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Computing Probabilistic Controlled Invariant Sets
Yulong Gao, Karl H. Johansson, Fellow, IEEE and Lihua Xie, Fellow, IEEE

Abstract—This paper investigates stochastic invariance for
control systems through probabilistic controlled invariant sets
(PCISs). As a natural complement to robust controlled invariant
sets (RCISs), we propose finite- and infinite-horizon PCISs, and
explore their relation to RICSs. We design iterative algorithms to
compute the PCIS within a given set. For systems with discrete
spaces, the computations of the finite- and infinite-horizon PCISs
at each iteration are based on linear programming and mixed
integer linear programming, respectively. The algorithms are
computationally tractable and terminate in a finite number of
steps. For systems with continuous spaces, we show how to
discretize the spaces and prove the convergence of the approx-
imation when computing the finite-horizon PCISs. In addition,
it is shown that an infinite-horizon PCIS can be computed by
the stochastic backward reachable set from the RCIS contained
in it. These PCIS algorithms are applicable to practical control
systems. Simulations are given to illustrate the effectiveness of
the theoretical results for motion planning.

Index Terms—stochastic control systems, reachability analysis,
probabilistic controlled invariant set (PCIS)

I. INTRODUCTION

A. Motivation and Related Work

Invariance is a fundamental concept in systems and con-
trol [1], [2], [3]. A controlled invariant set captures the region
where the states can be maintained by some admissible control
inputs. Robust controlled invariant sets (RCISs) are defined for
control systems with bounded external disturbances and ad-
dress the invariance despite any realization of the disturbances.
In the past decades, there have been lots of research results
on RCISs and their computations [4], [5], [6]. This paper
studies probabilistic controlled invariant sets (PCISs), which is
a natural complement to RCISs suitable in many applications.
A PCIS is a set within which the controller is able to keep
the system state with a certain probability. Such sets not
only alleviate the inherent conservatism of RCISs by allowing
probabilistic violations but also enlarge the applications of
RCISs by being able to address unbounded disturbances. The
study of PCISs is motivated by safety-critical control [7],
stochastic model predictive control (MPC) [8], [9], reliable
control [10], [11], and relevant applications, e.g., air traffic
management systems [12], [13] and motion planning [14].

A question at the heart of this paper is

Given a set Q and a parameter 0 ≤ ε ≤ 1, how to compute
a set Q̃ ⊆ Q that is invariant with probability ε?
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To the best of our knowledge, this question has not been
explored up to now. One essential component in iterative
approaches on computing RCISs is to compute the robust
backward reachable set, in which each state can be steered
to the current set by an admissible input for all possible
uncertainties [4], [5], [6]. The PCIS computation in this paper
follows the same idea, but the robust backward reachable set
is replaced with the stochastic backward reachable sets which
require different mathematical tools. Some challenges related
to such an approach should be highlighted: (i) how to make
it tractable to compute the stochastic backward reachable set,
in particular for systems with continuous spaces; (ii) how to
mitigate the conservatism when characterizing the stochastic
backward reachable set subject to the prescribed probability;
(iii) how to guarantee convergence of the iterations.

Controlled invariant sets have recently been extended to
stochastic systems. In [18], a target set, which is similar to the
PCIS of this paper, is used to define stabilization in probability.
In [10], a reliable control set, another similar notion to a PCIS,
is used to guarantee the reliability of Markov-jump linear
systems. The reliability is further studied for such systems
with bounded disturbances in [11]. A definition of PCIS for
nonlinear systems is provided in [15] by using reachability
analysis. It is later applied to portfolio optimization [19].
Another definition of probabilistic invariance originates from
stochastic MPC [16] and captures one-step invariance. In [16],
an ellipsoidal approximation is given for linear systems with
specific uncertainty structure. Similar invariant sets are used
in [20] to construct a convex lifting function for linear stochas-
tic control systems. A definition of a probabilistic invariant set
is proposed in [17], [21] for linear stochastic systems without
control inputs. This definition captures the probabilistic in-
clusion of the state at each time instant. A recent work [22]
explores the correspondence between probabilistic and robust
invariant sets for linear systems. In [17], [21], polyhedral prob-
abilistic invariant sets are approximated by using Chebyshev’s
inequality for linear systems with Gaussian noise. Recursive
satisfaction is usually computationally intractable for general
stochastic control systems.

The results of this paper build on the above work but make
significant additions and improvements. Table I summarizes
the comparison between our work and the most relevant
literature. (i) All the above references focus on some spe-
cific stochastic systems (e.g., linear or one-dimensional affine
nonlinear systems) or on some specific class of stochastic
disturbances (e.g., Gaussian or state-independent noise). In
our model, we consider general Markov controlled processes,
which include general system dynamics and stochastic distur-
bances. (ii) Different from [17], [21], our invariant sets are de-
fined based on trajectory inclusion as in [15] and, particularly,
incorporate control inputs constrained by a compact set. An
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TABLE I
COMPARISONS BETWEEN THIS PAPER AND OTHER WORK

System Invariant Set Control Horizon Computation

This paper Markov controlled process PCIS Yes Finite and
infinite horizons

Iteration based on
stochastic backward reachable set

[15] Nonlinear stochastic system PCIS Yes Finite and
infinite horizons No

[16] Linear stochastic system PCIS Yes One step Ellipsoidal approximation

[17] Linear stochastic system Probabilistic invariant set No Infinite horizon Polyhedral approximation
based on Chebyshev’s inequality

accompanying question is how to find an admissible control
input when verifying or computing a PCIS. (iii) The PCISs
in this paper are different from the maximal probabilistic safe
sets in [23]. Every trajectory in a PCIS is required by our
definition to admit the same probability level, which does not
hold for the maximal probabilistic safe set. (vi) The stochastic
reachability analysis studied in [23] provides an important
tool for maximizing the probability of staying in a set. Based
on this, we compute a PCIS within a set with a prescribed
probability level. This extends the results of [15], [23], [24].

B. Main Contributions and Organization

The objective of this paper is to provide a novel tool to
analyze invariance in stochastic control systems. The contri-
butions are summarized as follows.

As the first contribution, we propose two novel definitions
of PCIS: N -step ε-PCIS and infinite-horizon ε-PCIS (Defini-
tions 3 and 4). An N -step ε-PCIS is a set within which the state
can stay for N steps with probability ε under some admissible
controller while an infinite-horizon ε-PCIS is a set within
which the state can stay forever with probability ε under some
admissible controller. These invariant sets are different from
the ones proposed in [16], [17], which address probabilistic set
invariance at each time step. Our definitions are applicable for
general discrete-time stochastic control systems. We provide
fundamental properties of PCISs and explore their relation to
RCISs. Furthermore, we propose conditions for the existence
of infinite-horizon ε-PCIS (Theorem 3).

The second contribution is that we design iterative algo-
rithms to compute the largest finite- and infinite-horizon PCIS
within a given set for systems with discrete and continuous
spaces. The PCIS computation is based on the stochastic back-
ward reachable set. For discrete state and control spaces, it is
shown that at each iteration, the stochastic backward reachable
set computation of an N -step ε-PCIS can be reformulated as
a linear program (LP) (Theorem 1 and Corollary 1) and an
infinite-horizon ε-PCIS as a computationally tractable mixed-
integer linear program (MILP) (Theorem 4). Furthermore, we
prove that these algorithms terminate in a finite number of
steps. For continuous state and control spaces, we present a
discretization procedure. Under weaker assumptions than [25],
we prove the convergence of such approximations for N -step
ε-PCISs (Theorem 2). The approximations generalize the case
in [23], which only discretizes the state space for a given
discrete control space. Furthermore, in order to compute an
infinite-horizon ε-PCIS, we propose an algorithm based on
that an infinite-horizon PCIS always contains an RCIS.

