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Abstract—Using any nonnegative function with a nonpositive
derivative along trajectories to define a virtual output, the
classic LaSalle invariance principle can be extended to switched
nonlinear time-varying (NLTV) systems, by considering the
weak observability (WO) associated with this output. WO is
what the output informs about the limiting behavior of state
trajectories (hidden in the zero locus of the output). In the
context of switched NLTV systems, WO can be explored using
the recently established framework of limiting zeroing-output
solutions. Adding to this, an extension of the integral invariance
principle for switched NLTV systems with a new method to
guarantee uniform global attractivity of a closed set (without
assuming uniform Lyapunov stability or dwell-time conditions)
is proposed. By way of illustrating the proposed method, a
leaderless consensus problem for nonholonomic mobile robots
with a switching communication topology is addressed, yielding
a new control strategy and a new convergence result.

Index Terms—LaSalle invariance principle, switched nonlinear
time-varying systems, weak observability, integral invariance
principle, leaderless consensus.

I. INTRODUCTION

THE classic LaSalle invariance principle [20] has played
an important role in checking attractivity of nonlinear

time-invariant systems. In its simplest form, the LaSalle in-
variance principle uses a sufficiently smooth function V whose
derivative along the trajectories is negative semi-definite. It
then suffices to analyze the invariant set contained in the set of
states corresponding to dV/dt = 0. As this nonlinear system
is time-invariant, the convergence to the invariant set can be
represented as the convergence of a single trajectory starting
from the initial time instant t0 = 0 (or attractivity only). The
concept of the integral invariance principle was also proposed
to relax the requirement that the derivative of V has to be
negative semi-definite [7].

It is usually difficult to generalize the idea of the LaSalle in-
variance principle to time-varying systems to conclude uniform
attractivity due to the difficulty to characterize the invariant set
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when a family of trajectories from any initial time instant are
considered. There are several attempts to extend this classic
result to time-varying systems [1], [2], [3], [21], [22], [35].
For example, the concept of limiting equations was proposed
to capture the limiting behavior of the state trajectories [3],
[21]. Moreover, the concept of virtual output was proposed
for time-varying systems with the corresponding observability
[1], [2]. The advantage of introducing such a virtual output
is two-fold. Firstly, it is easier to check the limiting behavior
of signals rather than identifying a “time-varying” (invariant)
set. Secondly, several tools, such as the persistent excitation
condition and observability/detectability, are available to link
the convergence of output signals to the convergence of state
trajectories.

Recently, switched systems have gained a lot of attention
due to the possible performance improvement by introducing
switching signals [6], [9], [17], [23], [27], [36]. Nevertheless,
introducing switching in dynamical systems makes stability
analysis much more challenging. Regarding the extension
of the LaSalle invariance principle to switched systems, the
majority of the literature assumes that for a given value
of the switching signal, the “present” system behavior can
be described by a time-invariant system, and moreover, that
switching does not occur too often (so called dwell-time
conditions are imposed). For example, linear time-invariant
systems were considered in [8], [14] and nonlinear time-
invariant systems were considered in [4], [12], [32], [40].
When switching signals are arbitrary, only linear time-invariant
systems were considered [5], [38].

To the best of the authors’ knowledge, there is no general-
izations of either the use of virtual output or the LaSalle in-
variance principle to switched nonlinear time-varying (NLTV)
systems when the switching signals do not have dwell-time
constraints. Moreover, as pointed out in [25], the time-varying
nature of nonlinear systems as well as time-varying com-
ponents coming from a family of switching signals pose
significant technical challenges. In particular, the notion of
uniform convergence to a time-varying invariant set is not
trivial.

It is noted that the classic LaSalle invariance principle
has been widely used to check uniform attractivity when
a weak Lyapunov function1 exists. Such a weak Lyapunov
function guarantees uniform Lyapunov stability of dynamic
systems. It is worthwhile to highlight that some early attempts

1A weak Lyapunov function is a positive definite function whose derivative
along the trajectories of dynamics is negative semi-definite.

ar
X

iv
:2

00
6.

02
02

1v
1 

 [
ee

ss
.S

Y
] 

 3
 J

un
 2

02
0



2

[25], [26], [33] on a switched NLTV system followed this
direction with the assumption that the switched NTLV system
has a weak Lyapunov function, and gave the generalization
of the so-called Krasovskii-LaSalle theorem, which requires
stronger assumptions than that in the classical LaSalle invari-
ance principle. For switched NLTV systems, such results can
only guarantee the convergence of an equilibrium point (or
a compact set). In some applications, as demonstrated in the
consensus problem in this work, it is necessary to guarantee
the convergence to a non-compact set when it is not feasible
to assert (uniform) Lyapunov stability.

This paper focuses on direct extensions of the classic
LaSalle invariance principle and the integral invariance prin-
ciple to switched NLTV systems allowing for a general class
of switching signals without any dwell-time constraints. Par-
ticularly, by utilizing the concept of virtual output and the
corresponding observability condition as in [1], [3], [21], [35],
the needed extensions naturally links to the recently developed
framework in [26]. This framework employs the concept of
limiting zeroing output solutions, resulting in techniques such
as changing state functions (dynamics) and output functions
(output signals). These techniques provide great flexibility in
checking the appropriate observability (see examples presented
in [26]).

