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Fast Algorithm for Fuel-Optimal Impulsive
Control of Linear Systems with Time-Varying

Cost
Adam W. Koenig and Simone D’Amico

Abstract— This paper presents a new fast and robust
algorithm that provides fuel-optimal impulsive control input
sequences that drive a linear time-variant system to a de-
sired state at a specified time. This algorithm is applicable
to a broad class of problems where the cost is expressed as
a time-varying norm-like function of the control input, en-
abling inclusion of complex operational constraints in the
control planning problem. First, it is shown that the reach-
able sets for this problem have identical properties to those
in prior works using constant cost functions, enabling use
of existing algorithms in conjunction with newly derived
contact and support functions. By reformulating the opti-
mal control problem as a semi-infinite convex program, it
is also demonstrated that the time-invariant component of
the commonly studied primer vector is an outward normal
vector to the reachable set at the target state. Using this
formulation, a fast and robust algorithm that provides glob-
ally optimal impulsive control input sequences is proposed.
The algorithm iteratively refines estimates of an outward
normal vector to the reachable set at the target state and
a minimal set of control input times until the optimality cri-
teria are satisfied to within a user-specified tolerance. Next,
optimal control inputs are computed by solving a quadratic
program. The algorithm is validated through simulations of
challenging example problems based on the recently pro-
posed Miniaturized Distributed Occulter/Telescope small
satellite mission, which demonstrate that the proposed
algorithm converges several times faster than comparable
algorithms in literature.

Index Terms— Computational methods, linear systems,
time-varying systems, optimization algorithms

I. INTRODUCTION

The fuel-optimal impulsive control problem for linear time-
variant dynamical systems with fixed end times and states has
received a great deal of attention in literature. In this paper, the
term “fuel-optimal” means that the cost metric is expressed
as the integral of a norm-like function of the control input
and has no dependence on the state. This is consistent with
resource costs in a number of practical applications such as
a propellant expenditure for a spacecraft thruster executing
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small maneuvers or energy expenditure in an electric motor
in a drone. The additional feature of impulsive control is
that the magnitude of the control input is not constrained.
However, a wide range of continuous control problems can
be approximated as impulsive provided that the durations of
the time intervals over which control input is applied are
small. Because of these properties, similar problems have been
studied in a wide range of fields including engineering [1],
[2], epidemiology [3], and finance [4]. Indeed, this class of
problem has been studied for over fifty years in the context
of spacecraft rendezvous and formation-flying [5]. The space
community’s interest in these problems is motivated by the
fact that spacecraft propellant is limited and cannot be replen-
ished after launch. It follows that improving the efficiency of
maneuver planning algorithms can significantly extend mission
lifetimes. Additionally, the dynamics of the space environment
are well-understood and can be accurately approximated by
linear models, especially models based on orbit elements [6].

Solution methodologies in literature for this class of prob-
lem can be divided into three broad categories: closed-form
solutions, direct optimization methods, and indirect optimiza-
tion methods. Closed-form solutions are highly desirable
because they are robust, predictable, and computationally
efficient. However, such solutions are inherently specific to
the prescribed state representation, dynamics model, and cost
function. Indeed, despite decades of research, such solutions
have only been found to date for a limited class of problems
in spacecraft formation-flying [1], [2], [7]–[9].

Direct optimization methods offer a greater degree of
generality by formulating the optimal control problem as a
nonlinear program with the times, magnitudes, and directions
of the applied control inputs as variables [10]. The simplest
approach to direct optimization is to discretize the admissible
control window and optimize the applied control inputs at
each of these times. However, this approach requires enormous
computational resources for all but the simplest problems. To
reduce computation effort, previous authors have developed
iterative approaches that refine a small set of candidate control
input times. However, the minimum cost to reach a specified
target state is a non-convex function of the number of impulses
and the times at which they are applied [11]. As a result, these
algorithms cannot guarantee convergence to a globally optimal
solution [12], [13].

Due to this weakness, the majority of numerical approaches
in literature use indirect optimization techniques, which can
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be divided into two general approaches. The first indirect
optimization approach is based on some form of Lawden’s so-
called “primer vector” [14], which is an alias for the part of the
costate that governs the control input according to Pontryagin’s
maximum principle. Using this method, the optimal control
problem is cast as a two-point boundary value problem where
an optimal solution must satisfy a set of analytical conditions
on the evolution of the primer vector. This approach has been
studied continuously for over fifty years [5], [15]–[19], but the
resulting algorithms are subject to substantial limitations. For
example, Roscoe’s algorithm [18] is known to have a limited
radius of convergence from the initial estimate of the times
of optimal control inputs. Instead, the algorithm proposed by
Arzelier [19] provides guaranteed convergence to a globally
optimal solution by sequentially adding candidate control input
times based on the optimality criteria. However, Arzelier’s
algorithm is developed under two limiting assumptions: 1) the
cost of a control input is a constant p-norm function, and 2) the
columns of the control input matrix are linearly independent.
Also, no considerations are made regarding the sensitivity of
the cost of feasible solutions to errors in the control input
times in corner cases.

The second widely studied indirect optimization approach is
based on reachable set theory. This approach was developed in
the late 1960s with key contributions given by Neustadt [20],
Barr [21], and Gilbert [22]. In contrast to algorithms based
on primer vector theory, Gilbert developed an algorithm that
provides global convergence for problems where the cost is
expressed as a constant norm-like function of the control input
[22]. Additionally, this algorithm is posed in a way that can
be adapted to more challenging problems provided that the
reachable set exhibits certain properties. However, for some
unknown reason extensions of this approach have not been
studied in recent literature.

A common limitation of all of these algorithms is that the
cost of a specified control input is not allowed to vary over
time. An algorithm that provides optimal solutions without
this constraint could be applied to problems with complex,
time-varying behaviors such a spacecraft with multiple attitude
modes.

To meet this need, this paper makes contributions to the
state-of-the-art in both theory and application. The theoretical
contribution includes derivation of the properties of the set
of states that can be reached by admissible control input
profiles with a specified cost. Specifically, it is shown that the
reachable sets for this problem and Gilbert’s problem [22] have
identical properties. With this in mind, contact and support
functions for the reachable set are derived to enable use of
existing algorithms for optimization over parameterized sets
for this class of problem. Next, the optimization problem is
reformulated as a semi-infinite convex program and corre-
sponding optimality conditions are derived. It is shown that
under the same additional assumptions, this semi-infinite con-
vex program is identical to the form developed using primer
vector theory [19], providing a geometric interpretation of the
time-invariant portion of the primer vector. The application
contribution of this paper is a new three-step algorithm that
quickly computes globally optimal impulsive control input

sequences for the considered class of fuel-optimal control
problems. The three steps of this algorithm proceed as follows.
First, an initial set of candidate times for control inputs is
computed from an a-priori estimate of the outward normal
direction to the reachable set at the target state. Second, the
set of control input times and outward normal vector are
iteratively refined until the optimality conditions are satisfied
to within a user-specified tolerance. To minimize computation
cost, candidate times at which an optimal control cannot be
applied are discarded in each iteration. Additionally, each iter-
ation provides a feasible solution with bounded sub-optimality,
making the algorithm well-suited to real-time applications.
Third, an optimal sequence of impulsive control inputs is
computed by solving a quadratic program.

