that is,

cQ
k = EN(0,σ2)[θ|θ ∈ BQ

k ]. Clearly, cQ
0 = 0 and cQ

−k = −cQ
k for k ∈ Nm. We now specifically

focus on a partition where the interval endpoints bQ
k are equidistant from the centroids adjacent to

them, i.e., bQ
k =

cQk−1+cQk
2

for k ∈ Nm. We can show that such a partition exists and is unique. This

partition in fact corresponds to the (2m+ 1)-level fixed-rate scalar quantizer that minimizes the

mean-square distortion for a source characterized by θ ∼ N(0, σ2) ([23]–[25]). The properties

of this quantizer as m → ∞ are extensively studied in asymptotic quantization theory, as will

be discussed and used in analyzing the asymptotic performance of our proposed local minima

in Section IV.

Roughly speaking, the set of strategies we propose for the leader are a class of (2m + 1)-

segmented strategies with segments being close to BQ
k (−m ≤ k ≤ m), with a fixed point in each

segment in a certain vicinity of cQ
k (−m ≤ k ≤ m), and almost linear with a slope close to rL

5This clearly covers the case k2σ2 = 1.
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cQ1 =

E[θ|θ∈BQ
1 ]

Q Q Q QQQQQQ

Fig. 1. Partition of the normal distribution in a (2m+ 1)-level optimal MSE quantizer, for m = 2.

over each segment. Before proceeding further, we present some (non-asymptotic) properties of

this base configuration, which will facilitate the proof of the invariance property for the proposed

set of strategies.

Lemma 1. Given m ∈ N, consider the partition of the normal distribution N(0, σ2) in a (2m+1)-

level optimal MSE quantizer as described above. Define the k-th half-step of the quantizer as

xQ
k =

cQk −c
Q
k−1

2
, for 1 ≤ k ≤ m. Then,

i) 1− (x
Q
m

σ
)2 ≤ cQmx

Q
m

σ2 ≤ 1. If m ≥ 2, then 3
4
≤ cQmx

Q
m

σ2 ≤ 1.

ii) For 1 ≤ k < m,

φ(
bQk
σ

)

φ(
cQk
σ

)
≤ (

xQ
k+1

xQ
k

)2 ≤
φ(

bQk
σ

)

φ(
bQk+1

σ
)
. (4)

As a result, 1 ≤ xQ
k+1

xQ
k

≤ e, for 1 ≤ k < m.

iii) For 0 ≤ j ≤ k ≤ m, we have Prob[θ|θ∈BQ
k ]

Prob[θ|θ∈BQ
j ]
≤ 1+e

2
.

iv) For any m ≥ 5,
√

3π

e
√

10m
≤x

Q
1

σ
≤
√

2πe

2m
,
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1.1
√

lnm− 1

1.1
√

lnm
≤c

Q
m

σ
≤ 2
√

2 lnm+ 1.4 + 1.45,

1

2
√

2 lnm+ 6
≤x

Q
m

σ
≤ 1

1.1
√

lnm
. (5)

Proof. See the appendix. �

Next, we construct a set of (2m+1)-segmented increasing odd functions, denoted by AmL (rL, σ)

satisfying the following properties:

Property 1. For every aL(θ) ∈ AmL (rL, σ), there exist 2m + 1 segments Bk = [bk, bk+1), for

k ∈ Nm, B0 = (−b1, b1), and B−k = (b−k−1, b−k], with bm+1 = −b−m−1 = +∞ such that:

• aL(θ) is increasing and odd (i.e., aL(−θ) = −aL(θ)), and is smooth over each interval.

• aL(θ) has a unique fixed point in each segment. That is, for each interval Bk, (−m ≤ k ≤

m), there exists a unique ck ∈ Bk such that aL(ck) = ck, with c0 = 0.

We also impose the constraint that interval endpoints bk remain close to midpoints of [ck−1, ck]

and that fixed points ck remain within certain vicinity of cQ
k ’s.

Property 2. For every k ∈ Nm, |bk − ck−1+ck
2
| ≤ 0.1rL. Moreover, |ck − cQ

k | ≤ 2.9.

From the above property, if we define x̄k = xQ
k + 3 and

¯
xk = xQ

k − 3 for 1 ≤ k ≤ m, then

x̄k and
¯
xk represent upper and lower bounds on the lengths of both half-intervals [ck−1, bk] and

[bk, ck+1].

Finally, we impose a constraint on the slope of aL(θ) in each interval, keeping the slope very

close to rL, as well as a linear bound on aL(θ) in the tail. We impose the following property:

Property 3. For every −m < k < m and θ ∈ Bk,
¯
r ≤ d

dθ
aL(θ) ≤ r̄, where

¯
r = rL(1− 0.5r2

Lσ
2)

and r̄ = rL(1 + 0.5r2
Lσ

2). For the tail interval Bm,
¯
r ≤ d

dθ
aL(θ) ≤ r̄ for bm < θ < cm +

√
eσx̄m.

For θ > cm +
√
eσx̄m we have aL(θ) ≤ cm + 3rL(θ − cm).6

For any σ > 0, define M(σ) = {m ∈ N|xQ
1 > 2

√
2 lnσ + 5, m ≥ 25}.7 We then claim

that the set of strategies AmL (rL, σ) for m ∈ M(σ), characterized by Property 1-3, is invariant

6We state the properties (and in many cases the analysis) only for θ ≥ 0. The counterpart for θ ≤ 0 is immediate since the
function is odd.

7 As we will see in Section IV, this ensures inclusion of local minima with an expected cost within a constant factor of the
optimal cost.
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under the best response operator for sufficiently large values of σ in the regime 1
2
≤ rLσ

2 ≤ 1.

We formally state this result here, and provide the proof which is based on the best response

analysis carried out in Section V, in the appendix.

Theorem 1. Consider the regime 1
2
≤ rLσ

2 ≤ 1 with σ > 0. Then, the set of (2m+1)-segmented

strategies AmL (rL, σ) for the leader characterized by Property 1-3, where m ∈ M(σ) = {m ∈

N|xQ
1 > 2

√
2 lnσ+5, m ≥ 25} and σ ≥ 300, is nonempty and invariant under the best response

operator.8 Moreover, the game described in Section II has an equilibrium for which:

i) a∗L(θ, rL, σ) ∈ AmL (rL, σ), and

ii) (a∗L(θ, rL, σ), a∗F (s) = Eδ[a∗L|s]) maximizes the expected payoff of the leader over all pair

of strategies (aL(θ, rL, σ), aF (s) = Eδ[aL|s]) where aL(θ, rL, σ) ∈ AmL (rL, σ).

Proof. See the appendix. �

We expect the above theorem to hold for much smaller values of σ and much smaller number

of levels (2m+1), by optimizing/tightening the bounds used in deriving this result. While this is

in principle doable, we believe this would sacrifice clarity given the tedious calculations required,

and would substantially increase the length of the paper.

IV. LOCAL MINIMA AND ASYMPTOTIC PERFORMANCE GUARANTEES

Let

U(aL, aF)=−Eθ[uL(θ, aL, aF )] =rL

∫ ∞
−∞

(θ − aL(θ))2φ( θ
σ
)

σ
dθ

+(1− rL)

∫ ∞
−∞

∫ ∞
−∞

(aF (s)− aL(θ))2φ(s− aL(θ))
φ( θ

σ
)

σ
dsdθ, (6)

for any two measurable functions aL, aF : R→ R. As discussed in Section II, U(aL, aF ) defined

above maps to the expected cost of the original Witsenhausen’s problem in [1]. The aim of this

section is to study the performance of the equilibrium strategies characterized by Theorem 1 in

view of the above cost function. Being an equilibrium implies that the cost cannot be improved

by changing one of the strategies a∗L or a∗F while keeping the other fixed, although this does not

rule out the possibility of obtaining a lower cost by simultaneously changing both strategies.9

8Recall that xQ
1 is the first half-step in a (2m+ 1)-level optimal MSE quantizer.

9We thank Anant Sahai for bringing this point into the authors’ attention.
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With a bit of manipulation, however, we can show that the image of the strategy obtained from

an infinitesimal variation in a∗L also lies within AmL , using which we can show that (a∗L, a
∗
F ) is

indeed a local minimum of U .

Lemma 2. Any pair of equilibrium strategies (a∗L, a
∗
F ) characterized by Theorem 1, where a∗L ∈

AmL (rL, σ) and a∗F (s) = Eδ[a∗L|s]10, is a local minimum of the cost functional U in (6).

Proof. See the appendix. �

We now have the first main result of the paper: a near piecewise-linear strategy for the leader

(or first controller) that leads to a local minimum of Witsenhausen’s problem. Although the

importance of such strategies has been already noticed in the literature ([17]–[20]), no analytical

result concerning the optimality of such strategies is reported in the literature. Theorem 1 also

presents an important result in the context of two-stage games of incomplete information.

We next aim to evaluate the asymptotic performance of these local minima with respect to the

optimal cost. According to Theorem 1, (a∗L, a
∗
F ) is a minimizer of U over the pair of strategies

(aL, aF ) with aL ∈ AmL (rL, σ). Therefore, we can use any other pair of strategies with the leader’s

strategy being in AmL (for which it is easier to evaluate the cost) to find an upper bound for

U(a∗L, a
∗
F ). For this purpose we use U(a∗L, a

∗
F ) ≤ U(aQ

L , a
Q
F ), where aQ

L is the piecewise-linear

strategy with segments BQ
k and fixed points cQ

k specified in the base configuration in Section III

and d
dθ
aQ
L(θ) = rL over each interval, and aQ

F is the optimal (2m+ 1)-level MSE quantizer (i.e.,

constant value of cQ
k over segment BQ

k ). It is easy to see that (θ−aQ
L(θ))2 = (1−rL)2(θ−aQ

F (θ))2.

We can thus write U(aQ
L , a

Q
F ) = rL(1− rL)2DQ

L + (1− rL)DQ
F , with

DQ
L =

∫ ∞
−∞

(θ − aQ
F (θ))2φ( θ

σ
)

σ
dθ,

DQ
F =

∫ ∞
−∞

∫ ∞
−∞

(aQ
F (s)− aQ

L(θ))2φ(s− aQ
L(θ))

φ( θ
σ
)

σ
dsdθ. (7)

DQ
F can be upper-bounded as DQ

F ≤ 4
√

2
e

(2−rL)2

(1−rL)2φ(
xQ

1√
2
) + r2

LD
Q
L (see the proof of Lemma 3).

We can find the exact asymptotic value of DQ
L using results from asymptotic quantization theory

([23]–[25]): DQ
L is the mean-square error of an optimal (2m + 1)-level MSE quantizer for a

source θ ∼ N(0, σ2) (see, e.g., [25]). It is known that for large m, DQ
L ≈ c∞

(2m+1)2 , where c∞ is

10Recall that δ ∼ N(0, 1) is the noise in the follower’s observation.
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the Panter-Dite constant of a normal source given by

c∞ =
1

12

(∫ ∞
−∞

(
φ( θ

σ
)

σ
)

1
3dθ

)3

=

√
3π

2
σ2. (8)

Another interesting exact asymptotic equality is (2m + 1)
xQ

1

σ
≈

√
6π
2

using which we can

alternatively write DQ
L ≈

(xQ
1 )2

√
3

as m→∞. We have the following lemma.

Lemma 3. For the pair of equilibrium strategies (a∗L, a
∗
F ) characterized by Theorem 1, where

a∗L ∈ AmL (rL, σ), a∗F (s) = Eδ[a∗L|s], and m ∈M(σ) we have

lim inf
m→∞

rL(1−rL)(xQ
1 )2

√
3

+ 4
√

2
e

(2−rL)2

(1−rL)
φ(

xQ
1√
2
)

U(a∗L, a
∗
F )

≥ 1. (9)

Proof. See the appendix. �

The above asymptotic upper bound on U(a∗L, a
∗
F ) is minimized when xQ

1 ≈ 2
√

2 lnσ for

large σ, with number of levels (2m + 1) ≈
√

3πσ
4
√

lnσ
and yielding a cost ≈ 8rL lnσ√

3
. Recalling

that M(σ) = {m ∈ N|xQ
1 > 2

√
2 lnσ + 5,m ≥ 25}, this implies the existence of a local

minimum with near piecewise-linear strategy for the leader with a cost asymptotically as low

as 8rL lnσ√
3

. To compare with the optimal solution, we use the lower bounds on the optimal cost

of Witsenhausen’s problem derived in [15]. The following lemma is an immediate result of

Theorem 4 in [15].

Lemma 4. Denote with U∗(σ) the minimum value of the cost functional U(aL, aF ) given by (6)

in the regime rLσ2 = 1. Then

lim sup
σ→∞

lnσ
6σ2

U∗(σ)
≤ 1. (10)

Proof. See the appendix. �

This lower bound is quite loose (as also pointed out by the authors in [15]), but still serves

our purpose of showing that our proposed set of local optima include solutions that are only a

constant factor away from the optimal cost as σ → ∞.11 We summarize the main findings of

this section in the theorem below.

11The ratio between the upper and lower bounds in [15] is almost 100. For the well-known case of σ = 5 and k2σ2 = 1, the
lowest known cost ≈ 0.167 is only 12.5 times the value obtained from the lower bound.
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Theorem 2. Any pair of equilibrium strategies (a∗L, a
∗
F ) characterized by Theorem 1, where

a∗L ∈ AmL (rL, σ) and a∗F (s) = Eδ[a∗L|s], is a local minimum of the cost functional U in (6).

Moreover,

lim inf
σ→∞

8rL lnσ√
3

minm∈M(σ) U(a∗L, a
∗
F )
≥ 1. (11)

In the regime rLσ2 = 1, at least one of these local minima are less than 27.8 times away from

the optimal value, as σ →∞.

Proof. See the appendix. �

V. BEST RESPONSE ANALYSIS

The objective of this section is to prove Theorem 1 on the invariance of the set of strategies

AmL (rL, σ) (for m ∈M(σ)), and the existence of an equilibrium with the leader’s strategy in this

set. The first step in verifying the invariance of AmL (rL, σ) is to characterize the best response of

the follower aF (s) to the leader’s strategy aL(θ) ∈ AmL (rL, σ). We can then use these properties

to find the updated best response of the leader to aF (s), denoted by ãL(θ) and enforce its

inclusion in AmL (rL, σ).

The follower’s best response to the strategy of the leader aL(θ) is the expected action of the

leader given the observation s = aL+δ, that is aF (s) = Eδ[aL|s]. Following a simple application

of Bayes rule we can obtain

aF (s) =

∫∞
−∞ aL(θ)φ(s− aL(θ))φ( θ

σ
)dθ∫∞

−∞ φ(s− aL(θ))φ( θ
σ
)dθ

. (12)

Using this, we can easily show that aF (s) is analytic and increasing, with d
ds
aF (s) = Var[aL|s]

(see [1] for a proof).