In order to generalize this classic result without the exis-
tence of a weak Lyapunov function, this paper introduces the
concepts of uniformly globally ultimately bounded (UGUB)
solutions and weak observability (WO) for switched NLTV
systems under a general class of switching signals. More
precisely, this paper explores the concept of the virtual output
to check uniform global attractivity (UGA) with respect to
initial time instants and a large class of switching signals
when the switched NLTV system is already UGUB. In the
sequel, the techniques of changing dynamics and output sig-
nals presented in [26] are modified accordingly. Moreover,
the integral invariance principle can be extended to switched
NLTV systems as well.

One of the significant practical motivations for this study is
to establish efficient analysis tools for the consensus of multi-
agent systems with switching topologies. In fact, the switching
topology induces a switching controller, and hence results in a
closed-loop system exhibiting switching dynamics. In general,
the consensus is achieved if the so-called consensus subspace
is attractive, which is non-trivial even when all agents are
single integrator systems [16], [28], [37]. When the switching
topology satisfies the so-called jointly connected condition
(UJC), one can find a weak Lyapunov function, and hence,
dwell-time conditions are frequently imposed to show the
attractivity [28], [42], [43], [45]. Notice that a dwell-time
condition does not fit the practical circumstance of switching
communication topologies, as one may not be able to associate
a dwell-time to link failures. It is therefore important to
consider approaches that avoid dwell-time constraints.

Regarding the consensus of nonholonomic mobile robots,
most of studies either address the static network topologies
or require that the switching network topologies are always
represented as connected graphs, see [10], [11], [29], [31],
[46], to name just a few. Notice that, even under these

simplifying conditions, due to Brockett’s necessary condition,
the time-varying feedback control is essential. That is why one
has to deal with switched NLTV systems. One recent result
in this direction can be found in [30]. The authors do impose
dwell-time conditions, and limited certain dynamics to obtain
their results.

There are as least three main challenges that one has to
overcome to address attractivity in consensus. First, the closed-
loop system is always a switched NLTV system, while the
weak Lyapunov function is hard to find. Second, it is important
to remove the dwell-time condition which is normally imposed
in this literature [16], [28], [30], [37], [42], [43], [45]. This
most likely indicates that a different analysis approach is
necessary. Third, it is noticed that each agent has three
state variables (position and angle), but only has two control
variables (velocity and angle velocity). Hence, it is necessary
to inject certain persistently exciting signals in order to handle
the variables that cannot be directly controlled [22], [31].

The proposed method is an ideal tool to solve such a
challenge problem. That is, the proposed method will be used
to develop consensus control laws for nonholomomic mobile
robots without any dwell-time conditions. For this purpose, a
generalized jointly connected condition will be provided that
can be seen as the weakest condition since it is without the
dwell-time condition and strictly includes standard UJC. As
will be shown in Section IV-D and summarized in Remark 15,
applying the proposed “new invariance principle” for switched
NLTV systems, the consensus can be achieved subject to a
generalized jointly connected switching topologies without
requiring any dwell-time conditions. Moreover, in contrast
with the previous consensus studies where only the attractivity
is obtained, the presented design can further guarantee uniform
global attractivity, giving rise to much more robustness.

The contributions of this paper are:
1) The verification of the convergence properties of the

largest invariant set is converted into a problem of
checking WO employing a virtual output.

2) By requiring uniformly globally ultimately bounded
solutions, which is a much weaker property than uni-
formly globally bounded solutions, checking WO of a
switched NLTV system becomes similar to checking
weak detectability of this switched NLTV system [26].
The concepts of changing dynamics of the state and
changing output functions can be adapted to check WO
of switched NLTV systems, providing more flexibility
in verifying WO.

3) The integral invariance principle is extended to switched
NLTV systems.

4) The proposed results are applied to leaderless consensus
problems. To the best of the authors’ knowledge, this is
the first result and control design that achieves consensus
without imposing a dwell-time condition.

This paper is organized as follows. Preliminaries and the
problem formulation are presented in Section II, followed
by main results in Section III. Section IV presents a new
leaderless consensus problem to illustrate the effectiveness of
the proposed methods. Conclusion is drawn in Section V.
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Notations
1) N = {1, 2, . . . }, Z = {0,±1,±2, . . . }, Z+ =
{0, 1, 2, . . . }, R = (−∞,+∞), and R≥0 = [0,+∞).

2) Rp denotes the p dimensional Euclidean space and Rp×q
denotes the set of all p× q matrices with real entries.

3) |t| denotes the absolute value of a real number t and
‖u‖ denotes the Euclidean norm of a vector u ∈ Rp.

4) A function g : R≥0×X→ Rq with X ⊆ Rp is said to be
a Caratheodory function if for almost all t ∈ R≥0, g(t, ·)
is continuous and for each u ∈ X , g(·, u) is measurable.

5) The function g is said to be almost uniformly bounded
if there is a measure zero set E ⊆ R≥0 such that for
any r > 0, there exists M , M(r) > 0 satisfying
‖g(t, u)‖ ≤M , ∀t ∈ R≥0 \ E, ∀u ∈ X with ‖u‖ ≤ r.

6) The function g is said to be continuous in u, almost
uniformly in t if there exists a measure zero set E ⊆
R≥0 such that for any u ∈ X and any ε > 0, there
exists δ , δ(ε, u) > 0 satisfying ‖g(t, u)−g(t, v)‖ < ε,
∀t ∈ R≥0 \ E, ∀v ∈ X with ‖v − u‖ < δ.

7) For a set X ⊆ Rp , the set CB(X) is the family of all
functions g : R≥0 ×X→ Rq that are Caratheodory and
almost uniformly bounded.