The remainder of the paper is organized as follows. Sec-
tion II provides the system model and some preliminaries.
Section III presents the definition, properties, and computation
algorithms of finite-horizon PCISs. Section IV extends the
results to the infinite-horizon case. Examples in Section V
illustrate the effectiveness of our approach. Section VI con-
cludes this paper.

Notation. Let N denote the set of nonnegative integers and
R the set of real numbers. For some q, s ∈ N and q < s,
let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q} and
{r ∈ N | q ≤ r ≤ s}, respectively. For two sets X and Y,
X \ Y = {x | x ∈ X, x /∈ Y} and X4 Y = (X \ Y) ∪ (Y \
X). When ≤, ≥, <, and > are applied to vectors, they are
interpreted element-wise. Pr denotes the probability. For a set
X, B(X) and P(X) denote the Boreal σ-algebra generated by
X and the space of probability distributions on X, respectively.
The indicator function of a set X is denoted by 1X(x), that is,
if x ∈ X, 1X(x) = 1 and otherwise, 1X(x) = 0.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a stochastic control system described by a Markov
controlled process S = (X,U, T ), where
• X is a state space endowed with a Borel σ-algebra B(X);
• U is a compact control space endowed with a Borel σ-

algebra B(U);
• T : B(X)×X×U→ R is a Borel-measurable stochastic

kernel given X×U, which assigns to each x ∈ X and u ∈
U a probability measure on the Borel space (X,B(X)):
T (·|x, u).

Let us denote by Ux the set of the admissible control actions
for each x ∈ X. Assume that Ux is nonempty for each x ∈ X.

Consider a finite horizon N ∈ N. A policy is said to be a
Markov policy if the control inputs are only dependent on the
current state, i.e., uk = µk(xk).

Definition 1: (Markov Policy) A Markov policy µ for sys-
tem S is a sequence µ = (µ0, µ1, . . . , µN−1) of universally
measurable maps

µk : X→ U,∀k ∈ N[0,N−1].

Remark 1: Given a space Y, a subset A in this space is
universally measurable if it is measurable with respect to
every complete probability measure on Y that measures all
Borel sets in B(Y). A function µ : Y → W is universally
measurable if µ−1(A) is universally measurable in Y for
every A ∈ B(W). As stated in [23], [26], the condition
of universal measurability is weaker than the condition of
Borel measurability for showing the existence of a solution
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to a stochastic optimal problem. Roughly speaking, this is
because the projections of measurable sets are analytic sets
and analytic sets are universally measurable but not always
Borel measurable [26], [27].

Remark 2: For a large class of stochastic optimal control
problems, Markov policies are sufficient to characterize the
optimal policy [26]. Furthermore, since a randomized Markov
policy does not increase the largest probability that the states
remain in a set, we focus on deterministic Markov policies in
the following.

We denote the set of Markov policies as M. Consider
a set Q ∈ B(X). Given an initial state x0 ∈ X and a
Markov policy µ ∈ M, an execution is a sequence of states
(x0, x1, . . . , xN ). Introduce the probability with which the
state xk will remain within Q for all k ∈ N[0,N ]:

pµN,Q(x0) = Pr{∀k ∈ N[0,N ], xk ∈ Q}.

Let p∗N,Q(x) = supµ∈M pµN,Q(x), ∀x ∈ Q. We call p∗N,Q(x)
the N -step invariance probability at x in the set Q. Following
the dynamic program (DP) in [23], define the value function
V ∗k,Q : X→ [0, 1], k = 0, 1, . . . , N , by the backward recursion:

V ∗k,Q(x) = sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)T (dy|x, u), x ∈ X, (1)

with initialization V ∗N,Q(x) = 1, x ∈ Q.
Assumption 1: The set

Uk(x, λ) =

{
u ∈ U |

∫
X
V ∗k+1,Q(y)T (dy|x, u) ≥ λ

}
is compact for all x ∈ Q, λ ∈ R, and k ∈ N[0,N−1].

Lemma 1: [23] For all x ∈ Q, p∗N,Q(x) = V ∗0,Q(x).
If Assumption 1 holds, the optimal Markov policy µ∗Q =
(µ∗0,Q, µ

∗
1,Q, . . . , µ

∗
N−1,Q) exists and is given by

µ∗k,Q(x) = arg sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)T (dy|x, u),

x ∈ Q, k ∈ N[0,N−1].

Extending the finite horizon to infinite horizon, we need to
introduce stationary Markov policies.

Definition 2: (Stationary Markov Policy) A Markov policy
µ ∈ M is said to be stationary if µ = (µ̄, µ̄, . . .) with µ̄ :
X→ U universally measurable.

Given an initial state x0 ∈ X and a stationary Markov policy
µ ∈ M, an execution is denoted by a sequence of states
(x0, x1, . . .). We introduce the probability with which the state
xk will remain within Q for all k ∈ N≥0:

pµ∞,Q(x0) = Pr{∀k ∈ N, xk ∈ Q}.

Denote p∗∞,Q(x0) = supµ∈M pµ∞,Q(x0). We call p∗∞,Q(x)
the infinite-horizon invariance probability at x in the set Q.
Define the value function G∗k,Q : X→ [0, 1], k ∈ N≥0, through
the forward recursion:

G∗k+1,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗k,Q(y)T (dy|x, u), x ∈ X, (2)

initialized with G∗0,Q(x) = 1, x ∈ Q.

Assumption 2: There exists a k̄ ≥ 0 such that the set

Uk(x, λ) =

{
u ∈ U |

∫
X
G∗k,Q(y)T (dy|x, u) ≥ λ

}
is compact for all x ∈ Q, λ ∈ R, and k ∈ N≥k̄.

Lemma 2: [23] Suppose that Assumption 2 holds. Then, for
all x ∈ Q, the limit G∗∞,Q(x) exists and satisfies

G∗∞,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)T (dy|x, u)), (3)

and p∗∞,Q(x) = G∗∞,Q(x). Furthermore, an optimal stationary
Markov policy µ∗Q = (µ̄∗Q, µ̄

∗
Q, . . .) exists and is given by

µ̄∗Q(x) = arg sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)T (dy|x, u), x ∈ Q.

In the following two sections, we explore finite- and infinite-
horizon PCISs and how to compute them.

III. FINITE-HORIZON ε-PCIS

In this section, we first define finite-horizon ε-PCIS for the
system S and provide the properties of this set. Then, we
explore how to compute the finite-horizon ε-PCIS within a
given set.

Definition 3: (N -step ε-PCIS) Consider a stochastic control
system S = (X,U, T ). Given a confidence level 0 ≤ ε ≤
1, a set Q ∈ B(X) is an N -step ε-PCIS for S if for any
x ∈ Q, there exists at least one Markov policy µ ∈ M such
that pµN,Q(x) ≥ ε.

We define the stochastic backward reachable set S∗ε,N (Q) by
collecting all the states x ∈ Q at which the N -step invariance
probability p∗N,Q(x) ≥ ε, i.e.,

S∗ε,N (Q) = {x ∈ Q | ∃µ ∈M, pµN,Q(x) ≥ ε}
= {x ∈ Q | sup

µ∈M
pµN,Q(x) ≥ ε}

= {x ∈ Q | V ∗0,Q(x) ≥ ε}.

If S∗ε,N (Q) = Q, it yields from Q ∈ B(X) that S∗ε,N (Q) is
also Borel-measurable. If S∗ε,N (Q) ⊂ Q, the following lemma
addresses the measurability of the set S∗ε,N (Q).

Lemma 3: For any Q ∈ B(X), the set S∗ε,N (Q) ⊆ Q is
universally measurable.

Proof: See Appendix A.
Let us denote by P(X) the set of all probability measures

on X. The following proposition shows that despite of the uni-
versal measurability of S∗ε,N (Q), for any probability measure
on X, one can find another Borel-measurable set S̃∗ε,N (Q)) for
which the difference to S∗ε,N (Q) is measure-zero.