The proposed algorithm is validated in four steps. First, the
performance of the algorithm is demonstrated through imple-
mentation in a challenging example problem based on the pro-
posed Miniaturized Distributed Occulter/Telescope (mDOT)
small satellite mission [23]. Second, the computation time
and number of required iterations for the proposed algorithm
are compared with Gilbert’s algorithm (using the contact and
support functions developed in this paper) [22] and direct
optimization in Monte Carlo simulations. Third, the Monte
Carlo simulations with the proposed algorithm are repeated
with two different initialization schemes to demonstrate that
the algorithm is robust to poor initial conditions. Finally,
a selection of example problems are solved using widely
varying discretizations of the time domain to characterize the
sensitivity of the required computation time to the number of
candidate control input times.

II. PROBLEM DEFINITION

Consider a linear dynamical system with state vector x(t) ∈
Rn and control input vector u(t) ∈ Rm with dynamics that
evolve as given by

ẋ(t) = A(t)x(t) + B(t)u(t) (1)

where A(t) ∈ Rn×n is the plant matrix and B(t) ∈ Rn×m
is the control input matrix. The only assumptions imposed
on these matrices are that they are real and continuous on
the closed interval [ti, tf ], where ti denotes the initial time
and tf denotes the final time. Next, suppose that Ψ(t) is
a fundamental matrix solution of the homogeneous equation
(u(t) ≡ 0) associated to (1). Using this solution, a state
transition matrix (STM) Φ(t, t + τ) that propagates the state
from time t to t+ τ can be defined as

Φ(t, t+ τ) = Ψ(t+ τ)Ψ−1(t). (2)

Using (1) and (2), the final state x(tf ) can be expressed as a
function of the initial state x(ti) and the control input profile
as given by

x(tf ) = Φ(ti, tf )x(ti) +

∫ tf

ti

Φ(τ, tf )B(τ)u(τ)dτ. (3)

To simplify notation as in [24], let the pseudostate w and
matrix Γ(t) be defined as

w = x(tf )−Φ(ti, tf )x(ti), Γ(t) = Φ(t, tf )B(t).
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Using this notation, the class of optimal control problem
considered in this paper is posed as follows

minimize: J(u(t)) =

∫ tf

ti

f(u(τ), τ)dτ

subject to w =

∫ tf

ti

Γ(τ)u(τ)dτ

(4)

where the decision variable is the control input profile. To
simplify later discussions, it is hereafter assumed that w
is reachable and nonzero. This causes no loss in generality
because the trivial solution u(t) = 0 is optimal for w = 0.

The constraints for admissible control input profiles in this
problem are as follows. Nonzero control inputs are allowed at
any time in the compact set T ⊆ [ti, tf ] and T is divided into
finite number o of mutually exclusive compact sets Tj such
that

T =
⋃

j=1,...,o

Tj , Tk ∩ Tl = ∅ ∀k 6= l. (5)

While this definition does require gaps between each Tj , this
constraint does not compromise the generality of the solution
approach for practical applications (i.e. this requirement is
always satisfied if T is a discrete set of times). Within each
interval Tj , the set of admissible control inputs is a closed
convex cone Cj ∈ Rm with its vertex located at the origin.
This property allows for the possibility of inadmissible control
inputs in Rm (e.g. directions in which a thruster cannot be
fired). Accordingly, the set of admissible control input profiles
U is defined as

U =

{
u(t) : u(t) ∈

{
Cj ∀t ∈ Tj , 1 ≤ j ≤ o
0 otherwise

}}
. (6)

The cost function f(u(τ), τ) is piecewise-defined over the
intervals Tj as given by

f(u(t), t) =



f1(u(t)), t ∈ T1
f2(u(t)), t ∈ T2

...
fo(u(t)), t ∈ To

0 otherwise


(7)

In this definition, each fj is a norm-like function with the
three properties specified by Gilbert [22] including: 1) fj is
defined for all u ∈ Cj , 2) the sublevel sets Uj(c) defined as

Uj(c) =
{
u : u ∈ Cj , fj(u) ≤ c

}
(8)

are convex and compact for all c ≥ 0, and 3) fj(αu) =
αfj(u) for all α ≥ 0. The last property ensures that the cost of
a control input applied at a specified time scales linearly with
its magnitude and that all nonzero control inputs have nonzero
cost. Under this definition, the set of admissible control inputs
for Gilbert’s problem [22] is a subset of admissible control
inputs in this problem where o = 1.

Some example norm-like cost functions are included in
Table I along with operational constraints that provide the
specified cost behavior. Many of these cost functions are
results of attitude constraints imposed on a spacecraft, which
can vary over time, motivating the need for a solver that can
accommodate a piecewise-defined cost function. In the last

example, the cost is the solution to the linear program given
by

minimize: 1Tα subject to: u = Vvertexα, α ≥ 0. (9)

However, the sublevel sets of this cost function (the sets of u
for which there exists a feasible α that satisfies 1Tα ≤ c for
some c ≥ 0) are compact polyhedra with vertices parallel to
columns of Vvertex. Thus, it is possible to compute a matrix
Vface ∈ RM×m for any Vvertex such that the sublevel set for
cost c is the set of solutions to Vfaceu ≤ c1. Accordingly,
the cost can be expressed as max(Vfaceu) where the function
max returns the maximum of all elements in the vector
argument. Using this matrix, evaluation of the cost function is
simplified to computing the maximum value of a vector.

TABLE I
EXAMPLE NORM-LIKE COST FUNCTIONS IN R3 .

Cost function Operational constraints

||u||2
Spacecraft that can align a single
thruster with the desired maneuver di-
rection.

||u||1
Spacecraft with fixed attitude and three
pairs of thrusters mounted on opposite
sides on mutually perpendicular axes.

|u1|+
√
u22 + u23

Spacecraft with two pairs of thrusters
on perpendicular axes where one axis
is fixed.

max(Vfaceu)

Spacecraft with fixed attitude and
N thrusters aligned with columns of
Vvertex ∈ Rm×N . Note: only valid
for convex cone of the form u =
Vvertexα where α is in the nonnega-
tive orthant.

Finally, Neustadt demonstrated that there must exist optimal
control input profiles consisting of n or fewer impulses for a
subset of this class of problem where the cost function is a
constant p-norm [20]. With this in mind, attention is hereafter
restricted to impulsive control input profiles of the form

u(t) =

N∑
j=1

δ(t− tj)vj (10)

where δ denotes the Dirac delta function, N is the number
of applied impulses, tj are the times when each impulse is
applied, and vj defines the magnitude and direction of each
impulse. To avoid any misinterpretation of the meaning of
the impulse function, the evolution of the state including an
impulsive control input profile is given as

x(t) = Φ(ti, t)x(ti) +

N(t)∑
j=1

Φ(tj , t)B(tj)vj (11)

where N(t) is the number of impulses such that tj ≤ t. The
optimality of impulsive control input profiles for this problem
class is proven in Section V.
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III. SET DEFINITIONS AND PROPERTIES

The algorithm proposed in this paper is based on the
properties of the set of pseudostates that can be reached by
admissible control input profiles at a specified cost, which are
derived in the following. The following notation conventions
are adopted throughout this derivation for simplicity. First, the
convex hull of S is denoted coS. Second, αS denotes the set
defined as

αS =
{
ȳ : ȳ = αy, y ∈ S

}
(12)

It is instructive to first consider the set of pseudostates that
can be reached with control inputs applied in only one interval
Tj . Let U1

j (c) be the set of single admissible impulsive control
inputs executed in Tj with cost no greater than c, which is
defined as

U1
j (c) =

{
u(t) : u(t) = δ(t− tcont)v,

tcont ∈ Tj , v ∈ Uj(c)

}
. (13)

The set of pseudostates that can be reached by these impulses,
denoted S1

j (c), is defined as

S1
j (c) =

{
y : y =

∫ tf
ti

Γ(τ)u(τ)dτ, u(t) ∈ U1
j (c)

}
. (14)

Similarly, let Uj(c) denote the set of admissible control input
profiles consisting of a finite number N of impulses applied
in Tj with a total cost no greater than c. Using the linearity
and convexity of the cost function, Uj(c) can be defined as

Uj(c) =


u(t) : u(t) =

N∑
j=1

αjuj(t), αj ≥ 0,

N∑
j=1

αj = 1, uj(t) ∈ U1
j (c)

 , (15)

which is simply the set of convex combinations of elements of
U1
j (c). Accordingly, the set of pseudostates that can be reached

by a set of impulses applied in Tj with with a cost no greater
than c, denoted Sj(c), can be defined as

Sj(c) = coS1
j (c). (16)

The set Sj(c) is equivalent to the reachable set considered by
Gilbert and its relationship with S1

j (c) is proven in Theorem
1 in [22].