8) For a set X ⊆ Rp, the set CC(X) is the family of
all functions g(t, u) ∈ CB(X) being continuous in u,
almost uniformly in t.

9) For any n ∈ N, 1n = [1, . . . , 1]T ∈ Rn.
10) For any function g : X → Rp and any subset X̂ ⊆ X,

g|X̂ : X̂→ Rp denotes the restriction function of g, i.e.,
g|X̂ (u) = g(u), ∀u ∈ X̂.

11) For any function g : X→ Y and each y ∈ Y, g−1(y) =
{x ∈ X| g(x) = y}.

II. PRELIMINARIES

Here, the LaSalle invariance principle is briefly reviewed
and reformulated as an observability condition for a virtual
output. Next appropriate stability definitions for NLTV sys-
tems are presented. The limiting zero output condition [26] is
recalled to introduce the concept of weak observability, which
will be elaborated in the next section.

A. From Invariance Principles to Attractivity
Recall the invariance principle for the following nonlinear

continuous system:

ẋ = f(x), x ∈ Rp. (1)

Suppose there exists a continuously differentiable function
V : Rp → R≥0 such that

V̇ =
∂V (x)

∂x
f(x) ≤ 0. (2)

Then, the celebrated LaSalle invariance principle guarantees
that any bounded (forward complete) solution x : R≥0 → Rp
of the system (1) approaches the largest invariant set contained
in V̇ −1(0) = {x ∈ Rp| V̇ (x) = 0}, see [18] for instance.
Here the inequality (2) can be relaxed to the following output
converging condition∫ +∞

0

|y(τ)|2dτ ≤ V (x(0)) <∞ (3)

by defining a virtual output y(t) = (−V̇ (x(t))1/2 for all t ∈
R≥0, see [7], or even, by the Cauchy condition,

lim
t→+∞

∫ t+T

t

|y(τ)|2dτ = 0 (4)

for any (fixed) T > 0 [19]. This relaxation may accommodate
a larger class of Lyapunov like functions whose derivatives
along trajectories are nonpositive at every instant of time.
Furthermore, let Ω ⊆ Rp be the largest invariant set contained
in V̇ −1(0). Then, x(t) → Ω as t → ∞ describes the
attractivity of the closed set Ω. Moreover, the fact that Ω is the
largest invariant set contained in V̇ −1(0) can be interpreted as
the following observability condition:

y(t) = 0, ∀t ∈ R≥0 =⇒ x(t) ∈ Ω, ∀t ∈ R≥0. (5)

Such a result is the so-called integral invariance principle
proposed in [7], summarized in the below.

Proposition 1: Consider the system (1) where f : Rp → Rp
is a continuous function. Let h : Rp → Rq be a continuous
function and Ω ⊆ Rp a closed set. Suppose the observability
condition (5) holds where y(t) = h(x(t)) for all t ∈ R≥0.
Then, each bounded solution x : R≥0 → Rp of (1) with
the property that (4) (or (3)) holds for some T > 0 satisfies
x(t)→ Ω as t→∞.

Remark 1: The LaSalle invariance principle only requires V
to be continuously differentiable. V need not be positive nor
definite. The key feature exploited in the LaSalle invariance
principle is the time-invariant nature of the nonlinear dynam-
ics, which simplifies greatly the notion of invariant set. In the
context of time-varying systems, the invariant set is a much
more difficult concept, and this in turn makes it hard to extend
the LaSalle invariance principle to time-varying systems [3],
[21]. The approach taken here is to examine the limiting
behavior of the trajectories directly.

In this paper, such invariance principles are further general-
ized to switched NLTV systems. A new problem formulation
and more general criterion to conclude uniform convergence
properties are presented, with not only global attractivity of
a single trajectory but also uniform global attractivity of a
family of solutions. For this purpose, two significant issues
need to be addressed. One is to specify a generalized output
converging condition like (4) for switched NLTV systems. The
other is to describe a novel observability property similar to (5)
for switched NLTV systems, based on the concept of limiting
zeroing-output solutions given in [26].

B. Switched NLTV Systems: Stability Concept

This paper considers the switched NLTV system

ẋ = f(t, x, λ) (6a)
y = h(t, x, λ) (6b)

where t ∈ R≥0, x ∈ Rp, y ∈ Rq , and λ is the Λ-valued
switching signal with Λ being a finite index set; the nonlinear
mappings f : R≥0 × χ → Rp and h : R≥0 × χ → Rq ,
with a nonempty set χ ⊆ Rp × Λ, are the state and output
functions, respectively. Here, following the notation in [14],
[23], a switching signal λ is defined as a piecewise constant
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and right-continuous function with finitely many discontinuous
points in any finite time interval.

Let t0 ≥ 0 and (x, λ) be any pair of signals with
x : [t0,+∞)→ Rp and λ : [t0,+∞)→ Λ being a switching
signal. It is said that (x, λ) is a forward complete solution
pair of (6a) w.r.t. χ if x is locally absolutely continuous,
(x(t), λ(t)) ∈ χ, and the following equality holds:

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ), λ(τ))dτ, ∀t ∈ [t0,+∞). (7)

As in [26], the following notations are used.
• Ini(x) = Ini(λ) = t0 when x and λ are defined on

[t0,+∞).
• χζ = {u ∈ Rp| (u, ζ) ∈ χ} for all ζ ∈ Λ.
• Φ denotes a set of forward complete solution pairs and

Φst = {x| ∃ λ s.t. (x, λ) ∈ Φ},
Φsw = {λ| ∃ x s.t. (x, λ) ∈ Φ}.