Proposition 1: For any Q ∈ B(X) and any p ∈ P(X), there
exists a set S̃∗ε,N (Q) ∈ B(X) with S̃∗ε,N (Q) ⊆ Q such that
p(S̃∗ε,N (Q)4 S∗ε,N (Q)) = 0.

Proof: It follows from the universal measurability of
S∗ε,N (Q) as shown in Lemma 3, the Borel measurability of
Q, S∗ε,N (Q) ⊆ Q, and Lemma 7.26 in [26].

From Lemma 1 and the definition of S∗ε,N (Q), we can verify
whether a set Q ∈ B(X) is an N -step ε-PCIS or not by
checking if either S∗ε,N (Q) = Q, or V ∗0,Q(x) ≥ ε, ∀x ∈ Q,
where V ∗0,Q(x) is defined in (1).



4

Remark 3: The stochastic backward reachable set S∗ε,N (Q)
is called the maximal probabilistic safe set in [23]. The N -step
ε-PCIS Q in Definition 3 refines the maximal probabilistic safe
set by requiring that for any initial state x0 ∈ Q, the N -step
invariance probability p∗∞,Q(x0) is no less than ε.

In the following, we show that finite-horizon PCISs are
closed under union.

Proposition 2: Consider a collection of sets Qi ∈ B(X),
i = 1, . . . , r. If each Qi is an Ni-step εi-PCIS for the same
system S, then the union

⋃r
i=1 Qi is an N -step ε-PCIS, where

N = miniNi and ε = mini εi.
Proof: The result follows from the following two facts:

(i) for any Q,P ∈ B(X) with Q ⊆ P, supµ∈M pµN,Q(x) ≤
supµ∈M pµN,P(x), ∀N ∈ N and ∀x ∈ Q;
(ii) for any N,N ′ ∈ N with N ≤ N ′, supµ∈M pµN ′,Q(x) ≤
supµ∈M pµN,Q(x), ∀Q ∈ B(X) and ∀x ∈ Q.

A. Finite-horizon ε-PCIS computation

This subsection will address the following problem.
Problem 1: Given a set Q ∈ B(X) and a prescribed proba-

bility 0 ≤ ε ≤ 1, compute an N -step ε-PCIS Q̃ ⊆ Q.
To handle this problem, our basic idea is to iteratively

compute stochastic backward reachable sets until convergence.
A general procedure is presented in the following algorithm.

Algorithm 1 N -step ε-PCIS
1: Initialize i = 0 and Pi = Q.
2: Compute V ∗0,Pi

(x),∀x ∈ Pi.
3: Compute S∗ε,N (Pi) and construct a Borel-measurable set

S̃∗ε,N (Pi) such that p(S̃∗ε,N (Pi)4 S∗ε,N (Pi)) = 0 for some
p ∈ P(X);

4: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

In Algorithm 1, we first compute the stochastic backward
reachable set S∗ε,N (Pi) within Pi and then update Pi+1 to be
the corresponding Borel-measurable set S̃∗ε,N (Pi), which is
tailored by picking up a p ∈ P(S) such that p(S̃∗ε,N (Pi) 4
S∗ε,N (Pi)) = 0 (see Proposition 1). The following theorem
shows convergence of Pi. The terminal condition guarantees
that the resulting set by this algorithm is an N -step ε-PCIS
Q̃ ⊆ Q.

Theorem 1: Let Assumption 1 hold. For any Q ∈ B(X),
Algorithm 1 converges, i.e., limi→∞ Pi exists. If limi→∞ Pi 6=
∅, it is the largest N -step ε-PCIS within Q.

Proof: From Algorithm 1 and Lemma 1, we have that if
the termination condition does not hold, Pi+1 ⊂ Pi. It follows
that the sequence {Pi}i∈N is nonincreasing. Then,

lim inf
i→∞

Pi =
⋃
i≥1

⋂
j≥i

Pj =
⋂
j≥1

Pj =
⋂
i≥1

⋃
j≥i

Pj = lim sup
i→∞

Pi,

which suggests the existence of limi→∞ Pi. Furthermore, if
limi→∞ Pi is nonempty, we conclude that it is the largest N -
step PCIS within Q based on the fixed-point theory.

To facilitate the practical implementation of Algorithm 1,
we need to address two important properties: the compu-
tational tractability of V ∗0,Pi

(x), ∀x ∈ Pi, and the finite-
step convergence of Algorithm 1. In the following, we will

derive these two properties for discrete and continuous spaces,
respectively. It is shown that if the spaces are discrete, the
properties are guaranteed and in particular at each iteration we
only need to solve an LP to compute the exact value of V ∗0,Pi

.
If the spaces are continuous, we will design a discretization
algorithm with convergence guarantee, which enables us to
preserve the above two properties.

1) Discrete state and control spaces: If the state and control
spaces are discrete, i.e., they are finite sets, the stochastic
kernel T (y|x, u) denotes the transition probability from state
x ∈ X to state y ∈ X under control action u ∈ Ux, which
satisfies that

∑
y∈X T (y|x, u) = 1, ∀x ∈ X and u ∈ Ux.

In this case, according to Theorem 1 of [28], we can exactly
compute V ∗0,Pi

(x) via an LP. Moreover, the existence of the
optimal Markov policy can be always guaranteed.

Lemma 4: Given any set Pi ⊂ X, the value functions V ∗k,Pi

in (1) can be obtained by solving an LP:

min
N∑
k=0

∑
x∈Pi

vk(x) (4a)

subject to ∀x ∈ Pi
vk(x) ≥

∑
y∈Pi

vk+1(y)T (y|x, u),∀u ∈ Ux,∀k ∈ N[0,N−1],(4b)

vN (x) ≥ 1, (4c)

which gives V ∗k,Pi
(x) = v∗k(x), ∀x ∈ Pi and ∀k ∈

N[0,N ], where v∗k is the optimal solution of (4). The optimal
Markov policy µ∗Pi

= (µ∗0,Pi
, µ∗1,Pi

, . . . , µ∗N−1,Pi
) is given by

µ∗k,Pi
(x) = u where u ∈ Ux is such that

v∗k(x) =
∑
y∈Pi

v∗k+1(y)T (y|x, u). (5)

Proof: See Theorem 1 in [28] for the proof.
Corollary 1: For discrete state and control spaces, Algo-

rithm 1 converges in a finite number of iterations. Furthermore,
at each iteration, the N -step invariance probability V ∗0,Pi

(x),
∀x ∈ Pi, can be computed via the LP (4) and the correspond-
ing optimal policy is determined by (5).

Proof: The finite-step convergence of Algorithm 1 follows
from Theorem 1 and the finite cardinality of Q. The remaining
part follows from Lemma 4.

Remark 4: When implementing Algorithm 1 to a system
with discrete spaces, the maximal number of iterations is |Q|.
At each iteration, an LP is solved to compute the value of
V ∗0,Pi

(x), ∀x ∈ Pi. The number of the decision values in the
LP is at most |Q|(N + 1) and the number of constraints is
at most |Q|(N |U|+ 1). It follows from [29] that Algorithm 1
can be implemented in O(|Q|2(N |U|+ 1)) time.

2) Continous state and control action spaces: In order to
preserve the computational tractability of V ∗0,Pi

and the finite-
step convergence of Algorithm 1, if the state and control
spaces are both continuous, we first discretize the spaces
with convergence guarantee. Then, we adapt Algorithm 1 to
compute an approximate N -step ε-PCIS within a given set.

Assume that X ⊆ Rnx and U ⊆ Rnu for some nx, nu ∈ N.
For simplicity, we use Euclidean metric for the spaces X
and U. For any Q ∈ B(X), we define φ(Q) = Leb(Q) where
Leb(·) denotes the Lebesgue measure of sets. We suppose
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that the stochastic kernel T (·|x, u) admits a density t(y|x, u),
which represents the probability density of y given the current
state x and the control action u.

Now we consider Problem 1, where we assume that the
given set Q ∈ B(X) is compact, which implies that φ(Q) is
bounded. We further suppose that the density function satisfies
the following assumption.