In order to characterize aF (s), we start by estimating the expected action of the leader and

its variance conditioned on the interval to which θ belongs. Actions of the leader in interval Bk

(k 6= ±m) are well-concentrated around ck. In fact aL(θ) ∈ [ck − r̄x̄k, ck + r̄x̄k+1] for θ ∈ Bk,

from which the lemma below follows immediately.

Lemma 5. For 0 ≤ k < m, |E[aL(θ)|s, θ ∈ Bk] − ck| ≤ r̄x̄k+1 and Var[aL(θ)|s, θ ∈ Bk] ≤

r̄2( x̄k+x̄k+1

2
)2.
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Proof. See the appendix. �

The analysis is a bit involved in the tail, since for θ > cm the leader’s actions are not in a

bounded vicinity of cm anymore. However, we can derive several useful properties for the tail

as well.

Lemma 6. Consider a tail observation by the leader (i.e., θ ∈ Bm). Then,

E[aL(θ)|s, θ ∈ Bm]− cm ≤ r̄x̄m+1, (13)

for s ≤ cm + x̄m+1, where x̄m+1 =
√
ex̄m. For s > cm + x̄m+1, we have

E[aL(θ)|s, θ ∈ Bm]− cm ≤ 3rLσ(s− cm + 1). (14)

Also, E[aL(θ)|s, θ ∈ Bm]− cm ≥ −r̄x̄m. As for the variance,

Var[aL(θ)|s, θ∈Bm]≤


1
3
, for s < cm−1

3
4
r̄2(x̄m+x̄m+1

2
)2, for cm−1≤s≤cm+x̄m+1

2.5r2
Lσ

2(s−cm)2, for s> cm + x̄m+1.

(15)

Proof. See the appendix. �

Let the signal observed by the follower be between ck and ck+1, i.e., s = ck + δ with 0 ≤ δ ≤

ck+1− ck. Then, we claim that the follower’s posterior on θ given s has a negligible probability

out of the neighboring intervals Bk ∪Bk+1.

Lemma 7. Let the observed signal by the follower be s = ck + δ, where 0 ≤ δ ≤ ck+1 − ck,

with k ≥ 0. Then, for any j ≥ 1,

Prob[θ ∈ Bk−j|s]
Prob[θ ∈ Bk|s]

≤ e−
(ck−ck−j)2

2
+3j+1. (16)

Similarly,

Prob[θ ∈ Bk+j+1|s]
Prob[θ ∈ Bk+1|s]

≤ e−
(ck+j+1−ck+1)2

2
+3j+1. (17)

Proof. See the appendix. �

Using this lemma and the fact that the fixed points ck are well-spaced, we can show that the

effect of the intervals other than Bk and Bk+1 on aF (s) are negligible. In order to characterize
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the follower’s best response aF (s), we then need to focus only on the segments adjacent to

the observed signal, and in particular figure out the weight of each of these two neighboring

intervals in the follower’s posterior on θ. We do this in the following lemma.

Lemma 8. Define

mk+1 =
ck + ck+1

2
+

1

∆k+1

ln

(
Prob[θ ∈ Bk]

Prob[θ ∈ Bk+1]

)
, (18)

where ∆k+1 = ck+1− ck. Also, write the signal observed by the follower as s = mk+1 + δ. Then,

for 0 ≤ k < m− 1,

e−∆k+1(δ+r̄x̄k+1)−
r̄2x̄2

k+1
2 ≤ Prob[θ∈Bk|s]

Prob[θ∈Bk+1|s]
≤e∆k+1(r̄x̄k+2−δ)+

r̄2x̄2
k+2
2 . (19)

For the case involving the tail segment Bm,

e−∆m(δ+r̄x̄m)−r̄
2x̄2
m

2 ≤Prob[θ∈Bm−1|s]
Prob[θ∈Bm|s]

≤1.16e−∆m(δ−r̄x̄m)+
r̄2x̄2

m
2 . (20)

Proof. See the appendix. �

It is worth mentioning that mk+1 defined in the above lemma is quite close to the midpoint

of ck and ck+1. In particular, using Lemma 1 we can show that − 1.1
∆k+1

<mk+1− ck+ck+1

2
< 2.3

∆k+1
.12

We can now characterize the best response of the follower aF (s) to the leader’s strategy aL(θ) ∈

AmL (rL, σ) up to the first order.

Lemma 9. Let s = mk+1 + δ, with ck ≤ s ≤ ck+1. Then

aF (s) ≥ ck +
∆k+1

1 + 1.17e−∆k+1δ
− 1.01r̄x̄k+2

aF (s) ≤ ck +
1.17∆k+1

1.17 + e−∆k+1δ
+ 1.01r̄x̄k+2. (21)

Also,

0≤ d

ds
aF (s)≤1.17e−∆k+1|δ|∆2

k+1+1.01r̄2(
x̄k+x̄k+1

2
)2 for δ≤−0.5

0≤ d

ds
aF (s)≤1.17e−∆k+1|δ|∆2

k+1+1.01r̄2(
x̄k+1+x̄k+2

2
)2 for δ>−0.5. (22)

12See the proof of Lemma 11 for details.
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Proof. See the appendix. �

Corollary 1. A useful consequence of Lemma 9 is that

aF (s) ≥ ck+1 − 1.17e−∆k+1δ∆k+1 − 1.01r̄x̄k+2

aF (s) ≤ ck + 1.17e∆k+1δ∆k+1 + 1.01r̄x̄k+2, (23)

and

0≤ d

ds
aF (s)≤1.17e−∆k+1|δ|∆2

k+1 + 1.01r̄2x̄2
k+2, (24)

where s = mk+1 + δ, with ck ≤ s ≤ ck+1.

Note that the exponential terms in the above bounds vanish quite fast for large ∆k+1 and |δ|.

for small |δ|, another useful upper bound on the derivative of aF (s) is

d

ds
aF (s) ≤ 1

4
(∆k+1 + 2r̄x̄k+2)2 + 0.01r̄2x̄2

k+2. (25)

Corollary 2. Let s = mk+1 + δ, with ck ≤ s ≤ ck+1. Then,

ck−1.1r̄x̄k+2≤aF (s)≤ck + 1.1r̄x̄k+2 for δ<−2
√

2 lnσ

5

ck+1−1.1r̄x̄k+2≤aF (s)≤ck+1 + 1.1r̄x̄k+2 for δ>
2
√

2 lnσ

5
. (26)

Roughly speaking, the above corollary says that, if the observed signal by the follower is

far enough from the midpoint of ck and ck+1, then the optimal action of the follower is well-

concentrated around ck or ck+1 (whichever that is closer), and changes very slowly according to

Lemma 9.13 However, aF (s) may have very high variations for s close to mk+1 as can be seen

from Lemma 9.

The following lemma characterizes aF (s) when follower makes a tail observation.

Lemma 10. Let s = cm + δ, where δ > 0. Then,

i) for δ ≤ x̄m+1, cm− 1.01r̄x̄m+1 ≤ aF (s) ≤ cm + r̄x̄m+1, and 0 ≤ d
ds
aF (s) ≤ 0.8r̄2( x̄m+x̄m+1

2
)2.

ii) for δ > x̄m+1, cm − 1.01r̄x̄m ≤ aF (s) ≤ cm + 3rLσ(δ + 1), and 0 ≤ d
ds
aF (s) ≤ 3r2

Lσ
2δ2.

13Note that 2
√

2 lnσ
5

< ¯
x1
5
<

∆k+1

10
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Proof. See the appendix. �

Lemma 9 and 10 provide the first order characteristics of the best response of the follower to

a leader’s strategy aL(θ) ∈ AmL (rL, σ). We are now ready to analyze the leader’s best response

ãL(θ) to aF (s) and see if we can keep it in AmL (rL, σ). We have ãL(θ) ∈ argmaxaL ũL(θ, aL),

where

ũL(θ, aL) =− rL(θ−aL)2

− (1−rL)

∫ ∞
−∞

(aF (s)− aL)2φ(s− aL)ds. (27)

Lemma 11. Consider θ ∈ [ck, ck+1], 0 ≤ k < m. Then, there exists a unique b̃k+1 ∈ [ck, ck+1]

such that

|ãL(θ)− ck| < 5r̄x̄k+2 for θ < b̃k+1,

|ãL(θ)− ck+1| < 5r̄x̄k+2 for θ > b̃k+1. (28)

Proof. See the appendix. �

The points b̃k+1 determine the segments of the best response strategy ãL(θ). The leader’s best

response strategy clearly has a discontinuity at b̃k+1. However, as we show in the next lemma,

ãL(θ) is differentiable at all points θ ∈ [ck, ck+1] \ {b̃k+1}. We further bound the derivative

of ãL(θ) using the bounds on the follower’s strategy and its derivative derived in Lemma 9,

Corollary 1, and Corollary 2.

Lemma 12. Consider θ ∈ [ck, ck+1], 0 ≤ k < m, with θ 6= b̃k+1. Then,

d

dθ
ãL(θ) ≥ rL

rL + (1− rL)(1 + 0.4r̄2σ2)

d

dθ
ãL(θ) ≤ rL

rL + (1− rL)(1− 0.45r̄2σ2)
. (29)

Proof. See the appendix. �

Using this lemma and the values
¯
r = rL(1−0.5r2

Lσ
2) and r̄ = rL(1+0.5r2

Lσ
2), we can easily

verify that
¯
r ≤ d

dθ
ãL(θ) ≤ r̄. This means that Property 3 is preserved by the best response for

θ ∈ [−cm, cm]. We study the tail case later in Lemma 14. Next lemma identifies 2m + 1 local

minima of the MSE term in the leader’s payoff, each located in a tiny interval around a fixed
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point of aL(θ), establishing that they are indeed the fixed points of the best response strategy

ãL(θ).

Lemma 13. Define

J̃L(aL) =

∫ ∞
−∞

(aF (s)− aL)2φ(s− aL)ds. (30)

Then, J̃L(aL) is strongly convex over [ck−5r̄x̄k+2, ck+5r̄x̄k+2] with d2

da2
L
J̃L(aL) ≥ 2(1−0.45r̄2σ2).

Let c̃k be the unique solution of

c̃k = argmin
aL∈[ck−5r̄x̄k+2,ck+5r̄x̄k+2]∩[b̃k,b̃k+1]

J̃L(aL). (31)

Then, ãL(c̃k) = c̃k.

Proof. See the appendix. �

The fixed point characterized in the above lemma is the unique fixed point in [b̃k, b̃k+1] from

Property 3. Therefore, Property 1 is also preserved under the best response. Next lemma describes

the tail properties of ãL(θ).

Lemma 14. If b̃m < θ < c̃m + σx̄m+1, then
¯
r ≤ d

dθ
ãL(θ) ≤ r̄. For θ > c̃m + σx̄m+1, we have

ãL(θ) ≤ c̃m + 3rL(θ − c̃m).

Proof. See the appendix. �

Now, in order to verify that the updated strategy ãL(θ) satisfies Property 2, we need to bound

the displacements in the fixed points c̃k and endpoints b̃k.

Lemma 15. For the endpoints of the intervals corresponding to ãL(θ), we have |b̃k+1− c̃k+c̃k+1

2
| ≤

0.1rL.

Proof. See the appendix. �

Bounding the displacement in c̃k can be done in multiple steps: first we need to relate the

fixed point of the leader’s best response ãL(θ) in interval B̃k to the fixed point of aF (s) in Bk

(i.e., sk), followed by estimating sk in terms of ck and ek where ek = EN(0,σ2)[θ|θ ∈ Bk], that is,

the expected value of θ over Bk. Finally we bound the displacement in ek with the displacement

of the interval endpoints using properties of truncated normal distribution.
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Lemma 16. Let sk be the fixed point of aF (s) in the interval [ck − 5r̄x̄m+1, ck + 5r̄x̄m+1], i.e.,

aF (sk) = sk. Then,

|c̃k − sk| ≤ 0.42r2
L(
x̄k + x̄k+1

2
)2 + 0.08r2

L¯
x1. (32)

Proof. See the appendix. �

Lemma 17. sk can be located based on ck and ek as

|sk − (1− rL)ck − rLek| ≤ 1.9r2
Lx̄k+1. (33)

Proof. See the appendix. �

Using Lemma 15-17, we can reach at

|c̃k − (1− rL)ck − rLêk| ≤ 0.42r2
L(
x̄k + x̄k+1

2
)2 + 2r2

Lx̄k+1, (34)

where êk = EN(0,σ2)[θ|θ ∈ B̂k], with B̂k = [b̂k, b̂k+1], b̂k = ck−1+ck
2

and b̂k+1 = ck+ck+1

2
. We can

now use (34) and Lemma 15 to verify that Property 2 is also preserved by the best response,

completing the proof of the invariance of AmL (rL, σ) for m ∈M(σ) and σ ≥ 300 in the regime
1
2
≤ rLσ

2 ≤ 1. This is carried out in the proof of the following theorem.

VI. CONCLUSIONS

We studied Witsenhausen’s counterexample in a leader-follower game setup where the follower

makes noisy observations from the leader’s action and aims to choose her action as close as

possible to that of the leader. Leader who moves first and can see the realization of the state of

the world chooses her action to minimize her ex-ante distance from the follower’s action as well

as the state of the world. We showed the existence of nonlinear perfect Bayesian equilibria in the

regime 1
2
≤ rLσ

2 ≤ 1, where the leader’s strategy is a perturbed near-piecewise-linear version

of an optimal MSE quantizer. We then proved that these equilibria are indeed local minima

of the original Witsenhausen’s problem. Incorporating some relevant results from asymptotic

quantization theory and lower bounds on the optimal cost of Witsenhausen’s problem from the

literature, we showed that the proposed local minima include solutions that are at most a constant

factor away from the optimal one.
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APPENDIX

Proof of Lemma 1. To avoid lengthy expressions, we introduce and work with normalized

variables x̂k =
xQ
k

σ
, b̂k =

bQk
σ

, ĉk =
cQk
σ

, and B̂k =
BQ
k

σ
. All the expectations are then taken

using N(0, 1) as the probability measure.

i) Let ρ(h) = φ(h)
1−Φ(h)

denote the Mill’s ratio. Then, 0 ≤ 1 − ρ(ρ − h) ≤ (ρ − h)2 (see, e.g.

