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Invariance Properties of Controlled Stochastic
Nonlinear Systems under Information Constraints

Christoph Kawan and Serdar Yüksel

Abstract—Given a stochastic nonlinear system controlled over
a possibly noisy communication channel, the paper studies the
largest class of channels for which there exist coding and control
policies so that the closed-loop system is stochastically stable.
The stability criterion considered is asymptotic mean stationarity
(AMS). We develop a general method based on ergodic theory
and probability to derive fundamental bounds on information
transmission requirements leading to stabilization. Through this
method we develop a new notion of entropy which is tailored
to derive lower bounds for asymptotic mean stationarity for
both noise-free and noisy channels. The bounds obtained through
probabilistic and ergodic-theoretic analysis are more refined in
comparison with the bounds obtained earlier via information-
theoretic methods. Moreover, our approach is more versatile in
view of the models considered and allows for finer lower bounds
when the AMS measure is known to admit further properties
such as moment bounds.

Index Terms—Stochastic stabilization; asymptotic mean sta-
tionarity; measure-theoretic entropy; information theory

I. INTRODUCTION

Consider the following problem: Given a stochastic nonlin-
ear system controlled over a communication channel, what is
the largest class of such channels so that there exist coding and
control policies leading to (some form of) stochastic stability?
Various versions of this problem have been studied extensively
for (possibly stochastic) linear systems and deterministic non-
linear systems.

For deterministic nonlinear systems, invariance entropy [9]
measures the smallest average data rate of a noiseless channel
above which a compact subset Q of the state space can be
made invariant by a controller receiving its state information
through this channel. The essence of the idea behind this
concept is as follows: If the controller has n bits of information
available, it can distinguish at most 2n different states, hence
generate at most 2n different control inputs. Consequently,
the number of control inputs needed to achieve the control
objective (on a finite time interval) is a measure for the
necessary information. The definition of invariance entropy
thus reads

hinv(Q) := lim
τ→∞

1

τ
log rinv(τ,Q),
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where rinv(τ,Q) is the minimal number of control inputs
needed to achieve invariance of Q on the time interval [0, τ ]
for arbitrary initial states in Q. It is relatively immediate to
observe that the growth rate of rinv(τ,Q) is directly related
to the rate of volume expansion for subsets of Q under the
evolution of the system. Indeed, the faster volume is expanded,
the more coding regions, and hence different control inputs, are
necessary to keep the whole volume inside Q. Since for every
reasonable stabilization objective it is necessary to keep certain
volumes bounded (or even shrink them to zero), the same
ideas as used in the definition of invariance entropy should
work universally for stabilization over discrete channels. This
intuition was rigorously verified in a number of publications,
including [7], [9], [11], [14], [24], [25].

In this paper, we demonstrate that such an approach is
also applicable, by means of the machinery we develop,
to stochastic systems, stochastic channels, and to stochastic
stability. Our criterion for stochastic stability is asymptotic
mean stationarity (AMS), introduced by Gray & Kieffer [19]
and used in networked control in a number of publications
[48], [50], [51]. This concept considerably weakens the notion
of stationarity and is closely related to other criteria used in
the literature, such as stability in probability [33], (unique)
ergodicity [48], as well as another commonly used stability
criterion: finite m-th moment stability for various m ∈ N
[36], [38], [44]. The AMS property is weaker than unique
ergodicity, and the finite-moment stability typically implies
the AMS property provided additional regularity properties are
imposed. Nonetheless, the AMS property is a very versatile
notion; if one assumes that the support of the asymptotic mean
measure is compact, the AMS property can be related to set
stability; if one assumes that this measure has a finite m-th
moment for its coordinate state process, the AMS property
would lead to the finite-moment stability property, and finally
the ergodicity can also be imposed for certain applications
through mixing properties, e.g., through the construction of a
positive Harris recurrent Markov chain [49]. Barron [5] and
Gray & Kieffer [19] note various other operational utilities of
the AMS property.

As an auxiliary quantity to derive lower bounds on the nec-
essary channel capacity for generating an AMS state process,
we introduce a new concept of stabilization entropy inspired
by both invariance entropy and measure-theoretic entropy of
dynamical systems, in particular by a characterization of the
latter due to Katok [23] and a generalization thereof developed
in Ren et al. [43]. Roughly speaking, stabilization entropy
looks at the exponential growth rate of the number of length-n
control sequences necessary to keep the state inside some set

ar
X

iv
:1

90
1.

02
82

5v
4 

 [
m

at
h.

O
C

] 
 4

 M
ay

 2
02

0



2

for a certain fraction of the number n of times with a certain
positive probability. The corresponding set, the frequency of
times and the probability are parameters that can be adjusted,
and the relation to channel capacity can only be established
for certain choices of these parameters.

Stochastic stabilization of nonlinear systems driven by noise
(especially unbounded noise) over communication channels
has been studied in few publications, notably in [51]. With
our method we are able to refine the bounds presented in [51].
The approach developed in our paper, unlike the differential-
entropic methods in [51] and other publications, allows for

(i) refined stochastic stability results applicable to a more
general class of system models (Theorems V.1 and VI.2).
and more refined stability criteria such as the AMS
property in combination with moment conditions (see
Corollary V.4),

(ii) a more concise and direct derivation, building on volume
growth arguments, applicable to a plethora of criteria,

(iii) more refined bounds for a large class of systems through
trading-off growth rates with the measures of sets under
the coordinate projection of a stationary measure (see
Theorem V.1),

(iv) the unification of the theory developed for determin-
istic systems controlled over noise-free communication
channels with their stochastic counterparts, involving
both stochastic nonlinear dynamical systems and noisy
communication channels (see Theorem VII.1).

In the paper at hand, explicit lower bounds on the capacity in
terms of characteristics of the system are derived for nonlinear
volume-expanding systems with additive control and noise,
and for a class of inhomogeneous semi-linear systems with
nonlinear dependence on the control variable. For the first
class of systems, we obtain a particularly interesting result
which displays a trade-off between the volume-expansion rate
of the system and the mass distribution of the probability
measure coming from the AMS property. This trade-off is
a specific feature of nonlinear systems, since in the linear
case the influence of the measure is canceled out due to
the fact that the Jacobian matrix with respect to the state
is a constant in this case. From our results we can easily
recover the well-known capacity bound for linear systems,∑
λ max{0, log |λ|} (summing over all eigenvalues of the

dynamical matrix), and also previous bounds for nonlinear
systems proved via information-theoretic methods.

We emphasize that for the case of noisy channels, at least
for a simple class of scalar systems, we are able to derive
similar lower bounds as for noiseless channels via relating
the number of control sequences needed for stabilization to a
state estimation problem, and then by a generalization of the
strong converse to the channel coding problem in information
theory together with optimal transport theory, relating the
channel capacity to a state estimation problem. This approach,
in particular, allows for replacing arguments which depend on
the maximum number of possible distinct message sequences
for noiseless channels with an entropy-theoretic argument. It
is our hope that this novel method will also be accessible to
a general readership and find further applications.

The paper is organized as follows. In Section II we provide a
short literature review. The technical details of the stabilization
problem are outlined in Section III. The subsequent Section
IV introduces the notion of stabilization entropy. Applications
to specific system models are given in Sections V and VI, and
Section VII contains our result for noisy channels. Finally, the
proofs of two technical lemmas are given in the Appendix.

II. A BRIEF LITERATURE REVIEW

This paper continues along the research programs developed
in [24], which considers deterministic systems, and [51], which
considers stochastic systems. For comprehensive literature
reviews on the subject, we refer to [24], [33], [48]. Here we
only provide a short review of the most relevant contributions.

For noise-free linear systems controlled over discrete noise-
less channels, various authors have obtained a formula for
the smallest channel capacity above which stabilization is
possible, under various assumptions on the system and the ad-
missible coders and controllers. This result is usually referred
to as a data-rate theorem and asserts that the smallest capacity
is given by the logarithm of the unstable determinant of the
open-loop system, i.e., the log-sum of the unstable eigenvalues.
The earliest works in this context are Wong & Brockett [6] and
Baillieul [3]. More general versions of the data-rate theorem
have been proven in Tatikonda & Mitter [46] and Hespanha
et al. [21]. For noisy systems and mean-square stabilization,
or more generally, moment-stabilization, analogous data-rate
theorems have been proven in Nair & Evans [38] and Sahai &
Mitter [44], see also [32], [34]. For extensive reviews, see [2],
[17], [33], [40], [48]. A data-rate theorem for AMS stability
of linear systems was established in [48, Thm. 8.5.3] (see also
[51, Thm. 3.1]) and [50, Thm. 4.1 and 4.2], [22, Thm. 2.2,
3.2 and 3.5] under various variations. A recent study along
a similar construction to the one introduced in [52] and [49]
under fixed-rate quantization is [29].

The studies of nonlinear systems have typically considered
deterministic systems that are noise-free systems controlled
over discrete noiseless channels. In this context, Nair et al. [39]
introduced the notion of topological feedback entropy (in
analogy to topological entropy for dynamical systems [1]) for
discrete-time systems to characterize the smallest average rate
of information above which the state can be kept inside a
compact controlled invariant set. They also characterized the
smallest data rate for stabilization to an equilibrium point as
the log-sum of the unstable eigenvalues of the linearization.
Colonius & Kawan in [9] introduced the notion of invariance
entropy for continuous-time systems for the same stabilization
objective. When adapted to the same (discrete-time) setting,
the two notions are equivalent, see [11]. A comprehensive
review of these concepts is provided in [24]. We also note
that recently a concept of metric invariance entropy based
on conditionally invariant measures was established in [8].
Further studies on control of nonlinear systems over commu-
nication channels have focused on constructive schemes (and
not on converse theorems), primarily for noise-free systems
and channels, see, e.g., [4], [16], [30].

We also emphasize that for nonlinear systems the prob-
lems of local stabilization (stabilization to a point), semi-
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global stabilization (set invariance) and global stabilization
(as in the stochastic stabilization criterion considered here)
are fundamentally different from each other, while for linear
systems they can all be handled with similar methods, leading
to the above-mentioned data-rate theorem in each case. This is
related to the fact that for linear systems any local (dynamical
or control-theoretic) property is a global property as well.
For nonlinear systems, linearization techniques work well for
local problems, for semi-global problems only under specific
assumptions and for global problems almost not at all. In
addition, the presence of (possibly unbounded and additive)
noise requires an approach fundamentally different from the
machinery utilized for local stabilization problems.

