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A Fully Probabilistic Design for Tracking Control
for Stochastic Systems with Input Delay
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Abstract—This paper studies model reference adaptive control
(MRAC) for a class of stochastic discrete time control systems
with time delays in the control input. In particular, a unified
fully probabilistic control framework is established to develop the
solution to the MRAC, where the controller is the minimiser of
the Kullback-Leibler Divergence (KLD) between the actual and
desired joint probability density functions of the tracking error
and the controller. The developed framework is quite general,
where all the components within this framework, including the
controller and system tracking error, are modelled using prob-
abilistic models. The general solution for arbitrary probabilistic
models of the framework components is first obtained and then
demonstrated on a class of linear Gaussian systems with time
delay in the main control input, thus obtaining the desired results.
The contribution of this paper is twofold. First, we develop a
fully probabilistic design framework for MRAC, referred to as
MRFPD, for stochastic dynamical systems. Second, we establish a
systematic pedagogic procedure that is based on deriving explicit
forms for the required predictive distributions for obtaining the
causal form of the randomised controller when input delays are
present.

Index Terms—Fully Probabilistic Design (FPD), Input delay,
Model reference adaptive control (MRAC), Tracking error.

I. INTRODUCTION

Many engineering and industrial systems are fraught with
several sources of uncertainties including functional uncertain-
ties, random noises and disturbances introduced by measure-
ment devices and other surrounding environmental conditions.
Under these situations where high levels of uncertainties exist,
the design and derivation of an optimal control law becomes
very complicated. The control solution becomes even more
challenging when time delays in the input and/or the state
are present. For linear stochastic and deterministic systems,
the optimal linear quadratic regulation (LQR) and tracking
control problems have received paramount attention since the
1960s [1]–[4]. Owing to their relevance to networked control
and distributed and decentralised control, optimal stochastic
and deterministic linear quadratic solutions have been ex-
tended to consider delay control systems [5], [6]. Depending
on the type of delay, the nature of the system equations, and
the performance criterion used for optimisation, some progress
was made towards the development of the control solution to
these delay systems. For example, the study in [7] has focused
on the time optimal criterion, while the quadratic cost function
has been used in [8]. On the other hand, some studies of
optimal control in time delay systems considered delays in the
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state only [9], [10], others considered delays in the control
input only [11], [12], and others considered delays in both
control input and state [13]. The optimal tracking problem for
discrete time systems with single input delay [14] and multiple
state and input delays [13] was also discussed in the literature.
However, despite the fact that large amount of research has
been devoted to solve the control problem for systems with
delays, a general solution that considers the stochastic nature
of the system dynamics and the delays in its input and/or state
is still lacking.

On the other hand, the fully probabilistic design (FPD)
control method that uses the Kullback-Leibler divergence as
a performance measure provides a systematic approach to
obtaining the general control solution for stochastic systems
subject to random inputs and deterministic systems charac-
terised by functional uncertainty [15]. However, in its original
form [16] the FPD method insists on zero delay between
the input and the state of the system. On account of this,
we recently extended the FPD method such that it considers
a class of stochastic systems that involves a lagged and
an unlagged control inputs [17]. This recent development
considers the problem of designing randomised controllers that
shape the joint probability density function of the system state.
Nonetheless, the characterisation of the pdf of the system state
can be difficult for many real world systems that work under
high levels of uncertainty and stochasticity. Furthermore, in
many real engineering systems the controller objective is to
make the output of the system dynamics follow a predefined
desired output value, thus emphasising the importance of the
tracking error rather than the actual system state.

Concequently, the objective of the current paper is to
develop a general probabilistic framework to obtain the track-
ing control solution to the stochastic control problems with
input delay where the system state is required to track a
predefined desired state as obtained from a reference model.
The formulation in this paper aims at designing a randomised
controller that shapes the pdf of the tracking error distribution
as opposed to original formulation of the FPD method that
considers designing randomised controllers that shape the pdf
of the system state [15]–[17]. This method will be referred to
as model reference fully probabilistic design control (MRFPD)
method. An additional objective of the current paper is to
extend the derivation of the considered tracking control prob-
lem, such that a randomised controller can be derived when
the main input to the system is lagged by a number of time
units. The solution to this problem is very challenging as the
randomised controller has to be designed to adhere to the
causality constraint. To reemphasise, the formulation of the
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control problem in this paper will be based on shaping the pdf
of the tracking error, where the considered class of stochastic
systems is assumed to be controlled by a lagged control input.
This new formulation means that the solution methodology
developed in [17], which considers shaping the pdf of the
system state and assumes that stochastic systems are affected
by lagged and unlagged control inputs, is not appropriate for
the considered model reference tracking problem where the
stochastic system is controlled by a lagged control input only.
Thus, a different approach which is based on probabilistic
inference for evaluating the predictive distributions of the
tracking error and randomised controller will be followed in
the current paper. The proposed framework is demonstrated
on a class of linear stochastic control systems that also have
input time delays where the obtained feedback control law is
shown to be linear in the tracking error with an extra term that
takes into consideration additional constraints imposed by the
tracking objective. Similar to the conventional FPD controller,
the feedback gain matrix of the derived randomised controller
satisfies a generalised Riccati equation but now with tracking
error (instead of state in the conventional method), and control
input penalisation specified by the covariances of the actual,
as well as, ideal distributions of the tracking error and control
input respectively.