Assumption 3: There exists a constant L such that for any
x, x′, y, y′ ∈ Q, and u, u′ ∈ U,

|t(y|x, u)− t(y′|x′, u′)| ≤ L(‖y− y′‖+ ‖x−x′‖+ ‖u−u′‖).

a) Discretization: We discretize the compact set Q ⊂
X into mx pair-wise disjoint nonempty Borel sets Qi, i ∈
N[1,mx], i.e., Q = ∪mx

i=1Qi. We pick a representative state from
each set Qi, denoted by qi. Let Q̂ = {qi, i ∈ N[1,mx]}, di =
supx,y∈Qi

‖x− y‖, and Dx = maxi∈N[1,mx]
di.

Similarly, the compact control space U is divided into
mu pair-wise disjoint nonempty Borel sets Ci, i ∈ N[1,mu],
i.e., U = ∪mu

i=1Ci. We pick a representative element from
the set Ci, denoted by ûi. Let Û = {ûi, i ∈ N[1,mu]},
li = supx,y∈Ci

‖x− y‖, and Du = maxi∈N[1,mu]
li.

Let the grid size be a constant δ ≥ max{Dx, Du}. For each
x ∈ Q, define the set of admissible discrete control actions as

Ûx = {û ∈ Û | ‖u− û‖ ≤ δ for some u ∈ Usx}, (6)

where sx is the representative state of Qi to which x belongs,
i.e., sx = qi if x ∈ Qi. Following [25], the following lemma
shows that each x ∈ Q has a nonempty admissible discretized
control set.

Lemma 5: For each qi ∈ Q̂, the set Ûqi is nonempty and
Ûx = Ûqi , ∀x ∈ Qi.

Proof: Since the admissible control set Usx is nonempty,
∀x ∈ Q, there exists û ∈ Û such that ‖u− û‖ ≤ δ, ∀u ∈ Usx .
Hence, by the definition of sx, we have that the set Ûqi is
nonempty for each qi ∈ Q̂. Furthermore, from (6), it is easy
to obtain that Ûx = Ûqi , ∀x ∈ Qi.

As in [25], let us define the function t̂ : Q×Q× Û→ R

t̂(y|x, û) =

{
t(sy|sx,û)∫

Q t(sz|sx,û)dz
, if

∫
Q t(sz|sx, û)dz ≥ 1,

t(sy|sx, û), otherwise.
(7)

From (7), we observe that all states y ∈ Qi enjoy the same
stochastic kernel. An approximate stochastic control system is
given by a triple ŜQ = (Q̂, Û, T̂ ). Here the transition proba-
bility T̂ (qj |qi, û) is defined by T̂ (qj |qi, û) =

∫
Qj
t̂(y|qi, û)dy,

where qi, qj ∈ Q̂ with qi ∈ Qi and qj ∈ Qj , and û ∈ Û.
b) Approximation of PCISs: For the approximate system

ŜQ, the discretized version of the DP (1) is given by V̂ ∗N,Q(qi) = 1,

V̂ ∗k,Q(qi) = max
û∈Û

( mx∑
j=1

V̂ ∗k+1,Q(qj)T̂ (qj |qi, û)
)
,∀k ∈ N[0,N−1].

For each x ∈ Qi, V̂ ∗k,Q(x) = V̂ ∗k,Q(qi),∀k ∈ N[0,N ].
We define the discretized optimal Markov policy µ̂∗Q =

(µ̂∗0,Q, . . . , µ̂
∗
N−1,Q) as

µ̂∗k,Q(qi) = arg max
û∈Û

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, û)dy,

= arg max
û∈Û

( mx∑
j=1

V̂ ∗k+1,Q(qj)T̂ (qj |qi, û)
)
.

For each x ∈ Qi, µ̂∗k,Q(x) = µ̂∗k,Q(qi), ∀k ∈ N[0,N−1].
Remark 5: Since the state and control action spaces of the

approximated system Ŝ are finite, the value of V̂ ∗k,Q can be
computed via the LP (4) and the corresponding optimal policy
can be determined by (5). In addition, all the states in each
Qi share the same approximate N -step invariance probability
and optimal policy as the representative state qi ∈ Qi.

Lemma 6: Under Assumptions 1 and 3, the functions
V ∗k,Q(x) and V̂ ∗k,Q(x) satisfy that ∀x ∈ Q,

|V ∗k,Q(x)− V̂ ∗k,Q(x)| ≤ τk(Q)δ, (8)

where{
τN (Q) = 0,

τk(Q) = 4φ(Q)L+ τk+1(Q), ∀k ∈ N[0,N−1].
(9)

Proof: See Appendix B.
Remark 6: Lemma 6 guarantees convergence as the grid

size tends to zero and generalizes the case considered in [23],
which only discretizes the state space for a given finite control
space. To prove Lemma 6, we need to show that (i) the
value functions in (1) are Lipschitz continuous (Lemma 8),
which is similar to Theorem 8 in [23], and (ii) the difference
between the approximate density function and the original
density function is bounded (Lemma 9), which is different
from that in [23].

Theorem 2: Let Assumptions 1 and 3 hold. Consider a
compact set Q ∈ B(X) and a corresponding discretized set
Q̂ of Q. If Q̂ is an N -step ε̂-PCIS for the approximate system
ŜQ = (Q̂, Û, T̂ ), and ε̂ ≥ τ0(Q)δ, the set Q is an N -step
ε-PCIS for the system S, where ε = ε̂− τ0(Q)δ.

Proof: According to the construction of the discretized
system ŜQ, we have that ∀k ∈ N[0,N ], ∀i ∈ N[1,mx] and ∀x ∈
Qi, V̂ ∗k,Q(x) = V̂ ∗k,Q(qi). Since Q̂ is an N -step ε̂-PCIS, it
follows that ∀x ∈ Q, V̂ ∗0,Q(x) ≥ ε̂. By Lemma 6 and triangular
inequality, we have

V ∗0,Q(x) ≥ V̂ ∗0,Q(x)− τ0(Q)δ ≥ ε̂− τ0(Q)δ, ∀x ∈ Q.

Then, when ε̂ ≥ τ0(Q)δ, we conclude that the set Q is an
N -step ε-PCIS where 0 ≤ ε = ε̂− τ0(Q)δ.

Remark 7: From Theorem 2, if 0 ≤ ε < 1, by choosing a
suitable grid size 0 < δ ≤ 1−ε

τ0(Q) , the problem of computing
an N -step ε-PCIS within Q for S can be transformed into that
of computing an approximate N -step ε̂-PCIS with probability
ε̂ ≥ ε+ τ0(Q)δ for ŜQ.

c) Computation algorithm: Assume that a probability
level 0 ≤ ε < 1 is given. After discretizing the set Q and
the control space U, we modify Algorithm 1 to compute an
N -step ε-PCIS Q̃ ⊆ Q, as shown in the following.



6

Algorithm 2 Approximate N -step ε-PCIS
1: Choose grid size 0 < δ < 1−ε

τ0(Q) , discretize the sets Q and
U, construct an approximate system ŜQ = (Q̂, Û, T̂ ).

2: Initialize i = 0, Pi = Q, and P̂i = Q̂.
3: Compute V̂ ∗0,Pi

(qj), ∀qj ∈ P̂i.
4: Compute τ0(Pi) by (9) and ε̂ = ε+ τ0(Pi)δ.
5: Compute the set P̂i+1 = S∗ε̂,N (P̂i) for ŜQ and Pi =
∪qj∈P̂i

Qj
6: If P̂i+1 = P̂i, stop. Else, set i = i+ 1 and go to step 3.