III. PRELIMINARIES AND PROBLEM DESCRIPTION

a) Notation: If A is a finite set, we write #A for its
cardinality. The complement of a set A ⊂ X is denoted by
Ac = X\A. We write 1A for the indicator function of a set A.
By log we always denote the base-2-logarithm. We write Z+

for the set of nonnegative integers and put Z>0 := Z+\{0}.
Moreover, we use the notation [a; b] for a discrete interval,
i.e., [a; b] = {a, a + 1, . . . , b} for any a, b ∈ Z with a ≤ b.
By | · | we denote the standard Euclidean norm on RN and by
‖ · ‖ any associated operator norm. We write Br(x) = {y ∈
RN : |x − y| < r} for x ∈ RN , r > 0, and denote by A the
closure of a set A ⊂ RN . The Lebesgue measure on RN is
denoted by m. We write I for the N ×N -identity matrix and
Gl(N,R) for the general linear group of RN . By L(V,W )
we denote the space of all linear maps between vector spaces
V,W . We use the notation supp(µ) for the support of a
Borel probability measure µ. The expectation of a random
variable X is denoted by E[X]. The entropy of a {0, 1}-valued
Bernoulli random variable X with P (X = 0) = r is denoted
by H(r), i.e., H(r) = −r log r−(1−r) log(1−r). The relative
entropy of two probability mass functions p(x) and q(x) on a
discrete space X is defined by D(p||q) :=

∑
x∈X p(x) log p(x)

q(x) .
We refer the reader to [12] for further information-theoretic
concepts such as mutual information and channel capacity.

If µ, ν are two measures on the same measurable space, we
write µ �b ν to denote that µ is absolutely continuous with
respect to ν and its density is essentially bounded.

If XZ+ is the set of all sequences in some set X , we write
x̄ = (xt)t∈Z+

for elements of XZ+ and θ : XZ+ → XZ+ for
the left shift operator, i.e.,

(θx̄)t = xt+1 for all t ∈ Z+, x̄ ∈ XZ+ .

Moreover, we write x̄[0,t] = (x0, x1, . . . , xt) for t ∈ Z+ and
B(X) for the Borel σ-field of a topological space X .

To avoid technical problems concerning the measurability
of certain sets, we make the following general assumption.

Assumption III.1 We assume that all measurable spaces in
this paper are standard Borel and all random variables
associated with a given control system are modeled on a
common (standard Borel) probability space (Ω,F , P ).

The standard Borel space assumption leads to useful uni-
versal measurability properties which are utilized in the paper.

A measurable image of a Borel set is called an analytic set
[15, App. 2]. We note that this is evidently equivalent to the
seemingly more restrictive condition of being a continuous
image of a Borel set. The following property will be utilized
in our analysis: The image of a Borel set under a measurable
map, and hence an analytic set, is universally measurable [15].

Throughout the paper, we consider a stochastic control
system

xt+1 = f(xt, ut, wt), t = 0, 1, 2, . . . (1)

This defines a measurable map f : RN×U×W → RN , where
RN is endowed with the Borel σ-field B(RN ), (U,FU ) is a
measurable space and (W,FW , ν) a probability space. The
noise is modeled by an i.i.d. sequence (wt)t∈Z+

of random
variables on (W,FW ) with associated probability measure ν.
The initial state x0 is modeled by another random variable
with probability measure π0 on (RN ,B(RN )) and is assumed
to be independent of (wt)t∈Z+ .

We write ϕ(t, x0, ū, w̄), t ∈ Z+, for the unique trajectory
with initial value x0 ∈ RN associated with the noise realiza-
tion w̄ ∈WZ+ and the control sequence ū ∈ UZ+ .

We assume that an encoder, knowing the states
x0, x1, . . . , xt at time t ∈ Z+, transmits at time t ∈ Z+

a symbol qt through a noiseless discrete channel to a
decoder/controller. We assume that the decoder receives the
signals without delay. The finite coding alphabet is denoted
by M and the capacity of the channel is

C = log #M.

Thus, at time t, the controller has the symbol string q[0,t] =
(q0, q1, . . . , qt) ∈Mt+1 available to generate the control input
ut. Any coding and control policy of this form is called
a causal coding and control policy. A more general setup
including a noisy channel will be introduced and studied in
Section VII.

The considered control objective is to make the state process
(xt)t∈Z+ asymptotically mean stationary (AMS). Writing P
for the process measure on (RN )Z+ , i.e.,

P(F ) = P ({ω ∈ Ω : (xt(ω))t∈Z+
∈ F}),

the process {xt}t∈Z+
is AMS if there is a probability measure

P̄ on B((RN )Z+) with

lim
T→∞

1

T

T−1∑
t=0

P(θ−tF ) = P̄ (F ) for all F ∈ B((RN )Z+).

This implies that P̄ is a stationary measure for (xt), i.e.,
P̄ (θ−tF ) = P̄ (F ) for all times t and Borel sets F .

The AMS property implies the existence of a probability
measure Q on (RN ,B(RN )) so that

lim
T→∞

1

T

T−1∑
t=0

P (xt ∈ A) = Q(A) (2)

for every A ∈ B(RN ). This can be seen by considering sets
of the form F = A×RN ×RN ×· · · . Then P(θ−tF ) reduces
to P (xt ∈ A) and the measure Q is given by Q(A) = P̄ (F ).

We note that it was shown in [51, Thm. 5.1] that an additive
noise system can be made AMS over a finite-capacity channel
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under mild assumptions. Thus, searching for lower bounds on
the necessary channel capacity is a meaningful problem.

IV. STABILIZATION ENTROPY

Definition IV.1 For any Borel set B ⊂ RN , T ∈ Z>0 and
ρ, r ∈ (0, 1), a set S ⊂ UT is called (T,B, ρ, r)-spanning if
there exists a set Ω̃ ∈ F with P (Ω̃) ≥ 1− ρ so that for every
ω ∈ Ω̃ there is ū ∈ S with

1

T
# {t ∈ [0;T − 1] : ϕ(t, x0(ω), ū, w̄(ω)) ∈ B} ≥ 1−r. (3)

We write sB(T, ρ, r) for the smallest cardinality of a
(T,B, ρ, r)-spanning set (where sB(T, ρ, r) = ∞ if no fi-
nite (T,B, ρ, r)-spanning set exists) and define the (B, ρ, r)-
stabilization entropy of system (1) by

hB(ρ, r) := lim sup
T→∞

1

T
log sB(T, ρ, r).

Some remarks about this definition are in order:
(i) The control sequences ū in the above definition are not

generated by a coding and control policy. Indeed, hB(ρ, r) is
an intrinsic quantity of the open-loop system.

(ii) The existence and finiteness of (T,B, ρ, r)-spanning sets
is not immediately clear from the definition. However, as we
will see below, in relevant cases this is guaranteed. In general,
we always have 0 ≤ hB(ρ, r) ≤ ∞.

(iii) There are some obvious monotonicity properties of
the function hB(·, ·). Namely, if r or ρ become smaller,
hB(ρ, r) increases. This in particular implies the existence of
corresponding limits as r → 0 and ρ → 0 (which may be
infinite).

(iv) The notion of (B, ρ, r)-stabilization entropy is defined
in close analogy to the notion of measure-theoretic r-entropy
[42], [43] for dynamical systems. This quantity generalizes
the classical Kolmogorov-Sinai measure-theoretic entropy, on
the basis of its characterization due to Katok [23] for er-
godic measures. While the original definition of measure-
theoretic entropy is based on computing the Shannon entropy
of “dynamical partitions”, Katok’s characterization is based
on counting the minimal number of “dynamical balls” of a
certain radius needed to cover a subset of the state space with
measure greater than some threshold.

We now present our key lemma which relates the channel
capacity necessary for stabilization to the stabilization entropy.
In particular, it shows that finite (T,B, ρ, r)-spanning sets
exist for appropriate choices of B, ρ, r, provided that the AMS
property can be achieved.

Lemma IV.2 Assume that the AMS property is achieved via
a causal coding and control policy over a noiseless channel
of capacity C. Then for every Borel set B ⊂ RN with 0 <
Q(B) < 1 and all sufficiently small ε > 0 we have

C ≥ hB
(

1 + ε
2

1 + ε
, (1 + ε)Q(Bc)

)
.

If Q(B) = 1, then for all r ∈ (0, 1) and ε > 0 sufficiently
small we have

C ≥ hB
(

1 + ε
2

1 + ε
, (1 + ε)r

)
.

Proof: We fix a causal coding and control policy which
achieves the AMS property over a noiseless channel of capac-
ity C. For a given set B ∈ B(RN ) with 0 < Q(B) < 1, (2)
implies

lim
T→∞

1

T

T−1∑
t=0

P (xt ∈ Bc) = 1−Q(B) =: r. (4)

Since P (xt ∈ Bc) = E[1Bc(xt)], this can also be written as

lim
T→∞

E
[ 1

T

T−1∑
t=0

1Bc(xt)
]

= r.

We pick ε ∈ (0, (1− r)/r) and choose T0 > 0 so that

E
[ 1

T

T−1∑
t=0

1Bc(xt)
]
≤
(

1 +
ε

2

)
r, ∀T ≥ T0.

By Markov’s inequality, this implies that for every T ≥ T0

the event

Ω̃T :=
{
ω ∈ Ω :

1

T

T−1∑
t=0

1Bc(xt(ω)) ≤ (1 + ε)r
}

occurs with probability P (Ω̃T ) ≥ ε/(2(1 + ε)), since

P
( 1

T

T−1∑
t=0

1Bc(xt) > (1 + ε)r
)
≤
E[ 1

T

∑T−1
t=0 1Bc(xt)]

(1 + ε)r

≤
1 + ε

2

1 + ε
= 1− ε

2(1 + ε)
.

Observe that for every ω ∈ Ω̃T the number of t’s in [0;T −1]
satisfying xt(ω) ∈ Bc is ≤ (1 + ε)rT . Now for every T ≥ T0

consider the set

ST :=
{
ū[0,T−1](ω) ∈ UT : ω ∈ Ω̃T

}
of control sequences generated in the time interval [0;T − 1]
provided that ω ∈ Ω̃T and x0 = x0(ω), w̄ = w̄(ω). Since the
maximal number of different messages that can be transmitted
in the time interval [0;T − 1] is (#M)T , we have

#ST ≤ (#M)T .