With this relationship in mind, the reachable set will now
be generalized to include all Tj . The set of admissible single
impulses with cost no greater than c is denoted U1(c) and is
defined as

U1(c) =
{
u(t) : u(t) ∈ U1

j (c), 1 ≤ j ≤ o
}

(17)

and the set of pseudostates that can be reached by these
impulses, denoted S1(c), is defined as

S1(c) =
{
y : y =

∫ tf
ti

Γ(τ)u(τ)dτ, u(t) ∈ U1(c)
}
. (18)

Combining (14), (17), and (18), S1(c) can be expressed as

S1(c) =
⋃

j=1,...,o

S1
j (c). (19)

Next, using the linearity and convexity of norm-like cost

functions, the set of admissible impulsive control input profiles
of cost c or less, denoted U(c), is defined as

U(c) =


u(t) : u(t) =

N∑
j=1

αjuj(t), αj ≥ 0,

N∑
j=1

αj = 1, uj(t) ∈ U1(c)

 , (20)

which is the set of convex combinations of elements of U1(c).
Accordingly, the set of pseudostates that can be reached by
such a control input profile, denoted S(c), is given by

S(c) = coS1(c). (21)

Moreover, by replacing Sj(c) and S1
j (c) with S(c) and S1(c)

in Theorem 1 in [22], it is proven that S(c) has the following
properties:

Property 1: S(c) contains the origin for all c ≥ 0.
Property 2: S(c1) ⊆ S(c2) for any 0 ≤ c1 ≤ c2.
Property 3: S(c) = cS(1) for all c ≥ 0.
Property 4: S(c) is convex, compact and Lipschitz continuous
in the Hausdorff metric for all c ≥ 0.
Property 5: For any w ∈ S(c), there exists a control input
profile that reaches w and consists of n or fewer impulses
with a total cost of c or less.

This derivation has shown that for problems where the time
domain can be expressed as a union of a finite number of
compact sets, using a piecewise-defined norm-like cost func-
tion instead of a constant norm-like function has no impact on
the properties of the reachable sets. Accordingly, it is possible
to use old algorithms in optimization over parameterized sets
(e.g. Gilbert’s algorithm [22]) to solve this class of problem
provided that the contact and support functions of S(c) can
be evaluated.

IV. CONTACT AND SUPPORT FUNCTIONS

To facilitate use of the algorithm proposed in Section VII
and other existing algorithms in literature, contact and support
functions for S(c) are derived in the following. A contact
function for a set Z ∈ Rn is any function from Rn to R1

that satisfies
gZ(λ) =

[
max
z∈Z

λTz
]
. (22)

where λ is any vector in Rn. Similarly, a support function
sZ(λ) is a function from Rn to Z such that

λTsZ(λ) = gZ(λ). (23)

The geometric relationships between Z and its contact and
support functions for a unit vector λ̂ are illustrated in Fig. 1.

The algorithm proposed in this paper and Gilbert’s al-
gorithm both require evaluation of the contact and support
functions of S(c). Using the properties of the sets defined in
the previous section, a simple procedure for these evaluations
is developed in the following. Using Property 3 of S(c), the
contact function can be expressed as

gS(c)(λ) = cgS(1)(λ) (24)
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Fig. 1. Illustration of geometric relationships between Z (gray) and
its contact and support functions for a unit vector λ̂ and corresponding
supporting hyperplane (dashed line).

Because the contact function of any closed set is equal to the
contact function of its convex hull (Theorem 1 in [21]), gS(1)
can be simplified as

gS(1)(λ) = gS1(1)(λ). (25)

Because S1(j) is the union of a finite number of Sj(1) (from
(19)), gS1(1) can be expressed as

gS1(1)(λ) = max
j=1,...,o

gS1
j (1)

(λ) (26)

Finally, using the definition of S1
j (1) in (14), each gS1

j (1)
(λ)

can be formulated as

gS1
j (1)

(λ) = max
t∈Tj

gUj(1)(Γ
T (t)λ) (27)

Combining (22) and (24)-(27), a contact function for S(c) can
be formulated as

gS(c)(λ) = c max
j=1,...,o

(
max
t∈Tj

gUj(1)(Γ
T (t)λ)

)
(28)

To simplify this expression, let U(1, t) be the sublevel set of
unit cost at time t, which is defined as

U(1, t) =

{
Uj(1) t ∈ Tj , 1 ≤ j ≤ o

0 otherwise

}
. (29)

Using this definition, (28) can be simplified to

gS(c)(λ) = cmax
t∈T

gU(1,t)(Γ
T (t)λ) (30)

Next, let T ∗ be the set of times at which gU(1,t)(Γ
T (t)λ)

takes on its maximum value in the domain T , which is defined
as

T ∗ =
{
t : gU(1,t)(Γ

T (t)λ) = gS(1)(λ), t ∈ T
}
. (31)

Using this definition, a support function sS(c)(λ) can be
formulated as

sS(c)(λ) = cΓ(t∗)sU(1,t∗)(Γ
T (t∗)λ), t∗ ∈ T ∗. (32)

It is evident from (30) and (32) that evaluating gS(c)(λ)
and sS(c)(λ) requires a global optimization over the time
domain T . If T is a set of discrete samples, the computation
cost varies linearly with the number of samples. It is also
evident that the computation cost of these evaluations may be

impractically large if contact and support functions to U(1, t)
cannot be evaluated analytically. However, it is expected that
analytical contact and support functions can be derived for a
wide range of cost functions of interest. For example, Table
II includes contact and support functions for all the example
cost functions in Table I. The contact functions for three of
these examples are evaluated by computing the largest inner
product between λ and an element in Wj , which is the set
of columns of the matrix W (shown in the second column of
the table when relevant). The corresponding support functions
provide the column(s) of W that provides this maximum inner
product.