[27] for a proof). This implies that 0 ≤ 1− ĉmx̂m ≤ x̂2
m. Moreover, x̂m is decreasing with

m and it follows from direct calculation that x̂2 = 0.48 < 1
2
, hence completing the proof.

ii) Since ĉk is the centroid of segment B̂k, we should have∫ ĉk

b̂k

(ĉk − θ)φ(θ)dθ =

∫ b̂k+1

ĉk

(θ − ĉk)φ(θ)dθ. (35)

This, together with the fact that
∫ ĉk
b̂k

(ĉk − θ)φ(θ)dθ ≤ φ(b̂k)
∫ ĉk
b̂k

(ĉk − θ)dθ and
∫ b̂k+1

ĉk
(θ −

ĉk)φ(θ)dθ ≥ φ(b̂k+1)
∫ b̂k+1

ĉk
(θ− ĉk)dθ proves the RHS inequality in (4). To derive the LHS,

let p1
k = Prob[θ|b̂k ≤ θ ≤ ĉk] and p2

k = Prob[θ|ĉk ≤ θ ≤ b̂k+1]. Noting that φ(θ) (for

θ ≥ 0) and ĉk − θ are decreasing with θ, we apply algebraic Chebyshev inequality to (35)

to obtain p1
kx̂k ≤ p2

kx̂k+1. On the other hand,

p2
k

p1
k

≤ x̂k+1

x̂k
× φ(ĉk)

φ(b̂k)
. (36)

Combining the two, we can derive the LHS in (4). It then immediately follows from the

LHS inequality that x̂k ≤ x̂k+1 for 1 ≤ k. Applying the result of part (i) to the RHS

inequality we can easily show that x̂k+1

x̂k
≤ e.

iii) A useful property here is that g(x) = 1
x

∫ a+x

a
φ(t)dt is decreasing in x for x, a > 0. Using

this, we can obtain

Prob[θ|θ ∈ B̂k]

Prob[θ|θ ∈ B̂j]
≤ x̂k + x̂k+1

x̂j + x̂j+1

× φ(b̂k)

φ(b̂j)

≤ x̂k + x̂k+1

x̂j + x̂j+1

×
x̂2
j

x̂2
k

≤ 1 + e

2

x̂j
x̂k
≤ 1 + e

2
, (37)

where the last two lines follow from part (ii). We have to modify the proof for k =

m. To extend the proof to the case k = m, it suffices to show that Prob[θ|θ ∈ B̂m] ≤
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Prob[θ|θ ∈ B̂m−1]. We first note that

Prob[θ|θ ∈ B̂m] =
φ(b̂m)

ĉm
≤ 4

3
φ(b̂m)x̂m, (38)

where we have used part (i) in the last inequality. The proof now follows from the fact

that Prob[θ|θ ∈ B̂m−1] > (x̂m−1 + x̂m)φ(b̂m) ≥ (1 + 1
e
)x̂mφ(b̂m).

iv) We start by showing that

e
1
2

(x̂1+...+x̂k)2 ≤ x̂k+1

x̂1

≤ e
5
6

(x̂1+...+x̂k+1)2

. (39)

The LHS easily follows from part (ii), while the RHS requires a more involved analysis

as we elaborate below. The idea here is to find an appropriate lower bound for the RHS

of (35). Using Jensen’s inequality for the function e−x, we can obtain∫ b̂k+1

ĉk

(θ − ĉk)φ(θ)dθ ≥
x̂2
k+1

2
√

2π
e
− 1

2

∫ b̂k+1
ĉk

2θ2(θ−ĉk)

x̂2
k+1

dθ
. (40)

Combining this with the same upper bound of x̂2
k

2
φ(b̂k) as in part (ii) for the LHS of (35)

and after some simplification we can reach at

x̂2
k+1

x̂2
k

≤ eĉkx̂k+ 2
3
ĉkx̂k+1−

x̂2
k
2

+
x̂2
k+1
4 . (41)

Substituting k with 1, . . . , k− 1 and multiplying all these k inequalities we can prove the

RHS inequality in (39).

Incorporating the simple inequality φ(x̂1+...+x̂k)
φ(x̂1+...+x̂k+1)

≤ e
ĉmx̂m

2 ≤
√
e into (39), we can find that

x̂1 ≤
√

2πex̂k+1φ(x̂1 + . . .+ x̂k+1) for k = 1, . . . ,m− 1. Adding up all these inequalities

and x̂1 ≤
√

2πex̂1φ(x̂1) yields

mx̂1√
2πe
≤

m∑
k=1

x̂kφ(x̂1 + . . .+ x̂k) ≤
∫ ∞

0

φ(θ)dθ =
1

2
, (42)

proving x̂1 ≤
√

2πe
2m

.

Based on the RHS of (39) and following a similar approach we can show that

m−1∑
k=1

x̂k+1e
− 5

6
(x̂1+...+x̂k)2 ≤ e(m− 1)x̂1. (43)
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On the other hand,∫ ∞
x̂1+...+x̂m

e−
5
6
θ2

dθ ≤ 6e−
5
6

(x̂1+...+x̂m)2

10(x̂1 + . . .+ x̂m)

≤ 6e−
5
6

(x̂1+...+x̂m)2
x̂m

10(x̂1 + . . .+ x̂m)x̂m
≤ 1.6x̂1, (44)

where the last inequality follows from (39) and part (i). Putting (43) and (44) together

we can show that emx̂1 ≥
∫∞

0
e−

5
6
θ2
dθ =

√
3π
10

, which yields x̂1 ≥
√

3π√
10em

. Using (39) for

k = m− 1, together with x̂mĉm ≤ 1 and x̂1 ≤
√

2πe
2m

, we can find

1

2
√

1.2
≥ x̂m

√
ln

2mx̂m√
2πe

, (45)

using which we can show that x̂m ≤ 1
1.1
√

lnm
, for m ≥ 5. This in turn implies that

ĉm ≥
1

x̂m
− x̂m ≥ 1.1

√
lnm− 1

1.1
√

lnm
. (46)

Finally, using the LHS of (39) for k = m−1, together with x̂m ≤ 1
1.1
√

lnm
and x̂1 ≥

√
3π√

10em
,

and some manipulation we can obtain

ĉm ≤ 2
√

2 lnm+ 1.4 +
2

1.1
√

lnm
≤ 2
√

2 lnm+ 1.4 + 1.45, (47)

for m ≥ 5. Along with ĉmx̂m ≥ 1− x̂2
m, this leads to

x̂m ≥
1

ĉm
2

+
√

ĉ2m
4

+ 1
≥ 1

2
√

2 lnm+ 6
. (48)

�

Remark 1. Particular consequences of assuming m ≥ 25 and σ ≥ 300 and that m is such

that xQ
1 > 2

√
2 lnσ + 5, are frequently used in the proofs concerning best response analysis.

We summarize these properties here to avoid confusion in case they are not explicitly mentioned

when used in the proofs.

1) xQ
m > 6xQ

1 and cQ
m > 13.5xQ

m. This follows from direct calculation of the optimal (2m+1)-

level MSE quantizer for m = 25 and that xQ
m

xQ
1

and cQm
xQ
m

are both increasing with m.

2) xQ
m < 0.262σ. This follows from direct calculation of the optimal (2m + 1)-level MSE
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quantizer for m = 25 and that x
Q
m

σ
is decreasing with m. As a result, x̄m = xQ

m+3 < 0.272σ

since σ ≥ 300.

3) xQ
1 > 11.5. This follows from xQ

1 > 2
√

2 lnσ+ 5 and σ ≥ 300. As a result,
¯
x1 = xQ

1 −3 >

8.5.

4) m < σ
2
. This follows from part iv) of Lemma 1: 2m

σ
≤
√

2πe

xQ
1

<
√

2πe
2
√

2 lnσ+5
< 1.

Proof of Lemma 5. This is an immediate result of Property 2. �

Proof of Lemma 6. We start with the case where aL(cm + σx̄m+1) ≤ s ≤ cm + x̄m+1. Let

θc = cm + σx̄m+1 and δc = s − aL(θc). With some manipulation, we can show that for every

bm ≤ θ, θ′ ≤ θc,

Prob[θ′|s]
Prob[θ|s]

=
φ(s− aL(θ′))φ( θ

′

σ
)

φ(s− aL(θ))φ( θ
σ
)
≥
φ( θ

′

σ
)φ(δc + r̄(θc − θ′))

φ( θ
σ
)φ(δc +

¯
r(θc − θ))

. (49)

Integrating with respect to θ′ and after some simplification, we arrive at

Prob[θ|s, bm ≤ θ ≤ θc] ≤
φ(δc +

¯
r(θc − θ))

φ(δc + r̄(θc − θ))
φ̄(θ)

Φ̄(θc)− Φ̄(bm)

≤ ξ
φ̄(θ)

Φ̄(θc)− Φ̄(bm)
, (50)

where φ̄ ∼ N(µ̄, ν̄2), with µ̄ = r̄σ2(δc+r̄θc)
1+r̄2σ2 and ν̄2 = σ2

1+r̄2σ2 < σ2, and

ξ =
φ(δc +

¯
r(θc − bm))

φ(δc + r̄(θc − bm))
. (51)

Using δc ≤ x̄m+1−
¯
rσx̄m+1, it is easy to verify that δc+ rL(θc− bm) < x̄m+1 + 1. It then follows

that

ln ξ = (r̄ −
¯
r)(θc − bm)(δc + rL(θc − bm))

≤ r3
Lσ

2(
√
eσ + 1)x̄m(

√
ex̄m + 1) < 0.001, (52)

for σ ≥ 300 and m ≥ 25 (for which xQ
m < 0.262σ), implying that ξ < 1.01.

A useful formula is

1

σ2
VarN(µ,σ2)[θ|c ≤ θ] = 1−

(EN(µ,σ2)[θ|c ≤ θ]− c)(EN(µ,σ2)[θ|c ≤ θ]− µ)

σ2

≤ (
EN(µ,σ2)[θ|c ≤ θ]− c

σ
)2, (53)

May 8, 2019 DRAFT



23

for µ ≤ c. Moreover, the above variance is increasing in µ for µ ≤ c (see, e.g. [27]).

Let eµ̄ = EN(µ̄,σ2)[θ|bm ≤ θ]−bm and e0 = EN(0,σ2)[θ|bm ≤ θ]−bm. Then, from the increasing

property mentioned above, we find

(bm + eµ̄ − µ̄)eµ̄ ≤ (bm + e0)e0 ⇒

eµ̄ ≤
−(bm − µ̄) +

√
(bm − µ̄)2 + 4e0(bm + e0)

2

≤
−(bm − µ̄) +

√
(bm − µ̄)2 + 4x̄m(bm + x̄m)

2
, (54)

and hence,

eµ̄
x̄m
≤ 2(bm + x̄m)

(bm − µ̄) +
√

(bm − µ̄)2 + 4x̄m(bm + x̄m)
. (55)

Based on this inequality and that xQ
1 > 11.5 (from the definition of M(σ) and that σ ≥ 300),

and that xQ
m > 6xQ

1 and bQ
m ≥ 12.5xQ

m for m ≥ 25, we can show that eµ̄ ≤ 1.134x̄m. Therefore,

E[aL(θ)|s, bm ≤ θ ≤ θc]−cm≤ξr̄Eφ̄[θ − bm|bm ≤ θ ≤ θc]

< ξr̄EN(µ̄,σ2)[θ − bm|bm ≤ θ] < 1.01× 1.134r̄x̄m < 0.75r̄x̄m+1. (56)

As for the variance, we start with

Var[aL(θ)|s, bm ≤ θ ≤ θc] ≤ξr̄2Varφ̄[θ|bm ≤ θ ≤ θc]≤ ξr̄2VarN(µ̄,σ2)[θ|bm≤θ]. (57)

Combining this with the bound in (53), we get

Var[aL(θ)|s, bm ≤ θ ≤ θc] ≤1.01× 1.1342r̄2x̄2
m <1.3r̄2x̄2

m. (58)

Similar results to the above can be derived for the case where aL(bm) ≤ s < aL(θc), using

θs instead of θc, where s = aL(θs) with bm ≤ θs < θc. The same for the case s < aL(bm),

following a similar argument with φ̄b ∼ N(µ̄b, ν̄
2), where µ̄b = r̄σ2(r̄bm−δb)

1+r̄2σ2 , ν̄2 = σ2

1+r̄2σ2 , and

δb = aL(bm)− s > 0.

Now we bring into play the tail effect. For every θ ≥ θc, we use

Prob[θ|s]
Prob[cm ≤ θ′ ≤ θc|s]

=
φ(s− aL(θ))φ( θ

σ
)∫ θc

cm
φ(s− aL(θ′))φ( θ

′

σ
)dθ′

, (59)
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using which for s = cm + δ with 0 ≤ δ ≤ x̄m+1, we get

Prob[θ|s]
Prob[cm ≤ θ′ ≤ θc|s]

≤
e
δ2

2 φ( θ
σ
)

σ(Φ( θc
σ

)− Φ( cm
σ

))
. (60)

Therefore, for θ ≥ θc

Prob[θ|s, θ ≥ cm] ≤
e
δ2

2 (1− Φ( θc
σ

))

Φ( θc
σ

)− Φ( cm
σ

)
×

φ( θ
σ
)

σ(1− Φ( θc
σ

))
. (61)

Using the inequality h ≤ ρ(h) ≤ h2+1
h

for h > 0, we can show that 1−Φ( θc
σ

)

Φ( θc
σ

)−Φ( cm
σ

)
≤ φ( θc

σ
)

φ( cm
σ

)
. This,

along with (61) and 0 ≤ δ ≤ x̄m+1 and θc = cm + σx̄m+1 yields

Prob[θ|s, θ ∈ Bm] ≤ Prob[θ|s, θ ≥ cm]

≤
e−

cmx̄m+1
σ φ( θ

σ
)

σ(1− Φ( θc
σ

))
≤

e−σφ( θ
σ
)

σ(1− Φ( θc
σ

))
, (62)

for θ ≥ θc, where we have used cmx̄m+1 ≥ σ2 (which easily follows from Lemma 1). Using this

along with (56), we can obtain

E[aL(θ)|s, θ ∈ Bm]− cm

≤0.75r̄x̄m+1+e
−σ(3rL(θc − cm + σ(ρ(

θc
σ

)− θc
σ

)))

≤0.75r̄x̄m+1+3rLσe
−σ(x̄m+1+

σ

cm+σx̄m+1

)≤r̄x̄m+1. (63)

Also, E[aL(θ)|s, θ ∈ Bm] ≥ aL(bm) ≥ cm− r̄x̄m. To bound the variance, let κ = E[aL(θ)|s, bm ≤