The proposed framework offers several improvements and
advances the current results that have been obtained for time
delay systems. Firstly, the obtained solution of the randomised
controller is for the more general case of a tracking control
problem rather than the special case of a regulation prob-
lem. Secondly, the derived randomised controller is more
exploratory due to its probabilistic nature, and accounts for
stochasticity and functional uncertainty in the system dynam-
ics. It aims at achieving a narrow tracking error distribution
centred around zero error state, thus guaranteeing that the
system has tracked the desired trajectory and at the same time
indicating that the uncertainty in the tracked trajectory is small.
Thirdly, the causal optimal control law is given explicitly and
the optimal distribution of the randomised controller is derived
analytically.

To summarise, this paper generalises the solution to the
optimal stochastic control problem with input delays by de-
signing a randomised controller, rather than a deterministic
one. The derivation of a randomised controller is facilitated
at very early stages, by defining the performance measure to
be optimised as the KLD between the actual joint pdf and
an ideal joint pdf of the tracking performance of the system
dynamics. The presented derivations consider the general
tracking control problem where the system state is required
to follow a predefined desired state specified by a reference
model. The consideration of input delay and derivation of
randomised controllers for MRAC problems under a FPD are
innovative and considered for the first time in the current paper.

II. TRACKING CONTROL PROBLEM WHEN THERE IS NO
DELAY

A. FPD aims of the tracking Control Problem
This section considers the development of a fully proba-

bilistic design framework for MRAC for stochastic dynamical

systems. The objective here is to design a randomised control
strategy that will make the joint pdf of the system tracking
error and control input follows a predefined desired pdf. In
control, this tracking problem is usually specified in terms
of a reference model and solved using MRAC [18]–[20].
MRAC is a powerful approach which can be implemented in
a straight forward manner and at the same time can guarantee
robustness to parameter variations, noise and unmodelled
dynamics. This method can be naturally integrated to the FPD
method and will be referred to as MRFPD. In conventional
MRAC a cost function is defined as a function of tracking
error between the state of the plant and a reference model,
and the controller parameters are adjusted such that this cost
function is minimised. The tracking error equation is given by,

et+1 = xt+1 − x
r
t+1, (1)

where xt ∈ Rn is the system state, et ∈ Rn is the tracking
error and xrt ∈ Rn is the state of a reference model to be
tracked by the system. On the other hand, for the class of
stochastic systems considered in this paper, the system state,
xt+1 in Equation (1) is not deterministic thus can only be
characterised by its pdf. In particular, the pdf of the stochastic
system state is given by,

s(xt+1|xt, ut+1), (2)

where s(.|.) denotes the conditional pdf. Given this definition
of the pdf of the system state, the density function of the
tracking error can be obtained using probability theory as
follows,

se(xt+1, x
r
t+1) = s(et+1 + x

r
t+1|et + x

r
t, ut+1). (3)

Thus, for these stochastic systems the MRAC can be re-
formulated following a probabilistic approach to design a
randomised controller, c(ut+1|et) that reshapes the pdf of
the tracking error. The basic block diagram of this proposed
approach which is referred to in this paper as MRFPD is shown
in Figure 1. As shown in the figure, the randomised controller
can be derived by minimising the KLD between the joint pdf
of the tracking error and the controller and a predefined ideal
joint pdf,

D
(
f|| If

)
≡
∫
f(E) ln

(
f(E)
If(E)

)
dE, (4)

where f(E) =
∏T
t=0 s(et+1|ut+1, et)c(ut+1|et) is the

joint distribution of the tracking error and control input,
If(E) =

∏T
t=0

Is(et+1|ut+1, et)
Ic(ut+1|et) is the ideal

distribution of the tracking error and control input, E =
{et+1, . . . , eT , ut+1, . . . , uT } is the closed loop observed data
sequence, and T ≤∞ is a given control horizon.