We claim that ST is (T,B, 1+ε/2
1+ε , (1+ε)r)-spanning. Indeed,

P (Ω̃T ) ≥ ε

2(1 + ε)
= 1−

1 + ε
2

1 + ε
,

for every ω ∈ Ω̃T we have ū[0,T−1](ω) ∈ ST , and the number
of t’s in [0;T −1] with xt(ω) = ϕ(t, x0(ω), ū(ω), w̄(ω)) ∈ B
is ≥ T − (1 + ε)rT = (1− (1 + ε)r)T . Hence,

sB

(
T,

1 + ε
2

1 + ε
, (1+ε)r

)
≤ #ST ≤ (#M)T for all T ≥ T0.

Taking logarithms, dividing by T and letting T → ∞ yields
the assertion. The case Q(B) = 1 is handled by replacing (4)
with the inequality

lim
T→∞

1

T

T−1∑
t=0

P (xt ∈ Bc) = Q(Bc) = 0 ≤ r

for an arbitrarily chosen r ∈ (0, 1), and applying the same
arguments.
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Lemma IV.2, while sounding technical, has significant con-
sequences, since it allows for the application of volume-
growth arguments that have been used in the literature for
deterministic settings.

V. VOLUME-EXPANDING SYSTEMS

In this section, we assume throughout that the measure π0

of the random variable x0 is absolutely continuous w.r.t. the
Lebesgue measure m on RN and that the associated density
is essentially bounded, i.e., π0 �b m.

Consider a system of the form

xt+1 = f(xt) + ut + wt (5)

with U = W = RN and an injective C1-map f : RN → RN
satisfying (with Df(x) denoting the Jacobian of f at x)

|det Df(x)| ≥ 1 for all x ∈ RN . (6)

Theorem V.1 Consider system (5) satisfying (6) and π0 �b

m. Assume that the AMS property is achieved with an associ-
ated AMS measure Q via a causal coding and control policy
over a noiseless channel of capacity C. Then for all Borel sets
B ⊂ RN with 0 < m(B) <∞ we have

C ≥ Q(B) log inf
x∈B
|det Df(x)|. (7)

Proof: The proof is subdivided into four steps.
Step 1. Fix a Borel set B with 0 < m(B) <∞ and let S ⊂

UT be a finite (T,B, ρ, r)-spanning set (if a finite spanning
set does not exist for any T , the estimate becomes trivial). For
the associated Ω̃ ⊂ Ω with P (Ω̃) ≥ 1− ρ, define

A :=
{

(w̄(ω), x0(ω)) : ω ∈ Ω̃
}
,

A(ū) :=
{

(w̄, x) ∈WZ+ × RN :

1

T
# {t ∈ [0;T − 1] : ϕ(t, x, ū, w̄) ∈ B} ≥ 1− r

}
,

A(ū, w̄) := {x ∈ RN : (w̄, x) ∈ A(ū)}

for all control and noise sequences ū and w̄, respectively.
Note that the (universal) measurability of A follows from
Assumption III.1. From the definition of (T,B, ρ, r)-spanning
sets it immediately follows that

A ⊂
⋃
ū∈S

A(ū) (8)

and we have (by Tonelli’s theorem)

(νZ+ ×m)(A(ū)) =

∫
νZ+(dw̄)m(A(ū, w̄)). (9)

We can write A(ū, w̄) as the disjoint union of the sets

A(ū, w̄,Λ) := {x ∈ RN : ∀t ∈ [0;T − 1],

ϕ(t, x, ū, w̄) ∈ B ⇔ t ∈ Λ},

where Λ ranges through all subsets of [0;T − 1] with cardi-
nality ≥ (1− r)T . Then

m(A(ū, w̄)) =
∑

Λ⊂[0;T−1]
#Λ≥(1−r)T

m(A(ū, w̄,Λ)). (10)

Now we prove that

(νZ+ ×m)(A) ≥ α (11)

for a constant α > 0, independent of T . First, observe that
by the independence of the random variables x0 and w̄ =
(wt)t∈Z+

, νZ+ × π0 is the probability measure of the joint
variable (w̄, x0). Hence,

(νZ+ × π0)(A) = P ({ω ∈ Ω : (w̄(ω), x0(ω)) ∈ A})
≥ P (Ω̃) ≥ 1− ρ.

If we write p for the density of π0 with respect to m and
assume that p(x) ≤ γ <∞, we thus find that

1− ρ ≤ (νZ+ × π0)(A) =

∫
νZ+(dw̄)m(dx)1A(w̄, x)p(x)

≤ γ (νZ+ ×m)(A),

implying that (11) holds with the constant α := (1− ρ)/γ.
Step 2. Writing ϕt,ū,w̄(·) = ϕ(t, ·, ū, w̄), we define

At(ū, w̄,Λ) := ϕt,ū,w̄(A(ū, w̄,Λ)), t = 0, 1, . . . , T − 1.

Then we have

At(ū, w̄,Λ) ⊂
{

B for all t ∈ Λ
Bc for all t ∈ [0;T − 1]\Λ

which immediately implies that for c := infx∈B |det Df(x)|
(using that f is injective and C1)

m(At+1(ū, w̄,Λ)) ≥ c ·m(At(ū, w̄,Λ)) for all t ∈ Λ,

m(At+1(ū, w̄,Λ)) ≥ m(At(ū, w̄,Λ)) for all t /∈ Λ.

Let t∗ = t∗(Λ) := max Λ. Then an inductive argument yields

m(B) ≥ m(At∗(ū, w̄,Λ)) ≥ c#Λ−1 ·m(A(ū, w̄,Λ)). (12)

Step 3. Combining (12), (8), (9), (10) and (11), we obtain

α ≤ (νZ+ ×m)(A) ≤ #S ·max
ū∈S

(νZ+ ×m)(A(ū))

= #S ·max
ū∈S

∫
νZ+(dw̄)m(A(ū, w̄))

= #S ·max
ū∈S

∑
Λ⊂[0;T−1]

#Λ≥(1−r)T

∫
νZ+(dw̄)m(A(ū, w̄,Λ))

≤ #S ·max
ū∈S

∑
Λ⊂[0;T−1]

#Λ≥(1−r)T

∫
νZ+(dw̄)

1

c#Λ−1
m(At∗(Λ)(ū, w̄,Λ))

≤ #S · 1

c(1−r)T−1
max
ū∈S∑

Λ⊂[0;T−1]
#Λ≥(1−r)T

∫
νZ+(dw̄)m(B ∩At∗(Λ)(ū, w̄,Λ))

= #S · 1

c(1−r)T−1
max
ū∈S

T−1∑
t=d(1−r)Te−1∑

Λ: t∗(Λ)=t

∫
νZ+(dw̄)m(B ∩At(ū, w̄,Λ))

= #S · 1

c(1−r)T−1
max
ū∈S

T−1∑
t=d(1−r)Te−1
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∫
νZ+(dw̄)

∑
Λ: t∗(Λ)=t

m(B ∩At(ū, w̄,Λ))

(�)
= #S · 1

c(1−r)T−1
max
ū∈S

T−1∑
t=d(1−r)Te−1∫

νZ+(dw̄)m
(
B ∩

⋃
Λ: t∗(Λ)=t

At(ū, w̄,Λ)
)

≤ #S · rT + 1

c(1−r)T−1
·m(B).

In (�) we use that the sets A(ū, w̄,Λ), Λ ⊂ [0;T − 1], are
pairwise disjoint. Because of the assumption that f and hence
ϕt,ū,w̄ (for each t) is injective, this implies that also the sets
At(ū, w̄,Λ) are pairwise disjoint. Hence, we can conclude that

hB(ρ, r) ≥ lim sup
T→∞

1

T
log

c(1−r)T−1

rT + 1
= (1− r) log c.

Step 4. We complete the proof by applying Lemma IV.2.
Let us first assume that 0 < Q(B) < 1. Then Lemma IV.2
together with Step 3 yields

C ≥ hB
(

1 + ε
2

1 + ε
, (1 + ε)Q(Bc)

)
≥ (1− (1 + ε)Q(Bc)) log inf

x∈B
|det Df(x)|.

As ε→ 0, the desired inequality follows. The case Q(B) = 0
is trivial and the case Q(B) = 1 follows by continuity.

Remark V.2 The preceding theorem recovers, as a spe-
cial case, [51, Thm. 3.2], which shows that C ≥
infx∈RN log |det Df(x)|. However, the result there is more
general with regard to the allowed class of channels.

Remark V.3 In the inequality (7) we see a trade-off between
the Q-measure of the set B and the infimal volume growth on
B. If some characteristics of the measure Q are known, one
can try to optimize the lower bound by a careful choice of B.
Also observe that∫

Q(dx) log |det Df(x)| ≥ Q(B) inf
x∈B

log |det Df(x)|

holds for all Borel sets B, where the left-hand side is the
expected volume expansion w.r.t. the AMS measure Q. Hence,
it is tempting to conjecture that also the integral above is a
lower bound on the capacity. Under the stronger criterion of
asymptotic ergodicity, such a bound has been derived in [18].

The next corollary shows that imposing further properties
on the AMS measure Q can lead to more concrete bounds.

Corollary V.4 Consider system (5) satisfying (6) and π0 �b

m. Assume that the AMS property is achieved via a noiseless
channel of capacity C and the measure Q satisfies for some
M,p > 0 the moment constraint∫

Q(dx)|x|p ≤M.

Then the channel capacity satisfies

C ≥ sup
κp≥M

(
1− M

κp

)
min
|x|≤κ

log |det Df(x)|. (13)

Proof: Consider the set B := Bκ(0) for a fixed κ > 0. By
Markov’s inequality, the moment constraint implies Q(B) ≥
1− M

κp . Hence, Theorem V.1 implies the assertion.

Example V.5 For a linear system with f(x) = Ax, A ∈
RN×N satisfying |detA| ≥ 1, our result implies the well-
known relation (cf. [50], [48])

C ≥ log |detA| =
∑
λ

nλ log |λ|

with summation over all eigenvalues λ of A with associated
multiplicities nλ. By a simple decoupling argument this can
be refined to show that C ≥

∑
λ max{0, nλ log |λ|} �

The next example shows that for nonlinear systems the
supremum in (13) is not necessarily attained as κ→∞, i.e.,
the lower bound (7) indeed expresses a trade-off between the
measure of B and the minimal volume expansion on B.