• For any function g : R≥0 × χ→ Rq ,

gζ(t, u) = g(t, u, ζ), ∀ζ ∈ Λ, ∀t ∈ R≥0, ∀u ∈ χζ .
To guarantee the existence of solutions and ensure the mea-
surability of the output function, it is always assumed that for
each ζ ∈ Λ, fζ and hζ are Caratheodory functions. We also
assume that χζ is closed for any ζ ∈ Λ.

In this paper, it is assumed that some forward complete
solutions exist. We need to check the stability properties of
these forward complete solutions. To this end, the following
stability properties are adopted [23].

Definition 1: Let Φ be a set of some forward complete
solution pairs (x, λ) of (6a).

1) It is said that Φst is uniformly globally ultimately
bounded (UGUB) if, for any r > 0 there exist T ,
T (r) > 0 and M , M(r) > 0 such that for any
x ∈ Φst and any pair (s, t) of nonnegative real numbers
with ‖x(s)‖ ≤ r and t ≥ s+ T ≥ s ≥ Ini(x), we have
‖x(t)‖ ≤M . If T can be arbitrarily chosen, Φst is said
to be uniformly globally bounded (UGB).

2) It is said that the origin is uniformly Lyapunov stable
(ULS) w.r.t. Φ if, for any ε > 0 there exists δ , δ(ε)
such that for any x ∈ Φst and any pair (s, t) of nonneg-
ative real numbers with ‖x(s)‖ < δ and t ≥ s ≥ Ini(x),
we have ‖x(t)‖ < ε.

3) It is said that the origin is uniformly globally stable
(UGS) w.r.t. Φ when the origin is ULS and Φst is UGB.

4) It is said that the origin is uniformly globally attractive
(UGA) w.r.t. Φ if, for any r > 0 and any ε > 0 there
exists T , T (r, ε) such that for any x ∈ Φst and any
pair (s, t) of nonnegative real numbers with ‖x(s)‖ ≤ r
and t ≥ s+ T ≥ s ≥ Ini(x), we have ‖x(t)‖ < ε.

5) It is said that the origin is uniformly globally asymp-
totically stable (UGAS) w.r.t. Φ if it is UGS and UGA
w.r.t. Φ.

6) It is said that the origin is uniformly globally expo-
nentially stable (UGES) w.r.t. Φ if, there exist a > 0
and b > 0 such that for any x ∈ Φst, we have
‖x(t)‖ ≤ ae−b(t−s)‖x(s)‖ for all t ≥ s ≥ Ini(x).

To generalize the LaSalle invariance principle, the follow-
ing special stability properties relative to a closed set are
described, where the boundedness of solutions on some time
intervals with respect to the Euclidean norm is assumed.

Definition 2: Let Ω ⊆ Rp be a closed set and Φ a set of
some forward complete solution pairs (x, λ) of (6a).

1) It is said that Ω is uniformly ultimately Lyapunov stable
(UULS) w.r.t. Φ and the Euclidean norm if, for any
r > 0 and any ε > 0 there exist T , T (r, ε) and
δ , δ(r, ε) such that for any x ∈ Φst and any pair (s, t)
of nonnegative real numbers with t ≥ s ≥ T + Ini(x),
‖x(τ)‖ ≤ r, ∀τ ≥ s, and ‖x(s)‖Ω < δ, we have
‖x(t)‖Ω < ε. If T can be arbitrarily chosen, it is said
that the origin is uniformly Lyapunov stable (ULS) w.r.t.
Φ and the Euclidean norm.

2) It is said that Ω is uniformly globally attractive (UGA)
w.r.t. Φ and the Euclidean norm if, for any r > 0 and
any ε > 0 there exists T , T (ε, r) > 0 such that for any
x ∈ Φst and any pair (s, t) of nonnegative real numbers
with ‖x(s)‖ ≤ r and t ≥ s+ T ≥ s ≥ Ini(x), we have
‖x(t)‖Ω < ε.

Remark 2: In the statement of the LaSalle invariance prin-
ciple for switched NLTV systems, there exist two measures,
namely, the Euclidean norm ‖ · ‖ and the Ω-norm ‖ · ‖Ω.
The key assumption in the LaSalle invariance principle is
the boundedness of solutions, which is measured in terms
of Euclidean norm. However, the convergence property of
the LaSalle invariance principle is relative to some set Ω.
For example, in the classic result for nonlinear time-invariant
systems, this Ω is the largest invariant set. Therefore, two
norms are used to characterize the stability properties.

C. Limiting Zeroing-Output Solutions

The following definition was employed in [26] in obtaining
a generalized Krasovskii-LaSalle theorem for switched NLTV
systems. The role of such a definition is to describe the
convergence properties of output signals of (6a). It will also
play a key role in defining a suitable observability property in
this paper.