Following the same procedure of the conventional FPD [15],
using these newly defined ideal pdfs of the tracking error and
randomised controller, the minimum cost function resulting
from the minimisation of (4) with respect to admissible control

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on October 26,2020 at 10:05:51 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3032091, IEEE
Transactions on Automatic Control

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 7, JULY 2020 3

sequence, ut+1, t ∈ {0, . . . , T } can then be shown to be given
by the following recurrence equation,

− ln(γ(et)) = min
c(ut+1|et)

∫
s(et+1|ut+1, et)

c(ut+1|et)×
[

ln
(
s(et+1|ut+1, et)c(ut+1|et)
Is(et+1|et, ut+1) Ic(ut+1|et)

)
︸ ︷︷ ︸
≡partial cost =⇒ U(et+1, ut+1)

− ln(γ(et+1))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt+1, ut+1), (5)

where − ln(γ(et)) is the expected minimum cost–to–go func-
tion. The above equation constitutes the recurrence equation
of the dynamic programming solution to the MRFPD control
problem. Its derivation can be obtained following the same
procedure discussed in [15].
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Fig. 1. Architecture of model reference fully probabilistic design.

B. MRFPD General Solution

The general solution of the optimisation used to minimise
the cost-to-go function (5) with respect to control law, c(ut+1 |
et) can be shown to be given by the following proposition.
Proposition 1: The pdf of the optimal controller minimis-
ing the cost–to–go function (5) subject to the conditional
distribution of the tracking error of the stochastic system,
s(et+1|ut+1, et) is given by,

c∗(ut+1|et) =
Ic(ut+1|et) exp[−β1(ut+1, et) − β2(ut+1, et)]

γ(et)
,

γ(et) =

∫
Ic(ut+1|et) exp[−β1(ut+1, et)

− β2(ut+1, et)]dut+1,
β1(ut+1, et) =∫
s(et+1|ut+1, et)

[
ln
s(et+1|ut+1, et)
Is(et+1|ut+1, et)

]
det+1,

β2(ut+1, et) = −

∫
s(et+1|ut+1, et) ln(γ(et+1))det+1,

(6)

for t = 0, 1, . . . , T and γ(eT ) = 1.
Proof : This proposition can be proven by adapting the proof
of Proposition 2 in [21].

As discussed earlier, the randomised control solution given
in Equation (6) provides a general solution for stochastic
systems subject to random inputs and deterministic systems
characterised by functional uncertainty [22]. Other control
approaches such as LQR and H2 [23] are deterministic
approaches which are based on the certainty equivalence
principle. Additionally, contrary to the linear quadratic Gaus-
sian control [24] and the minimum variance control [25]
approaches the solution given in Equation (6) is not restricted
by the Gaussian assumption of the pdf of the tracking error dy-
namics or its ideal distribution. It provides the general solution
for any arbitrary pdfs. Furthermore, the derived controller (6)
is a randomised controller thus, it is more explorative than the
conventional deterministic controllers. However, the evaluation
of the analytic solution for this randomised controller is not
possible except for the special case of linear and Gaussian
pdfs. Therefore, to facilitate the understanding of the proposed
control framework, the rest of the paper will focus on the
development of the required solutions for the case where
the pdfs of the tracking error, s(et+1|ut+1, et) and its ideal
distribution, Is(et+1|ut+1, et) are assumed to be Gaussian.

Besides, please note that although the general solution of
the MRFPD controller given in Equation (6) has similar form
to the conventional FPD [16], it is rather now dependent on
the pdf of the tracking error and its characterisation as can
be obtained from Equation (3). This will result in a different
form of the derived randomised controller that considers the
constraints imposed by the tracking control objective as will
be seen in the next sections.

Finally, please note that the definition of the tracking error
as given in Equation (1) does not impose any restrictions on
the nature of the model of the reference state. This means
that the reference model can be stochastic or deterministic.
However, further development in this paper will be based on
using a deterministic reference model as in traditional MRAC.