Example V.6 Consider a map f : R→ R with derivative

f ′(x) =

{
2 if |x| ≤ 1

2
1√
|x| if |x| > 1

and note that |f ′(x)| = f ′(x) > 1 for all x ∈ R. Since f ′ is
symmetric and monotonically decreasing on [0,∞), we obtain

min
|x|≤κ

log |f ′(x)| = log |f ′(κ)| for all κ > 0.

Corollary V.4, applied with M = p = 1 thus yields the
capacity bound

C ≥ sup
κ≥1

(
1− 1

κ

)
1√
κ
.

A straightforward analysis shows that this supremum is at-
tained as a maximum at κ = 3, and hence C ≥ 2/(3

√
3).

�

VI. INHOMOGENEOUS SEMILINEAR SYSTEMS

In this section, we also assume throughout that π0 �b m.
We consider systems of the form

xt+1 = A(ut)xt +Bvt + wt, (14)

where ut ∈ U and vt ∈ V = RM are control variables and
wt ∈ W = RN is the noise variable. We assume that U is a
compact, connected metric space and A : U → Gl(N,R) is
continuous. The product space UZ will be equipped with the
product topology (and hence becomes a compact, connected
metric space as well). Obviously, the case of linear systems
with additive noise is covered here, since A may be chosen to
be constant.

The homogeneous system associated with (14) is

xt+1 = A(ut)xt. (15)

For a given initial state x0 ∈ RN and a control sequence
ū = (ut)t∈Z we write Φ(t, ū)x0 for the associated solution of
(15). Here

Φ(t, ū) =

 A(ut−1) · · ·A(u1)A(u0) if t ≥ 1,
I if t = 0,

A(ut)
−1 · · ·A(u−2)−1A(u−1)−1 if t < 0.
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As we will see below, there always exists a finest continuous
decomposition of the trivial vector bundle UZ × RN into
invariant subbundles:

UZ × RN =W1 ⊕ · · · ⊕Wr.

Writing Wi
ū, ū ∈ UZ, for the fibers of the subbundles, their

invariance can be expressed by the identities

Φ(t, ū)Wi
ū =Wi

θtū, i = 1, . . . , r, t ∈ Z, ū ∈ UZ.

The subbundles Wi generalize the Lyapunov spaces of a
single operator, i.e., the sums of generalized eigenspaces
corresponding to eigenvalues of the same modulus.

Before we formulate our main result, we recall some facts
about additive cocycles. An additive cocycle over a continuous
map T : X → X is a function α : Z+ ×X → R, written as
(n, x) 7→ αn(x), satisfying

αn+m(x) = αn(x)+αm(Tn(x)) for all n,m ∈ Z+, x ∈ X.

Lemma VI.1 Let T : X → X be a continuous map on a
compact metric space X . Assume that α : Z+ × X → R
is a continuous additive cocycle over T . Then the following
identities hold:

inf
x∈X

lim inf
n→∞

1

n
αn(x) = inf

x∈X
lim sup
n→∞

1

n
αn(x)

= lim
n→∞

1

n
inf
x∈X

αn(x) = sup
n∈Z>0

1

n
inf
x∈X

αn(x).

Moreover, all infima above are attained, and the analogous
identities with infima replaced by suprema hold.

A purely topological proof of this lemma can be found in
[26, Cor. 2]. For a proof of a more general result using ergodic
theory see, e.g., [37, App. A].

Theorem VI.2 Consider system (14). Assume that π0 �b m
and that there exists a continuous and invariant vector bundle
decomposition

UZ × RN = V1 ⊕ V2 (16)

for the homogeneous system (15). Then, if the AMS property
is achieved for (14) via a causal coding and control policy
over a noiseless channel of capacity C, we have

C ≥ inf
ū∈UZ

lim sup
t→∞

1

t
log
∣∣det

(
Φ(t, ū)|V1

ū
: V1

ū → V1
θtū

)∣∣ .
(17)

Proof: First observe that the mapping (t, ū) 7→
log |det Φ(t, ū)|V1

ū
| is a continuous additive cocycle over the

shift θ : UZ → UZ. Hence, by Lemma VI.1 the limit

lim
t→∞

1

t
inf
ū∈UZ

log
∣∣det

(
Φ(t, ū)|V1

ū
: V1

ū → V1
θtū

)∣∣ (18)

exists and coincides with the right-hand side in (17). If this
limit is ≤ 0, the statement becomes trivial, hence we may and
will assume that it is positive.

The proof now proceeds along the following four steps.

Step 1. Let us write P (ū) ∈ L(RN ,RN ) for the projection
onto V1

ū along V2
ū. Observe that by the variation-of-constants

formula we can write the solutions of (14) in the form

ϕ(t, x, (ū, v̄), w̄) = Φ(t, ū)x+ β(t, ū, v̄, w̄). (19)

We let k denote the rank of the subbundle V1 (i.e., the
common dimension of its fibers) and write mk

ū for the k-
dimensional Lebesgue measure on V1

ū = imP (ū). Observe
that the invariance of V1 and V2 implies

P (θtū)Φ(t, ū) = Φ(t, ū)P (ū), ∀t ∈ Z, ū ∈ UZ. (20)

Moreover, since V1 is a continuous subbundle, the map
ū 7→ P (ū) is continuous. By compactness of UZ, the following
maximum exists:

R(b) := max
ū∈UZ

mk
ū(P (ū)Bb(0)) <∞. (21)

Indeed, this follows from the fact that the Lebesgue measure
of the image of a ball under a projection is proportional to the
product of its non-vanishing singular values, which depend
continuously on the projection.

Step 2. Fix b > 0 and ρ, r ∈ (0, 1) with r < 1
2 . Assume

that there exists a minimal finite (T,B, ρ, r)-spanning set S ⊂
(U × V )T for B := Bb(0) (which later will be justified by
invoking Lemma IV.2). Then there is Ω̃ ⊂ Ω with P (Ω̃) ≥
1− ρ so that for each ω ∈ Ω̃ there is (ū, v̄) ∈ S with

1

T
# {t ∈ [0;T − 1] : |ϕ(t, x0(ω), (ū, v̄), w̄(ω))| ≤ b} ≥ 1−r.

Putting

Ω̃(ū, v̄) :=
{
ω ∈ Ω̃ :

1

T
#{t ∈ [0;T − 1] :

|ϕ(t, x0(ω), (ū, v̄), w̄(ω))| ≤ b} ≥ 1− r
}

for every (ū, v̄) ∈ S, we obtain

Ω̃ =
⋃

(ū,v̄)∈S

Ω̃(ū, v̄). (22)

Using the notation w̄(ω) = (wt(ω))t∈Z+
, for any Λ ⊂ [0;T −

1] we define

Z :=
{

(w̄(ω), x0(ω)) ∈WZ+ × RN : ω ∈ Ω̃
}
,

Z(ū, v̄,Λ) :=
{

(w̄, x) ∈WZ+ × RN :

|ϕ(t, x, (ū, v̄), w̄)| ≤ b,∀t ∈ Λ
}
.

Then, as in the proof of Theorem V.1, we obtain

Z ⊂
⋃

(ū,v̄)∈S

⋃
Λ⊂[0;T−1]

#Λ≥(1−r)T

Z(ū, v̄,Λ)

=
⋃

Λ⊂[0;T−1]
#Λ≥(1−r)T

⋃
(ū,v̄)∈S

Z(ū, v̄,Λ).
(23)

We define the probability measure µ := νZ+ on WZ+ . Then,
for any Λ ⊂ [0;T − 1],∑

(ū,v̄)∈S

µ×mk
ū(id× P (ū)(Z(ū, v̄,Λ))

≤ #S · max
(ū,v̄)∈S

µ×mk
ū(id× P (ū)(Z(ū, v̄,Λ))
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= #S · max
(ū,v̄)∈S

∫
µ(dw̄)mk

ū(P (ū)Z(ū, v̄, w̄,Λ))

with Z(ū, v̄, w̄,Λ) := {x ∈ RN : |ϕ(t, x, (ū, v̄), w̄)| ≤
b, ∀t ∈ Λ}. Fixing Λ ⊂ [0;T −1] and putting t+ = t+(Λ) :=
max Λ, an easy computation using (19) and (20) leads to

Φ(t+, ū)P (ū)Z(ū, v̄, w̄,Λ)

⊂ P (θt+ ū)Bb(0)− P (θt+ ū)β(t+, ū, v̄, w̄),

which implies (using (21))

mk
θt+ ū

(Φ(t+, ū)P (ū)Z(ū, v̄, w̄,Λ))

≤ mk
θt+ ū

(
P (θt+ ū)Bb(0)

)
≤ R(b).

Now

mk
θt+ ū

(Φ(t+, ū)P (ū)Z(ū, v̄, w̄,Λ))

=
∣∣det Φ(t+, ū)|V1

ū

∣∣ ·mk
ū (P (ū)Z(ū, v̄, w̄,Λ)) .

Putting everything together, we end up with∑
(ū,v̄)∈S

µ×mk
ū (id× P (ū)(Z(ū, v̄,Λ)))

≤ #S · max
(ū,v̄)∈S

∫
µ(dw̄)

R(b)

|det Φ(t+(Λ), ū)|V1
ū
|

≤ #S · sup
ū∈UZ

R(b)

|det Φ(t+(Λ), ū)|V1
ū
|
.

To complete the proof, we have to find a reasonable lower
bound for the first term above.

Step 3. Fix a subset Λ ⊂ [0;T − 1] with #Λ ≥ (1 − r)T
and define t− = t−(Λ) := min Λ. Then

Z(ū, v̄, w̄,Λ) ⊂ ϕ−1
t−,ū,v̄,w̄(Bb(0)).

The set on the right-hand side is contained in the closed ball

B̂ := B‖Φ(t−,ū)−1‖b(−Φ(t−, ū)−1β(t−, ū, v̄, w̄)).

As a consequence,

m(Z(ū, v̄, w̄,Λ)) ≤ m
(
P (ū)−1(P (ū)Z(ū, v̄, w̄,Λ)) ∩ B̂

)
.