V. REFORMULATION OF THE OPTIMIZATION PROBLEM

Using the properties of the sets defined in Section III and
the contact functions derived in Section IV, the optimal control
problem in (4) is reformulated into a more computationally
tractable form in the following. Since the target pseudostate
must be in the reachable set, an equivalent problem to (4) can
be posed as

minimize: c subject to: w ∈ S(c). (33)

where the decision variable is the cost c. Since S(c) is compact
and convex, it can be expressed as the intersection of all half-
spaces that contain it (see Corollary 1 in Chapter 2 in [25]).
Thus, (33) can be reformulated as

minimize: c

subject to: gS(c)(λ) ≥ λTw ∀λ ∈ Rn
(34)

Since w is reachable and nonzero, the constraint in (34) is
satisfied for any λTw ≤ 0 because S(c) contains the origin
for c ≥ 0. With this in mind, let Λ+ be defined as

Λ+ =
{
λ : λTw > 0

}
(35)

Replacing ∀λ ∈ Rn with ∀λ ∈ Λ+ in (34) results in no loss of
generality and ensures that gS(c)(λ) > 0 for all admissible λ.
Using this substitution and the linearity of the contact function
with c, (34) can be expressed as

minimize: c

subject to: c ≥ λTw

gS(1)(λ)
∀λ ∈ Λ+ (36)

By inspection, the optimal solution c∗ to (36) is given by

c∗ =
[

max
λ∈Λ+

λTw

gS(1)(λ)

]
(37)

and the set of feasible solutions to (36) is given by c ≥ c∗.
From Theorem 8 in [21], there must exist a non-empty set
Λ∗ ⊂ Λ+ such that

λ∗Tw

gS(1)(λ
∗)

= max
λ∈Λ+

λTw

gS(1)(λ)
∀λ∗ ∈ Λ∗

λ′Tw

gS(1)(λ
′)
< max
λ∈Λ+

λTw

gS(1)(λ)
∀λ′ /∈ Λ∗

(38)

It is clear from this definition that Λ∗ is the set of outward
normal directions to supporting hyperplanes to S(c) that
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TABLE II
ANALYTICAL SUPPORT AND CONTACT FUNCTIONS FOR SUBLEVEL SETS OF EXAMPLE COST FUNCTIONS.

fj(u) W sUj(1)(λ) gUj(1)(λ)

||u||2 - λ/||λ||2 ||λ||2
||u||1

[
I −I

]
arg max
w∈Wj

λTw ||λ||∞

|u1|+
√
u22 + u23


sign(λ1) 0

0 λ2√
λ2
2+λ

2
3

0 λ3√
λ2
2+λ

2
3

 arg max
w∈Wj

λTw max
w∈Wj

λTw

max(Vfaceu)
[
0m×1 Vvertex

]
arg max
w∈Wj

λTw max
w∈Wj

λTw

contain w. With this in mind, consider the problem posed
as

maximize: c subject to: c ≤ λTw

gS(1)(λ)
λ ∈ Λ+ (39)

where the decision variables are c and λ.

Theorem 1: If copt and λopt are an optimal solution to (39),
then copt is the optimal solution to (34).

Proof: By inspection of (39) it is evident that copt is equal to
c∗ as defined in (37), which means copt is a feasible solution
to (34). Any c < copt cannot be a feasible solution to (34)
because it would violate the first constraint evaluated at λopt.
Thus, copt must be the optimal solution to (34) �.

Remark 1: For any λ ∈ Λ+, λTw/gS(1)(λ) is a lower bound
on the optimal objective in (36). This property is leveraged
in the algorithm in Section VII to ensure that the converged
solution has a cost within a specified tolerance of the optimal
value.

Using the substitution in (30) and simple arithmetic manip-
ulations, (39) can be reformulated as

maximize: λTw

subject to: max
t∈T

gU(1,t)(Γ
T (t)λ) ≤ 1

(40)

where the decision variable is λ and the cost is encoded as
λTw. While this form is similar to the semi-infinite convex
programs considered in numerous prior works (e.g. [19] and
[20]), it is distinct in that it holds for an arbitrary piecewise-
defined norm-like cost function instead of a constant p-norm
cost. This form of the optimal control problem is used in the
solution algorithm proposed in Section VII.

From the properties of the optimal solutions to (39) or (40)
and the set definitions in Section III, necessary and sufficient
optimality conditions for control input profiles are as follows.

Theorem 2: Let λ∗ be an optimal solution to (40) with
corresponding optimal cost c∗ = λ∗Tw. Additionally, let T ∗

and U∗ be defined as

T ∗ =
{
t : gU(1,t)(Γ

T (t)λ∗) = 1, t ∈ T
}

U∗ =

{
u(t) : u(t) = δ(t− t∗)v, t∗ ∈ T ∗

v = c∗sU(1,t∗)(Γ(t∗)λ∗)

}
(41)

Any control input profile u∗(t) that satisfies

u∗(t) =

N∑
j=1

αjuj(t), uj(t) ∈ U∗, αj ≥ 0,

p∑
j=1

αj = 1, w =

∫ tf

ti

Γ(t)u∗(t)dt

(42)

for positive integer N is an optimal control input profile.

These properties are simple geometric consequences of the
set definitions provided in Section III and can be obtained
by replacing U1

j (c∗) with U1(c∗) in Theorem 2 in [22]. The
geometric relationships between λ, w, and the corresponding
S(c) are illustrated in Fig. 2 for sub-optimal (left) and optimal
(right) solutions to (39) or (40).

Fig. 2. Relationships between λ,w, and S(c) for sub-optimal (left) and
optimal (right) solutions to (39) or (40).

Remark 2: Under the definitions in (41), T ∗ is the set of
times at which it is possible to reach the hyperplane that is
perpendicular to λ∗ and contains w using a single impulse
with a cost of c∗. Similarly, U∗ is the set of impulses of cost
c∗ that reach this supporting hyperplane.
Remark 3: From Property 5 of S(c), there must exist at least
one u∗(t) with N ≤ n.
Remark 4: It is evident from (41) and (42) that an optimal
control input profile can be computed from λ∗ and c∗ using
a simple three-step procedure. First, T ∗ is computed. Second,
for each time in T ∗, candidate impulsive control inputs are
computed by computing all values of sU(c∗,t)(λ

∗). Third,
a convex combination of these impulses is computed that
reaches w.

Lastly, it has thus far been assumed that the control input
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profile consists of a set of impulses. It will be proven in
Theorem 3 that the cost associated with an optimal solution
to (40) is optimal for all continuous control input profiles.

Theorem 3: If λ∗ is an optimal solution to (40) and c∗ is the
corresponding cost, then c∗ is the minimum cost to reach w
using any control input profile.

Proof: Suppose there exists a control input profile u′(t) that
reaches w at a cost of c′ < c∗. This implies that u′(t) satisfies

λ∗Tw = c∗ =

∫ tf

ti

λ∗TΓ(τ)u′(τ)dτ (43)

However, due to the linearity of the cost function, the integral
must satisfy∫ tf

ti

λ∗TΓ(τ)u′(τ)dτ ≤ c′max
t∈T

gU(1,t)(Γ(t)λ∗) (44)

Using the constraint in (40), this simplifies to∫ tf

ti

λ∗TΓ(τ)u′(τ)dτ ≤ c′ (45)

which contradicts (43). Thus, there are no control input profiles
with a cost less than c∗ that reach w. It follows that c∗ is the
minimum cost to reach w using any control input profile �.

VI. COMPARISON WITH PRIMER VECTOR THEORY

It is now worthwhile to consider the relationship between
(40) and the formulations developed using primer vector
theory [19], [20]. These approaches assume that the cost
function is a constant p-norm of the form

f(u) = ||u||p =


(∑m

j=1 |uj |p
)1/p

, p ∈ [1,∞)

max
j=1,...,m

|uj |, p =∞

 .