C. Solution to the MRFPD for Linear Stochastic Systems with
no Delays

The aim of this section is to derive the analytic solution
of the conditional pdf of the randomised controller for the
tracking problem of linear stochastic systems with zero delay
between the input and state. Here, the pdf of the system
dynamics are given by,

s(xt+1|xt, ut+1) = N (Axt + But+1, Σ), (7)

where A ∈ Rn×n, and B ∈ Rn×m are constant state and
control matrices respectively, and Σ is the covariance of
the state distribution. The sought tracking control problem
considered here, is to design a control strategy that will make
the state of the system follow a predefined reference model
specified by a reference input rt as follows,

xrt+1 = A
rxrt + B

rrt+1, (8)
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where Ar ∈ Rn×n, and Br ∈ Rn×m are constant matrices. As
discussed earlier, because of the stochastic nature of the con-
sidered class of stochastic systems, the proposed framework
derives randomised controllers that minimise the discrepancy
between the joint pdf of the tracking error and control input
and a predefine ideal distribution of tracking error as stated in
proposition 1. Using equations (7), (8) and (3) the distribution
of the tracking error can be shown to be given by,

s(et+1|et, ut+1) = N (Aet + But+1 + x̃t, Σ), (9)

where x̃t = (A−Ar)xrt−B
rrt+1. The sought tracking control

problem considered here, is to design a control strategy that
will achieve a narrow tracking error distribution centred around
zero, thus, guaranteeing an accurate tracking of the system
state to the desired value. As such, the ideal distribution of
the tracking error of the system is assumed to be given by,

Is(et+1|et, ut+1) = N (0, Σ). (10)

In addition, the ideal distribution of the controller is assumed
to be given by,

Ic(ut+1|xt) = N (ût+1, Γ), (11)

where ût+1 and Γ are the mean and covariance of the
ideal distribution of the control input respectively. In tracking
control problems, the mean of the ideal distribution of the
control input, ût+1 can be evaluated from the expected value
of the tracking error as follows,

lim
t→∞ < et+1 > = lim

t→∞ < Aet + But+1 + x̃t >,

ût+1 = −B†x̃t, (12)

where here < . > means the expected value, and B† is the
pseudo inverse of the matrix B. Please note that in the pro-
posed MRFPD the system state is regulated to a value different
than zero. As such, the mean value of the ideal distribution
of the controller, ût+1 cannot be taken equal to zero and
should be calculated as stated in equation (12). The mean
value, ût+1 can be interpreted as a bias to drive the system
state to the required desired state value xrt+1. Having obtained
these distributions of the stochastic system, the solution to the
tracking control problem can then be obtained by evaluating
the optimal performance index − ln(γ(et+1)). This in turn
requires the calculation of β1(ut+1, et), β2(ut+1, et), and
γ(et) as defined by Equation (6) and yields the probabilis-
tic optimal feedback control law specified in the following
theorem.

Theorem 1: The randomised optimal controller minimising
the optimal cost-to-go function (5) subject to the pdf of the
system tracking error (9) and ideal distributions given by (10)
and (11) is,

c∗(ut+1|et) = N (−Kt+1et + Lt+1, Γt+1), (13)

where

Γt+1 = [Γ−1 + BT (Σ−1 +Mt+1)B]
−1,

Kt+1 = Γt+1B
T (Σ−1 +Mt+1)A,

Lt+1 = −Γt+1[0.5B
TgTt+1 + B

T (Σ−1 +Mt+1)x̃t

− Γ−1ût+1]. (14)

In addition,

− ln(γ(et+1)) = 0.5(eTt+1Mt+1et+1 + gt+1et+1

+ωt+1), (15)

with

Mt = A
T

{
(Σ−1 +Mt+1) − (Σ−1 +Mt+1)B

Γt+1B
T (Σ−1 +Mt+1)

}
A, (16)

gTt = AT
{
gTt+1 + 2(Σ

−1 +Mt+1)x̃t

−2(Σ−1 +Mt+1)BΓt+1[0.5B
TgTt+1

+BT (Σ−1 +Mt+1)x̃t − Γ
−1ût+1]

}
, (17)

ωt = û
T
t+1Γ

−1ût+1 + x̃
T
t (Σ

−1 +Mt+1)x̃t

+ωt+1 − [0.5BTgTt+1 + B
T (Σ−1 +Mt+1)x̃t

−Γ−1ût+1]
T Γt+1[0.5B

TgTt+1 − Γ
−1ût+1

+BT (Σ−1 +Mt+1)x̃t] + tr(Mt+1Σ) + gt+1x̃t

+ ln |I+ (BΓ0.5)T (Σ−1 +Mt)(BΓ
0.5)|, (18)

is the quadratic cost function. Here ωt+1 is some positive
constant, i.e ωt+1 is tracking error independent.