Definition 3: A continuous function x̄ : R→ Rp is said to
be a limiting zeroing-output solution of the switched NLTV
system (6) w.r.t. Φ if, there exist sequences {(xn, λn)} ⊆ Φ
and {tn} ⊆ R≥0 such that the following hold:
• tn ≥ Ini(xn) + 2n.
• {xn(· + tn) : [−n, n] → Rp} converges uniformly to x̄

on every compact subset of R.
• For almost all t ∈ R,

lim
n→+∞

h(t+ tn, xn(t+ tn), λn(t+ tn)) = 0. (8)

This is not a simple property, but observe that capturing
the convergence of output signals in the context of switched
NLTV systems is not trivial, and requires one to go back to
the roots of limits through the consideration of (sub)sequences.
Three sequences are used to reflect the nature of trajectories
in limiting situation. The first one is the initial time constant
sequence {tn}. The second one is the sequence {xn} of state
signals. The last one is the sequence {λn} of switching signals.
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The concept of pairing introduced in [24] is also used in
the sequel.

Definition 4: For a nonempty set X, let g : R≥0×X→ Rq
and ĝ : R≥0 × X → Rq̂ be two functions. The pair (g, ĝ) is
said to be a zeroing pair if, for any time sequence tn → +∞
and any sequence {un} ⊆ X, the following holds:

lim
n→+∞

g(tn, un) = 0 =⇒ lim
n→+∞

ĝ(tn, un) = 0. (9)

Remark 3: If two time-varying functions are a zeroing pair,
they share a similar limiting behaviors though their transient
behaviors might not be the same. For example, (e−t + x, x)
is a zeroing pair. This concept will provide a flexibility in
checking the limiting behaviors of switched NTLV systems.

Remark 4: Zeroing pairs can be easily found for time-
invariant functions. Actually, it can be verified that if X is
compact, and g0 : X → Rq and ĝ0 : X → Rq̂ are time-
invariant and continuous, then (g0, ĝ0) is a zeroing pair if and
only if for any u ∈ X , g0(u) = 0 =⇒ ĝ0(u) = 0.

Using the notion of zeroing pairs, one can construct a
switched system with new dynamics and new output instead
of the original switched system (6), so that the limiting
behaviors of the new switched NLTV system can represent the
limiting behaviors of the original system when the following
assumption holds:

Assumption 1: There exist functions f̂ : R≥0 × χ → Rp
and ĥ : R≥0 × χ → Rq̂ such that for any ζ ∈ Λ,
f̂ζ , ĥζ ∈ CC(χζ), and for any r > 0, (hζ |χ̂rζ , (fζ−f̂ζ)|χ̂rζ ) and
(hζ |χ̂rζ , ĥζ |χ̂rζ ) are both zeroing pairs, where χ̂rζ = R≥0×{u ∈
χζ | ‖u‖ ≤ r}.

The following proposition holds, for a proof see [26, The-
orem 2].

Proposition 2: Consider the switched NLTV system (6),
where fζ ∈ CB(χζ), for all ζ ∈ Λ. Suppose Assumption
1 holds. Let Φ be a set of some forward complete solution
pairs of (6a). Then, every bounded limiting zeroing-output
solution x̄ : R→ Rp satisfies the following conditions where
{tn} ⊆ R≥0 and {λn} ⊆ Φsw with tn ≥ Ini(λn) + 2n:

a) Define

Λ̄(t) = {ζ ∈ Λ| ζ = λn(t+ tn) for infinitely many n}.
Then, for any t ∈ R,

x̄(t) ∈
⋂

ζ∈Λ̄(t)

χζ . (10)

b) For all t ∈ R,

x̄(t) = x̄(0)

+ lim
n→+∞

∫ t

0

f̂(τ + tn, x̄(τ), λn(τ + tn))dτ.

(11)

c) For almost all t ∈ R,

lim
n→+∞

ĥ(t+ tn, x̄(t), λn(t+ tn)) = 0. (12)

Proposition 2 indicates that under Assumption 1, a limiting
zeroing-output solution of the system (6) can be represented by
a limiting zeroing-output solution of another system (f̂ , ĥ). As

such a technique generates a new system by changing (f, h) to
(f̂ , ĥ), this technique is called changing dynamics and output.

Remark 5: To capture the limiting behavior of a switched
time-varying system, we need to take care of two “time-
varying components”, namely, the time variable t and the
switching signal λ appeared in the system function f(t, x, λ).
The idea behind Proposition 2 is to simplify the original
system and output functions simultaneously under the zeroing
(original) output condition. One of important cases is that
the (changed) new system function f̂ is independent to the
switching signal, i.e., f̂ζ = fc for all ζ ∈ Λ. In this case,
ẋ = fc(t, x) is called a common zeroing-output system, and
the check of detectability and observability becomes much
easier because the effect of switching in the state equation
(6a) has been removed as discussed in [25]. In this paper,
this idea is used to reach consensus for nonholonomic mobile
robots.

Remark 6: In general, to generate new systems as described
in Proposition 2, two limiting processes are necessary to deal
with two time-varying components. Observe that sequences
{tn} ⊆ R≥0 and λn ⊆ Φsw are involved in Proposition 2.
For the time sequence {tn}, one may consider the so-called
limiting functions[

f̄ζ(t, u)
h̄ζ(t, u)

]
= lim
n→+∞

[
f̂ζ(t+ tn, u)

ĥζ(t+ tn, u)

]
, ∀u ∈ χζ

for almost all t ∈ R to replace the function f̂ζ and ĥζ
in (11) and (12), respectively [21], [22], [23]. As for the
sequence {λn} of switching signals, the compactness property
of the space L∞(R), which consists of all essentially bounded
functions, can be employed to establish its weak* convergence
[39, Theorem 3.16]. Replacing the original sequence by its
subsequence, we conclude that there exist (limiting) functions
λ̄ζ : R→ [0, 1], ζ ∈ Λ, satisfying

lim
n→+∞

∫ t

0

λζn(τ + tn)γ(τ)dτ =

∫ t

0

λ̄ζ(τ)γ(τ)dτ, ∀t ∈ R

for any Lebesgue integrable function γ, where for any switch-
ing signal λ, λζ : R → {0, 1}, ζ ∈ Λ, are the indicator
functions, i.e.,