θ ≤ θc] (κ > aL(bm)). Then,

Var[aL(θ)|s, θ ∈ Bm] ≤ E[(aL(θ)− κ)2|s, θ ∈ Bm]

≤ 1.3r̄2x̄2
m + e−σEN(0,σ2)[(aL(θ)− aL(bm))2|θ ≥ θc]

≤ 1.3r̄2x̄2
m + e−σEN(0,σ2)[(3rL(θ − cm) + r̄x̄m)2|θ ≥ θc]

≤ 1.3r̄2x̄2
m + 9r̄2e−σ((σx̄m+1 + 1)2 + σ2)

≤ 0.75r̄2(
x̄m + x̄m+1

2
)2, (64)

on noting σ ≥ 300.
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For s < cm−1, we use the fact that Var[θ|s, bm ≤ θ ≤ θc] ≤ ( θc−bm
2

)2 to get

Var[aL(θ)|s, bm ≤ θ ≤ θc] ≤ r̄2(
θc − bm

2
)2 < 0.3. (65)

As for the effect of θ > θc, we can easily see that for s < cm (62) becomes

Prob[θ|s, θ ∈ Bm] ≤
e−σ−

x̄2
m+1

2 φ( θ
σ
)

σ(1− Φ( θc
σ

))
. (66)

We can use this to bound the variance similar to (64):

Var[aL(θ)|s, θ ∈ Bm]≤

0.75r̄2( x̄m+x̄m+1

2
)2, cm−1 ≤ s ≤ cm

1
3
, s < cm−1

(67)

For the case where s > cm + x̄m+1 (i.e., δ > x̄m+1), let θs = cm + σδ. Then, similar to (62)

we can obtain

Prob[θ|s, θ ∈ Bm] ≤
e−σφ( θ

σ
)

σ(1− Φ( θs
σ

))
, (68)

for θ ≥ θs. Using this and similar to (63), we can reach at

E[aL(θ)|s, θ ∈ Bm] < cm + 3rLσ(δ + 1). (69)

To bound the variance, similar to (64) we can show

Var[aL(θ)|s, θ ∈ Bm] < 2.5r2
Lσ

2δ2, (70)

which completes the proof. �

Proof of Lemma 7. First, we use the properties of the base configuration listed in Lemma 1 to

show that

Prob[θ ∈ Bk−j]

Prob[θ ∈ Bk]
≤ e2j+1. (71)

Let B̃k=[b̃k, b̃k+1]=[
cQk−1+cQk

2
+3,

cQk +cQk+1

2
], and B̃k−j=[b̃k−j, b̃k−j+1]=[

cQk−j−1+cQk−j
2

−3,
cQk−j+c

Q
k−j+1

2
].

Then, it is straightforward to verify that

Prob[θ ∈ Bk−j]

Prob[θ ∈ Bk]
≤ Prob[θ ∈ B̃k−j]

Prob[θ ∈ B̃k]
. (72)
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Similar to part iii) of Lemma 1, we can write

Prob[θ ∈ B̃k−j]

Prob[θ ∈ B̃k]
≤
φ(

b̃k−j+1

σ
)

φ( b̃k+1+δ

σ
)
× b̃k+1 − b̃k + δ

b̃k+1 − b̃k
, (73)

where δ = max{0, (b̃k−j+1 − b̃k−j)− (b̃k+1 − b̃k)} ≤ 6. As a result,

Prob[θ ∈ Bk−j]

Prob[θ ∈ Bk]
≤
φ(

cQk−j+c
Q
k−j+1

2σ
)

φ(
cQk +cQk+1+12

2σ
)
×
xQk+1 + xQk − 3 + δ

xQk+1 + xQk − 3

≤ 1.3e
1
σ2 (cQm+3)(cQm−cQm−j+6), (74)

where we have used the fact that xQ1 > 11.5. Based on the above inequality, together with

cQ
m − c

Q
m−j ≤ 2jxQm, and cQmx

Q
m

σ2 ≤ 1, and that cQm
σ
≤ 2
√

2 lnσ + 1.5 + 1.5 (which follows from

Lemma 1 and that m < σ as stated in Remark 1), and a bit of manipulation we can show that
Prob[θ∈Bk−j ]
Prob[θ∈Bk]

≤ e2j+1.

Now, to prove the lemma for k < m, we write

Prob[θ ∈ Bk−j|s]
Prob[θ ∈ Bk|s]

≤ Prob[θ ∈ Bk−j]φ(δ + (ck − ck−j)− r̄x̄m)

Prob[θ ∈ Bk]φ(δ + r̄x̄m)

≤ Prob[θ ∈ Bk−j]

Prob[θ ∈ Bk]
e−

(ck−ck−j)2

2
+r̄x̄m(ck−ck−j)−δ(ck−ck−j−2r̄x̄m)

≤ e−
(ck−ck−j)2

2
+2j+1+2jr̄x̄2

m ≤ e−
(ck−ck−j)2

2
+3j+1, (75)

using r̄x̄2
m < 1

2
(which follows from xQm < 0.262σ for m ≥ 25). The case k = m needs separate

treatment. Define B̂m = [bm, cm+ x̄m]. Then, it is easy to verify that (71) still holds if we replace

Bm with B̂m. Therefore, the proof in this case follows from an argument similar to above on

noting that Prob[θ ∈ B̂m|s] ≤ Prob[θ ∈ Bm|s]. �

Proof of Lemma 8. If s ≥ ck + r̄x̄k+2, then

Prob[θ ∈ Bk|s]
Prob[θ ∈ Bk+1|s]

≤ Prob[θ ∈ Bk]φ(mk+1 + δ − ck − r̄x̄k+2)

Prob[θ ∈ Bk+1]φ(mk+1 + δ − ck+1 − r̄x̄k+2)

≤ Prob[θ ∈ Bk]

Prob[θ ∈ Bk+1]
e∆k+1(

ck+ck+1
2

+r̄x̄k+2−δ)≤e∆k+1(r̄x̄k+2−δ), (76)

where the last inequality follows from the definition of mk+1. However, for the case where

s < ck + r̄x̄k+2, the upper bound on the likelihood Prob[s|θ ∈ Bk] in the first inequality may be
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less and hence is replaced by 1, which will thereby lead to

Prob[θ ∈ Bk|s]
Prob[θ ∈ Bk+1|s]

≤ e∆k+1(r̄x̄k+2−δ)+
r̄2x̄2

k+2
2 . (77)

The other side of the inequality can be proved similarly.

For the case k = m − 1, the lower bound φ(mk+1 + δ − ck+1 − r̄x̄k+2) for the likelihood

Prob[s|θ ∈ Bk+1] is not valid anymore. To fix this, as in Lemma 7, we use B̂m = [bm, cm + x̄m]

instead of Bm to obtain,

Prob[θ ∈ Bm−1|s]
Prob[θ ∈ Bm|s]

≤ Prob[θ ∈ Bm−1|s]
Prob[θ ∈ B̂m|s]

≤ Prob[θ ∈ Bm]

Prob[θ ∈ B̂m]
e∆m(r̄x̄m−δ)+

r̄2x̄2
m

2 . (78)

On the other hand, we can show that Prob[θ∈Bm]

Prob[θ∈B̂m]
< 1.16, which completes the proof. It is easy

to see that the inequality in LHS stays as before for k = m− 1. �

Proof of Lemma 9. As the first step we bound the effect of intervals other than Bk ∪Bk+1. Let

η = E[aL(θ)|s, θ ∈ Bk ∪Bk+1] and ηj = E[aL(θ)|s, θ ∈ Bj] for −m ≤ j ≤ m. Using Lemma 7,

we can write

k+m∑
j=1

Prob[θ ∈ Bk−j|s]
Prob[θ ∈ Bk|s]

(η − ηk−j)

≤
k+m∑
j=1

(ck − ck−j + 2x̄m + 2r̄x̄m)e−
(ck−ck−j)2

2
+3j+1

≤
k+m∑
j=1

(2j
¯
x1 + 2x̄m + 2r̄x̄m)e−2j2

¯
x2

1+3j+1

≤4e−2
¯
x2

1+4x̄m

k+m∑
j=1

je−2(j2−1)
¯
x2

1+3(j−1)

≤4e−2
¯
x2

1+4x̄m

∞∑
j=1

e−(j−1)2 ≤5.6e4

σ15
< 10−10r̄2

¯
x2

1, (79)

where we have used the identity
∑∞

j=0 e
−j2 ≈ 1.386. Similarly, we can bound the effect of
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non-neighboring intervals on the variance:

k+m∑
j=1

Prob[θ ∈ Bk−j|s]
Prob[θ ∈ Bk|s]

(η − ηk−j)2 ≤ 5.6e4

σ14
. (80)

On the other hand,

k+m∑
j=1

Prob[θ ∈ Bk−j|s]
Prob[θ ∈ Bk|s]

Var[aL(θ)|s, θ ∈ Bk−j]

≤
k+m∑
j=1

1

3
e−

(ck−ck−j)2

2
+3j+1 ≤ 0.5e4

σ16
. (81)

Combining the two, we obtain

m∑
j=−m

j/∈{k,k+1}

Prob[θ∈Bj|s]((η − ηj)2+Var[aL(θ)|s, θ∈Bj])≤10−10r̄2

¯
x2

1. (82)

Therefore, the effect of intervals other than Bk and Bk+1 on aF (s) (and its derivative given by

Var[aL|s]) is quite negligible. Now, focusing on these two intervals (i.e., Bk and Bk+1), we have

E[aL(θ)|s, θ ∈ Bk ∪Bk+1]

= pE[aL(θ)|s, θ ∈ Bk] + (1− p)E[aL(θ)|s, θ ∈ Bk+1]

≤ p(ck + r̄x̄k+1) + (1− p)(ck + ∆k+1 + r̄x̄k+2)

≤ ck + (1− p)∆k+1 + r̄x̄k+2, (83)

where p = Prob[θ∈Bk|s]
Prob[θ∈Bk∪Bk+1|s]

. The proof for the upper bound on aF (s) now follows from

Lemma 8. The proof for the lower bound on aF (s) is similar. Now, as for the derivative, we

first note that d
ds
aF (s) = Var[aL|s]. Again, focusing on Bk ∪Bk+1, we can write

Var[aL|s, θ ∈ Bk ∪Bk+1]

≤ pVar[aL|s, θ ∈ Bk] + (1− p)Var[aL|s, θ ∈ Bk+1]

+ p(1− p)(E[aL|s, θ ∈ Bk]− E[aL|s, θ ∈ Bk+1])2. (84)

The rest easily follows from Lemma 5 and Lemma 8. �

Proof of Lemma 10. Exploiting the term e−δ(cm−cm−r−2r̄σ) in (75) (for k = m), it is easy to
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observe that the same upper bounds given by (79) and (82) hold for the effect of intervals other

than Bm on aF (s) provided

e−δ(cm−cm−r−2r̄x̄m)(E[aL(θ)|s, θ ∈ Bm]− cm) < 2x̄m. (85)

Verifying the above inequality is quite straightforward using Lemma 6, and specially noting that

E[aL(θ)|s, θ ∈ Bm] − cm < 3rLσ(δ + 1) for δ > x̄m+1. The proof of the lemma is now an

immediate consequence of Lemma 6. �

Proof of Lemma 11. We start by showing that

J̃L(ck) =

∫ ∞
−∞

(aF (s)− ck)2φ(s− ck)ds ≤ 1.1r̄2x̄2
k+2. (86)

Using the upper bound on aF (s) given in Corollary 1, we can write∫ mk+1

ck

(aF (s)− ck)2φ(s− ck)ds

≤
∫ mk+1−ck

0

(1.01r̄x̄k+2 + 1.17∆k+1e
−δ∆k+1)2φ(mk+1 − ck − δ)dδ. (87)

A useful inequality here is∫ Λ

0

e−δ∆φ(Λ− δ)dδ ≤ φ(Λ)

∫ Λ

0

e−δ(∆−Λ)dδ ≤ φ(Λ)

∆− Λ
. (88)

Another useful property is that

∆k+1

2
+

2.3

∆k+1

≥ mk+1 − ck ≥
∆k+1

2
− 1.1

∆k+1

≥
¯
xk. (89)

The proof of the RHS is similar to part iii) of Lemma 1:

Prob[θ|θ ∈ Bk+1]

Prob[θ|θ ∈ Bk]
≤ bk+2 − bk+1

bk+1 − bk
≤ 0.5(ck+2 − ck) + 0.2rL

0.5(ck+1 − ck−1)− 0.2rL

≤
xQ
k+2 + xQ

k+1 + 3

xQ
k+1 + xQ

k − 3
≤ e(1 + e)xQ

k + 3

(1 + e)xQ
k − 3

. (90)

As a result,

mk+1 − ck ≥
∆k+1

2
− ln

(
e(1 + e)xQ

k + 3

(1 + e)xQ
k − 3

)
1

∆k+1

≥ ∆k+1

2
− 1.1

∆k+1

≥
¯
xk, (91)

on noting that xQ
k ≥ 11.5 and ∆k+1 ≥ 17. This also implies that ∆k+1 ≤ 2∆m

k+1 + 0.14, where
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we define ∆m
k+1 = mk+1− ck. The LHS of (89) follows from an analysis similar to (74) for the

adjacent intervals of Bk and Bk+1:

Prob[θ ∈ Bk]

Prob[θ ∈ Bk+1]
≤ 1.3×

φ(
cQk−1+cQk +6

2σ
)

φ(
cQk +cQk+1

2σ
)

≤ 1.3e
1

2σ2 (2xQ
m−3)(2cQm+3) ≤ 1.3e2, (92)

from which the proof follows from the definition of mk+1.

Incorporating (88) and (89) into (87) and after some manipulation, we can find∫ mk+1

ck

(aF (s)− ck)2φ(s− ck)ds ≤
1.012r̄2x̄2

k+2

2

+

(
1.37(2∆m

k+1 + 0.14)2

2(2∆m
k+1 + 0.14)−∆m

k+1

+
2.37r̄x̄k+2(2∆m

k+1 + 0.14)

(2∆m
k+1 + 0.14)−∆m

k+1

)
φ(∆m

k+1)

≤
1.012r̄2x̄2

k+2

2
+

(
1.37(2∆m

k+1 + 0.14)

1.5
+

2.37r̄x̄k+2

0.5

)
φ(∆m

k+1)

≤
1.012r̄2x̄2

k+2

2
+

(
1.37(2

¯
x1 + 0.14)

1.5
+ 4.74r̄x̄k+2

)
φ(

¯
x1)

≤
1.012r̄2x̄2

k+2

2
+ (1.83

¯
x1 + 0.1 + 4.74r̄x̄k+2)φ(

¯
x1)

≤
1.012r̄2x̄2

k+2

2
+

2
¯
x1e
−2(

¯
x1−2)

√
2πe4σ4

, (93)

where we have also used
¯
xk ≥

¯
x1 ≥ 2

√
2 lnσ + 2.