Let 〈·, ·〉ū be an inner product on RN in which V1
ū and V2

ū are
orthogonal and write mū for the associated Lebesgue measure.
Using compactness of UZ, we can do this in such a way
that m(E) ≤ K · mū(E) with a constant K > 0 for every
Lebesgue measurable set E ⊂ RN and every ū ∈ UZ. For any
measurable set A ⊂ V1

ū, a simple computation yields

mū(P (ū)−1(A) ∩ B̂) ≤ mk
ū(A) ·mN−k((I − P (ū))B̂),

where mN−k denotes the (N − k)-dimensional Lebesgue
measure on V2

ū. Using again the compactness of UZ, we can
find another constant K̃ > 0 (see Step 1) with

mN−k((I − P (ū))B̂) ≤ K̃
(
‖Φ(t−, ū)−1‖b

)N−k
.

Putting everything together, we arrive at

m (Z(ū, v̄, w̄,Λ))

≤ const · ‖Φ(t−, ū)−1‖N−kmk
ū (P (ū)Z(ū, v̄, w̄,Λ)) .

Step 4. We combine the results of steps 2 and 3 to obtain
const

‖Φ(t−(Λ), ū)−1‖N−k
·
∑

(ū,v̄)∈S

µ×m(Z(ū, v̄,Λ))

≤
∑

(ū,v̄)∈S

µ×mk
ū (id× P (ū)(Z(ū, v̄,Λ)))

≤ #S · sup
ū∈UZ

R(b)

|det Φ(t+(Λ), ū)|V1
ū
|
.

Letting nr(T ) denote the number of subsets of [0;T −1] with
#Λ ≥ (1− r)T , using (23), we end up with

γ ≤ (µ×m)(Z)

≤ const · nr(T ) ·#S · max
Λ⊂[0;T−1]

#Λ≥(1−r)T

sup
ū∈UZ

‖Φ(t−(Λ), ū)−1‖N−k

|det Φ(t+(Λ), ū)|V1
ū
|

with a positive constant γ, where the first inequality follows
from π0 �b m, as in the proof of Theorem V.1. Applying the
logarithm, dividing by T and letting T →∞ yields

0 ≤ H(r) + hB(ρ, r)

+ lim sup
T→∞

1

T
max

Λ⊂[0;T−1]
#Λ≥(1−r)T

sup
ū∈UZ

log
‖Φ(t−(Λ), ū)−1‖N−k

|det Φ(t+(Λ), ū)|V1
ū
|
.

Here we use, in particular, Lemma A.1. Observing that
t−(Λ) ≤ rT , we can estimate

‖Φ(t−(Λ), ū)−1‖ ≤
(

max

{
1,max

u∈U
‖A(u)−1‖

})drTe
=: cdrTe,

leading to

0 ≤ H(r) + hB(ρ, r) + (N − k)r log c

− lim inf
T→∞

1

T
inf
ū,Λ

log
∣∣det Φ(t+(Λ), ū)|V1

ū

∣∣ .
Now we use that t+(Λ) ≥ (1 − r)T . Let α > 0 denote the
limit in (18) and let ε ∈ (0, α). Then, for sufficiently large T ,

inf
ū∈UZ

∣∣det Φ(t+(Λ), ū)|V1(ū)

∣∣ ≥ 2(α−ε)t+(Λ) ≥ 2(α−ε)(1−r)T .

Since this holds for all Λ with #Λ ≥ (1− r)T and ε > 0 was
arbitrary, we find that

hB(ρ, r) ≥ −H(r)− (N − k)r log c+ α(1− r).

Observe that this holds for arbitrary b > 0, ρ ∈ (0, 1), r ∈
(0, 1

2 ) and B = Bb(0). If b is chosen so that 0 < Q(Bb(0)) <
1, Lemma IV.2 yields

C ≥ −H(rb)−(N−k)rb log c+α(1−rb), rb := Q(Bb(0)
c
).

If Q(Bb(0)) < 1 for all b > 0, we can let b → ∞, which
implies rb → 0 and thus

C ≥ α = lim
t→∞

1

t
log inf

ū∈UZ

∣∣det
(
Φ(t, ū)|V1

ū
: V1

ū → V1
θtū

)∣∣ .
(24)

Otherwise, we have Q(Bb(0)) = 1 for all sufficiently large b
and Lemma IV.2 yields

C ≥ −H(r)− (N − k)r log c+ α(1− r) ∀r ∈ (0, 1),

also leading to (24). Since (t, ū) 7→ log |det Φ(t, ū)|V1
ū
| is

a continuous additive cocycle over the shift θ : UZ → UZ,
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Lemma VI.1 guarantees that the limit and the infimum in (24)
can be interchanged (replacing lim with lim sup or lim inf),
which completes the proof.

Remark VI.3 The proof of the above theorem is partly mod-
eled according to [24, Thm. 3.3]. For a more detailed expla-
nation of the arguments used in Step 3, see [24, Lem. 3.3].

Example VI.4 Consider the special case of a linear system,
i.e., A(u) ≡ A ∈ RN×N . Then the vector bundle decomposi-
tion (16) can be chosen as

UZ × RN = (UZ × Eu(A))⊕ (UZ × Ecs(A)),

where Eu(A) and Ecs(A) are the unstable and center-stable
subspace of A, respectively. This immediately implies

C ≥
∑
λ

max{0, nλ log |λ|}

with summation over the eigenvalues λ of A with algebraic
multiplicities nλ. �

In the following, we will show that there always exists a
finest continuous decomposition of UZ × RN into invariant
subbundles

UZ × RN =W1 ⊕ · · · ⊕Wr, (25)

which is related to the dynamical behavior of the system
induced by (15) on the projective bundle UZ × PN−1. This
follows from a general result about linear flows on vector
bundles known as Selgrade’s theorem, which reads as follows.

Proposition VI.5 Let V → B be a finite-dimensional real
vector bundle with compact metric base space B. Assume that
φt : V → V , t ∈ Z, is a continuous discrete-time linear flow
on V and that the induced flow on B is chain transitive. Then
there exists a unique finest Morse decompositionM1, . . . ,Mr

of the induced flow on the projective bundle PV → B, and
1 ≤ r ≤ d = dimVb, b ∈ B. Every Morse set Mi defines a
φt-invariant subbundle of V via

Vi = P−1Mi = {v ∈ V : v 6= 0 implies Pv ∈Mi}

and the following decomposition into a Whitney sum holds:

V = V1 ⊕ · · · ⊕ Vr.

For an introduction to the concepts of chain transitivity and
Morse decompositions used in this proposition we refer to
[10], [41]. A continuous-time version of the proposition can
also be found in [10]. The discrete-time version follows from
a more general result, see [41, Thm. 6.2 and Thm. 7.5].

The next proposition shows that Selgrade’s theorem can be
applied to the linear flow generated by equation (15) on the
trivial vector bundle UZ × RN .

Proposition VI.6 The solutions of the homogeneous equation
(15) define a continuous discrete-time linear flow on the trivial
vector bundle V := UZ×RN with compact metric base space
UZ. This flow is given by φt(ū, x) = (θtū,Φ(t, ū)x), t ∈ Z.
Moreover, the shift map θ : UZ → UZ is chain transitive.

Proof: We know that UZ, equipped with the product
topology, is a compact and connected metric space. The flow
properties (φ0(ū, x) = (ū, x) and φt+s(ū, x) = φt(φs(ū, x)))
are easy to see. Continuity and (fiber-wise) linearity of φ are
clear. From the fact that the periodic points of θ (which are
precisely the periodic sequences) are dense in UZ, it follows
that every point in UZ is chain recurrent. It is well-known that
a homeomorphism is chain transitive on any closed set which
is connected and consists of chain recurrent points.

Combining Selgrade’s theorem with Theorem VI.2, we
obtain the following corollary.

Corollary VI.7 Consider system (14) and the Selgrade de-
composition (25) associated with the homogeneous system
(15). Assume that the subbundles are ordered such that

lim
t→∞

1

t
inf
ū∈UZ

log
∣∣det

(
Φ(t, ū)|Wi

ū
:Wi

ū →Wi
θtū

)∣∣ > 0

for i = 1, . . . , s, where s ∈ {0, 1, . . . , r} is the maximal
number with this property. Then, if π0 �b m and the AMS
property is achieved over a noiseless channel of capacity C,

C ≥
s∑
i=1

inf
ū∈UZ

lim sup
t→∞

1

t
log
∣∣det

(
Φ(t, ū)|Wi

ū
:Wi

ū →Wi
θtū

)∣∣ ,
where the right-hand side is defined as zero if s = 0.

Proof: Define V1 :=W1⊕· · ·⊕Ws, V2 :=Ws+1⊕· · ·⊕
Wr. Then UZ×RN = V1⊕V2. Since |det Φ(t, ū)|V1

ū
| is, up

to some multiplicative constant, the product of the numbers
|det Φ(t, ū)|Wi

ū
|, i = 1, . . . , s, it follows that

inf
ū∈UZ

lim sup
t→∞

1

t
log |det Φ(t, ū)|V1

ū
|

= lim
t→∞

1

t
inf
ū∈UZ

s∑
i=1

log
∣∣det Φ(t, ū)|Wi

ū

∣∣
≥ lim
t→∞

s∑
i=1

1

t
inf
ū∈UZ

log
∣∣det Φ(t, ū)|Wi

ū

∣∣
=

s∑
i=1

lim
t→∞

1

t
inf
ū∈UZ

log
∣∣det Φ(t, ū)|Wi

ū

∣∣
=

s∑
i=1

inf
ū∈UZ

lim sup
t→∞

1

t
log
∣∣det Φ(t, ū)|Wi

ū

∣∣ ,
where we use Lemma VI.1 twice. This implies the result.

Example VI.8 In the special case when r = 1 (only one
Selgrade bundle) and the system is asymptotically volume-
expanding, i.e.,

lim
t→∞

1

t
inf
ū∈UZ

log |det Φ(t, ū)| > 0,

the lower bound of Corollary VI.7 reduces to C ≥
minu∈U log |detA(u)|. Indeed, it is easy to see that the
infimum over ū ∈ UZ is then attained at the constant sequence
with value u∗ = argmin|detA(u)|. �

For the general case, one can use numerical methods to
approximate the Lyapunov exponents, and hence, the associ-
ated volume growth rates, for the homogeneous semilinear
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system (15). For continuous-time bilinear control systems,
methods for the computation of Lyapunov exponents based
on algorithms for solving discounted optimal control problems
have been developed in [20] (see also [10, App. D]). In
general, these methods also work for discrete-time systems.