Using Hölder’s inequality, the contact function for the unit
sublevel set of any p-norm can be expressed as

gU(1,t)(Γ
T (t)λ) = max

||u||p≤1
λTΓ(t)u = ||ΓT (t)λ||q (46)

where q is selected to satisfy 1/p + 1/q = 1 and ΓT (t)λ
is the primer vector. Substituting this expression into (40)
yields an equivalent form to Problem 5 in [19]. It is evident
from this relationship that gU(1,t)(Γ

T (t)λ) is effectively a
generalization of the q-norm of the primer vector for this
class of problem. However, unlike the magnitude of the primer
vector, this function is not required to have a continuous first
derivative with respect to time. Additionally, it provides a
geometric intuition that the time-invariant portion of the primer
vector (λ) is an outward normal direction to the reachable
set at the location of the target pseudostate. This property
can be exploited by initializing solution algorithms with a
reasonable a-priori estimate of the outward normal direction
to the reachable set at the target state.

VII. A FAST AND ROBUST SOLUTION ALGORITHM

An efficient and robust algorithm that provides globally op-
timal impulsive control input sequences for the class of optimal

control problems described in Section II is presented in the
following. This algorithm includes three steps: 1) initialization,
2) iterative refinement, and 3) extraction of optimal control
inputs. The geometric properties of the problem described in
the previous sections are leveraged at every step to minimize
computation cost and maximize robustness to numerical errors.

Initialization
The first step is generation of a set of candidate times T est.

The only requirement imposed on this step is that it must
be possible to reach w using a combination of admissible
impulses executed at times in T est. For most applications, a
coarse discretization of T is sufficient to meet this requirement.
However, to minimize the computation cost of refining the
initial estimate, it is desirable to select candidates that are as
close as possible to the optimal times for control inputs.

This can be accomplished by using an a-priori estimate
of the optimal λ, denoted λest. From the structure of the
objective in (39), a reasonable choice of λest is a vector
parallel to w. Using this estimate, an initial set of candidate
times for control inputs can be computed as follows. First,
a set of discrete samples T d ⊆ T is computed. Next,
gU(1,t)(Γ

T (t)λest) is computed for each t ∈ T d. The initial
set of control input times T est consists of the user-specified
number N of samples in T d for which gU(1,t)(Γ

T (t)λest)
is largest. This initialization approach is summarized in the
following pseudocode.

Algorithm 1: Initialization
Inputs: T d, λest, Γ(t), N
Outputs: T est
loop t ∈ T d

compute gU(1,t)(Γ
T (t)λest)

loop t ∈ T dj
if gU(1,t)(Γ

T (t)λest) is one of the N largest values
add t to T est

return T est

A notional example of this initialization procedure is shown
in Fig. 3. In this example, T d includes four times (indicated
by vertical lines), and the initialization algorithm selects the
two best times. The two selected times (indicated by circles)
are those at which gU(1,t)(Γ

T (t)λest) is largest. The rejected
candidates are indicated by x markers.

Fig. 3. Illustration of selection of two initial candidate times including
selected times (circle) and rejected times (x).
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Iterative Refinement
Next, λest and T est are iteratively refined until they con-

verge to λopt and T opt, which satisfy the optimality criteria
to within a user-specified tolerance. This is accomplished
using an iterative three-step procedure that provides global
convergence from any feasible initial guess. This procedure
is inspired by Arzelier’s algorithm [19], but includes modifi-
cations to simultaneously minimize the number of constraints
that must be enforced in the required optimization problems
and reduce the number of required iterations. The first step
in each iteration is computation of an optimal λest for the
current instance of T est. This is accomplished by solving (40)
with the modification that control inputs are only allowed at
times in T est. This problem can be solved using conventional
convex solvers, but the complexity of the problem depends on
how the cost function is defined.

The second step is refinement of T est using the updated
λest. This update procedure removes times at which optimal
control inputs cannot be applied and adds candidate times that
can reduce the total cost. Specifically, all t ∈ T est that satisfy

gU(1,t)(Γ
T (t)λest) < 1− εremove

for user-specified tolerance εremove > 0 are removed from
T est to reduce the number of constraints that must be enforced
in subsequent iterations, thereby reducing computational ef-
fort. Removing these times has no impact on the cost because
optimal control inputs cannot be applied at these times. Next,
gU(1,t)(Γ

T (t)λest) is evaluated for all times in T . All times
of local maxima of gU(1,t)(Γ

T (t)λest) that are greater than
one are added to T est. Adding these times ensures that
maxt∈T gU(1,t)(Γ

T (t)λest) monotonically decreases to one
with each subsequent iteration, thereby ensuring that λest
and T est converge to λopt and T opt, respectively. While no
rigorous guarantee is provided for the speed of convergence
(which depends on the dynamics model and cost functions),
the results in Section VIII demonstrate that a wide range of
problems can be solved in less than ten iterations.

The third step is to check the if the optimality criteria
are satisfied to within a user-specified tolerance εcost > 0.
Specifically, if the condition given by

max
t∈T

gU(1,t)(Γ
T (t)λest) ≤ 1 + εcost

is satisfied, then the algorithm terminates. Otherwise, another
iteration is performed. This ensures that the cost of the final
solution is within a factor of εcost of the optimal cost. The
described iteration procedure is summarized in the following
pseudocode.

Algorithm 2: Iterative Refinement
Inputs: T est, λest, T , w, Γ(t), εcost, and εremove
Outputs: T opt and λopt
do
λest ← solution of problem:
maximize: λTw
subject to: max

t∈Test

gU(1,t)(Γ
T (t)λ) ≤ 1

loop t ∈ Test
if gU(1,t)(Γ

T (t)λest) < 1− εremove

remove t from T est

loop local maxima of gU(1,t)(Γ
T (t)λest) in T

if gU(1,t)(Γ
T (t)λest) > 1

add t to T est

while max
t∈T

gU(1,t)(Γ
T (t)λest) > 1 + εcost

Topt ← T est

λopt ← λest
return T opt and λopt

A notional example of this refinement procedure is illus-
trated in Fig. 4. In this example, the set of candidate times
used to compute λest is indicated by solid vertical lines. It
is evident that gU(1,t)(Γ

T (t)λest) ≤ 1 at all of these times.
However, gU(1,t)(Γ

T (t)λest) ≤ 1 − εremove for two of these
times (indicated by x). These times are removed from T est.
Next, the times of local maxima of gU(1,t)(Γ

T (t)λest) that
are greater than one (indicated by triangles) are added to T est.
Because maxt∈T gU(1,t)(Γ

T (t)λest) > 1 + εcost, the solution
is not within the specified tolerance, so further refinement
is necessary. Using the updated set of candidate times, λest
is recomputed. The evolution of gU(1,t)(Γ

T (t)λest) for this
updated estimate is shown as a dashed line. It is evident that
this new λest satisfies the convergence criteria, allowing the
refinement to terminate.

Fig. 4. Illustration of iterative refinement procedure including removed
times (x) and added times (triangles).

A noteworthy advantage of this iteration procedure over
other approaches such as Gilbert’s algorithm [22] is that each
iteration constitutes a feasible solution with bounded sub-
optimality. Accordingly, this algorithm is well-suited for real-
time applications with hard limits on computation time.

Extraction of Optimal Control Inputs
Once a set of optimal control input times T opt and outward

normal direction λopt are obtained, it is necessary to compute
a set of optimal control inputs. This can be accomplished by
solving (4) considering control inputs only at times in Topt.
However, this requires solving a convex optimization problem
with complexity that depends on the selected cost function.