λζ(τ) =

{
1, if λ(τ) = ζ
0, if λ(τ) 6= ζ

. (13)

Notice that the limiting function λ̄ζ , ζ ∈ Λ, may not be a
proper switching signal of itself. However, it has the property
that

∑
ζ∈Λ λ̄

ζ(t) = 1 for all t ∈ R. Now observe that

f̂(t, u, λ(t)) =
∑
ζ∈Λ

λζ(t)f̂ζ(t, u), ∀t ∈ R≥0, ∀u ∈ χλ(t).

By taking the limit, (11) becomes

x̄(t) = x̄(0) + lim
n→+∞

∫ t

0

∑
ζ∈Λ

λζn(τ + tn)f̂ζ(τ + tn, x̄(τ))dτ

= x̄(0) + lim
n→∞

∫ t

0

∑
ζ∈Λ

λζn(τ + tn)f̄ζ(τ, x̄(τ))dτ

= x̄(0) +

∫ t

0

∑
ζ∈Λ

λ̄ζ(τ)f̄ζ(τ, x̄(τ))dτ.
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That is to say that x̄ is a solution of ˙̄x =
∑
ζ∈Λ λ̄

ζ(t)f̄ζ(t, x̄).
Similarly, (12) can be replaced by

∑
ζ∈Λ λ̄

ζ(t)h̄ζ(t, x̄(t)) = 0
for almost all t ∈ R, see [5], [33], [38] for some discussion
on this.

III. A GENERALIZED INVARIANCE PRINCIPLE FOR
SWITCHED NLTV SYSTEMS

In this section, the concept of limiting zeroing-output solu-
tion is used to define an observability property relative to a
closed set Ω for switched NLTV systems. Then, a generalized
invariance principle is developed to guarantee uniform global
attractivity of Ω, with three special cases to relax the uniform
convergence of output signals. The proofs for the main results
are presented in the Appendices.

A. Weak Observability and Generalized Invariance Principle

Definition 5: It is said that Ω is weakly observable (WO)
w.r.t. Φ if, every bounded limiting zeroing-output solution
x̄ : R→ Rp of the system (6) w.r.t. Φ satisfies x̄(0) ∈ Ω.

To guarantee the convergence behavior of the switched
NLTV system (6a), the following generalized convergence
condition is needed. Roughly speaking, it says that if x is
bounded, and bounded away from Ω at some sufficiently large
time instant s′, then there exists another sufficiently large time
instant s such that x is also bounded away from Ω at this
time instant s and yields a sufficiently small output signal on
a sufficiently large time interval centered at s, simultaneously.
This, together with WO, implies UGA of Ω as shown in the
below Theorem 1 (see Appendix A for the proof).

Assumption 2: For any ε > 0 and any r > 0, there exist
T , T (ε, r) > 0, δ , δ(ε, r) > 0, and a function α : N→ N,
which may depend on ε and r, such that for any n ∈ N and
any t ≥ T , if (x, λ) ∈ Φ with
• ‖x(τ)‖ ≤ r, for all τ ≥ t+ Ini(x), and
• ‖x(s′)‖Ω ≥ ε for some s′ ≥ α(n) + t+ Ini(x),

we have ‖x(s)‖Ω ≥ δ and∫ s+n

s−n
‖h(τ, x(t), λ(t))‖2dτ ≤ 1

n
, (14)

for some s ≥ 2n+ t+ Ini(x).
Theorem 1: Consider a closed set Ω ⊆ Rp and the switched

NLTV system (6) where fζ ∈ CB(χζ) for all ζ ∈ Λ. Let Φ
denote a set of some forward complete solution pairs (x, λ) of
(6a). Suppose Assumption 2 holds, Ω is WO w.r.t. Φ, and Φst

is UGUB. Then, Ω is UGA w.r.t. Φ and the Euclidean norm.

B. Some Special Cases

In Theorem 1, the uniform convergence property of output
signals are characterized by Assumption 2, which is very gen-
eral. Sometimes, stronger convergence conditions of the output
signals do exist in applications. This subsection provides
several simplified results of Theorem 1 when Assumption 2
is replaced by other stronger but simpler output convergence
assumptions.

Assumption 3: There exists T0 > 0 such that the following
equality holds:

lim
t→+∞

∫ t+T0

t

‖h(τ, x(τ), λ(τ))‖2dτ = 0. (15)

Obviously, Assumption 3 is much simpler than Assumption
2. It is more like the concept of single trajectory used in the
classic LaSalle invariant principle, which satisfies Assumption
3. This assumption leads to a convergence property with
respect to the set Ω as stated in Corollary 1 (see the proof
in Appendix B).

Corollary 1: Consider a closed set Ω ⊆ Rp and the switched
system (6) where fζ ∈ CB(χζ) for all ζ ∈ Λ. Let (x, λ) be a
forward complete solution pair of (6a). Suppose Assumption
3 holds, Ω is WO w.r.t. {(x, λ)}, and x is bounded. Then,
limt→+∞ ‖x(t)‖Ω = 0, i.e., x(t)→ Ω as t→∞.