VII. THE NOISY CHANNEL CASE

For discrete noiseless channels, the key idea combining
the volume-growth based approaches for deterministic models
with the stochastic system setup was the observation that the
number of control sequences is bounded from above by the
total number of received messages. This approach clearly does
not directly apply to a noisy channel setup, for there can be an
arbitrarily large number of possibly distinct received channel
outputs, but these may not carry reliable information. In the
following, we develop a new method to address this for a
discrete memoryless channel (DMC). For a review of channel
capacity with feedback see [13], [48, Sec. 5.3.4].

Channel

Plant

Coder Controller

Fig. 1. Control of a system over a noisy channel with feedback

Figure 1 shows the control loop, using a DMC with
feedback for data transmission from the encoder to the con-
troller. The channel has a finite input alphabet M and a
finite output alphabet M′. The channel input qt at time t is
generated by a function γet so that qt = γet (x[0,t], q

′
[0,t−1]).

The channel maps qt to q′t in a stochastic fashion so that
P (q′t ∈ ·|qt, q[0,t−1], q

′
[0,t−1]) = P (q′t ∈ ·|qt) is a conditional

probability measure on M′ for all t ∈ Z+, for every real-
ization qt, q[0,t−1], q

′
[0,t−1]. The controller, upon receiving the

information from the channel, generates its decision at time t,
also causally: ut = γct (q

′
[0,t]).

Consider a DMC with channel capacity C (we note that for
DMCs, it is a well-known result that feedback cannot increase
the capacity). Then the following property, known as the strong
converse, holds, see [28], [13, Problem 10.17]: For any R >
C, under any coding policy:

lim
T→∞

pe(T ) = 1, (26)

where pe(T ) is the average probability of error among 2RT

equally likely messages after the channel is used T times under
coding and decoding policies admissible according to the
standard information-theoretic formulation of communication
with noiseless feedback, cf. [45].

Now we consider a scalar system of the form

xt+1 = f(xt) + ut + wt (27)

with a C1-function f : R→ R satisfying

|f ′(x)| ≥ 1 for all x ∈ R. (28)

Our main result reads as follows.

Theorem VII.1 Consider system (27) satisfying (28). Assume
that π0 � m with p denoting the density with respect to m,
that K := supp(π0) is a compact interval and

pmin := ess inf
x∈K

p(x) > 0, pmax := ess sup
x∈K

p(x) <∞.

Then, if the AMS property is achieved via a causal coding and
control strategy over a DMC of capacity C, we have

C ≥ inf
x∈R

log |f ′(x)|.

Before the proof, it may be instructive to explain the proof
approach which builds on the construction of an auxiliary
coding problem that relates the number -per time stage- of
distinct control actions (in a similar spirit that was the basis
of the definition of stabilization entropy) to an information
transmission problem and in turn to an analysis on channel
capacity with feedback; by considering the fact that the num-
ber of informative messages per time stage to be transmitted
with regard to the initial state cannot be less than the desired
bound. The coding problem is related to a channel coding
theorem via optimal transport inequalities.

Proof: Throughout the proof, we use the following nota-
tion: Observing that we have three sources of stochasticity –
the initial state x0, the noise sequence (wt) and the channel
noise – every time we make a statement about the probability
P (E) of an event E, we will add subscripts to the letter
P , indicating which probability measures are involved in
computing this probability: The subscript “i” is used for the
initial state, subscript “n” for the noise and subscript “c” for
the channel.

Let c := infx∈R |f ′(x)|. Without loss of generality, we can
assume that c > 1. We prove the theorem by contradiction,
assuming that C < log c. First, we fix a sufficiently small
r∗ > 0 so that

(1− 3r∗) log c > C. (29)

Since the AMS measure Q is a probability measure, we can
choose for every sufficiently small α ∈ (0, r∗) a b > 0 with

Q([−b, b]) > 1− α. (30)

Later we will consider an auxiliary coding scheme, where the
initial state x0 is to be estimated at each time stage T ∈ Z+

through the knowledge of the control sequence ū ∈ UT+1,
applied by the controller in [0;T ]. Given a noise realization
w̄ (that we will fix later), as an estimate for x0 at time T we
use the center x̂0(T, ū, w̄) of the compact set

AT (ū, w̄) :=
{
x ∈ R :

1

T
#{t ∈ [0;T − 1] :

|ϕ(t, x, ū, w̄)| ≤ b} ≥ 1− r∗
}
,

i.e., the midpoint of [minAT (ū, w̄),maxAT (ū, w̄)]. To derive
an estimate for the diameter of AT (ū, w̄), let x1, x2 ∈
AT (ū, w̄) be chosen arbitrarily. We claim that there exists a
time t∗ with d(1− 3r∗)T e ≤ t∗ ≤ T − 1 such that

ϕ(t∗, xi, ū, w̄) ∈ [−b, b], i = 1, 2.
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Indeed, if this was not the case, then the number of t’s in the
interval [d(1− 3r∗)T e;T − 1] with ϕ(t, xi, ū, w̄) ∈ [−b, b] for
each i = 1, 2 can be at most half of the cardinality of this
interval, implying that the total number of t’s in [0;T − 1]
such that ϕ(t, xi, ū, w̄) ∈ [−b, b] is bounded by

d(1− 3r∗)T e+
1

2
(T − d(1− 3r∗)T e)

≤ 1

2
((1− 3r∗)T + 1) +

1

2
T

=
1

2
+

(
1− 3

2
r∗
)
T < (1− r∗)T,

for T large enough, a contradiction. We thus obtain

|x1 − x2| ≤
2b

ct∗
≤ 2b

c(1−3r∗)T
,

implying

|x− x̂0(T, ū, w̄)| ≤ b

c(1−3r∗)T
for all x ∈ AT (ū, w̄). (31)

Now the AMS property together with (30) implies

lim sup
T→∞

Pi,n,c

( 1

T

T−1∑
t=0

1[−b,b](xt) < 1− r∗
)
<

α

r∗
. (32)

Indeed, this follows by an application of Markov’s inequality:

Pi,n,c

( 1

T

T−1∑
t=0

1[−b,b](xt) < 1− r∗
)

= Pi,n,c

( 1

T

T−1∑
t=0

1[−b,b]c(xt) > r∗
)

≤ 1

r∗
Ei,n,c

[ 1

T

T−1∑
t=0

1[−b,b]c(xt)
]
T→∞−→ Q([−b, b]c)

r∗
<

α

r∗
.

From (31) and the definition of AT (ū, w̄) we conclude that

Pi,n,c

( 1

T

T−1∑
t=0

1[−b,b](xt) < 1− r∗
)

≥ Pi,n,c

(
|x0 − x̂0(T, ū, w̄)| > b

c(1−3r∗)T

)
and the left-hand side is smaller than α/r∗ for large T by
(32). Our aim is to show that

lim sup
T→∞

Pi,n,c

(
|x0 − x̂0(T, ū, w̄)| > b

c(1−3r∗)T

)
≥ α

r∗
, (33)

leading to a contradiction with (32).
To this end, we will distinguish between two complementary

cases. To classify these cases, we introduce the notion of a
control rate R as follows.

For each T ≥ 1, let UT be the set of all possible control
sequences in UT the controller can generate under the given
coding and control policy, i.e.,

UT :=
{(
γc0(q′0), γc1(q′[0,1]), . . . , γ

c
T−1(q′[0,T−1])

)
∈ UT :

q′[0,T−1] ∈ (M′)T
}
.

We define the control rate by

R := lim sup
T→∞

1

T
log #UT .

We now treat the two possible cases R < (1− 3r∗) log c and
R ≥ (1− 3r∗) log c separately.

Case 1: We fix a noise realization w̄∗ and prove (33) for
the conditional probability of the corresponding event given
w̄ = w̄∗. To simplify notation, we write AT (ū) and x̂0(T, ū)
instead of AT (ū, w̄∗) and x̂0(T, ū, w̄∗), respectively.

Assume that R < (1−3r∗) log c and pick ε > 0 so that R+
2ε < (1− 3r∗) log c. Put ÃT (ū) := [minAT (ū),maxAT (ū)]
and note that #UT ≤ 2(R+ε)T for all sufficiently large T .
From (31) it follows that

lim sup
T→∞

m

( ⋃
ū∈UT

ÃT (ū)

)
≤ lim sup

T→∞
2(R+ε)T 2b

c(1−3r∗)T

≤ 2b · lim sup
T→∞

2−εT 2(1−3r∗)T log c

c(1−3r∗)T
= 2b · lim sup

T→∞
2−εT = 0.

Since π0 � m, it follows that π0(
⋃
ū∈UT ÃT (ū))→ 0 as well

and thus

lim sup
T→∞

Pi,c

(
|x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T

)
≤ lim sup

T→∞
Pi

(
x0 ∈

⋃
v̄∈UT

ÃT (v̄)
)

= lim sup
T→∞

π0

( ⋃
v̄∈UT

ÃT (v̄)
)

= 0.

The inequality above holds, since |x0− x̂0(T, ū)| ≤ b
c(1−3r∗)T

implies the existence of some v̄ ∈ UT with x0 ∈ ÃT (v̄). Thus,
(33) holds, since

lim
T→∞

Pi,c

(
|x0 − x̂0(T, ū)| > b

c(1−3r∗)T

)
= 1,

independently of the noise realization w̄∗.
Case 2: Assume that the control rate satisfies R ≥ (1 −

3r∗) log c and

lim sup
T→∞

Pi,n,c

(
|x0 − x̂0(T, ū)| > b

c(1−3r∗)T

)
<

α

r∗
,

contrary to (33). Fix a noise realization w̄∗ so that

lim sup
T→∞

Pi,n,c

(
|x0 − x̂0(T, ū)| > b

c(1−3r∗)T

∣∣∣w̄ = w̄∗

)
<

α

r∗
,

(34)
and drop the realization w̄∗ in the notation, as in Case 1.
Furthermore, write Pi,c(|x0 − x̂0(T, ū)| > b

c(1−3r∗)T ) for the
conditional probability above.