Proof: The theorem will be proven by backward induction.
This will be achieved by verifying the quadratic form of
− ln(γ(et+1)) defined in Equation (15) for t = T, T −
1, . . . , 0. As can be seen from proposition 1, the starting value
− ln(γ(eT )) = 0 adheres to this form for MT = 0, gT = 0
and ωT = 0. For t ≤ T , the definitions of the functions
β1(ut+1, et), β2(ut+1, et) and γ(et) given in Equation (6)
imply the form of the exponent of the optimal control law.
This can be shown through the evaluation of these functions
which yields the recursive equations for evaluating Mt, gt and
ωt as defined in Equations (16)-(18) respectively.

The evaluation of β1(ut+1, et) can be easily obtained as
follows,

β1(ut+1, et) =

∫
N (Aet + But+1 + x̃t, Σ){

− 0.5[et+1 − (Aet + But+1 + x̃t)]
TΣ−1[et+1

− (Aet + But+1 + x̃t)] + 0.5e
T
t+1Σ

−1et+1

}
det+1

= 0.5(Aet + But+1 + x̃t)
TΣ−1(Aet + But+1 + x̃t) (19)

The evaluation of β2(ut+1, et) is based on the assumed
quadratic form of − ln(γ(et+1)) defined in Equation (15).
With the assumed quadratic form of − ln(γ(et+1)) we obtain,

β2(ut+1, et) = 0.5

∫
N (Aet + But+1 + x̃t, Σ){

0.5(eTt+1Mt+1et+1 + gt+1et+1 +ωt+1)

}
det+1

= 0.5(Aet + But+1 + x̃t)
TMt+1(Aet + But+1 + x̃t)

+ 0.5[tr(Mt+1Σ) +ωt+1 + gt+1(Aet + But+1)]. (20)
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The function γ(et) can also be calculated as given in propo-
sition 1. It is given by,

γ(et) =

∫
N (ût+1, Γ) exp

{
− 0.5

(
[Aet + But+1 + x̃t]

T

Σ−1[Aet + But+1 + x̃t] + [Aet + But+1 + x̃t]
T

Mt+1[Aet + But+1 + x̃t] + gt+1(Aet + But+1 + x̃t)

+ωt+1 + tr(Mt+1Σ)

)}
dut

= exp
{
− 0.5

(
ût+1Γ

−1ût+1 + e
T
tA

T (Σ−1 +Mt+1)Aet

+ x̃Tt (Σ
−1 +Mt+1)x̃t + e

T
tA

T (gTt+1 + 2(Σ
−1 +Mt+1)x̃t)

+ tr(Mt+1Σ) +ωt+1 + gt+1x̃t − [BT (Σ−1 +Mt+1)Aet

− Γ−1ût+1 + B
T (Σ−1 +Mt+1)x̃t + 0.5B

TgTt+1]
T Γt+1

[BT (Σ−1 +Mt+1)Aet − Γ
−1ût+1 + B

T (Σ−1 +Mt+1)x̃t

+ 0.5BTgTt+1] + ln |I+ (BΓ0.5)T (Σ−1 +Mt)(BΓ
0.5)|

)}
.

(21)

Noting that − ln(γ(et)) = 0.5(eTtMtet+gtet+ωt), it can be
seen that the identity is satisfied for Mt, gt and ωt as defined
in Equations (16), (17), and (18) respectively. This proves the
claimed quadratic nature of the performance function.

Similarly, the optimal control law can be obtained as speci-
fied in proposition 1. Using Equations (19), (20), (21) and (11)
in the first equation of Proposition 1 and simplifying, yields,

c∗(ut+1|et) = exp
{
− 0.5

([
uTt+1[Γ

−1

+ BT (Σ−1 +Mt+1)B]ut+1 + 2u
T
t+1{0.5B

TgTt+1

+ BT (Σ−1 +Mt+1)Aet + B
T (Σ−1 +Mt+1)x̃t

− Γ−1ût+1}+ [BT (Σ−1 +Mt+1)Aet − Γ
−1ût+1

+ BT (Σ−1 +Mt+1)x̃t + 0.5B
TgTt+1]

T Γt+1

[BT (Σ−1 +Mt+1)Aet − Γ
−1ût+1

+ BT (Σ−1 +Mt+1)x̃t + 0.5B
TgTt+1]

+ ln |I+ (BΓ0.5)T (Σ−1 +Mt+1)(BΓ
0.5)|

)}
. (22)

Completing the square in Equation (22) for ut+1 gives the ran-
domised controller defined in Equation (13) with Kt+1, Lt+1
and Γt+1 as defined in Equation (14).