To minimize computation effort, the two-step approach
described in the following simplifies the required optimization
problem to a quadratic program. First, an optimal control input
direction is computed for each time in T opt for each control
mode. In the event that the optimal control input direction is
not unique, the algorithm requires a set of points such that



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020 9

the convex hull includes all solutions of the support function
(e.g. all columns of W that maximize the contact function
for the examples in Table II). Second, the magnitudes of the
control inputs are computed by solving a quadratic program
that minimizes the error between w and the state reached by
control inputs applied in the specified directions. Provided
that λopt is properly computed (i.e. the solver used in the
iterative refinement algorithm converged), the residual error
will be negligible for practical applications. Additionally, the
objective is formulated as the quadratic product of the error
vector and a user-specified positive definite weight matrix Q
to ensure well-behaved solutions. This optimal control input
extraction algorithm is described in the following pseudocode.

Algorithm 3: Control Input Extraction
Inputs: Topt, λopt, Γ(t), w, Q
Outputs: uopt(t)
loop tj ∈ T opt
ûopt,j(t)← δ(t− tj)sU(1,tj)(Γ

T (tj)λopt)
yj ← Γ(tj)sU(1,tj)(Γ

T (tj)λopt)
α← solution to optimization problem:

minimize: wT
errQwerr

subject to: werr = w −
∑
αjyj , αj ≥ 0,

∑
αj ≤ λToptw

uopt(t)← 0
loop tj ∈ T opt
uopt(t)← uopt(t) + αjûopt,j(t)

return uopt(t)

A notional example of the optimal control input extraction
algorithm is shown in Fig. 5 for a two-dimensional system.
In this example, there are two candidate times for optimal
control inputs. For each of these times, the optimal control
input direction ûopt(t) is computed that reaches the supporting
hyperplane at a cost of copt as shown in the left plot. The set of
states that can be reached by a convex combination of these
maneuvers is indicated by the shaded gray region. Next, a
convex combination of these control inputs is computed that
reaches the specified w at cost copt.

VIII. VALIDATION AND PERFORMANCE ASSESSMENT

The proposed algorithm is validated through application
to challenging spacecraft formation reconfiguration problems
based on the Miniaturized Distributed Occulter/Telescope
(mDOT) small satellite mission recently proposed by the

Fig. 5. Illustration of example optimal control input extraction for two-
dimensional example including computation of optimal control input
directions (left) and computation of control input magnitudes (right).

authors [23], [26]. This mission uses a nanosatellite equipped
with a telescope and a microsatellite equipped with a small
occulter to obtain direct images of debris disks or large
exoplanets from earth orbit. The technology demonstration
variant of this mission requires autonomous formation recon-
figurations that are challenging for three reasons: 1) the space-
craft have a large nominal separation of 500km established
through a difference in the right ascension of the ascending
node (RAAN), 2) the formation is deployed in a perturbed,
eccentric orbit, and 3) the spacecraft are subject to time-
varying attitude constraints to facilitate communication with
ground stations. The first two challenges are addressed by
using the accurate linear dynamics model for J2-perturbed
relative motion provided in the appendix, which is based on
mean absolute and relative orbital elements [27]. Mean orbit
elements are computed from osculating (i.e. instantaneous)
orbit elements by applying a transformation that removes the
effects of short-period perturbations. This dynamics model is
valid for arbitrarily large differences in right ascension of the
ascending node (RAAN), enabling application on the mDOT
mission. The third challenge can be addressed by using the
optimal impulsive control algorithm proposed in this paper.

To validate the proposed algorithm, it is first necessary
to define the reconfiguration problem. It is assumed that
the reconfigurations start at the apogee of an orbit with a
25000km semimajor axis, resulting in an orbit period of
10.92 hours. Formation reconfigurations are allowed to take
three orbits. Thus, ti is selected as 0 and tf is selected
as 117990 seconds. The control domain T is selected as a
uniform discretization of the interval [ti, tf ] with thirty second
intervals for a total of 3934 candidate control input times. The
occulter spacecraft (which performs all maneuvers) will need
to communicate with a ground station every orbit to downlink
data from each observation. To accommodate this constraint,
it is assumed that the occulter must maintain a fixed attitude
in the radial/tangential/normal (RTN) frame for a two-hour
window surrounding the perigee of each orbit to facilitate
communications with ground stations. While this interval is
significantly longer than typical ground contacts, this choice
helps to illustrate the different behavior of gU(1,t)(Γ

T (t)λ) in
each mode (with and without attitude constraints). Addition-
ally, it is assumed that the occulter has four thrusters arranged
in an equilateral tetrahedral configuration. The alignment of
each of these thrusters in the RTN frame in the fixed-attitude
mode are the columns of the matrix Vvertex defined as

Vvertex =


√

2/3 −
√

2/3 0 0

0 0
√

2/3 −
√

2/3

−
√

1/3 −
√

1/3
√

1/3
√

1/3

 (47)

The corresponding V face used to define the cost function is
given by

Vface =
1

3


−
√

2/3 0
√

1/3√
2/3 0

√
1/3

0 −
√

2/3 −
√

1/3

0
√

2/3 −
√

1/3

 (48)

The thruster directions and the set of admissible maneuvers of
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Fig. 6. Illustration of thruster orientations in RTN frame and set of
admissible maneuvers with unit cost in fixed-attitude mode.

unit cost for the fixed attitude mode are illustrated in Fig. 6.
The row vectors of Vface are parallel to the outward normal
directions to the faces of the tetrahedron in this plot. It is also
assumed that no attitude constraints are enforced outside of
the two-hour window surrounding the orbit perigee. During
these times, it assumed that the occulter spacecraft can freely
rotate so that any maneuver can be executed by firing a single
thruster.

Under these assumptions, the time domains for the fixed-
attitude mode (denoted T1) and unconstrained mode (denoted
T2) are given by

T1 = {t : t ∈ T, |t− (N + 0.5)Torbit| < 1hr, N ∈ Z}
T2 = {t : t ∈ T, |t− (N + 0.5)Torbit| ≥ 1hr, ∀N ∈ Z}

and Torbit is the orbit period. The cost function for this
reconfiguration problem is given by

f(u, t) =

{
max(Vfaceu) t ∈ T1
||u||2 t ∈ T2

}
(49)

The contact and support functions for U(1, t) take the forms
provided in Table II for the corresponding form of the cost
function at time t.

Key algorithm parameters are described in the following.
For the initialization algorithm, the provided T d includes 20
times evenly distributed between ti and tf . The provided λest
is a unit vector parallel to the target pseudostate. The initial
set of candidate times T est includes the six times in Td at
which gU(1,t)(Γ

T (t)λest) is largest. The tolerances εcost and
εremove in the refinement algorithm were selected as 0.01.
Finally, the error weight matrix Q is the identity matrix. The
algorithms defined in the previous section were implemented
in MATLAB and CVX was used to solve the required convex
optimization problems in the iterative refinement and optimal
control input extraction algorithms [28], [29].

In all test cases presented in the following, the normalized
residual error (||werr||2/||w||2) was less than 0.01%, indicat-
ing that the solver reliably converged for both the iterative
refinement algorithm and the maneuver extraction algorithm.

Example Formation Reconfiguration Problem
The proposed algorithm is first used to compute an optimal

maneuver sequence for an example formation reconfiguration
problem over three orbits. The initial absolute orbit (used to
evaluate Γ(t) using the dynamics model in the appendix)
and target pseudostate are provided in Table III. The target
pseudostate is scaled by the orbit semimajor axis in the table so
that it is numerically comparable to the change in the relative
position.

TABLE III
INITIAL MEAN ORBIT AND TARGET PSEUDOSTATE.