In Algorithm 2, we first construct an approximate system
ŜQ = (Q̂, Û, T̂ ) with grid size 0 < δ < 1−ε

τ0(Q) . Then, following
similar steps as in Algorithm 1, we compute the stochastic
backward reachable set iteratively for the system ŜQ. At each
iteration, an LP is solved to obtain the N -step invariance
probability. One difference is that the stochastic backward
reachable set is computed with respect to ε̂ = ε+ τ0(Pi)δ and
the updated set for the system S is the union of the subsets
of Q corresponding to the stochastic backward reachable set.
By Theorem 2, the resulting set by Algorithm 2 is an N -step
ε-PCIS.

Corollary 2: Let Assumptions 1 and 3 hold. For continuous
state and control spaces, Algorithm 2 converges in a finite
number of iterations and generates an N -step ε-PCIS. Fur-
thermore, at each iteration, the N -step invariance probability
V̂ ∗0,Pi

(qj), ∀qj ∈ P̂i, can be computed via the LP (4) and the
corresponding optimal policy is determined by (5).

Proof: By Theorem 2 and the Borel measurability of the
subsets Qi,∀i ∈ N[1,mx], it follows that the set generated by
Algorithm 2 is an N -step ε-PCIS. The remaining part is similar
to the proof of Corollary 1.

Remark 8: When implementing Algorithm 2 to a system
with continuous spaces, it follows from [29] that Algorithm 2
can be implemented in O(m2

x(Nmu+1)) time, cf. Remark 4.

IV. EXTENSION TO INFINITE-HORIZON ε-PCIS

Now let us extend finite-horizon ε-PCISs to infinite-horizon
ε-PCISs. In this section, we define the infinite-horizon ε-
PCIS and explore the conditions of its existence. Furthermore,
we provide algorithms to compute an infinite-horizon ε-PCIS
within a given set.

Definition 4: (Infinite-horizon PCIS) Consider a stochastic
control system S = (X,U, T ). Given a confidence level 0 ≤
ε ≤ 1, a set Q ∈ B(X) is an infinite-horizon ε-PCIS for S
if for any x ∈ Q, there exists at least one stationary Markov
policy µ ∈M such that pµ∞,Q(x) ≥ ε.

We define the stochastic backward reachable set S∗ε,∞(Q)
by collecting all the states x ∈ Q at which the infinite-horizon
invariance probability p∗∞,Q(x) ≥ ε, i.e.,

S∗ε,∞(Q) = {x ∈ Q | ∃µ ∈M, pµ∞,Q(x) ≥ ε}
= {x ∈ Q | sup

µ∈M
pµ∞,Q(x) ≥ ε}

= {x ∈ Q | G∗∞,Q(x) ≥ ε}.

For the infinite-horizon case, Lemma 3 and Proposition 1
still hold. That is, the set S∗ε,∞(Q) is universally measurable

and for any p ∈ P(S), there exists another Borel-measurable
set S̃∗ε,∞(Q) ⊆ Q such that p(S̃∗ε,∞(Q)4 S∗ε,∞(Q)) = 0.

Under Assumption 2, by Lemma 2 and the definition of
S∗ε,∞(Q), we can verify whether a set Q ∈ B(X) is an infinite-
horizon ε-PCIS or not by checking if either S∗ε,∞(Q) = Q, or
G∗∞,Q(x) ≥ ε, ∀x ∈ Q, where G∗∞,Q(x) is defined by (2)–(3).

Definition 5: Consider a stochastic control system S =
(X,U, T ). An RCIS Q ∈ B(X) for S is an N -step ε-PCIS
with N = 1 and ε = 1.

Remark 9: Another interpretation of RCIS in Definition 5
is that a set Q ∈ B(X) is an RCIS if for any x ∈ Q, there exists
at least one control input u ∈ U such that T (Q|x, u) = 1. It is
easy to verify that an RCIS is also an infinite-horizon ε-PCIS
with ε = 1. It is called an absorbing set in [30] where there
is no control input. In the following, we show that the RCIS
plays an important role in the existence of infinite-horizon
PCIS and provide how to design an algorithm to compute
such PCIS based on RCIS.

Remark 10: Note that infinite-horizon ε-PCISs are also
closed under union, as shown in Proposition 2 when N is
replaced by ∞.

A. Existence of infinite-horizon PCIS

Intuitively, the monotone decrease of G∗∞,Q(x) may imply
that the value of G∗∞,Q(x) is one or zero. However, it is
possible to get 0 < G∗∞,Q(x) < 1 in some cases (see
Examples 1 and 2 in Section V). The following theorem
provides necessary conditions and sufficient conditions for the
existence of infinite-horizon ε-PCIS with ε > 0.

Theorem 3: Suppose that Assumption 2 holds and let 0 <
ε ≤ 1 be fixed. Given a nonempty set Q, let ux be the control
input such that (3) holds for each x ∈ Q. The set Q is an
infinite-horizon ε-PCIS
(i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈

Q \Qf ,

T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2

1− ρ
≥ ε, (10)

where ρ = supx∈Q\Qf

∫
Q\Qf

T (dy|x, ux);
(ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,

T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) ≥ ε. (11)

Proof: See Appendix C.
Remark 11: The value of ρ is the largest probability that the

next state y remains outside the RCIS Qf from any x ∈ Q\Qf
under the optimal stationary Markov policy in Lemma 2. Note
that ρ2

1−ρ is the gap between the necessary condition and the
sufficient condition. In addition, the second item in (10)–(11)
denotes the probability that the state is steered into the RCIS
Qf by two transitions from x ∈ Q \Qf with an intermediate
state y outside Qf .

Corollary 3: Suppose that Assumption 2 holds and let 0 <
ε ≤ 1 be fixed. A nonempty set Q is an infinite-horizon ε-PCIS
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(i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈
Q \Qf , T (Q|x, u) ≥ ε for some u ∈ U;

(ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,
T (Qf |x, u) + εT (Q \Qf |x, u) ≥ ε for some u ∈ U.
Proof: See Appendix D.

Remark 12: A nonempty set Q is an infinite-horizon ε-PCIS
if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \ Qf ,
T (Qf |x, u) ≥ ε for some u ∈ U. This implication will
facilitate the design of an algorithm for an infinite-horizon
ε-PCIS, see Algorithm 4.

Remark 13: Considering the similarity between the relia-
bility defined in [11] and the infinite-horizon invariance prob-
ability in this paper, we can extend the results on infinite-
horizon PICSs, including the existence condition above and
the computational algorithms in the following, to the reliable
control set in [10] to general stochastic systems.

B. Infinite-horizon ε-PCIS computation

This subsection will address the following problem.
Problem 2: Given a set Q ∈ B(X) and a prescribed proba-

bility 0 ≤ ε ≤ 1, compute an infinite-horizon ε-PCIS Q̃ ⊆ Q.
To handle this problem, the key point is to compute

the infinite-horizon invariance probability G∗∞,Q. For discrete
spaces, it is shown that computationally tractable MILP can
be used to compute the exact value of G∗∞,Q. In this case, we
can compute the largest infinite-horizon ε-PCIS by computing
iteratively the stochastic backward reachable sets until conver-
gence. For continuous spaces, it is in general computationally
intractable to compute G∗∞,Q and the discretization method
fails to work since the approximation error in (8) increases
with the horizon. In this case, we design another computational
algorithm based on the sufficient conditions in Remark 12.

1) Discrete state and control spaces: If the state and control
spaces are discrete, we adopt the same assumptions as in
Section III-A1. We will first show how to compute the exact
value of G∗∞,Q in (2)–(3) through an MILP. Then, we will
adapt Algorithm 1 to compute the largest infinite-horizon ε-
PCIS within a given set.

a) MILP reformulation: Since 0 is a trivial solution of
(3), we cannot directly reformulate (2)–(3) as an LP, which
is the traditional way to deal with infinite-horizon stochastic
optimal control problems [31].

The following lemma provides a computationally tractable
MILP reformulation when computing G∗∞,Q.