Compared to the conventional FPD, the optimal cost-to-go
function of the MRFPD is now dependent on the tracking
error, et rather than the state xt. It also has an additional linear
term, gt+1, as can be seen from Equation (15). Additionally,
the mean of the derived randomised controller is shifted by
Lt+1 as can be seen from Equation (13). The manifestation of
these terms in the optimal cost-to-go function and randomised
controller is the consequence of the defined control objective
for the system state to track a desired state value. These two
terms account for the constraints imposed by the tracking
control objective. Finally, The derived control gain, Kt+1 and
Riccati equation, Mt+1 are similar in form to the conventional
FPD and LQR, where the tracking error penalisation is now
equal to the covariance of the ideal distribution of the system

tracking error, Σ−1 and input penalisation equal to the ideal
randomised controller covariance matrix, Γ−1. In fact, the
derived randomised controller (13) can be interpreted as a
standard LQR controller to which a white noise with zero
mean and Γt+1 covariance is added. Compared to traditional
LQR, the additional terms in Equation (18) increase the value
of the attained cost-to-go function, thus can be viewed as an
extra cost for the use of the randomised controller. As has also
been discussed earlier, similar results could be obtained if a
stochastic reference model is used. Other generalisation are
also possible, for instance an ideal tracking error pdf can be
specified with a different covariance matrix than the covariance
matrix of the actual tracking error.

All the parameters of the derived randomised controller (13)
can be computed using standard methods following either
the backward or forward approaches. Using the derived ran-
domised controller, the conditional distribution of the system
tracking error conditioned on previous error values can be
obtained as follows,

s(et+1|et) =

∫
s(et+1|et, ut+1)c

∗(ut+1|et)dut+1, (23)

where s(et+1|et, ut+1) defined in Equation (9) is the Gaus-
sian distribution of the system tracking error, and c∗(ut+1|et)
defined in Equation (13) is the derived randomised controller.
Substituting Equations (9) and (13) in Equation (23) and
integrating over ut+1 yields,

s(et+1|et) = N (Vt+1et +Ht+1, BΓt+1B
′ + Σ), (24)

with,

Vt+1 = A− BKt+1,

Ht+1 = BLt+1 + x̃t. (25)

Again here, since Kt+1 and Lt+1 are computable, Vt+1 and
Ht+1 can also be computed. Following the methodology
discussed in [26], the solution to the probabilistic model (24)
can be easily verified to be given by,

s(et|e0) = N
(
Et, Υt

)
, (26)

with,

Et = Φ(t, 1)e0 +

t∑
i=2

Φ(t, i)Hi−1 +Ht,

Υt =

t∑
i=2

Φ(t, i)Qi−1Φ
T (t, i) +Qt,

Qi = BΓiB
′ + Σ,

Φ(n,m) = VnVn−1 . . . Vm. (27)

The above result can be also obtained by evaluating the
joint pdf s(et, et−1, . . . , e1|e0) =

∏t−1
i=0 s(ei+1|ei) and then

integrating over e1, e2, . . . et−1. Using this result, the open
loop control is given by,

c∗(ut+1|e0) =

∫
c∗(ut+1|et)s(et|e0)det. (28)
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Using Equation (13) in the above equation we get,

c∗(ut+1|e0) =

N (−Dt+1e0 + Et+1, Kt+1ΥtK
T
t+1 + Γt+1), (29)

with,

Dt+1 = Kt+1Φ(t, 1),

Et+1 = −Kt+1

( t∑
i=2

Φ(t, i)Hi−1 +Ht

)
+ Lt+1. (30)

III. SOLUTION TO THE MRFPD FOR LINEAR STOCHASTIC
SYSTEMS WITH INPUT DELAYS

The previous section presented the solution to the MRFPD
for linear systems assuming that the delay between the control
input and the system state is zero. However, for stochastic
systems where the delay between the control input and the
system state is greater than zero the design of a randomised
controller becomes challenging. To elaborate, consider the
following class of linear stochastic systems with input delay
τ > 0,

s(xt+1|xt, ut+1−τ) = N (Axt + But+1−τ, Σ), (31)

where τ is an integer value. The initial values, x0, and
{u−τ+1, u−τ+2, . . . , u0} that are needed in order to trace the
system state forward through time are known. As can be
seen from this equation, the main challenge here is the strict
causality requirement of the designed randomised controller.
For the considered MRFPD, strict causality means that the
designed randomised controller must be in the form of,

c(ut+1 | et, . . . , e0, ut, . . . , u−τ+1) = c(ut+1 | et),

where here, the postulated equivalence means that the con-
troller satisfies the Markov property. For deterministic control
problems, the optimal causal controller can be obtained by
using the smith predictor theory [27] to provide τ-step predic-
tion of the future state xt+τ. Unfortunately, for the considered
MRFPD method which is based on a fully probabilistic
framework the deterministic τ-step Smith predictor cannot be
used directly and need to be generalised such that the τ-step
conditional distribution of the system tracking error can be
obtained. This procedure is discussed in the following.