Initial mean absolute orbit œc(ti)
a(km) e(−) i(o) Ω(o) ω(o) M(o)
25000 0.7 40 358 0 180

Target pseudostate w (m)
aδa aδλ aδex aδey aδix aδiy
50 5000 100 100 0 400

A solution that reaches the target pseudostate and sat-
isfies the optimality criteria to within a tolerance of εcost
was found using only three iterations of Algorithm 2.
The optimal dual variable is given by λopt = 10−6 ×
[34.97, 3.42, 30.68, 17.84,−9.34, 146.79]T . The delta-v cost
of the computed maneuver sequence is 82.4mm/s, which is
within the specified 1% tolerance of the lower bound of
82.0mm/s computed by evaluating λToptw/gS(1)(λopt). The
optimal maneuver sequence consists of the three maneuvers
in the RTN frame provided in Table IV. It is noteworthy
that these maneuvers include significant radial components,
which contradicts the expected behavior from the closed-form
solutions developed by Chernick [2]. This behavior arises from
the fact that Chernick’s solutions assume that in-plane (δa,
δλ, δex, and δey) and out-of-plane (δix and δiy) control are
decoupled, while this algorithm optimally couples in-plane and
out-of-plane control.

TABLE IV
OPTIMAL MANEUVERS FOR EXAMPLE SCENARIO.

tj (sec) 16050 23280 107100
uR(tj) (mm/s) 9.68 0.00 16.51
uT (tj) (mm/s) -23.02 -0.40 15.68
uN (tj) (mm/s) -25.56 -0.04 40.26

The evolution of gU(1,t)(Γ(t)λopt) for this solution is
illustrated in Fig. 7. The optimal maneuver times are indicated
by black circles and the time intervals in which the fixed
attitude constraint is enforced are indicated by gray shading. It
is evident from this plot that the optimality criteria are satisfied
to within the specified tolerance of 0.01.

Comparison to State-of-the-Art Approaches
To demonstrate the improved computational efficiency of

the proposed algorithm, Monte Carlo simulations were con-
ducted using the proposed algorithm and two other state-
of-the art algorithms. The first reference algorithm is direct
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Fig. 7. Evolution of gU(1,t)(Γ(t)λopt) for example problem including
optimal maneuver times (black circles) and attitude constraints (gray).

optimization (i.e. solving the problem in (34)) where control
inputs are allowed at all 3934 times in the discretization of T .
This requires solving a single convex optimization problem
with 11802 variables and 6 equality constraints. The second
reference algorithm is an implementation Gilbert’s algorithm
[22] that has been modified to use the support and contact
functions derived in Section IV. This algorithm is selected
because it is the fastest algorithm in literature that provides
guaranteed convergence and is applicable to this class of
problem. Gilbert’s algorithm is applied with an error tolerance
of 0.1m in the reached pseudostate and an overexpansion
factor of 0.01 to reduce the number of required iterations. To
provide a fair comparison between the run times, CVX [28],
[29] is used to solve the quadratic programs used in Gilbert’s
refinement procedure.

Each algorithm was used to compute optimal impulsive
control inputs for 200 pseudostates randomly selected from
a zero-mean Gaussian distribution with standard deviations
of 1km for each ROE. The minimum, mean, and maximum
computation time and number of required iterations for each
of these algorithms run on a desktop computer with a 3.5
GHz processor are provided in Table V. It is clear from
these tests that both the algorithm proposed in this paper
and Gilbert’s algorithm are more than an order of magnitude
faster than direct optimization. While the proposed algorithm
required approximately one third of the computation time
of Gilbert’s algorithm, it should be noted that this behavior
may change if different solvers are chosen. However, it is
clear that the algorithm proposed in this paper requires on
average five times fewer iterations than Gilbert’s algorithm,
and correspondingly fewer evaluations of the contact function.
It is event from this comparison that the proposed algorithm

TABLE V
MINIMUM, MEAN, AND MAXIMUM VALUES FOR COMPUTATION TIME AND

REQUIRED ITERATIONS IN MONTE CARLO SIMULATIONS.

Computation time (s) # Iterations
Algorithm Min Mean Max Min Mean Max
Proposed 0.76 2.43 4.32 1 3.99 8
Gilbert 3.72 7.36 14.7 9 19.1 40
Direct 85.5 90.9 98.5 - - -

is well-suited to problems where evaluation of the contact and
support functions is computationally expensive.

Sensitivity to Poor Initialization
To characterize the sensitivity of the computation cost to

the initial set of candidate times, the Monte Carlo simulations
using the proposed algorithm were repeated with two different
sets of initial candidate control input times. The first initial
set of times includes only ti and tf . This initialization is
intended to capture the worst-case computation cost because it
is unlikely that the optimal cost can be reached with only two
maneuvers. The second initialization includes ten candidate
times evenly spaced in the interval [ti, tf ]. This initialization
ensures that the initial candidate times are reasonably close
to optimal times, but requires the algorithm to check a larger
number of constraints in the iterations. The initializations with
two, six, and ten candidate times required averages of 4.90,
3.99, and 3.31 iterations of Algorithm 2, respectively. Fig. 8
shows the distribution of the number of iterations required to
solve these reconfiguration problems for all three initialization
schemes. It is evident that increasing the number of times in
the initial set of candidate control input times provides a mod-
est decrease in the number of required iterations. However, the
algorithm reliably converges from a worst-case initialization in
six iterations or less for most problems. Also, including more
candidate times increases the complexity of the optimization
problems that must be solved in each iteration. Thus, the ideal
number of candidate times for initialization will depend on
the limitations of available solvers for a specified application.
Overall, these results show that the algorithm is robust to poor
initialization data with a nominal increase of approximately
30% in the number of required iterations.

Fig. 8. Cumulative distribution functions for the number of required
refinement iterations in Monte Carlo simulations for three initialization
schemes.

Sensitivity to Time Discretization
To characterize the relationship between the computation

time and the density of the time discretization, a selection of
ten problems from the Monte Carlo experiment were solved
with the the number of times in T varied between ten and one
million. The maximum computation time of the ten problems
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is plotted against the number of times in T in Fig. 9. It
is evident from this plot that the required computation time
is nearly constant if the number of times is 104 or less.
Beyond this level, the cost increases linearly with the number
of samples. This is because the majority of the computation
effort is spent updating the set of candidate optimal control
input times, which has equivalent computation cost to one
evaluation of the contact function for the reachable set. Since
the computation time for direct optimization algorithms varies
exponentially with the number of variables, it is evident that
the algorithm proposed in this paper is well suited to problems
that require fine discretizations of the time domain.

Fig. 9. Computation time vs. number of candidate control input times.

These simulations demonstrate that the proposed algorithm
exhibits robust convergence to globally optimal control inputs
several times faster than comparable algorithms in literature.
The authors have also found in preliminary tests that the
proposed algorithm runs on a 800MHz CubeSat-compatible
microprocessor with run times of under ten seconds, making
it suitable for deployment in real-time applications such as the
guidance, navigation, and control system for the VIrtual Super-
resolution Optics with Reconfigurable Swarms (VISORS) mis-
sion [30].

IX. CONCLUSIONS

This paper proposes a new simple and robust solution
methodology for a class of fuel-optimal impulsive control
problems for linear systems with time-varying cost. First, the
properties of the reachable set are derived. Next, contact and
support functions for the reachable set are derived, enabling
use of existing algorithms for optimization over parameterized
sets. After reformulating the problem as a semi-infinite convex
program, it is shown that this class of problem is identical to
the form studied in primer vector theory under the assumption
that the cost is a constant p-norm. It follows that the contact
function is a generalization of the norm of the primer vector
and provides a geometric interpretation of the time-invariant
portion of the primer vector. Finally, a three-step algorithm
is proposed that provides efficient and robust computation of
globally fuel-optimal impulsive control input sequences. The
geometry of the problem is leveraged in every step to reduce
computational cost and ensure robustness.