Remark 7: Here, we would like to mention that Corollary 1
(and hence Theorem 1) can be viewed as a generalized LaSalle
invariance principle (and an integral invariance principle) in
switched NLTV systems. Actually, consider the special case
that χ = Rp×Λ with Λ being a singleton (without switching).
Suppose f and h are both time-invariant and continuous. By
choosing f̂ = f and ĥ = h, the limiting integral equation (11)
in Section II-C is equivalent to saying that ˙̄x = f(x̄) and the
zeroing-output equation (12) is reduced to h(x̄(t)) = 0 for
almost all t in R. Since h is continuous, h(x̄(t)) = 0 for all
t ∈ R [19]. The observability property stated in Section II-A
(see (5)) then implies weak observability. Thus, the integral
invariance principle (Proposition 1) follows from Corollary 1.

Another special case of Assumption 2 is represented by
Assumption 4 under UULS w.r.t. Φ and Euclidean norm,
which is a slightly modified version of [26, Assumption 1].

Assumption 4: For any 0 < ε < 1, there exist T , T (ε) > 0
and M , M(ε) > 0 such that for any (x, λ) ∈ Φ and any
(s, t) with Ini(x)+T ≤ s ≤ t and ‖x(τ)‖ ≤ 1/ε, ∀s ≤ τ ≤ t,
the following integral inequality holds:∫ t

s

‖h(τ, x(τ), λ(τ))‖2dτ ≤M + ε(t− s). (16)

Assumption 4 itself is not sufficient to guarantee Assump-
tion 2. However, for the closed set Ω that is UULS w.r.t. Φ and
the Euclidean norm, Assumption 4 does imply Assumption
2, and hence leads to the following corollary. Its proof is
presented in Appendix C.

Corollary 2: Consider a closed set Ω ⊆ Rp and the switched
NLTV system (6) where fζ ∈ CB(χζ) for all ζ ∈ Λ. Let Φ
denote a set of some forward complete solution pairs (x, λ)
of (6a). Suppose Assumption 4 holds, Ω is WO w.r.t. Φ, and
Φst is UGUB. If Ω is UULS w.r.t. Φ and the Euclidean norm,
then it is UGA w.r.t. Φ and the Euclidean norm.

In practice, to verify Assumptions 3 and 4, one may resort
to the following simple and useful bounded-output-energy
condition:

Assumption 5: The following integral inequality holds:∫ +∞

s

‖h(τ, x(τ), λ(τ))‖2dτ ≤ µ(x(s)), ∀s ≥ Ini(x) (17)

for some continuous function µ : Rp → R≥0.
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Obviously, (17) implies (15) because the Cauchy condition
holds. We can also show that (17) implies (16). In fact,
For any 0 < ε < 1, let T > 0 be any given and
M = max‖u‖≤1/ε µ(u) + 1. Then, 0 < M < +∞. Thus,
for any (x, λ) ∈ Φ and any (s, t) with Ini(x) + T ≤ s ≤ t
and ‖x(τ)‖ ≤ 1/ε, ∀s ≤ τ ≤ t,∫ t

s

‖h(τ, x(τ), λ(τ))‖2dτ ≤
∫ +∞

s

‖h(τ, x(τ), λ(τ))‖2dτ

≤ µ(x(s)) ≤M.

Thus, (16) holds. Therefore, according to Corollaries 1 and 2,
the following can be deduced.

Proposition 3: Consider a closed set Ω ⊆ Rp and the
switched NLTV system (6) where fζ ∈ CB(χζ) for all ζ ∈ Λ.
Let Φ denote a set of some forward complete solution pairs
(x, λ) of (6a). Suppose Assumption 5 holds. When Ω is WO
w.r.t. Φ, and Φst is UGB, x(t) → Ω as t → ∞ for any
x ∈ Φst. In addition, if Ω is ULS w.r.t. Φ and the Euclidean
norm, then it is UGA w.r.t. Φ and the Euclidean norm.

Remark 8: As discussed in Section II-A, (17) in Assumption
5 usually comes from the existence of a weak Lyapunov func-
tion V . This leads to a virtual output chosen as h = (−V̇ )1/2.
To guarantee the attractivity of bounded solutions to a closed
set Ω, it remains to check weak observability of Ω [22], [23],
[25], [26].

In general, the set Ω can contain equilibria and limit cycles.
Moreover, all the results (Theorem 1, and Corollaries 1 and
2) can be re-stated when the set Ω only contains the origin.
In particular, as a special case, Ω = {0} will induce UGAS
of the origin, giving rise to the following corollary.

Corollary 3: Consider the switched NLTV system (6) where
fζ ∈ CB(χζ) for all ζ ∈ Λ. Let Φ denote a set of
some forward complete solution pairs (x, λ) of (6a). Suppose
Assumption 5 holds and the origin is WO w.r.t. Φ. If the origin
is UGS w.r.t. Φ, then it is UGAS w.r.t. Φ.

IV. APPLICATION TO CONSENSUS OF NONHOLONOMIC
MOBILE ROBOTS

By way of example, this section shows how to use the
results to study the consensus of nonholonomic mobile robots
subject to jointly connected network topologies. Moreover,
we can use the tools constructively to develop a distributed
control law to enforce consensus without requiring dwell-time
conditions for the switching network graphs.