For s ∈ [mk+1, ck+1], we have aF (s) ≤ ck+1 + 1.1r̄x̄k+2 according to Corollary 2. Therefore,∫ ck+1

mk+1

(aF (s)−ck)2φ(s−ck)ds≤ (∆k+1 + 1.1r̄x̄k+2)2Φ(ck−mk+1)

≤ (2∆m
k+1 + 0.14 + 1.1r̄x̄k+2)2φ(∆m

k+1)

∆m
k+1

≤(2
¯
x1+ 0.14 +1.1r̄x̄k+2)2φ(

¯
x1)

¯
x1

≤5
¯
x1e
−2(

¯
x1−2)

√
2πe4σ4

. (94)

Using aF (s) ≤ s+ 1.1x̄m, we can show∫ ∞
ck+1

(aF (s)− ck)2φ(s− ck)ds≤
√

2π

2
φ(2

¯
x1)(1.1x̄m+2

¯
x1+1)2

≤
√

2π

2
φ(4
√

2 lnσ)(1.1x̄m +
¯
x1 + 1)2 ≤ (1.1x̄m +

¯
x1 + 1)2

2σ16
< 10−4r̄2x̄2

k+2. (95)
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Combining (93), (94), and (95), we can arrive at∫ ∞
−∞

(aF (s)− ck)2φ(s− ck)ds≤ 1.012r̄2x̄2
k+2+ 2× 10−4r̄2x̄2

k+2+
14

¯
x1e
−2(

¯
x1−2)

√
2πe4σ4

≤ 1.1r̄2x̄2
k+2. (96)

For the case of k = m,
∫∞
cm

(aF (s)− cm)2φ(s− cm)ds needs a different treatment. First we note

that ∫ ∞
cm+x̄m+1

(aF (s)− cm)2φ(s− cm)ds≤
∫ ∞
x̄m+1

9r2
Lσ

2(δ + 1)2φ(δ)dδ

≤ 9r2
Lσ

2φ(x̄m+1)
(x̄m+1 + 2)2

2
< 10−4r̄2x̄2

m+1. (97)

Also, ∫ cm+x̄m+1

cm

(aF (s)− cm)2φ(s− cm)ds<0.5r̄2x̄2
m+1, (98)

using which it is straightforward to verify that (86) holds for k = m as well (define x̄m+2 = x̄m+1

for consistency).

Let θ = ck + ε, with 0 ≤ ε ≤ ∆k+1

2
. We first show that ãL(θ) lies in a 5r̄x̄k+2-vicinity of

either ck or ck+1. We begin with the case where ãL(θ) ∈ [ck, ck+1]. Let ãL(θ) = ck + ε′, with

5r̄x̄k+2 ≤ ε′ ≤ ∆k+1 − 5r̄x̄k+2. We can use Corollary 2 to obtain a lower bound for J̃L(ãL):

J̃(ãL)≥(ε′−1.1r̄x̄k+2)2(1−Φ(
4
√

2 lnσ

5
))≥5(ε′− 1.1r̄x̄k+2)2

16
√
π lnσσ

16
25

, (99)

where the last inequality follows from the property that 1− Φ(x) ≥ xφ(x)
1+x2 . Putting this together

with ũL(θ, ãL) ≥ ũL(θ, ck) ≥ −rL(∆k+1

2
)2 − 1.1(1 − rL)r̄2x̄2

k+2, it is easy to show that ε′ −

1.1r̄x̄k+2 < ∆k+1√
σ

for σ ≥ 300. A second use of Corollary 2 now yields J̃L(ãL) ≥ (ε′ −

1.1r̄x̄k+2)2Φ(∆k+1

4
) ≥ 0.99(ε′ − 1.1r̄x̄k+2)2 noting ∆k+1 ≥ 2

¯
x1 > 17. Therefore,

ũL(θ, ãL) ≤ −rL(ε′ − ε)2 − 0.99(ε′ − 1.1r̄x̄k+2)2. (100)

On the other hand, using (86), we get ũL(θ, ck) ≥ −rLε2−0.99(1−rL)(1.1r̄x̄k+2)2. The RHS in

(100) is maximized for ε∗ = rLε+0.99(1−rL)×1.1r̄x̄k+2

rL+0.99(1−rL)
. Having ũL(θ, ãL) ≥ ũL(θ, ck) requires that

|ε′ − ε∗| < |0 − ε∗|, that is, ε′ ≤ 2ε∗ (recall the assumption by contradiction that 5r̄x̄k+2 ≤ ε′).

This then requires ε′ < 5r̄x̄k+2.
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For the case ãL(θ) /∈ [ck, ck+1], suppose ãL(θ) < ck (the other case is similar), and let ãL(θ) =

ck−ε′. Then, it follows from ũL(θ, ãL) ≥ ũL(θ, ck) that −rLε2−1.1(1−rL)r̄2x̄2
k+2 ≤ −rL(ε+ε′)2,

from which it easily follows that ε′ < 1.1. Now an argument similar to the case ãL(θ) ∈ [ck, ck+1]

shows that J̃L(ãL) ≥ 0.99(ε′−1.1r̄x̄k+2)2. Combining this with |θ−ck| < |θ−ãL| and ũL(θ, ãL) ≥

ũL(θ, ck), we get 1.1r̄2x̄2
k+2 > 0.99(ε′ − 1.1r̄x̄k+2)2 resulting in ε′ < 2.5r̄x̄k+2.

Similar to Lemma 7 in [1], we can show that ãL(θ) is increasing. The fact that ãL(θ) is

increasing implies that it cannot swing between the two neighborhoods. Therefore, there exists a

unique b̃k+1 separating the two regimes of [ck− 5r̄x̄k+2, ck + 5r̄x̄k+2] and [ck+1− 5r̄x̄k+2, ck+1 +

5r̄x̄k+2], thus completing the proof. �

Proof of Lemma 12. We start by

d

daL

∫ ∞
−∞

(aF (s)− aL)2φ(s− aL)ds

=
d

daL

∫ ∞
−∞

(aF (s+ aL)− aL)2φ(s)ds

= 2

∫ ∞
−∞

(aL − aF (s+ aL))(1− d

ds
aF (s+ aL))φ(s)ds

= 2

∫ ∞
−∞

(aL − aF (s))(1− d

ds
aF (s))φ(s− aL)ds. (101)

Changing the order of differentiation and integration requires the map aL 7→ (aF (s+ aL)− aL)2

to be (i) continuously differentiable, and (ii) its partial derivative be bounded by an integrable

function in an open interval around aL.14 These are easy to verify, noting that the follower’s

strategy aF (s) (i) is analytic, from which the continuity of partial derivatives is immediate, and

(ii) |aF (s)| < |s|+σ and | d
ds
aF (s)| < s2 + c2

m, from which integrability of the partial derivatives

follows from the finiteness of the moments of normal distribution. We can similarly, verify the

following identity derived using the integration by part for any given aL ∈ R:∫ ∞
−∞

(aL − aF (s))(s− aL)φ(s− aL)ds = −
∫ ∞
−∞

(aL − aF (s))dφ(s− aL)

=

∫ ∞
−∞

φ(s− aL)d(aL − aF (s)) = −
∫ ∞
−∞

d

ds
aF (s)φ(s− aL)ds. (102)

14See, e.g., Proposition 14.2.2 in [28].
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Using (30), the first order condition for the optimal leader’s response ãL gives

rL(ãL − θ) + (1− rL)

∫ ∞
−∞
(ãL − aF (s))(1− d

ds
aF (s))φ(s− ãL)ds = 0. (103)

Define the real analytic function Θ : R→ R as

Θ(x) = x+
(1− rL)

rL

∫ ∞
−∞
(x− aF (s))(1− d

ds
aF (s))φ(s− x)ds. (104)

From (103) it then follows that Θ(·) is the left inverse of the leader’s best response strategy

ãL(·), that is, Θ(ãL(θ)) = θ for all θ ∈ R.

Differentiating Θ(x) we get

rL
d

dx
Θ(x) = rL +(1− rL)

∫ ∞
−∞

(1− d

ds
aF (s))φ(s− x)ds

+(1− rL)

∫ ∞
−∞

(x− aF (s))(1− d

ds
aF (s))(s−x)φ(s−x)ds

= rL +(1− rL)

(
1−

∫ ∞
−∞

(2 + (x− aF (s))(s−x))
d

ds
aF (s)φ(s−x)ds

)
, (105)

where the last equality is obtained using (102). Next, we use (105) to bound d
dx

Θ(x) for x =

ãL ∈ [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2].

Using (24) to bound d
ds
aF (s) and then applying (88), we can obtain∫ mk+1

ãL

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds

≤ 1.17∆2
k+1

∫ mk+1−ãL

0

e−∆k+1δφ(mk+1 − ãL − δ)dδ

≤
1.17∆2

k+1φ(mk+1 − ãL)

∆k+1 −mk+1 + ãL
. (106)

Another useful inequality similar to (88) is∫ Λ

0

e−δ∆φ(Λ + δ)dδ ≤ φ(Λ)

∆ + Λ
, (107)

which together with the bound on d
ds
aF (s) given in (24) yields∫ ck+1

mk+1

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds
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≤ 1.17∆2
k+1

∫ ck+1−mk+1

0

e−∆k+1δφ(mk+1 − ãL + δ)dδ

≤
1.17∆2

k+1φ(mk+1 − ãL)

∆k+1 +mk+1 − ãL
. (108)

Let ∆L
k+1 = mk+1− ãL. Then, using (91), we can show that for ãL ∈ [ck−5r̄x̄k+2, ck + 5r̄x̄k+2],

∆L
k+1 ≥ ¯

xk. Also, ∆k+1 ≤ 2∆L
k+1 + 0.14. This, together with (106) and (108), yields∫ ck+1

ãL

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds

≤
2.34∆3

k+1φ(mk+1 − ãL)

∆2
k+1 − (mk+1 − ãL)2

≤
2.34(2∆L

k+1 + 0.14)3φ(∆L
k+1)

(2∆L
k+1 + 0.14)2 − (∆L

k+1)2

≤ 2.34(2
¯
x1 + 0.14)3φ(

¯
x1)

(2
¯
x1 + 0.14)2 −

¯
x2

1

≤ (6.24
¯
x1 + 1)φ(

¯
x1) ≤ (6.24

¯
x1 + 1)e−2(

¯
x1−2)

√
2πe4σ4

, (109)

where we have again used
¯
x1 ≥ 2

√
2 lnσ + 2. On the other hand,∫ cm+x̄m+1

ck+1

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds

≤
(1

4
(∆m+1 + 2r̄x̄m+1)2 + 0.01r̄2x̄2

m+1 − 1.01r̄2x̄2
k+2

)φ(ck+1 − ãL)

ck+1 − ãL

≤ x̄2
m+1((1 + r̄)2 + 0.01r̄2)

φ(2
¯
x1)

2
¯
x1

≤
x̄2
m+1((1 + r̄)2 + 0.01r̄2)

2
√

2πσ16

¯
x1

. (110)

Combining the two, we get∫ cm+x̄m+1

ck

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds

<
(6.24

¯
x1 + 1)e−2(

¯
x1−2)

√
2πe4σ4

+
x̄2
m+1((1 + r̄)2 + 0.01r̄2)

2
√

2πσ16

¯
x1

< 0.01r̄2x̄2
k+2, (111)

noting that σ ≥ 300.

For s > cm + x̄m+1, using Lemma 10 and the fact that ãL(θ) ≤ ãL(cm) < cm + 5rLσ, and

similar machinery to the above, we get∫ ∞
cm+x̄m+1

d

ds
aF (s)φ(s− ãL)ds

≤ 3r2
Lσ

2

∫ ∞
0

(δ + x̄m+1)2φ(δ + x̄m+1 − 5rLx̄m+1)dδ
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≤3
√

2π

2
rL(x̄m+1+1)2φ(x̄m+1−5rLx̄m+1)<10−4r̄2x̄2

k+2. (112)

This, along with (111) yields∫ ∞
−∞

d

ds
aF (s)φ(s− ãL)ds < 1.05r̄2x̄2

k+2. (113)

The case k = m is even easier on noting that d
ds
aF (s) ≤ 0.8r̄2x̄2

m+1 over the whole interval

s ∈ [cm, cm + x̄m+1].

Now, to bound the other term assume aF (ãL) ≤ ãL (the other case is similar). From (9), we

can see

aF (mk+1) ≥ ck +
∆k+1

2.17
− 1.01r̄x̄k+2 > ck + 5r̄x̄k+2 > ãL. (114)

Using this, together with ãL − aF (ãL) ≤ 5r̄x̄k+2 + 1.1r̄x̄k+2 < 6.1r̄x̄k+2, we get∫ ∞
−∞

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤ (ãL − aF (ãL))

∫ mk+1

ãL

d

ds
aF (s)(s− ãL)φ(s− ãL)ds

≤ 6.1r̄x̄k+2

(
1.01r̄2x̄2

k+2√
2π

+ (mk+1 − ãL)

∫ mk+1

ãL

(
d

ds
aF (s)− 1.01r̄2x̄2

k+2)φ(s− ãL)ds

)
≤ 6.1r̄x̄k+2

(
1.01r̄2x̄2

k+2√
2π

+
1.17∆2

k+1(mk+1 − ãL)φ(mk+1 − ãL)

∆k+1 −mk+1 + ãL

)
≤ 6.1r̄x̄k+2

(
1.01r̄2x̄2

k+2√
2π

+ 1.17(2
¯
x1 + 0.14)2φ(

¯
x1)

)
< 2.46r̄3x̄3

k+2 +
7.15r̄x̄k+2(2

¯
x1 + 0.14)2e−2(

¯
x1−2)

√
2πe4σ4

< 0.1r̄2x̄2
k+2, (115)

for σ ≥ 300. For the case k = m and aF (ãL) ≤ ãL,∫ ∞
−∞

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤(ãL − aF (ãL))

∫ ∞
ãL

d

ds
aF (s)(s− ãL)φ(s− ãL)ds. (116)

We break this into two parts. First, using an approach similar to (112), we can obtain∫ ∞
cm+x̄m+1

d

ds
aF (s)(s− ãL)φ(s− ãL)ds < 10−4r̄2x̄2

m+1. (117)
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The other part is
∫ cm+x̄m+1

ãL

d
ds
aF (s)(s− ãL)φ(s− ãL)ds. If ãL ≥ cm, then∫ cm+x̄m+1

ãL

d

ds
aF (s)(s− ãL)φ(s− ãL)ds≤

0.8r̄2x̄2
m+1√

2π
, (118)

where we have used that d
ds
aF (s) ≤ 0.8r̄2x̄2

m+1 for s ∈ [cm, cm+ x̄m+1] according to Lemma 10.