Lemma 7: Given any set Q ⊆ X, the value of G∗∞,Q in (3)
can be obtained by solving the MILP:

max
g(x),κ(x,u)

∑
x∈Q

g(x) (12a)

subject to ∀x ∈ Q,
g(x) ≥

∑
y∈Q

g(y)T (y|x, u),∀u ∈ Ux, (12b)

g(x) ≤
∑
y∈Q

g(y)T (y|x, u) + (1− κ(x, u))∆,∀u ∈ Ux, (12c)∑
u∈Ux

κ(x, u) ≥ 1, (12d)

0 ≤ g(x) ≤ 1, κ(x, u) ∈ {0, 1},∀u ∈ Ux, (12e)

where ∆ is a constant greater than one. That is, G∗∞,Q(x) =
g∗(x), ∀x ∈ Q, where g∗ is the optimal solution of the MILP
(12). The optimal stationary Markov policy is µ̄∗Q(x) = u
where u ∈ Ux such that κ∗(x, u) = 1 and κ∗ is the optimal
solution of the MILP (12).

Proof: From the monotone decrease of the sequence
(G∗0,Q, G

∗
1,Q, . . .) and Lemma 2, G∗∞,Q is the maximum fixed

point satisfying (3). Hence, the equivalent form of G∗∞,Q can
be written as MILP (12), where the constraints (12b)–(12d)
guarantee that there exists u ∈ Ux such that the equality in
(3) holds.

b) Computational algorithm: As an adaption of Algo-
rithm 1, the following algorithm provides a way to compute
the largest infinite-horizon ε-PCIS within Q.

Algorithm 3 Infinite-horizon ε-PCIS
1: Initialize i = 0 and Pi = Q.
2: Compute G∗∞,Pi

(x) for all x ∈ Pi.
3: Compute the set Pi+1 = S∗ε,∞(Pi).
4: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

The difference between Algorithms 1 and 3 is that the
value of G∗∞,Pi

(x), instead of V ∗0,Pi
(x), ∀x ∈ Pi, is computed

by (12) (replacing Q with Pi). Furthermore, the updated set
Pi+1 = S∗ε,∞(Pi), which is a stochastic backward reachable
set within Pi with respect to infinite horizon and a probability
level ε. The following theorem provides the convergence of
Pi and shows that the resulting set Q̃ by this algorithm is an
infinite-horizon ε-PCIS.

Theorem 4: For discrete state and control spaces, Algo-
rithm 3 converges in a finite number of iterations and generates
the largest infinite-horizon ε-PCIS within Q. Furthermore,
at each iteration, the infinite-horizon invariance probability
G∗∞,Pi

(x), ∀x ∈ Pi, can be computed via the MILP (12).
Proof: The finite-step convergence of Algorithm 3 follows

from the finite cardinality of the set Q. Similar to Theorem 1,
the generated infinite-horizon ε-PCIS is the largest one within
Q. The MILP reformulation refers to Lemma 7.

Remark 14: When implementing Algorithm 3 to a system
with discrete spaces, the maximal iteration number is |Q|. An
MILP is used to compute the value of G∗∞,Pi

(x), ∀x ∈ Pi, at
each iteration. The number of real-valued decision values is
at most |Q|, the number of binary decision values is at most
|Q||U|, and the number of constraints is at most |Q|(2|U|+3).
In general, MILPs are NP-hard and can be solved by cutting
plane algorithm or branch-and-bound algorithm [32]. Some
advanced softwares have been developed to solve large MILPs
efficiently [33], [34].

2) Continuous state and control spaces: If the state and
control spaces are continuous, it is computationally intractable
to compute the exact value of infinite-horizon invarinace
probability G∗∞,Q(x). Based on Remark 12, this subsection
provides another way to compute an infinite-horizon ε-PCIS
within a given set Q.

Different from Algorithm 3, which computes iteratively the
stochastic backward reachable sets, the following algorithm
generates an infinite-horizon ε-PCIS by computing a backward
stochastic reachable set from the RCIS Qf contained in Q.
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Fig. 1. Computations of the largest RCIS (blue) and an infinite-horizon
ε-PCIS with ε = 0.80 (gray) by Algorithm 4 for Example 1.

Algorithm 4 Infinite-horizon ε-PCIS
1: Compute the RCIS within Q, denoted by Qf .
2: Compute the stochastic backward reachable set from Qf ,

i.e., Q̃ = {x ∈ Q | ∃u ∈ U,
∫
Qf
T (dy|x, u) ≥ ε}.

The first step in Algorithm 4 is the computation of RCIS
within a given set, which is a well-studied topic in the literature
[4], [5], [6]. Then, based on RCIS Qf within Q, the stochastic
backward reachable set

Q̃ = {x ∈ Q | ∃u ∈ U,
∫
Qf

T (dy|x, u) ≥ ε}

is an infinite-horizon ε-PCIS within Q. In comparision with
Algorithms 1–3, the iteration is avoided in Algorithm 4, which
only needs two steps.

Remark 15: Note that the resulting set from Algorithm 4
is in general not the largest infinite-horizon ε-PCIS within
the given set Q. It is possible to obtain a larger infinite-
horizon ε-PCIS if we can reformulate the existence conditions
in Theorem 3 and Corollary 3 in a recursive form and thereby
modify Algorithm 4 to be a recursive algorithm.

Remark 16: The complexity of Algorithm 4 depends on the
computation of the RCIS [3], [4], [5], [6], and the computa-
tion of the backward stochastic reachable set. The later can
be reformulated as a chance-constrained problem and then
approximately solved. Some results on computation of the
backward stochastic reachable set have been reported in [35].
The first example in Section V will show how to compute the
backward stochastic reachable set.

V. EXAMPLES

In this section, two examples are provided to illustrate the
effectiveness of the proposed theoretical results. The first one
is concerned with comparison between PCIS and RCIS. Then
we consider an application to motion planning of a mobile
robot in a partitioned space with obstacles.

A. Example 1: Comparison between PCIS and RCIS

Consider the following example from [36]:

xk+1 = Axk +Buk + wk,

where A =

[
1.6 1.1
−0.7 1.2

]
and B =

[
1
1

]
. The control input

is constrained by |uk| ≤ 0.25. We consider wk to be either
non-stochastic or stochastic when computing RCIS and PCIS,
respectively. The region of interest is Q = {x ∈ R2 | ‖x‖∞ ≤
0.5}. We will compare the largest RCIS and PCIS within Q.

To derive an RCIS for this system, we assume the distur-
bance belongs to the compact set W = {w ∈ R2 | ‖w‖∞ ≤
0.05}. By using the methods in [1], [6], we obtain the largest
RCIS, which is the blue region shown in Fig. 1. The gray
region is an infinite-horizon ε-PCIS described in the end of
this example.

When computing a finite-horzion PCIS, assume that ele-
ments of wk are i.i.d. Gaussian random variables with zero
mean and variance σ2 = 1/302. This system can be repre-
sented as a triple S = {X,U, T}:

X = R2,

U = {u ∈ R | |u| ≤ 0.25},
t(xk+1|xk, uk) = ψ(Λ−1(xk+1 −Axk −Buk)),

where ψ(·) is the density function of the standard normal
distribution and Λ = diag{σ, σ}. In this case, since the
Lipschitz constant L in Assumption 3 is small, we ignore the
approximation error τ0 in (9). We discretize the continuous
spaces and implement Algorithm 2 to compute the N -step ε-
PCIS Q̃. First consider N = 5 and ε = 0.80. Fig. 2(a) shows
the evolution of the set Pi in Algorithm 2. The color indicates
the corresponding N -step invariance probability p∗N,Pi

(x) and
the z-axes the iteration index i. The algorithm converges in 8
steps. Fig. 2(b) shows P8, which corresponds to the N -step
ε-PCIS Q̃ for N = 5 and ε = 0.80.