The algorithm is validated through implementation in chal-
lenging spacecraft formation reconfiguration problems based
on the proposed Miniaturized Distributed Occulter/Telescope
small satellite mission. It is found that the algorithm is able

to compute a maneuver sequence with a total cost within
1% of the global optimum within eight iterations in all test
cases, including those with worst-case initializations. Also,
the normalized residual error of all computed solutions was
no larger than 0.01%, indicating reliable convergence. It was
found that the algorithm is more than an order of magnitude
faster than direct optimization and three times faster than
the best indirect optimization algorithm available in literature.
Indeed, the required computation time is nearly constant unless
the discretization of the time domain includes more than ten
thousand samples.

Overall, the proposed solution methodology provides a real-
time-capable means of computing globally optimal impulsive
control input sequences for a wide range of linear time-variant
dynamical systems with complex cost behaviors.
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APPENDIX

This appendix describes the dynamics model for control of
spacecraft formations in J2-perturbed orbits that is used in
Section VIII. This model is valid for mean orbit elements,
which are computed from the osculating (or instantaneous)
orbit elements by applying a transformation that removes
short-period oscillations. Similar models have been used for
spacecraft formation control on multiple missions such as
TanDEM-X and PRISMA to avoid excess fuel expenditure
due to short-period perturbations [1], [7].

Let µ denote earth’s gravitational parameter, RE denote
earth’s mean radius, and J2 denote earth’s second degree zonal
geopotential coefficient. These constants are given by

µ = 3.986× 1014 m3/s2, RE = 6.378× 106 m,

J2 = 1.082× 10−3.

The mean absolute orbits for each spacecraft are described
by Keplerian orbit elements, which include the semimajor axis
a, eccentricity e, inclination i, right ascension of the ascending
node Ω, argument of perigee ω, and mean anomaly M . Using
these elements, the orbit element vector œ is defined as

œ =
[
a e i Ω ω M

]T
.

The unforced dynamics for the mean orbit elements of a
spacecraft in a J2-perturbed orbit are given in [31] as

œ̇ =



ȧ
ė

i̇

Ω̇
ω̇

Ṁ

 =



0
0
0

− 3J2R
2
E

√
µ

2a7/2η4
cos(i)

3J2R
2
E

√
µ

4a7/2η4
(5 cos2(i)− 1)√

µ
a3 +

3J2R
2
E

√
µ

4a7/2η3
(3 cos2(i)− 1)


. (50)
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It is evident from this equation that a, e, and i are constant
while Ω, ω, and M vary linearly with time. Accordingly, the
absolute orbit at time t is related to the orbit at time ti by

œ(t) = œ(t) + (t− ti)œ̇

The mean relative orbital elements (ROE) state used in this
paper is defined with respect to the mean orbits of the chief,
denoted by subscript c, and the deputy, denoted by subscript
d, by

x =


δa
δλ
δex
δey
δix
δiy

 =


∆a/ac

∆M + ηc(∆ω + ∆Ω cos(ic))
ed cos(ωd)− ec cos(ωc)
ed sin(ωd)− ec sin(ωd)

∆i
∆Ω sin(ic)

 (51)

where η =
√

1− e2 and the operator ∆ denotes the difference
between the orbit elements of the deputy and chief (e.g. ∆a =
ad − ac). Without loss of generality, it is assumed that the
telescope spacecraft is the chief and the occulter spacecraft is
the deputy and all maneuvers are executed by the occulter.

The dynamics model includes a control input matrix B(t)
and a state transition matrix (STM) Φ(t, tf ). The control input
matrix used in this paper relates the effect of an applied
impulse to its effect on the ROE, which is given in [2] as

B(t) =

√
ac
µ


B11 B12 0
B21 0 0
B31 B32 B33

B41 B42 B43

0 0 B53

0 0 B63

 .

The nonzero terms of this matrix are given by

B11 =
2

η
e sin(ν), B12 =

2

η
(1 + e cos(ν)),

B21 = − 2η2

1 + e cos(ν)
, B31 = η sin(θ),

B32 = η
(2 + e cos(ν)) cos(θ) + e cos(ω)

1 + e cos(ν)
,

B33 =
ηe sin(ω) sin(θ)

tan(i)(1 + e cos(ν))
, B41 = −η cos(θ),

B42 = η
(2 + e cos(ν)) sin(θ) + e sin(ω)

1 + e cos(ν)
,

B43 = − ηe cos(ω) sin(θ)

tan(i)(1 + e cos(ν))
,

B53 =
η cos(θ)

1 + e cos(ν)
, B63 =

η sin(θ)

1 + e cos(ν)

where θ = ω + ν and ν is the true anomaly, which is related
to the mean anomaly by Kepler’s equation. The columns of
the control matrix correspond to thrusts applied to the deputy
spacecraft in the radial (R), along-track (T), and cross-track
(N) directions, respectively. The R direction is aligned with the
position vector of the spacecraft, the N direction is aligned
with the angular momentum vector of the orbit, and the T
direction completes the right-handed triad. All orbit elements

are evaluated at the time at which the impulse is applied.
As demonstrated in [27], the STM for the state defined

in (51) can be computed by performing a first order Taylor
expansion on the equations of relative motion and solving the
linearized system of equations in closed-form. For the ROE
definition in (51) and dynamics model in (50), the resulting
STM is given by

Φ(t, tf ) =


Φ11 0 0 0 0 0
Φ21 Φ22 Φ23 Φ24 Φ25 0
Φ31 0 Φ33 Φ34 Φ35 0
Φ41 0 Φ43 Φ44 Φ45 0
0 0 0 0 Φ55 0

Φ61 0 Φ63 Φ64 Φ65 Φ66

 .

The nonzero terms of this STM are given by

Φ11 = 1, Φ21 = (−1.5
√
µ/a3∆t− 7κηP )∆t,

Φ22 = 1, Φ23 = 7κex1P∆t/η, Φ24 = 7κey1P∆t/η,

Φ25 = −7κηS∆t, Φ31 = 3.5κey2Q∆t,

Φ33 = cos(ω̇∆t)− 4κex1ey2GQ∆t,

Φ34 = − sin(ω̇∆t)− 4κey1ey2GQ∆t,

Φ35 = 5κey2S∆t, Φ41 = −3.5κex2Q∆t,

Φ43 = sin(ω̇∆t) + 4κex1ex2GQ∆t,

Φ44 = cos(ω̇∆t) + 4κey1ex2GQ∆t,

Φ45 = −5κex2S∆t, Φ55 = 1, Φ61 = 3.5κS∆t,

Φ63 = −4κex1GS∆t, Φ64 = −4κey1GS∆t,

Φ65 = 2κT∆t, Φ66 = 1

where the substitutions given by

∆t = tf − t, κ =
3J2R

2
E

√
µ

4a7/2η4
, G = η−2,

P = 3 cos2(i)− 1, Q = 5 cos2(i)− 1, S = sin(2i),

T = sin2(i), ex1 = e cos(ω(t)), ey1 = e sin(ω(t)),

ex2 = e cos(ω(tf )), ey2 = e sin(ω(tf ))

are used to simplify notation. This STM is the same as the J2-
perturbed STM developed in [27] for quasi-nonsingular ROE
except that the second row is modified to accommodate the
changed definition of δλ.
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