Hence we get ∫ ∞
−∞

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤ 6.1r̄x̄m+1(0.32r̄2x̄2
m+1 + 10−4r̄2x̄2

m+1) < 0.1r̄2x̄2
m+1. (119)

We need to revise (118) when ãL < cm. On one hand ãL − aF (ãL) < cm − aF (ãL) < 1.1r̄x̄m+1

(instead of 6.1r̄x̄m+1). We also use a loose bound such as15∫ cm+x̄m+1

ãL

d

ds
aF (s)(s− ãL)φ(s− ãL)ds≤

1.1r̄2x̄2
m+1√

2π
, (120)

in order to get ∫ ∞
−∞

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤ 1.1r̄x̄m+1(
1.1r̄2x̄2

m+1√
2π

+ 10−4r̄2x̄2
m+1) < 0.1r̄2x̄2

m+1. (121)

Finally, putting all together we get∫ ∞
−∞

d

ds
aF (s)(2 + (ãL − aF (s))(s− ãL))φ(s− ãL)ds

< (2× 1.05 + 0.1)r̄2x̄2
m+1 < 2.2er̄2x̄2

m < 0.45r̄2σ2, (122)

where we use that x̄m < 0.272σ for m ≥ 25 and σ ≥ 300.

Now for the other side, on noting that aF (s) ≤ s+1.1x̄m+1 and that for s ∈ [ck+1, cm+ x̄m+1]

we have d
ds
aF (s) ≤ ((1 + r̄)2 + 1.01r̄2)x̄2

m+1, we can write∫ cm+x̄m+1

ck+1

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds

<((1 + r̄)2 + 1.01r̄2)x̄2
m+1

∫ ∞
ck+1

(s+ 1.1x̄m+1 − ãL)(s− ãL)φ(s− ãL)ds

15Note that ãL > aF (ãL) > cm − 1.01r̄x̄m+1.
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<
√

2π((1 + r̄)2 + 1.01r̄2)x̄2
m+1φ(ck+1 − ãL)

∫ ∞
0

(δ + ck+1 − ãL + 1.1x̄m+1)(δ + ck+1 − ãL)φ(δ)dδ

<
√

2π((1+r̄)2+1.01r̄2)x̄2
m+1φ(ck+1 − ãL)

(
1+(ck+1−ãL)(ck+1−ãL+1.1x̄m+1)

2
+

2(ck+1−ãL)+1.1x̄m+1√
2π

)
<
√

2π((1 + r̄)2 + 1.01r̄2)x̄2
m+1φ(2

¯
x1)

(
1 + 2

¯
x1(2

¯
x1 + 1.1x̄m+1)

2
+

4
¯
x1 + 1.1x̄m+1√

2π

)
<10x̄4

m+1φ(4
√

2 lnσ) < 10−4r̄2x̄2
m+1. (123)

For s ≥ cm + x̄m+1, aF (s) ≤ cm + 3rLσ(s − cm + 1) < s, and d
ds
aF (s) ≤ 3rL(s − cm)2. An

approach similar to (112) leads to∫ ∞
cm+x̄m+1

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds <10−4r̄2x̄2

m+1. (124)

If ck ≤ s ≤ mk+1 − 2 lnσ
∆k+1

, then, according to Corollary 1,

aF (s) < ck + 1.17
∆k+1

σ2
+ 1.01r̄x̄k+2 < ck + 2.34rL∆k+1 + 1.01r̄x̄k+2 < ck + 5.8r̄x̄k+2. (125)

Therefore, (aF (s)− ãL)(s− ãL) < 11r̄x̄2
k+2 < 2. On the other hand, it is easy to find∫ ck+1

mk+1− 2 lnσ
∆k+1

d

ds
aF (s)((aF (s)−ãL)(s−ãL)−2)φ(s−ãL)ds

≤
(

(
∆k+1

2
+ r̄x̄k+2)2 + 0.01r̄2x̄2

k+2

)
∆k+1φ(mk+1 − ãL −

2 lnσ

∆k+1

). (126)

Let ∆L
k+1 = mk+1 − ãL. Then, from the above inequality (and similar to (109)) we can get∫ ck+1

mk+1− 2 lnσ
∆k+1

d

ds
aF (s)((aF (s)−ãL)(s−ãL)−2)φ(s−ãL)ds

≤ ((∆L
k+1 + 0.07 + r̄x̄k+2)2 + 0.01r̄2x̄2

k+2)(2∆L
k+1 + 0.14)φ(∆L

k+1 −
2 lnσ

∆k+1

)

≤ ((
¯
x1 + 0.07 + r̄x̄k+2)2 + 0.01r̄2x̄2

k+2)(2
¯
x1 + 0.14)φ(

¯
x1 −

2 lnσ

4
√

2 lnσ
)

≤2(
¯
x1 + 0.1)3φ(

¯
x1 −

2
√

2 lnσ

8
) ≤2(2

√
2 lnσ + 2.1)3φ(2

√
2 lnσ + 2−2

√
2 lnσ

8
)

≤54 lnσ
√

lnσe−
14
8

(
¯
x1−2)

√
2πe4σ3

<0.15r̄2σ2, (127)
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for σ ≥ 300. Overall, we arrive at∫ +∞

−∞

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds<0.4r̄2σ2. (128)

Similar argument holds for k = m.

It follows from the above analysis that

rL +(1− rL)(1− 0.45r̄2σ2) ≤ rL
d

dx
Θ(x) ≤ rL +(1− rL)(1 + 0.4r̄2σ2), (129)

for x ∈ [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2], where Θ(x) defined in (104) is the real analytic left-inverse

of the leader’s best response strategy ãL(θ), that is, Θ(ãL(θ)) = θ for all θ ∈ R. Moreover,

ãL(θ) is an increasing function, as already discussed in the proof of the previous lemma.

We next claim that ãL(θ) is continuous over both (ck, b̃k+1) and (b̃k+1, ck+1). Consider θ ∈

(ck, b̃k+1). From Lemma 11, we know that ãL(θ) ∈ [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2]. This is a tiny

interval around a fixed point of the leader’s original strategy aL(θ) (according to which the

follower’s best response aF (s) is derived). We next show that leader’s utility ũL(θ, aL) given

in (27) is strongly concave (in aL) over this interval. The good news is that we have already

bounded ∂2

∂a2
L
ũL(θ, aL) for aL ∈ [ck−5r̄x̄k+2, ck+5r̄x̄k+2] while bounding the derivative of Θ(x)

over this interval. In fact, from the definition of both functions given in (27) and (104), it is

easy to verify that

∂2

∂a2
L

ũL(θ, aL) = −2rL
d

dx
Θ(x)|x=aL . (130)

Strong concavity of ũL(θ, aL) for aL ∈ [ck−5r̄x̄k+2, ck+5r̄x̄k+2] then follows from (129). Recall

that for θ ∈ (ck, b̃k+1), leader’s best response ãL(θ) ∈ [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2], meaning that

ãL(θ) is the unique maximizer of ũL(θ, aL) over [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2]. This uniqueness

property implies the continuity of ãL(θ) over θ ∈ (ck, b̃k+1), noting that both left and right limits

of ãL(θ) are maximizers of leader’s utility over [ck − 5r̄x̄k+2, ck + 5r̄x̄k+2], and hence have to

be identical.

Therefore, leader’s best response ãL(θ) is continuous over both (ck, b̃k+1) and (b̃k+1, ck+1),

with its graph coinciding its analytic left inverse Θ(x) over both intervals. We can thus use (129)

to bound its derivative over each of these intervals, hence completing the proof. �

Proof of Lemma 13. We have already calculated the second derivative of J̃L when deriving the
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partial derivative in (105). The same argument implies d2

da2
L
J̃L(aL) ≥ 2(1 − 0.45r̄2σ2) for aL ∈

[ck−5r̄x̄k+2, ck+5r̄x̄k+2]. This, implies that J̃L is strongly convex over [ck−5r̄x̄k+2, ck+5r̄x̄k+2].

It’s unique minimizer c̃k minimizes both losses in the leader’s payoff, hence it is the fixed point

of ãL(θ), that is ãL(c̃k) = c̃k. �

Proof of Lemma 14. The case b̃m < θ ≤ cm follows from Lemma 12, so we only need to consider

θ > cm. As the first step, we derive some useful lower bounds on J̃L(aL) for aL = cm + ε with

ε ≥ 0. In particular, we claim that for ε > r̄x̄m+1 and σ ≥ 300, we have

J̃L(aL) ≥ 0.99(ε− r̄x̄m+1)2. (131)

We consider two cases: If ε ≤ 3
4
x̄m+1, then aF (s)− cm ≤ r̄x̄m+1 for s ≤ aL+ 1

4
x̄m+1, and hence

J̃L(aL) ≥ (ε− r̄x̄m+1)2Φ( x̄m+1

4
). If ε > 3

4
x̄m+1, then aL−aF (aL + x̄m+1

4
− 1) ≥ (1− 4rLσ)ε, and

hence J̃L(aL) ≥ (1 − 4rLσ)2Φ( x̄m+1

4
− 1)ε2. These two observations result in the lower bound

in (131) noting σ ≥ 300.

Consider now θ = cm+δ, 0 ≤ δ. We claim that ãL(θ) < cm+2.2rL(δ+x̄m+1). Let ãL = cm+ε.

Then,

ũL(θ, ãL) ≤ −rL(ε− δ)2 − 0.99(1− rL)(ε− r̄x̄m+1)2. (132)

Using an approach similar to Lemma 11, we can show that ε < 2ε∗ where

ε∗ =
rLδ + 0.99(1− rL)r̄x̄m+1

rL + 0.99(1− rL)
, (133)

from which we easily get ε < 2.02rL(δ+ x̄m+1). Using this, the proof of the second part of the

lemma is quite straightforward.

As for d
dθ
ãL(θ), the case ãL(θ) ≤ cm + 5r̄x̄m+1 is covered in Lemma 12. Hence, we study the

case ãL(θ) > cm + 5r̄x̄m+1. Noting that

ãL(θ)− cm ≤ 2.2rL(σx̄m+1 + 5r̄x̄m+1 + x̄m+1) < 2.4, (134)

and similar to (112), we can obtain∫ ∞
cm+x̄m+1

d

ds
aF (s)φ(s− ãL)ds < 10−4r̄2x̄2

m+1. (135)
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Also, ∫ cm+x̄m+1

cm

d

ds
aF (s)φ(s− ãL)ds ≤ 0.8r̄2x̄2

m+1Φ(ãL − cm). (136)

On the other hand, similar to (111), we have∫ cm

−∞

d

ds
aF (s)φ(s− ãL)ds < 10−4r̄2x̄2

m+1 + 1.01r̄2x̄2
m+1Φ(cm − ãL). (137)

Therefore, ∫ ∞
−∞

d

ds
aF (s)φ(s− ãL)ds < 0.91r̄2x̄2

m+1 < 2.48r̄2x̄2
m, (138)

since x̄m+1 =
√
ex̄m.

To bound the other term, using ãL−aF (s) < 2.2rL(σx̄m+1 + x̄m+1 + 5rLσ) + 1.5r̄x̄m+1 < 2.5

for s ≥ cm + x̄m+1 and similar to (112), we can show that∫ ∞
cm+x̄m+1

d

ds
aF (s)(ãL − aF (s))(s−ãL)φ(s−ãL)ds<10−4r̄2x̄2

m+1. (139)

For s ≤ cm + x̄m+1, we have aF (s) < ãL. Therefore,∫ cm+x̄m+1

−∞

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤
∫ cm+x̄m+1

ãL

d

ds
aF (s)(ãL − aF (s))(s− ãL)φ(s− ãL)ds

≤ 1√
2π

(r̄σx̄m+1 + 1.01r̄x̄m+1)× 0.8r̄2(
x̄m + x̄m+1

2
)2 < 0.26r̄2x̄2

m. (140)

Putting all together, we get∫ ∞
−∞

d

ds
aF (s)(2 + (ãL − aF (s))(s− ãL))φ(s− ãL)ds < 5.22r̄2x̄2

m < 0.4r̄2σ2, (141)

since x̄m < 0.272σ for m ≥ 25 and σ ≥ 300.