When computing an infinite-horizon PCIS, we choose the
same bound on the disturbance as for the RCIS. The elements
of wk are truncated i.i.d. Gaussian random variables with zero
mean and variance σ2 = 1/302. Denote the largest RCIS
computed above by Qf = {x ∈ R2 | Hx ≤ h}, where the
matrix H and the vector h are with appropriate dimensions.
As stated in Algorithm 4, the one-step stochastic backward
reachable set from the RCIS associated with probability 0.80
is an infinite-horizon ε-PCIS with ε = 0.80, i.e.,

Q̃ = {x ∈ Q | ∃u ∈ U,Pr{H(Ax+Bu+ w) ≤ h} ≥ 0.80}.

This set can be represented as

Q̃ = {x ∈ Q | ∃u ∈ U, H(Ax+Bu) + h′ ≤ h},

where h′ is the optimal solution of the chance constrained
program

min
∑
j

h′j

subject to Pr{Hw ≤ h′} = 0.8.

This program can be numerically solved by using the meth-
ods in [37], [38]. The resulting infinite-horizon ε-PCIS with
ε = 0.80 is the gray region shown in Fig. 1. This region is
obviously a superset of the RCIS in blue.
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Fig. 2. Computation of N -step ε-PCIS with N = 5 and ε = 0.80 for Example 1: (a) The sets Pi and the corresponding N -step invariance probability in
Algorithm 2. (b) The N -step ε-PCIS Q̃.

(a) Forward (FR) (b) Backward (BK)

(c) Turn right and forward (TRFR) (d) Turn left and forward (TLFR)

0.10
0.80

0.10 0.15
0.70

0.15

0.95

0.025

0.025

0.95

0.025

0.025

Fig. 3. Transition probability under actions for Example 2.

Fig. 4. One simulated state trajectory with indication of the robot orientation
starting from (3, 1,N ) and ending at (3, 4,S) in Example 2.

B. Example 2: Motion planning

The motion planning example in [39] is adapted to seek
an infinite-horizon PCIS within the workspace for a mobile
robot. The state of the robot is abstracted by its cell coordinate,
i.e., (px, py) ∈ {1, 2, 3, 4}2, and its four possible orientations
{E ,W,S,N}. Due to the actuation noise and drifting, the
robot motion is stochastic. Here, we restrict the action space

to be {FR,BK,TRFR,TLFR}, under which the possible
transitions are shown in Fig. 3. Specifically, action “FR”
means driving forward for 1 unit. As illustrated in the figure,
the probability for that is 0.80. The probability of drifting
forward to the left or the right by 1 unit is 0.10. Action “BK”
can be similarly defined. Action “TRFR” means turning right
π/2 and driving forward for 1 unit, of which the probability
is 0.95. The probability of driving forward for 1 unit without
turning right is 0.025 and the probability of turning right for
π and driving forward for 1 unit is 0.025. Similarly, we can
define the action “TLFR”.

Consider the partitioned workspace shown in Fig. 4, where
the shadowed cells are occupied by obstacles and the red cell
is an absorbing region, i.e., when the robot enters in this region
it will stay there forever. We construct an MDP with 64 states
and 4 actions. The transition relation and probability can be
defined based on the above description. We compute the largest
infinite-horizon ε-PCIS with ε = 0.90 within the safe state
space, i.e., the remaining of the state space by excluding the
states associated with the obstacles.

By implementing Algorithm 3, the computed sets Pi and the
corresponding infinite-horizon invariance probability p∗∞,Pi

(x)
are shown in Fig. 5, of which each subfigure corresponds
to one orientation in {E ,W,S,N}. The first row of Fig. 5
shows the results after the first iteration, where we can see
that the infinite-horizon invariance probability p∗∞,Pi

(x) at
x = (4, 2, E) and x = (4, 2,W) is less than ε = 0.90.
Algorithm 3 converges in 2 steps and generates the largest
infinite-horizon ε-PCIS Q̃ with ε = 0.90 shown in Fig. 5(e)–
5(h). This invariant set provides a region where the admissible
action can drive the robot without colliding with the obstacles
with probability 0.90. By implementing the optimal policy
obtained in Lemma 7, we run a state trajectory starting from
(3, 1,N ) as shown in Fig. 4. We can see that this trajectory is
collision-free and finally ends at the absorbing region (3, 3,S).

VI. CONCLUSION

We investigated the extension of set invariance in a stochas-
tic sense for control systems. We proposed finite- and infinite-
horizon ε-PCISs, and provided some fundamental properties.
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Fig. 5. The sets Pi and the corresponding infinite-horizon invariance probability in Example 2 when computing the largest infinite-horizon ε-PCIS with
ε = 0.90 by Algorithm 3.

We designed iterative algorithms to compute the PCIS within
a given set. For systems with discrete state and control
spaces, finite- and infinite-horizon ε-PCISs can be computed
by solving an LP and an MILP at each iteration, respectively.
We proved that the iterative algorithms were computationally
tractable and can be terminated in a finite number of steps.
For systems with continuous state and control spaces, we
established the approximation of stochastic control systems
and proved its convergence when computing finite-horizon
ε-PCIS. In addition, thanks to the sufficient conditions for
the existence of infinite-horizon ε-PCIS, we can compute an
infinite-horizon ε-PCIS by the stochastic backward reachable
set from the RCIS contained in it. Numerical examples were
given to illustrate the theoretical results.

One future direction is to apply the PCISs to safety-critical
control and stochastic predictive control. In particular, how
to characterize stability using PCISs is an important problem
to consider. Another interesting future extension of PCISs
is to study reliability and mean-time-to-failure for general
stochastic systems.
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APPENDIX A. PROOF OF LEMMA 3

Define the functions J∗k,Q : X→ R, k ∈ N[0,N ], as

J∗k,Q(x) = −V ∗N−k,Q(x),∀x ∈ X.

As shown in [23], the function J∗N,Q is lower-semianalytic for
any Q ∈ B(X). From Definitions 7.20 and 7.21 in [26], we
have that the function J∗N,Q is also analytically measurable

and thus is universally measurable for any Q ∈ B(X). Ac-
cording to the definition of universal measurability, the set
J∗,−1
N,Q (B) = {x ∈ X | J∗k,Q(x) ∈ B} for B ∈ B(R) is

universally measurable.
Recall the definition of the stochastic backward reachable

set S∗ε,N (Q), we have that

S∗ε,N (Q) = {x ∈ Q | V ∗0,Q(x) ≥ ε}
= {x ∈ Q | −1 ≤ J∗N,Q(x) ≤ −ε}
= J∗,−1

N,Q (B)

where B = [−1,−ε] ∈ B(R). Thus, the set S∗ε,N (Q) is
universally measurable for any Q ∈ B(X).

APPENDIX B. PROOF OF LEMMA 6

Before proving Lemma 6, we need two auxiliary lemmas.
Lemma 8 shows that the value functions in (1) are Lipschitz
continuous. It is adapted from Theorem 8 in [23]. Lemma
9 shows that the difference between the approximate density
function and the original density function is bounded.

Lemma 8: Under Assumptions 1 and 3, for any x, x′ ∈ Q,
the value functions V ∗k,Q in (1) satisfy

|V ∗k,Q(x)− V ∗k,Q(x′)| ≤ φ(Q)L‖x− x′‖,∀k ∈ N[0,N ]. (13)

Proof: Similar to Theorem 8 in [23].
Lemma 9: Under Assumptions 3, for all y ∈ Q and qi ∈ Q̂,∫

Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ 2φ(Q)Lδ, ∀û ∈ Û.

Proof: If
∫
Q t(sz|sx, û)dz < 1, it follows from Assump-

tion 3 that∫
Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ φ(Q)Lδ.
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And if
∫
Q t(sz|sx, û)dz ≥ 1, we first have

0 ≤
∫
Q
t(sy|qi, û)dy − 1

≤
∫
Q
t(sy|qi, û)dy −

∫
Q
t(y|qi, û)dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)|dy

≤ φ(Q)Lδ.