Similar to the MRFPD for stochastic systems with zero
delay that is discussed in Section II-C, the MRFPD control ob-
jective here is to design a randomised controller c(ut+1−τ|et).
Note that the conditioning of ut+1−τ on et indicates a
non-causal randomised controller. As can be seen from the
pdf of the system error, s(et+1|et, ut+1−τ) this randomised
controller will not of course begin to affect the distribution of
the system error until time t+τ. However, as will be shown in
further development, the causal randomised controller can be
obtained by evaluating the predictive conditional distribution
of the system tracking error. On the other hand, since the
system is controlled by a lagged version of the control input,
the obtained randomised controller for the stochastic systems
with no input delays can be applied, but advanced in time by
τ units. This can be done for t > τ, but for the time interval
0 ≤ t ≤ τ, the system state would have been already affected

by initial control values prior to t = 0. Therefore, a predictor
of the tracking error distribution based on past controls needs
to be identified. Consequently, the predictive pdf of the system
tracking error at time τ can be obtained by considering the
joint pdf of the system tracking error,

s(eτ, eτ−1, . . . , e1, u0, . . . , u1−τ|e0)

=

τ−1∏
t=0

s(et+1|et, ut+1−τ)c
∗(ut+1−τ|et). (32)

Integrating the above joint pdf over all control inputs and
states from time 0 up to τ − 1 yields the required predictive
distribution,

s(eτ, |e0) =

∫
· · ·
∫ τ−1∏
t=0

s(et+1|et, ut+1−τ)

c∗(ut+1−τ|et)dut+1−τdet (33)

Hence,

s(eτ|e0) = N (Eτ,Ωτ), (34)

with,

Eτ = Aτe0 +

τ−1∑
i=0

Aτ−j−1[B < ui+1−τ > +x̃j],

Ωτ =

τ−1∑
i=0

Aτ−j−1Σ(Aτ−j−1)T

+

τ−1∑
i=0

Aτ−j−1BΓi+1−τ(A
τ−j−1B)T . (35)

Then the open loop control for t ≥ 0, can be obtained
by noticing that the lagged controller will be the same as
that given in Equation (29) for the unlagged one, but now
dependent on eτ rather than e0,

c∗(ut+1|eτ) =

N (−Dt+1eτ + Et+1, Kt+1ΥtK
T
t+1 + Γt+1). (36)

Using the predictive distribution of the tracking error defined
in Equation (34), the above equation can be rewritten as
follows,

c∗(ut+1|e0) =

∫
c∗(ut+1|eτ)s(eτ|e0)deτ,

= N (−Dt+1Eτ + Et+1, Dt+1ΩτD
T
t+1 + Kt+1ΥtK

T
t+1 + Γt+1).

(37)

The objective then is to obtain the causal randomised con-
troller, c∗(ut+1|et). To achieve this objective, we need to
write e0 which affects the mean value of the distribution of
the randomised controller c∗(ut+1|e0) in terms of et. This
can be done by evaluating the predictive distribution, s(et|e0)
in the interval 0 ≤ t ≤ τ. Following the same procedure
for obtaining the predictive distribution of eτ, the predictive
distribution of et can be shown to be given by,

s(et|e0) = N (Et,Ωt), (38)
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with,

Et = Ate0 +

t−1∑
i=0

At−j−1[B < ui+1−τ > +x̃j],

Ωt =

t−1∑
i=0

At−j−1Σ(At−j−1)T

+

t−1∑
i=0

At−j−1BΓi+1−τ(A
t−j−1B)T , (39)

where < ui+1−τ > is the expected value of the control input
at time i + 1 − τ. Using transformation of random variables,
the pdf of the initial tracking error, e0 can be obtained from
that of et to give,

s(e0|et) = N (E0,Ω0),

E0 = A
−tet −A

−t
t−1∑
i=0

At−j−1[B < ui+1−τ > +x̃j],

Ω0 = A
−tΩt(A

−t)T . (40)

Using Equations (40) and (37), we obtain,

c∗(ut+1|et) =

∫
c∗(ut+1|e0)s(e0|et)de0,

= N (< ut+1 >, Γ
′
t+1), (41)

with,

< ut+1 >= −Dt+1A
τA−tet

+Dt+1A
τA−t

t−1∑
i=0

At−j−1[B < ui+1−τ > +x̃j]