For the other side, similar to (123), (124), and (126), we have∫ cm−1

−∞

d

ds
aF (s)((aF (s)−ãL)(s−ãL)− 2)φ(s− ãL)ds < 10−4r̄2x̄2

m+1,∫ ∞
cm+x̄m+1

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds < 10−4r̄2x̄2

m+1,∫ mm+
√

lnσ

cm−1

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds < 0.1r̄2σ2. (142)
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Also, same as (123),∫ cm−1

−∞

d

ds
aF (s)((aF (s)−ãL)(s−ãL)− 2)φ(s− ãL)ds < 10−4r̄2x̄2

m+1. (143)

Consider now s ∈ [mm +
√

lnσ, cm + x̄m+1]. It is easy to verify that (aF (s) − ãL)(s − ãL) <

2 for s ∈ [ãL, cm + x̄m+1]. On the other hand, using Lemma 9 and 10, we can verify that
d
ds
aF (s) ≤ 1.1r̄2x̄2

m+1 for s ∈ [mm +
√

lnσ, ãL]. Moreover, it follows from Corollary 2 that

aF (s) ≥ cm−1.1r̄x̄m+1 for s ∈ [mm+
√

lnσ, ãL], implying that ãL−aF (s) < 2.4+1.1r̄x̄m+1 <

2.5 (see (134)). This yields∫ ãL

mm+
√

lnσ

d

ds
aF (s)((aF (s)− ãL)(s− ãL)− 2)φ(s− ãL)ds

< 2.5× 1.1r̄2x̄2
m+1

∫ ãL

mm+
√

lnσ

(ãL − s)φ(s− ãL)ds

<
2.5× 1.1r̄2x̄2

m+1√
2π

< 1.1r̄2x̄2
m+1. (144)

From the above analysis it follows that∫ ∞
−∞

d

ds
aF (s)((aF (s)− aL)(s− aL)− 2)φ(s− aL)ds

< 0.1r̄2σ2 + 1.2r̄2x̄2
m+1 < (0.1 + 1.2× e× 0.2722)r̄2σ2 < 0.4r̄2σ2. (145)

Using this and (141), and following exact same steps as in the proof of Lemma 12, we can show

that
¯
r ≤ d

dθ
ãL(θ) ≤ r̄. �

Proof of Lemma 15. We start by finding an upper bound for J̃L(c̃k). We use J̃L(c̃k) ≤ J̃L(sk),

where we recall that aF (sk) = sk. Noting that the upper bound on the derivative of aF (s) in

(24) is increasing for sk ≤ s ≤ mk+1, we can write∫ mk+1

sk

(aF (s)− sk)2φ(s− sk)ds =

∫ mk+1

sk

(aF (s)− aF (sk))
2φ(s− sk)ds ≤∫ mk+1

sk

(s− sk)2(1.17e−∆k+1(mk+1−s)∆2
k+1 + 1.01r̄2x̄2

k+2)2φ(s− sk)ds. (146)

Following a similar machinery as the one already used in, e.g., (109), we can arrive at∫ mk+1

sk

(aF (s)− aF (sk))
2φ(s− sk)ds ≤

1.012r̄4x̄4
k+2

2
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+ 2.4r̄2x̄2
k+2∆2

k+1

(mk+1 − sk)2φ(mk+1 − sk)
∆k+1 −mk+1 + sk

+ 1.37∆4
k+1

(mk+1 − sk)2φ(mk+1 − sk)
2∆k+1 −mk+1 + sk

≤
1.012r̄4x̄4

k+2

2
+ (9.6r̄2x̄2

k+2¯
x2

1(
¯
x1 + 0.07) + 7.31

¯
x2

1(
¯
x1 + 0.07)3)φ(

¯
x1)

<
7.5

¯
x5

1e
−2(

¯
x1−2)

√
2πe4σ4

, (147)

where the last inequality follows from
¯
x1 ≥ 2

√
2 lnσ + 2. Similarly, using (25) and Lemma 10

we can show that ∫ ∞
mk+1

(aF (s)− sk)2φ(s− sk)ds <
2
¯
x5

1e
−2(

¯
x1−2)

√
2πe4σ4

. (148)

These two yield J̃L(sk) <
9.5

¯
x5

1e
−2(

¯
x1−2)

√
2πe4σ4

< 0.2r2
L using

¯
x1 > 8.75 for σ ≥ 300. It is easy to

verify that the same hold when k = m. The analysis in this case is even simpler on noting that
d
ds
aF (s) ≤ 0.8r̄2x̄2

m+1 over the whole interval s ∈ [cm, cm + x̄m+1].

Applying the Envelope’s theorem to (27), we get

d

dθ
ũL(θ, ãL(θ)) = 2rL(θ − ãL(θ)). (149)

Integrating this, along the inequality below

¯
rθ + (1−

¯
r)c̃k ≤ ãL(θ) ≤ r̄θ + (1− r̄)c̃k, (150)

we get

rL(1− r̄)(θ − c̃k)2 ≤ ũL(θ, ·)− ũL(c̃k, ·) ≤ rL(1−
¯
r)(θ − c̃k)2, (151)

where we use ũL(θ, ·) as a short-note for ũL(θ, ãL(θ)). Now, we note that at the endpoint

θ = b̃k+1, the above should also hold for c̃k+1. that is,

rL(1− r̄)(b̃k+1 − c̃k)2 ≤ ũL(b̃k+1, ·)− ũL(c̃k, ·) ≤ rL(1−
¯
r)(b̃k+1 − c̃k)2

rL(1− r̄)(b̃k+1 − c̃k+1)2 ≤ ũL(b̃k+1, ·)− ũL(c̃k+1, ·) ≤ rL(1−
¯
r)(b̃k+1 − c̃k+1)2. (152)

Using this and noting 0 < ũL(c̃k, ·) < 0.2r2
L and 0 < ũL(c̃k+1, ·) < 0.2r2

L, we can arrive at

(1−rL)|(b̃k+1−c̃k+1)2−(b̃k+1−c̃k)2|<0.2rL+
r2
L

2
(c̃k+1−c̃k)2, (153)
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using which the rest of the proof is straightforward. �

Proof of Lemma 16. Using Corollary 2, it is straightforward to show that |sk − ck| < 1.1r̄x̄m+1.

Evaluating the derivative of J̃L(aL) at aL = sk, we get

d

daL
J̃L(sk)=2

∫ ∞
−∞

(aF (sk)− aF (s))(1− d

ds
aF (s))φ(s− sk)ds, (154)

where we have also used sk = aF (sk). We consider the case sk ≤ c̃k yielding d
daL

J̃L(sk) ≤ 0

(the other case is quite similar). Noting that for s < sk, d
ds
aF (s) > 1 requires s < mk + 0.5, we

can obtain

− d

daL
J̃L(sk) ≤ 2

∫ ∞
sk

(aF (s)− aF (sk))φ(s− sk)ds

+ 2

∫ mk+0.5

−∞
(aF (sk)− aF (s))(1− d

ds
aF (s))φ(s− sk)ds. (155)

With a bit of manipulation similar to the ones used in Lemma 11-15, we can obtain∫ ∞
sk

(aF (s)− aF (sk))φ(s− sk)ds

≤1.01r̄2(x̄k + x̄k+1)2

4
√

2π
+

4.68
¯
x2

1e
−2(

¯
x1−2)

√
2πe4σ4

. (156)

As for the second term, similarly∫ mk+0.5

−∞
(aF (sk)− aF (s))(1− d

ds
aF (s))φ(s− sk)ds

< (1 + r̄)2x̄2
m+1φ(2

¯
x1 − 1.1r̄x̄m+1) + (1 + r̄)2

¯
x2

1φ(
¯
x1 − 0.5− 1.1r̄x̄m+1). (157)

By putting the above inequalities together and noting
¯
x1 ≥ 2

√
2 lnσ + 2 and σ ≥ 300, it is a

matter of some machinery to verify that

0 ≤− d

daL
J̃L(sk)<

1.01r̄2(x̄k + x̄k+1)2

2
√

2π
+ 0.1r̄2

¯
x1. (158)

On the other hand, as we showed before d2

da2
L
J̃L(sk) ≥ 2(1 − 0.45r̄2σ2), meaning that sk is at

most 1.01r̄2(x̄k+x̄k+1)2

4
√

2π(1−0.45r̄2σ2)
+

0.1r̄2

¯
x1

2(1−0.45r̄2σ2)
< 0.42r2

L( x̄k+x̄k+1

2
)2 + 0.08r2

L¯
x1 away from the minimizer at

which the first derivative is zero. This completes the proof. �

Proof of Lemma 17. We start by finding the fixed point of E[aL(θ)|s, θ ∈ Bk], that is E[aL(θ)|ŝk, θ ∈
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Bk] = ŝk. ŝk is the solution of the following equation∫ bk+1

bk

(aL(θ)− ŝk)φ(aL(θ)− ŝk)φ(
θ

σ
)dθ = 0. (159)

Noting that ŝk is close to ck and in particular |aL(θ) − ŝk| < 1 for θ ∈ Bk, and that xφ(x) is

increasing for |x| < 1, together with the fact that aL(θ) ≤ aL(bk) + r̄(θ − bk), we obtain∫ bk+1

bk

(r̄(θ − bk)− (ŝk − aL(bk)))φ(r̄(θ − bk)− (ŝk − aL(bk)))φ(
θ

σ
)dθ≥0. (160)

Therefore by finding the solution of∫ bk+1

bk

r̄(θ − y)φ(r̄(θ − y))φ(
θ

σ
)dθ = 0, (161)

we can upper-bound the fixed point ŝk as ŝk ≤ aL(bk) + r̄(y − bk). Simplifying (161) yields

y = Eψ̄y [θ|θ ∈ Bk], (162)

where ψ̄y ∼ N( r̄2σ2

1+r̄2σ2y,
σ2

1+r̄2σ2 ). A quick bound for y can be obtained from Eψ̄y [θ|θ ∈ Bk] ≤

ek + r̄2σ2

1+r̄2σ2y, which yields y − ek ≤ r̄2σ2ek < 0.1x̄k. An alternative representation of (162) is

y√
1 + r̄2σ2

= EN(0,σ2)[θ|bk−∆bk(y)≤θ≤bk+1−∆bk(y)+
r̄2σ2(bk+1−bk)
1 +
√

1+r̄2σ2
], (163)

where ∆bk(y) = r̄2σ2

1+r̄2σ2+
√

1+r̄2σ2y + r̄2σ2

1+
√

1+r̄2σ2 (y − bk) > 0. A useful property of normal

distribution is that ( ∂
∂a

+ ∂
∂b

)EN(0,σ2)[θ|a ≤ θ ≤ b] = 1−VarN(0,σ2)[θ|a ≤ θ ≤ b] ≥ 1− (b−a)2

(1+
√

3)2σ2 .

Also, ∂
∂b
EN(0,σ2)[θ|a ≤ θ ≤ b] ≤ 1

2
. Applying these to the above equation we can obtain

0 ≤ y√
1 + r̄2σ2

+ ∆bk(y)− ek ≤
r̄2σ2(bk+1 − bk)

2(1 +
√

1 + r̄2σ2)
+

(bk+1 − bk)2

(1 +
√

3)2σ2
∆bk(y), (164)

where ek = EN(0,σ2)[θ|θ ∈ Bk]. Simplifying this, along with y(bk+1−bk) < 2.2σ2 (which follows

from cQ
m(cQ

m − bQ
m) ≤ 1), we can arrive at

|y − ek| ≤ 0.4r̄2σ2(bk+1 − bk). (165)

Recalling ŝk ≤ aL(bk)+r̄(y−bk), and that aL(bk) ≤ ck−
¯
r(ck−bk) ≤ ck−rL(ck−bk)+(rL−

¯
r)x̄k,
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we can reach at

ŝk ≤ (1− rL)ck + rLek + r2
Lx̄k + 0.4r̄3σ2(x̄k + x̄k+1). (166)

Following a similar argument to lower-bound ŝk, we can show that |ŝk− (1− rL)ck− rLek| ≤

r2
Lx̄k + 0.4r̄3σ2(x̄k + x̄k+1).

To find the fixed point of aF (s) in Bk (that is aF (sk) = sk), we first note that ŝk lies within

the interval [ck − 2r̄x̄m+1, ck + 2r̄x̄m+1]. Moreover, for s ∈ [ck − 2r̄x̄m+1, ck + 2r̄x̄m+1], using

Lemma 9 we can obtain d
ds
aF (s) < 0.01. This along with|aF (sk)− sk| < 1.5r̄x̄m+1 implies that

for s ∈ [ck − 2r̄x̄m+1, ck + 2r̄x̄m+1], we have aF (s) ∈ [ck − 2r̄x̄m+1, ck + 2r̄x̄m+1]. Therefore,

|sk − ŝk|<
|ŝk − aF (ŝk)|

1− 0.01
=
|E[aL(θ)|ŝk, θ ∈ Bk]− E[aL(θ)|ŝk]|

1− 0.01
. (167)

Assume ŝk ≥ ck (the other case is similar). We have already shown as part of Lemma 9 that

while observing s ∈ [ck, ck+1], the effect of intervals other than Bk∪Bk+1 on aF (s) is negligible

(as given by (79)). Similarly, and by using Lemma 8, we can show that

Prob[θ∈Bk+1|ŝk](E[aL(θ)|ŝk, θ∈Bk+1]−E[aL(θ)|ŝk, θ∈Bk]) ≤1.17e−∆k+1δ(∆k+1+2r̄x̄m+1),

(168)

where δ = mk+1 − ŝk. Combining this and (79), we can arrive at

|E[aL(θ)|ŝk, θ ∈ Bk]− E[aL(θ)|ŝk]| <10−4r2
Lx̄1. (169)

After all, we have

|sk − (1− rL)ck − rLek|<1.02r2
Lx̄k+0.41r̄3σ2(x̄k + x̄k+1) < 1.9r2

Lx̄k+1. (170)

The proof has to be modified for the tail case k = m, since in the tail |aL(θ) − ŝm| < 1

does not hold for all θ ∈ Bm. To handle this, we define E[aL(θ)|ŝm, θ ∈ B̂m] = ŝm, where

B̂m = [bm, bm+σ2−σ]. It is easy to verify that r̄(σ2−σ) < 1 and hence |aL(θ)− ŝm| < 1 holds

in this interval. We also need to find an alternative to the variance inequality VarN(0,σ2)[θ|θıBk] ≤
(bk+1−bk)2

(1+
√

3)2σ2 . Here we use VarN(0,σ2)[θ|θ ∈ Bm] ≤ (em − bm)2. Also, we can show ∆bm(y) < r̄em,

from which and a bit manipulation we can reach at VarN(0,σ2)[θ|θ ≥ bm −∆bm(y)] ≤ (em−bm)2

(1−r̄)2 .
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We can then show that the results derived above also holds for B̂m. More precisely,

|ŝm − (1− rL)cm − rLEN(0,σ2)[θ|θ ∈ B̂m]| < r2
Lx̄m + 0.4r̄3σ2(x̄m + x̄m+1). (171)

Let θb = bm + σ2 − σ. We can easily observe that

em − EN(0,σ2)[θ|θ ∈ B̂m] ≤ Prob[θ ≥ θb|θ∈Bm](EN(0,σ2)[θ|θ ≥ θb]−EN(0,σ2)[θ|θ∈B̂m])

≤
φ( θb

σ
)

φ( bm
σ

)
(θb +

σ2

θb
− bm) < 10−4r3

Lσ. (172)

We also need to bound |E[aL(θ)|ŝm, θ ∈ B̂m] − E[aL(θ)|ŝm]|. We start with |E[aL(θ)|ŝm, θ ∈

B̂m]− E[aL(θ)|ŝm, θ ∈ Bm]|. First, note that

aL(θb) ≥ cm +
¯
r(σ2 − 2σ) > cm + 3r̄σ, (173)

which along |ŝm − cm| < r̄σ implies that |aL(θb) − ŝm| > 2r̄σ. Consequently, |ŝm − aL(θ′)| <

|aL(θb)− ŝm| for all θ′ ∈ B̂m. Similar to (62), we can hence derive

Prob[θ|ŝm, θ ∈ Bm] ≤
e−

(σ−1)2

2 φ( θ
σ
)

σ(1− Φ( θb
σ

))
, (174)

for θ ≥ θb. Using this along with E[aL(θ)|ŝm, θ ∈ B̂m] ≥ cm − r̄σ, we can then obtain

E[aL(θ)|ŝm, θ ∈ Bm]− E[aL(θ)|ŝm, θ ∈ B̂m] < 10−4r3
Lσ. (175)

Therefore, the same steps as in the non-tail case can be followed in this case as well, resulting

in (170) to also hold for k = m. �

Proof of Theorem 1. We can find by direct calculation of the optimal quantizer for m = 25 that
xQ

1

σ
> 0.041. On the other hand, 2

√
2 lnσ+5
σ

< 0.04 for σ ≥ 300. This implies that 25 ∈M(σ) for

σ ≥ 300 and hence is nonempty.