Furthermore, we have

∫
Q
|t̂(y|qi, û)− t(y|qi, û)|dy

=

∫
Q

|t(sy|qi, û)− t(y|qi, û)
∫
Q t(sz|sx, û)dz|∫

Q t(sz|sx, û)dz
dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)

∫
Q
t(sz|sx, û)dz|dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)|dy +

|
∫
Q
t(sz|sx, û)dz − 1|

∫
Q
|t(y|qi, û)|dy

≤ 2φ(Q)Lδ.

This completes the proof.

Proof of Lemma 6: First of all, let us prove the inequality (8).
It is easy to check it for k = N since V ∗N,Q(x) = V̂ ∗k,Q(x) =
1,∀x ∈ Q. By induction, we assume that |V ∗k+1,Q(x) −
V̂ ∗k+1,Q(x)| ≤ τk+1(Q)δ, x ∈ Q. For any qi ∈ Qi, i ∈ N[1,mx],
we define µ∗k = arg supu∈U

∫
Q V
∗
k+1,Q(y)t(y|qi, u)dy and

µ̂∗k = arg maxû∈Û
∫
Q V̂
∗
k+1,Q(y)t̂(y|qi, û)dy. According to the

dicretization procedure of the control space, we can choose
some ν̂k ∈ Û such that ‖µ∗k − ν̂k‖ ≤ δ. Then, we have that

V ∗k,Q(qi)− V̂ ∗k,Q(qi)

=

∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy

≤
∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, ν̂k)dy

≤ |
∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, ν̂k)dy|+

|
∫
Q
V ∗k+1,Q(y)t(y|qi, ν̂k)dy −

∫
Q
V ∗k+1,Q(y)t̂(y|qi, ν̂k)dy|+

|
∫
Q
V ∗k+1,Q(y)t̂(y|qi, ν̂k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, ν̂k)dy|

≤ φ(Q)Lδ + 2φ(Q)Lδ + τk+1(Q)δ

= (3φ(Q)L+ τk+1(Q))δ,

and

V̂ ∗k,Q(qi)− V ∗k,Q(qi)

≤
∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, µ̂∗k)dy

≤ |
∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t(y|qi, µ̂∗k)dy|+

|
∫
Q
V̂ ∗k+1,Q(y)t(y|qi, µ̂∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, µ̂∗k)dy|

≤ (2φ(Q)L+ τk+1(Q))δ.

Thus, we have

|V ∗k,Q(qi)− V̂ ∗k,Q(qi)| ≤ (3φ(Q)L+ τk+1(Q))δ.

For any x ∈ Qi, i ∈ N[1,mx], it follows that

|V ∗k,Q(x)− V̂ ∗k,Q(x)|
= |V ∗k,Q(x)− V̂ ∗k,Q(qi)|
≤ |V ∗k,Q(x)− V ∗k,Q(qi)|+ |V ∗k,Q(qi)− V̂ ∗k,Q(qi)|
≤ (4φ(Q)L+ τk+1(Q))δ = τk(Q)δ,

which completes the proof of the inequality (8).

APPENDIX C. PROOF OF THEOREM 3

Let ux be the control input such that (3) holds for any
x ∈ Q.

Only-if-part: Under Assumption 2, the fact that the set
Q ∈ B(X) is an infinite-horizon ε-PCIS is equivalent to
G∗∞,Q(x) ≥ ε, ∀x ∈ Q. Let θ = supx∈QG

∗
∞,Q(x). Un-

der Assumption 2, G∗∞,Q(x) exists for all x ∈ Q. The set
Q̃f = {x ∈ Q | G∗∞,Q(x) = θ} collects all the states for
which the value of G∗∞,Q is maximal over the set Q. Extending
Lemma 3 to infinite-horizon case, we have that the set Q̃f is
universally measurable. By Lemma 7.16 in [26], we have that
for any p ∈ P(X), there exists a Borel-measurable set Qf ⊆ Q
such that p(Qf 4 Q̃f ) = 0.

Next we will show that the set Qf is an RCIS. It follows
from Assumption 2 and Lemma 2 that ∀x ∈ Qf ,

G∗∞,Q(x)

=

∫
Qf

G∗∞,Q(y)T (dy|x, ux) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, ux)

= G∗∞,Q(x)

∫
Qf

T (dy|x, ux) +∫
Q\Qf

G∗∞,Q(y)T (dy|x, ux) (14)

≤ G∗∞,Q(x)T (Qf |x, ux) +G∗∞,Q(x)T (Q \Qf |x, ux) (15)
= G∗∞,Q(x)(T (Qf |x, ux) + T (Q \Qf |x, ux)),

where Eq. (14) follows from G∗∞,Q(x) = G∗∞,Q(y),∀x, y ∈
Qf and Eq. (15) follows from that G∗∞,Q(x) > G∗∞,Q(y),∀x ∈
Qf ,∀y ∈ Q\Qf . Furthermore, since G∗∞,Q(x) ≥ ε > 0,∀x ∈
Q, and 0 ≤ T (Q|x, ux) ≤ 1, the equality in Eq. (15) holds if
and only if T (Qf |x, ux) = 1 and thereby T (Q\Qf |x, ux)) =
0. Based on the recursion in (2), we have G∗∞,Q(x) = 1,∀x ∈
Qf . Hence, the set Qf ⊆ Q is an RCIS.
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Next let us prove that ∀x ∈ Q \Qf , Eq.(10) holds. That is
to prove that

G∗∞,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2

1− ρ
. (16)

By Theorem 7 in [23], the control input ux is also optimal to
the recursion (2). For all k ∈ N, we have ∀x ∈ Qf , G∗k,Q(x) =
1 and ∀x ∈ Q \Qf ,

G∗k+1,Q(x) = T (Qf |x, ux) +

∫
Q\Qf

G∗k,Q(y)T (dy|x, ux).

Let ρ = supx∈Q\Qf

∫
Q\Qf

T (dy|x, ux). Note that 0 ≤ ρ < 1.
Then, ∀x ∈ Q\Qf , we can follow the induction rule to prove
that

G∗k,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2 − ρk

1− ρ
,

which by taking limitation yields that (16) holds.
If-part: The proof for the existence of an RCIS Qf ⊆ Q

is the same as that of the only if part. As shown above,
the condition T (Qf |x, ux) = 1 is equivalent to G∗∞,Q(x) =
1,∀x ∈ Qf . We can use induction to prove that ∀x ∈ Q \Qf ,

G∗k,Q(x) ≥ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux),

which further implies that G∗∞,Q(x) ≥ T (Qf |x, ux) +∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux). One sufficient condition to
guarantee G∗∞,Q(x) ≥ ε is (11), i.e., T (Qf |x, ux) +∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) ≥ ε. The proof is completed.

APPENDIX D. PROOF OF COROLLARY 3

By Lemma 2 and Theorem 3, the necessary condition in
Corollary 3 can be proven by showing that ∀x ∈ Q \ Qf ,
there exists a u ∈ U such that

ε ≤ G∗∞,Q(x) =

∫
Qf

G∗∞,Q(y)T (dy|x, u) +∫
Q\Qf

G∗∞,Q(y)T (dy|x, u)

≤ T (Qf |x, u) + T (Q \Qf |x, u) (17)
= T (Q|x, u),

where Eq. (17) follows from 0 < G∗∞,Q(x) ≤ 1,∀x ∈ Q.
The sufficient condition in Corollary 3 can be proven by

showing that ∀x ∈ Q \Qf , there exists a u ∈ U

G∗∞,Q(x)

=

∫
Qf

G∗∞,Q(y)T (dy|x, u) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, u)

≥ T (Qf |x, u) + εT (Q \Qf |x, u), (18)

where Eq. (18) follows from G∗∞,Q(x) ≥ ε > 0,∀x ∈ Q. One
sufficient condition to guarantee G∗∞,Q(x) ≥ ε is T (Qf |x, u)+
εT (Q \Qf |x, u) ≥ ε. The proof is completed.
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