The rest of Case 2 is subdivided into five steps.
Step 1 (Construction of sets of bins): For every T ≥ 1,

we define ST := {x̂0(T, ū) : ū ∈ UT } and enumerate the
elements of ST so that

ST =
{
x̄1(T ), x̄2(T ), . . . , x̄n1(T )(T )

}
,

where
lim sup
T→∞

1

T
log n1(T ) = R. (35)

We define the following collection of bins:

BT
i :=

{
x0 ∈ R : |x0 − x̄i(T )| ≤ b

c(1−3r∗)T

}
(36)
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for i = 1, . . . , n1(T ), which are not necessarily disjoint. Each
BT
i has the same Lebesgue measure, which we denote by

ρT := (2b)/(c(1−3r∗)T ). From (34) it follows that

lim inf
T→∞

Pi,c

(
|x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T

)
> 1− α

r∗
,

for which it must be, by the analysis in Case 1, that

lim inf
T→∞

π0

(n1(T )⋃
i=1

BT
i

)
> 1− α

r∗
. (37)

We want to concentrate on the bins that are completely
contained in K = supp(π0). Since we assume that K is
an interval, the bins that are only partially contained in K
can contribute only very little measure as T becomes large
(their union can have at most twice the Lebesgue measure of
a single bin), hence we can ignore them. Now assume that
the number of bins that are completely outside of K is n(T ),
and for simplicity assume that these bins are always the last
n(T ) bins in the enumeration BT

1 , . . . ,B
T
n1(T ). For large T ,

this implies

1− α

r∗
≤ π0

(n1(T )⋃
i=1

BT
i

)
= π0

(
K ∩

n1(T )⋃
i=1

BT
i

)
= π0

(n1(T )−n(T )⋃
i=1

BT
i

)
≤ pmax ·m

(n1(T )−n(T )⋃
i=1

BT
i

)
≤ pmax · (n1(T )− n(T )) · 2b

c(1−3r∗)T
.

Hence, n1(T )− n(T ) must grow at an exponential rate of at
least (1 − 3r∗) log c, just as n1(T ). We will thus, in the rest
of the proof, assume w.l.o.g. that all bins BT

i are completely
contained in K.

B
T

1

C
T

1

B
T

2

B
T

3

B
T

4

B
T

5

C
T

2

B
T

6

B
T

7

C
T

3

E
T

1

D
T

1
D

T

2

B
T

8

B
T

9

C
T

4

E
T

2

D
T

3

Fig. 2. Sample construction of bins, with L = 2

Now, from {BT
i } we extract a subcollection of disjoint bins

{CT
i }

n2(T )
i=1 via the construction in Lemma A.2 (see Figure

2 for an example representation). In particular, we assume
that the bins BT

i are ordered according to the natural (non-
decreasing) order of their left endpoints. This implies
n2(T )⋃
i=1

CT
i ⊂

n1(T )⋃
i=1

BT
i , m

(n2(T )⋃
i=1

CT
i

)
≥ 1

2
m
(n1(T )⋃
i=1

BT
i

)
.

(38)
Furthermore, it must be that

lim sup
T→∞

1

T
log n2(T ) ≥ (1− 3r∗) log c, (39)

for otherwise, by the analysis in Case 1, m(
⋃n2(T )
i=1 CT

i )→ 0
in contradiction to (37) and (38). Now, using the definition
(51) of the leftover set, we define a collection of n2(T ) sets

DT
k := CT

k ∪ L(ik, ik+1), DT
n2(T ) := CT

n2(T ).

Hence, DT
k ⊂ [αk, αk+1), where αk = minCT

k . The sets DT
k

are thus pairwise disjoint. Also observe that

m(DT
k \CT

k ) ≤ m(CT
k ) = ρT , (40)

since the leftover set has at most the Lebesgue measure of
one bin. Finally, for a fixed L ∈ N, group each collection of
L successive DT

k bins as

ETn :=

nL⋃
k=(n−1)L+1

DT
k , n = 1, 2, . . . ,

⌊
n2(T )

L

⌋
+1 =: n3(T ).

(In the definition of the last bin ETn3(T ), we add some empty
sets to the collection {DT

k }). From (39) it follows that the
number of these bins also satisfies

lim sup
T→∞

1

T
log2 n3(T ) ≥ (1− 3r∗) log c. (41)

Also observe that
m(ETn ) ≥ LρT . (42)

Let

MT :=

n1(T )⋃
i=1

BT
i , MT :=

n3(T )⋃
i=1

ETi \
(
DT
iL \CT

iL

)
and observe that

m(MT ) ≤ 2n2(T )ρT ≤ 2n3(T )LρT . (43)

Step 2 (The auxiliary coding scheme): We now construct an
auxiliary coding scheme (in a traditional information-theoretic
sense) as follows: We use the received channel output/control
sequence to reconstruct the index Υ of the bin ETΥ containing
x0 by looking at the points x̂0(T, ū). With Υ̂ denoting the
estimate of Υ at the decoder, in the following we study P (Υ̂ 6=
Υ). By construction of the bins, if

x0 ∈MT ∧ |x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T
,

there is no ambiguity, hence Υ can be reconstructed and Υ̂ =
Υ (no error).

On the other hand, if x0 ∈MT \MT , we have the following
analysis: For every x0 ∈ MT \MT , there is k ≥ 1 so that
x0 ∈ DT

kL \CT
kL and hence, given the event |x0− x̂0(T, ū)| ≤

b
c(1−3r∗)T , x0 ∈ DT

kL \ CT
kL, the correct bin could be either

ETk or ETk+1. So, we can randomly and independently assign
the channel output/control to either Υ = k or Υ = k+ 1. The
associated error probability is at most 1/2 when the events
|x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T and x0 ∈ DT
kL \CT

kL hold, i.e.,

Pi,c

(
Υ̂ 6= Υ|x0 ∈MT \MT∧|x0−x̂0(T, ū)| ≤ b

c(1−3r∗)T

)
≤ 1

2
.

Altogether, the error probability in our coding scheme can be
estimated as follows:

P (Υ̂ 6= Υ) ≤ Pi,c

(
|x0 − x̂0(T, ū)| > b

c(1−3r∗)T

)
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+ Pi,c

(
Υ̂ 6= Υ||x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T
∧ x0 ∈MT \MT

)
× Pi,c

(
|x0 − x̂0(T, ū)| ≤ b

c(1−3r∗)T
∧ x0 ∈MT \MT

)
≤ Pi,c

(
|x0 − x̂0(T, ū)| > b

c(1−3r∗)T

)
+

1

2
π0(MT \MT ).

From (34) it follows that for all large enough T :

P (Υ̂ 6= Υ) ≤ α

r∗
+

1

2
π0(MT \MT ). (44)

Combining (40) and (42), we obtain

π0(DT
iL\CT

iL) ≤ pmaxm(DT
iL\CT

iL)

≤ pmax

L
m(ETi ) ≤ 1

L

pmax

pmin
π0(ETi ).

(45)

Since MT ⊂ MT , the union in the definition of MT is a
disjoint union and the union of all ETi equals MT , we have

π0(MT \MT ) = π0(MT )− π0(MT )

= π0(MT )−
∑
i

π0

(
ETi \

(
DT
iL \CT

iL

))
= π0(MT )−

∑
i

(
π0(ETi )− π0(DT

iL \CT
iL)
)

(45)
≤ π0(MT )−

∑
i

(
π0(ETi )− 1

L

pmax

pmin
π0(ETi )

)
= π0(MT )−

(
1− 1

L

pmax

pmin

)∑
i

π0(ETi ) =
1

L

pmax

pmin
π0(MT ).

Together with (44), we thus obtain

n3(T )∑
i=1

Pi(Υ = i)Pi,c(Υ̂ 6= Υ|Υ = i) ≤ α

r∗
+

1

2L

pmax

pmin
π0(MT ).

(46)
Step 3 (Introduction of an auxiliary source variable with

uniform distribution): From (43) it follows that

π0(MT ) ≤ pmaxm(MT ) ≤ 2n3(T )pmaxLρT .

Since clearly π0(ETi ) ≥ pmin
LρT

π0(MT )π0(MT ), we obtain

Pi(Υ = i) = π0(ETi ) ≥ 1

n3(T )

pmin

2pmax
π0(MT ).

Combining this with (46) leads to

n3(T )∑
i=1

1

n3(T )
Pi,c(Υ̂ 6= Υ|Υ = i) ≤

α
r∗ + 1

2L
pmax

2pmin
π0(MT )

pmin

2pmax
π0(MT )

.

(47)
Let W be an auxiliary random variable on {1, . . . , n3(T )}
with uniform distribution. Then we have

P (Υ̂ = W |W = i) =
∑
k

P (Υ̂ = W ∧Υ = k|W = i)

≥ P (Υ̂ = W ∧Υ = i|W = i) = P (Υ̂ = W ∧Υ = W |W = i)

= P (Υ̂ = W |Υ = W ∧W = i)P (Υ = W |W = i)

= P (Υ̂ = Υ|Υ = W ∧W = i)P (Υ = W |W = i)

= P (Υ̂ = Υ|Υ = i)P (Υ = W |W = i).

Considering the complementary events, we obtain

P (Υ̂ 6= W |W = i)

≤ 1− (1− P (Υ̂ 6= Υ|Υ = i))(1− P (Υ 6= W |W = i))

≤ P (Υ 6= W |W = i) + P (Υ̂ 6= Υ|Υ = i).

Combining this with (47) leads to

n3(T )∑
i=1

P (W = i)P (Υ̂ 6= W |W = i)

≤ P (Υ 6= W ) +

α
r∗ + 1

2L
pmax

2pmin
π0(MT )

pmin

2pmax
π0(MT )

.

(48)

Step 4 (Application of optimal transport theory and coupling
of the uniform source with the distribution of {ETi }): The
information-theoretic formulation of information transmission
assumes that the messages to be transmitted are uniformly
distributed. In the final step of our analysis, we relate the
messages represented by the indices of the ETi ’s with their
induced distribution under π0 to a uniformly distributed set
of messages: Let P be the distribution of the indices of the
ETi ’s under π0 and P ′ the uniform distribution of W , with the
same cardinality as the set of ETi ’s. There exists a coupling
between P and P ′ so that the expected error is lower bounded
by the total variation distance between P and P ′; by finding
a coupling (cf. [47, Eq. (6.11)]), we can achieve that

β := P (Υ 6= W )

=
1

2

n3(T )∑
i=1

|P (i)− P ′(i)| = 1−
n3(T )∑
i=1

min {P (i), P ′(i)} .

Let us estimate β. For sufficiently large T , we have

P (i) = π0(ETi ) ≥ pminm(ETi ) = pmin

[
n3(T )m(ETi )

] 1

n3(T )

≥ pminn2(T )ρT
1

n3(T )

(38)
≥ pmin

1

2
m(MT )

1

n3(T )

≥ 1

2

pmin

pmax
π0(MT )

1

n3(T )

(37)
≥ 1

2

pmin

pmax

(
1− α

r∗

) 1

n3(T )
.