We next use (34) to verify that Property 2 is also preserved by the best response, completing

the proof of the invariance of AmL . It suffices to show that

|êk − cQ
k |+ 0.42rL(

x̄k + x̄k+1

2
)2 + 2rLx̄k+1 ≤ 2.9. (176)

To bound |êk− cQ
k |, we first note that ∂

∂b̂k
êk + ∂

∂b̂k+1
êk = 1− VarN(0,σ2)[θ|θ∈B̂k]

σ2 . Using the inequality
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Var[θ|θ ∈ B̂k] > (êk − E[θ|b̂k ≤ θ ≤ êk])(E[θ|êk ≤ θ ≤ b̂k+1]− êk) and Lemma 1 we can show

that

VarN(0,σ2)[θ|θ ∈ B̂k] > ¯
xk

¯
xk+1

2(1 +
√
e)
, (177)

yielding |êk − cQ
k | < 2.9(1− ¯

xk
¯
xk+1

2(1+
√
e)σ2 ). Therefore to have (176), it suffices to have

0.42(x̄k + x̄k+1)2

4
¯
xk

¯
xk+1

+
2x̄k+1

¯
xk

¯
xk+1

≤ 2.9

2(1 +
√
e)
, (178)

which is satisfied for sufficiently large values of σ (e.g., σ ≥ 300) on noting that 0.42(e+1)2

4e
≤

2.9
2(1+

√
e)

. This completes the proof of the invariance of AmL .

The existence of an equilibrium with a∗L(θ) ∈ AmL and a∗F (s) = Eδ[a∗L|s] follows from an argu-

ment similar to the one used in [1] for the existence of an optimal solution. Let (anL(θ), anF (s) =

Eδ[anL|s]) be a maximizing sequence for the ex-ante expected payoff of the leader, that is,

lim
n→∞

Eθ[uL(θ, anL(θ), anF (s))] = sup{Eθ[uL(θ, aL(θ), aF (s))]|aL(θ) ∈ AmL , aF (s) = Eδ[aL|s]}.

(179)

The first step is to show that this supremum is attained for a pair of strategies (a∗L(θ), a∗F (s) =

Eδ[a∗L|s]) with a∗L(θ) ∈ AmL . Strategies aL(θ) ∈ AmL are increasing and bounded (|aL(θ)| <

|θ| + 1). Using Lemma 8 in [1] (which is a variation of the Helly’s selection principle based

on the diagonalisation argument), there exists a subsequence ankL (θ) converging pointwise to a

limit strategy aL(θ), and so do the interval endpoints and fixed points, that is, {bnkj } → {bj}

and {cnkj } → {cj}. Relabel (ankL (θ), ankF (s)) as (anL(θ), anF (s)). From anL(θ) → aL(θ), it is easy

to see that aL(θ) satisfies Property 1-2. Property 3, however, concerns the derivative of aL and

thus cannot be deduced directly from pointwise convergence. We now turn into the follower’s

best response sequence anF (s), claiming that anF (s) → aF (s). The proof is again similar to the

approach used in Theorem 1 in [1]: First note that

anF (s) = Eδ[anL|s] =

∫∞
−∞ a

n
L(θ)φ(s− anL(θ))φ( θ

σ
)dθ∫∞

−∞ φ(s− anL(θ))φ( θ
σ
)dθ

. (180)

For every s ∈ R, functions φ(s − x) and xφ(s − x) are continuous and bounded functions

of x. Therefore, φ(s − anL(θ)) → φ(s − aL(θ)) and anL(θ)φ(s − anL(θ)) → aL(θ)φ(s − aL(θ))

pointwise in θ, for all s. This proves anF (s)→ aF (s) using bounded convergence theorem. We can
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similarly show that uL(θ, anL(θ), anF (s)) → uL(θ, aL(θ), aF (s)) pointwise in θ and subsequently

Eθ[uL(θ, anL(θ), anF (s))] → Eθ[uL(θ, aL(θ), aF (s))], that is, the supremum in (179) is attained

by the pair of the strategies (aL(θ), aF (s) = Eδ[aL|s]), though not ruling out the possibility of

aL(θ) /∈ AmL .

Exploiting the fact that aF is analytic and that d
ds
aF (s) = Var[aL|s] and following an argument

similar to above, we can then show that d
ds
anF (s)→ d

ds
aF (s) pointwise in s. Therefore, the best

response characteristics of the follower to a strategy in AmL (as given in Lemma 6-7 and Corollary

1-2) which also involves bounds on the derivative, hold for aF (s). These conditions force the

best response of the leader to aF (s), denoted by ãL(θ), to lie in AmL . On the other hand,

Eθ[uL(θ, ãL(θ), ãF (s))] ≥ Eθ[uL(θ, ãL(θ), aF (s))] ≥ Eθ[uL(θ, aL(θ), aF (s))], (181)

where ãF (s) is the follower’s best response to ãL(θ) ∈ AmL . Therefore, the pair of the strategies

(ãL(θ), ãF (s) = Eδ[ãL|s]) where ãL(θ) ∈ AmL attains the supremum in (180), that is, it is a

maximizer for the expected payoff of the leader over AmL .

Finally, from (181) we should have Eθ[uL(θ, ãL(θ), ãF (s))] = Eθ[uL(θ, ãL(θ), aF (s))]. This

implies that ãF (s) = aF (s) almost surely, otherwise replacing aF (s) with leader’s best response

ãF (s) would result in a higher expected payoff for the leader. Noting that both ãF (s) and aF (s)

are analytic, almost surely equivalence implies being identical. This implies that the pair of the

strategies (ãL(θ), aF (s)) are best responses to each other, and hence correspond to an equilibrium

of the game. �

Proof of Lemma 2. We need to prove that there does not exist an infinitesimal variation of

(a∗L, a
∗
F ), namely (aδL, a

δ
F ), for which U(aδL, a

δ
F ) < U(a∗L, a

∗
F ). Noting that U(aδL,E[aδL|s]) ≤

U(aδL, a
δ
F ), we only need to consider the strategies in which the follower’s action is the expected

action of the leader given the observation s (i.e., E[aδL|s]). The idea is to show that for a

sufficiently small δL > 0 and any strategy aδL with ‖aδL − a∗L‖∞ < δL, the best response

image obtained from aδL → aδF → ãδL lies in AmL . The proof then follows from the fact that

U(ãδL,E[ãδL|s]) ≤ U(aδL,E[aδL|s]), and that (a∗L, a
∗
F ) is the minimizer of U over all pair of

strategies (aL, aF ) with aL ∈ AmL (see the proof of Theorem 1).

To prove the inclusion of ãδL in AmL , it suffices to show that all the properties for the follower’s

best response to a strategy in AmL given specifically by Lemma 9-10 and Lemma 17 also hold
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for aδF , noting that these are all we need to deduce Property 1-3 for the leader’s best response

(which define the set AmL ). What is left is then to show that the properties for a∗F given by

Lemma 9-10 and Lemma 17 also hold for aδF (s) = E[aδL|s] for sufficiently small δ. The proof

easily follows from a couple of simple observations. First, it is straightforward to verify that all

the bounds given for a∗F in the aforementioned lemmas are indeed strict. Therefore, by recasting

the corresponding inequalities as continuous functions of δL we can ensure that all of them will

still hold for sufficiently small δL. We elaborate on this in more details in what follows.

We start by verifying that Lemma 5-6 also hold for aδL for small enough δL. In Lemma 5,

aδL(θ)− c∗k ≤ δL + r̄(b∗k+1 − c∗k) ≤ δL + 0.1r̄rL + r̄
c∗k+1 − c∗k

2

≤ δL + 0.1r̄rL + r̄(xQ
k+1 + 2.9) ≤ r̄x̄k+1, (182)

for small enough δL, where we recall that x̄k+1 = xQ
k+1 + 3. Similarly we can show that aδL(θ)−

c∗k ≥ −r̄x̄k, hence Lemma 5 also holds for aδL. Next, we study the effect of δL in Lemma 6. As

for (49), using

φ(s− aδL(θ′))

φ(s− aδL(θ))
≥ φ(s− a∗L(θ′))

φ(s− a∗L(θ))
e−δ

2
L−2δLx̄m+1 , (183)

the RHS of the inequality will be multiplied by e−δ2
L−2δLx̄m+1 . As a result, the value of ξ in (52)

will be multiplied by eδ2
L+2δLx̄m+1 . (56) will then become

E[aδL(θ)|s, b∗m ≤ θ ≤ θ∗c ]− c∗m ≤ δL + 1.128× 1.025eδ
2
L+2δLx̄m+1 r̄x̄m < 0.75r̄x̄m+1, (184)

for sufficiently small δL. For the bound on variance in (57)-(58), let µ∗ = E[a∗L(θ)|s, b∗m ≤ θ ≤

θ∗c ]. Then,

Var[aδL(θ)|s, b∗m ≤ θ ≤ θ∗c ] ≤ Var[a∗L(θ)|s, b∗m ≤ θ ≤ θ∗c ]

+ δ2
L + 2δL

√
Var[a∗L(θ)|s, b∗m ≤ θ ≤ θ∗c ]. (185)

Hence, (58) becomes

Var[aδL(θ)|s, b∗m ≤ θ ≤ θ∗c ] ≤1.025eδ
2
L+2δLx̄m+1 × 1.1282r̄2(x̄m +

4x̄2
mµ̄

σ2
)2

+ δ2
L + 2.2δLr̄x̄m < 1.2r̄2x̄2

m, (186)
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for sufficiently small δL. As for the modification required in the tail effect, e
δ2

2 in (60) has to

be replaced with e
(δ+δL)2

2 , using which we can verify that (62) still holds for small enough δL.

The rest of the changes are similar.

Lemma 7-8 are based on Lemma 5-6, and Lemma 9-10 are derived using Lemma 5-8, hence

also hold for aδF . Finally, in Lemma 17 which is about the fixed points of the follower’s strategy,

noting aδL(b∗k) ≤ a∗L(b∗k) + δL, we need to add δL to the RHS of (166). Using this, we can easily

verify that this lemma also holds for aδF . Therefore, all the properties required for the follower’s

strategy to deduce Property 1-3 for the leader’s best response are satisfied for aδF for sufficiently

small δL, indicating that ãδL lies in AmL . This completes the proof. �

Proof of Lemma 3. Using

lim inf
m→∞

(xQ
1 )2

√
3

DQ
L

= 1, (187)

it suffices to show that DQ
F ≤ 4

√
2
e

(2−rL)2

(1−rL)2φ(
xQ

1√
2
) + r2

LD
Q
L . Consider an interval BQ

k and some

θ ∈ BQ
k . For any j > k (similarly for j < k), we have

(cQ
j − a

Q
L(θ))2

(bQ
j − a

Q
L(θ))2

≤
(2xQ

j − rLx
Q
j )2

(xQ
j − rLx

Q
j )2

=
(2− rL)2

(1− rL)2
. (188)

Using this, we can obtain∫
s/∈BQ

k

(aQ
F (s)− aQ

L(θ))2φ(s− aL(θ))ds

≤ (2− rL)2

(1− rL)2

∫
s/∈BQ

k

(s− aQ
L(θ))2φ(s− aQ

L(θ))ds. (189)

Combining this with the inequality
∫∞
a
x2φ(x)dx ≤ 2 max(xe−

x2

4 )φ( a√
2
), we arrive at∫

s/∈BQ
k

(aQ
F (s)− aQ

L(θ))2φ(s− aQ
L(θ))ds ≤ 4

√
2

e
φ(
xQ

1√
2

). (190)

On the other hand, ∫
s∈BQ

k

(aQ
F (s)− aQ

L(θ))2φ(s− aL(θ))ds

≤ (cQ
k − a

Q
L(θ))2 = r2

L(aQ
F (θ)− θ)2, (191)
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implying that ∫ ∞
−∞

∫
s∈BQ

k

(aQ
F (s)− aQ

L(θ))2φ(s− aQ
L(θ))

φ( θ
σ
)

σ
dsdθ ≤

r2
L

∫ ∞
−∞

(θ − aQ
F (θ))2φ( θ

σ
)

σ
dθ = r2

LD
Q
L , (192)

which completes the proof. �

Proof of Lemma 4. First we note that the minimum value of the cost functional U(aL, aF ) with

rLσ
2 = 1 is asymptotically the same as the optimal cost of Witsenhausen’s problem for k2σ2 = 1.

Using the inequality given by (17) in the proof of Theorem 4 in [15], we can obtain

U∗(σ) > min
P ∗>0.5

{k2P ∗ +
1

15
e−12P ∗}, (193)

noting that in the scalar version of Witsenhausen’s problem we have m = 1. Minimizing the

RHS above we can find U∗(σ) > lnσ
6σ2 + 1−ln 1.25

12σ2 , which completes the proof. �

Proof of Theorem 2. The first part of the theorem follows directly from Lemma 2. Using M(σ) =

{m ∈ N|xQ
1 > 2

√
2 lnσ + 4,m ≥ 25} and that mxQ

1

σ
≈
√

6π
4

for large m, we get

M(σ) ≈ {m ∈ N|25 < m <

√
6πσ

8
√

2 lnσ + 20
}. (194)

Denote with x∗1 the minimizer of the asymptotic upper bound on U(a∗L, a
∗
F ) given by Lemma 3.

Then, it is easy to verify that limσ→∞
x∗1

2
√

2 lnσ
= 1, which clearly intersects M(σ) for large σ.

The corresponding asymptotic cost is ≈ 8rL lnσ√
3

, hence proving (11). We can use Lemma 3 and

Lemma 4 to show that the equilibrium corresponding to argminm∈M(σ) U(a∗L, a
∗
F ) is at most

8rL lnσ√
3

lnσ
6σ2

= 16
√

3 < 27.8 away from the optimal cost as σ →∞. �
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[6] R. Bansal and T. Başar, “Stochastic teams with nonclassical information revisited: When is an affine law optimal?” IEEE

Transactions on Automatic Control, vol. 32, pp. 554–559, 1987.

[7] S. Mitter and A. Sahai, “Information and control: Witsenhausen revisited,” Lecture Notes in Control and Information

Sciences, vol. 241, pp. 281–293, 1999.
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