−Dt+1

τ−1∑
i=0

Aτ−j−1[B < ui+1−τ > +x̃j] + Et+1, (42)

Γ ′t+1 = Dt+1A
τΩ0(Dt+1A

τ)T +Dt+1ΩτD
T
t+1

+ Kt+1ΥtK
T
t+1 + Γt+1. (43)

Note that when t = τ, the distribution of randomised controller
given in the above equation reduces to,

c∗(ut+1|et) = N (−Dt+1et + Et+1,

Dt+1ΩtD
T
t+1 + Kt+1ΥtK

T
t+1 + Γt+1). (44)

On the other hand, when t ≥ τ, we have,

c(ut+1|et+τ) = N (−Kt+1et+τ + Lt+1, Γt+1). (45)

To obtain the randomised controller in that interval t ≥ τ, the
τ-step predictive distribution of the future error needs to be
evaluated. In particular, we need to evaluate s(et+τ|et). This
can be obtained from Equation (24) to give,

s(et+τ|et) = N
(
Ẽt, Υ̃t

)
, (46)

with,

Ẽt = Φ(τ, 1)et +

τ∑
i=2

Φ(τ, i)Hi−1 +Hτ,

Υ̃t =

τ∑
i=2

Φ(τ, i)Qi−1Φ
T (τ, i) +Qτ

+Φ(τ, 1)QtΦ
T (τ, 1), (47)

and where Qi and Φ(n,m) have the same definitions as
before. Consequently, the causal controller, c∗(ut+1|et) for
t ≥ τ can be obtained as follows,

c∗(ut+1|et) = c
∗(ut+1|et+τ)s(et+τ|et),

= N (−Kt+1Ẽt + Lt+1, Kt+1Υ̃tK
T
t+1 + Γt+1). (48)

Now it is straight forward to complete and summarise the
obtained results.
Proposition 2: Equations (41) and (48) give the randomised
optimal control for 0 ≤ t ≤ τ and for t ≥ τ, respectively.
Substituting for Dt+1 and Et+1 from Equation (30), combin-
ing the second and third terms in (42) and the first and second
terms in (43), and rewriting give the mean and covariance of
the randomised optimal control law as follows.
For 0 ≤ t ≤ τ

< ut+1 >= −Kt+1Φ(t, 1)AτA−tet

+ Kt+1Φ(t, 1)

τ−1∑
i=0

Aτ−j−1[B < ui+1−τ > x̃j]

− Kt+1

( t∑
i=2

Φ(t, i)Hi−1 +Ht

)
+ Lt+1, (49)

Γ ′t+1 = Kt+1Φ(t, 1)Ωt(Kt+1Φ(t, 1))T

+ Kt+1ΥtK
T
t+1 + Γt+1. (50)

For t ≥ τ

< ut+1 >= −Kt+1Φ(τ, 1)et

− Kt+1

( τ∑
i=2

Φ(τ, i)Hi−1 +Hτ

)
+ Lt+1, (51)

Γ ′t+1 = Kt+1Υ̃tK
T
t+1 + Γt+1. (52)

IV. NUMERICAL EXAMPLE

Consider the system (31) with

A =

[
0.9935 0.0093
−0.0156 0.9912

]
, B =

[
−0.00001865
−0.0011

]
,

Σ =

[
0.001 0
0 0.001

]
, τ = 5, u−4 = −0.2,

u−3 = 0, u−2 = −0.1, u−1 = −0.2, u0 = 0.1.

We also specify,

Γ = 0.07, xrt+1 =
[
0.4 0.6

]T
.

The gain and linear term of the proposed optimal randomised
controller are calculated following Equation (14) and their
steady state values were found to be,

K =
[
0.2428 −2.3914

]
, L = −11.6340.
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The simulation result of the designed controller is shown in
Figure 2.
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Fig. 2. Example 2: The state of the controlled system. (a) the first state of
the controlled system, (b) the second state of the controlled system.

V. CONCLUSION

In this paper, the optimal control for stochastic discrete
time systems with input delay has been considered. A fully
probabilistic controller has been designed and presented for
this class of stochastic systems with input delay. In addition,
the conventional solution of the fully probabilistic randomised
controller is extended to consider tracking problems with the
objective that the system state follows a predefined desired
state value. The derived solution is tested on a numerical
example. Numerical simulation proved the efficacy of the
derived randomised controller and showed that it can influence
the system dynamics such that their state is maintained at
the pre-specified desired value. Future work will discuss and
demonstrate the extension of the fully probabilistic control
method to systems that have multiple input and or state delays.
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