Since P ′(i) = 1
n3(T ) , this implies

β ≤ 1− 1

2

pmin

pmax

(
1− α

r∗

)
.

Step 5 (Application of the strong converse): In view of all
of the above steps, the proposed coding scheme can be used
to encode an auxiliary equi-distributed random variable with
an asymptotic average probability of error upper bounded by

β + lim sup
T→∞

α
r∗ + 1

2L
pmax

2pmin
π0(MT )

pmin

2pmax
π0(MT )

= β +
1

2L

p2
max

p2
min

+ 2
α

r∗
pmax

pmin
· lim sup
T→∞

1

π0(MT )
(37)
≤ β +

1

2L

p2
max

p2
min

+ 2
α

r∗
pmax

pmin
· 1

1− α
r∗

= β +
1

2L

p2
max

p2
min

+ 2
pmax

pmin
· α

r∗ − α
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≤ 1− 1

2

pmin

pmax

r∗ − α
r∗

+
1

2L

p2
max

p2
min

+ 2
pmax

pmin
· α

r∗ − α
.

This error bound can be made strictly smaller than 1, when L
is chosen sufficiently large and α sufficiently small. Thus, we
arrive at a contradiction with the strong converse (26), because
the rate of our coding scheme satisfies

lim sup
T→∞

1

T
log n3(T )

(41)
≥ (1− 3r∗) log c

(29)
> C.

The proof is complete.
We note the following variation where the initial measure

may have non-compact support with a proof sketch.

Theorem VII.2 Consider system (27) satisfying (28). Assume
that π0 � m with p denoting the density with respect to m,
and that for every ε > 0, there exists a compact interval Kε

such that, π0(Kε) ≥ 1− ε and with

pKmin := ess inf
x∈K

p(x) > 0, pKmax := ess sup
x∈K

p(x) <∞,

the following assumption holds:

lim
ε→0

∫
R\Kε p(x)dx

pKεmin

= 0. (49)

Then, if the AMS property is achieved via a causal coding and
control strategy over a DMC of capacity C, we have

C ≥ inf
x∈R

log |f ′(x)|.

Remark VII.3 A sufficient condition for (49) is that p is
differentiable, positive everywhere and monotone decreasing
in either direction as |x| increases for sufficiently large values
of |x|, and lim|x|→∞ p′(x)/p(x) = ∞. This follows from an
application of L’Hospital’s theorem to the expression

lim
x→∞

∫
|s|>x p(s)ds

min(p(x), p(−x))
.

Probability densities which decay faster than an exponential
(such as the Gaussian) satisfy this condition. An exponential
density (if one-sided, the denominator will just be p(x)) keeps
this ratio a constant as |x| increases and densities with a
heavier tail than an exponential do not satisfy this condition.

Proof: The proof follows almost identically as that of
Theorem VII.1: Case 1 follows identically. For Case 2, in the
following, fix a sufficiently small ε and a corresponding Kε.
If (33) does not hold, then we can instead of (34), consider

lim sup
T→∞

Pi,n,c

(
x0 ∈ Kε, |x0 − x̂0(T, ū)|

>
b

c(1−3r∗)T

∣∣∣w̄ = w̄∗

)
<

α

r∗
.

We will construct the auxiliary coding scheme by embedding
the bins inside Kε. We will thus focus on the sub-probability
measure defined by the restriction of π0 to Kε, defined
formally as πKε0 (B) := π0(B ∩ Kε) for every Borel B, and
thus we replace (37) with

lim inf
T→∞

πKε0

(n1(T )⋃
i=1

BT
i

)
> 1− α

r∗
− ε.

The analysis will go through all the way until in Step 5, where
the following term needs to be made less than 1:

β + lim sup
T→∞

α
r∗ + ε+ 1

2L
pKεmax

2pKεmin

πKε0 (MT )

pKεmin

2pKεmax
πKε0 (MT )

.

The only additional term, when compared with Step 5 of the
proof of Theorem VII.1, is the expression 2εpKεmax/(p

Kε
min(1−

α
r∗ − ε)). Since pKεmax is uniformly bounded under the given
assumptions, condition (49) ensures that this term can be made
arbitrarily small as ε is made small.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we considered a stochastic stabilization
problem for a general controlled stochastic system over a
communication channel. For this problem, we developed a new
approach derive fundamental lower bounds on information
transmission requirements for control over communication
channels. These lower bounds are consistent with the bounds
obtained earlier via information-theoretic methods and those
obtained for more restrictive models (including linear sys-
tems). Moreover, the new proofs are more direct and concise
and they allow to obtain finer lower bounds for a large class
of systems. The lower bounds obtained for the AMS property
are expressed in terms of the determinant of the Jacobian of
the nonlinear system model and these recover the existing
results for the linear system setup as a special case. For
noisy channels, our approach has been to develop a method
to relate stabilization entropy and channel capacity through a
generalization of the strong converse of information theory.

Achievability results have been obtained for linear systems
in [50], [48] and for nonlinear systems in [51]. In particular,
[50, Thm. 4.2] shows that for a linear system with a diagonal-
izable matrix A, controlled over a DMC, the AMS property
can be achieved whenever the channel capacity exceeds the
log-sum of the unstable eigenvalues. Hence, in this case the
lower bounds following from the results in this paper match
with the upper bound. For nonlinear systems of the form

xt+1 = f(xt, ut) + wt

with f(·, u) : RN → RN invertible and C1 for every u and
{wt} an i.i.d. sequence of zero-mean Gaussian variables, it is
shown in [51, Thm. 5.1] that ergodicity (and thus AMS) can
be achieved over a over a discrete noiseless channel under the
following assumption: There exist a function κ : RN → RM
with κ(0) = 0 and a constant a > 0 such that |f(x, κ(z))|∞ ≤
a|x−z|∞ for all x, z ∈ RN . In this case, the minimal required
channel capacity C0 satisfies C0 ≤ N log(a) + 1.

Finally, we want to mention that local exponential orbit
complexity of the open-loop system (as opposed to the global
unstable behavior imposed in the system models studied in
Section V), in general, does not lead to a positive bound on
the channel capacity. For instance, if a system of the form

xt+1 = f(xt) + ut + wt

admits a compact uniformly hyperbolic set for the associated
deterministic system xt+1 = f(xt) and the noise amplitude
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is sufficiently small, it is well-known that the uncontrolled
noisy system xt+1 = f(xt) +wt admits a random hyperbolic
set supporting a stationary measure under mild assumptions,
cf. [31] (see also the relevant classical theory of positive
Harris recurrence [35], [49]). Hence, for an appropriate initial
measure π0, the uncontrolled system is already AMS, implying
that no information transmission at all is necessary.

APPENDIX

Lemma A.1 Let α, β, r ∈ (0, 1) with α+ β = 1. Then

lim
T→∞

1

T
log

T∑
t=d(1−r)Te

(
T

t

)
αtβT−t

=

{
H(r) + r log β + (1− r) logα if β > r,

0 if β ≤ r.
As a consequence,

lim
T→∞

1

T
log

T∑
t=d(1−r)Te

(
T

t

)
= H(r) ∀r ∈

(
0,

1

2

)
. (50)

Proof: Let (Xt)t≥0 be an i.i.d. sequence of {0, 1}-
valued Bernoulli random variables with associated probability
distribution Q̄(Xt = 0) = β, Q̄(Xt = 1) = α. Then

T∑
t=d(1−r)Te

(
T

t

)
αtβT−t = P

( 1

T

T−1∑
t=0

Xt ≥ 1− r
)
.

Sanov’s theorem (see [12, Thm. 11.4.1]) yields

lim
T→∞

1

T
logP

( 1

T

T−1∑
t=0

Xt ≥ 1− r
)

= −D(P̄ ∗||Q̄),

where P̄ ∗ is the information projection of Q̄ onto E := {P :
P (1) ≥ 1− r}, i.e., the distribution that minimizes

D(P ||Q̄) = P (0) log
P (0)

β
+ P (1) log

P (1)

α

under the constraint P (1) ≥ 1− r. To determine the solution
to this minimization problem, we define the function

h(t) := t log
t

β
+ (1− t) log

1− t
α

, h : [0, 1]→ R,

whose derivative h′(t) = log(αβ
t

1−t ) vanishes if and only if
t = β. Computing the second derivative h′′(t) = (ln(2)t(1−
t))−1, we see that h′′(β) > 0, hence h has a minimum at
t = β. Due to the constraint P (1) ≥ 1 − r, this is only
relevant if β ≤ r. In this case, the minimizing distribution is
(P̄ ∗(0), P̄ ∗(1)) = (β, α). Otherwise, the minimum is attained
at t = r (by monotonicity) and (P̄ ∗(0), P̄ ∗(1)) = (r, 1 − r).
This implies the first assertion of the lemma. The identity (50)
follows by considering α = β = 1

2 .

Lemma A.2 Let {I1, . . . , Ir} be a finite collection of compact
intervals, each of equal length |Ii| = l. Then there exists a
pairwise disjoint subcollection {Ii1 , . . . , Iik} satisfying

m
( k⋃
j=1

Iij

)
≥ 1

2
m
( r⋃
i=1

Ii

)
.

Proof: We may assume that the intervals Ii are ordered so
that their left endpoints form a non-decreasing sequence. Then
the indexes ij are determined as follows: Put i1 := 1. Then
take the next interval in {Ii}ri=2, which does not intersect Ii1
and call it Ii2 . Let Ij = [αj , βj ]. The leftover space L(i1, i2)
between Ii1 = I1 and Ii2 is

L(i1, i2) := (βi1 , αi2) ∩
r⋃
j=1

Ij (51)

and has Lebesgue measure ≤ l, for otherwise Ii2 would not be
the first interval not intersecting Ii1 . Continuing in this way,
we find the desired collection of pairwise disjoint intervals and
it follows that m(

⋃k
j=1 Iij ) = kl, while

m
( r⋃
i=1

Ii

)
−m

( k⋃
j=1

Iij

)
= m

( r⋃
i=1

Ii\
k⋃
j=1

Iij

)
≤ kl,

implying 2m(
⋃k
j=1 Iij ) = 2kl ≥ m

(⋃r
i=1 Ii

)
.
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