A. Problem Statement

Consider a group of N nonholonomic mobile robots mod-
elled in the following simplified form, see [34],

ẋi = cos(θi)vi,

ẏi = sin(θi)vi,

θ̇i = wi, 1 ≤ i ≤ N (18)

where [xi, yi]
T ∈ R2 represents the position of the i-th agent

on a fixed frame, θi ∈ R represents the pose (i.e., the angle
from the horizontal axis) of the i-th agent, and [vi, wi]

T ∈

R2 represent the forward and angular velocities respectively,
which can be viewed as the control input of the i-th agent.

The network topology among these N agents is modeled
by a switching undirect graph G(ζ) = (V, E(ζ)), where
V = {1, . . . , N} represents the N agents, E(ζ) ⊆ V × V ,
and ζ ∈ Λ with Λ representing all possible graphs which are
not necessary to be connected. For a Λ-valued switching signal
λ : R≥0 → Λ, (j, i) ∈ E(λ(t)) if and only if the control of the
i-th agent can make use of the information of the j-th agent
for feedback at the time instant t.

For any τa > 0 and any switching signal λ, the τa-joint
graph over a time interval [t1, t2) is defined as

Gτaλ ([t1, t2)) =

V, ⋃
ζ∈λτa [t1,t2)

E(ζ)

 (19)

where

λτa [t1, t2) =

{
ζ ∈ Λ

∣∣∣∣ ∫ t2

t1

λζ(τ)dτ ≥ τa
}

(20)

with λζ(·) being the indicator function as in (13). In this paper,
the switching graph G(λ(t)) is assumed to satisfy the following
generalized uniformly jointly connected (GUJC) condition.

Assumption 6: There exists a constant pair (τa, T ) with T ≥
τa > 0 such that for any λ ∈ Φsw and any t ∈ R≥0, the τa-
joint graph Gτaλ ([t, t + T )) is connected for any t ∈ R≥0, in
the sense that it contains a spanning tree.

The leaderless consensus problem can be formulated as
follows, where, without loss of generality, the initial time of
the state and the switching signal is always assumed to be
zero.

Problem 1 (Leaderless Consensus Problem): Consider the
system (18). Find a distributed controller such that for any
initial states xi(0), yi(0), θi(0), i = 1, . . . , N , all solutions of
the closed-loop system exist and are bounded for any t ∈ R≥0

with

lim
t→∞

([xi(t), yi(t), θi(t)]− [xj(t), yj(t), θj(t)]) = 0 (21)

for all i 6= j, i, j = 1, . . . , N .
Remark 9: The integral

∫ t2
t1
λζ(τ)dτ represents the ac-

cumulative length of all subintervals of [t1, t2), in which
λ(t) = ζ. Actually, given any time interval [t1, t2), denote
by tk1

, tk2
, . . . , tkl the switching time instants in this interval,

and tk0 , t1, tkl+1
, t2. Then,∫ t2

t1

λζ(τ)dτ =

l∑
i=0,λ(tki )=ζ

(tki+1
− tki). (22)

Thus, (19) means that, for any switching mode ζ, the accumu-
lative length of all subintervals of [t1, t2) in which λ(t) = ζ
should be lower bounded by some positive constant τa.

Remark 10: It is of interest to relate Assumption 6 to the
standard dwell-time condition, which together with uniformly
jointly connected (UJC) condition is frequently used in the
recent literature, see [16], [28], [30], [37], [42], [43], [45], to
name just a few. The dwell-time condition requires that each
admissible switching signal ζ ∈ Λ has si+1 − si ≥ τd for
some fixed constant τd, where si and si+1 are two sequenced
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switching time instants of λ(t). According to (22), if t2−t1 ≥
2τd and λ(t) = ζ for some t1 + τd ≤ t ≤ t2 − τd, then
ζ ∈ λτd [t1, t2). Notice that, under the UJC condition, there
exists T ′ > 0 such that the joint graph G[t+ τd, t+ τd + T ′)
defined as (V,∪t∈[t+τd,t+τd+T ′)E(λ(t))) is connected for any
t ∈ R≥0. By the previous discussion, Gτdλ [t, t + 2τd + T ′)
contains G[t+ τd, t+ τd+T ′), and hence Gτdλ [t, t+ 2τd+T ′)
is also connected. This means the GUJC condition is weaker
than the UJC condition because no dwell-time conditions are
assumed in the GUJC condition, see also the simulation result
in Section IV-E for such a situation.

Remark 11: It is of interest to mention that some other prac-
tical cooperative control problems can be directly converted to
Problem 1. For example, replacing (21) with the objective

lim
t→∞

xi(t)yi(t)
θi(t)

−
xj(t)yj(t)
θj(t)

 =

dxi − dxjdyi − dyj
0


for some pre-desired targets [dxi, dyi]

T ∈ R2, i = 1, . . . , N ,
leads to the so-called formation control problem for nonholo-
nomic mobile robots (18), see [29], [31], [46]. Such a problem
can be easily converted to Problem 1 with new state valuables
[x′i, y

′
i, θ
′
i]

T where x′i = xi − dxi, y′i = yi − dyi, and θ′i = θi.

B. Controller Design

Choose T0 > 2T and a continuous function c : [0,−T +

T0/2) → R with
∫ −T+T0/2

0
c(τ)dτ 6= kπ, k ∈ Z, where T

is the constant given in Assumption 6. Let p : R → R be a
piecewise continuous periodic function with the period T0, for
which on the interval [0, T0),

p(t) =


0, t ∈ [0, T ),
c(t− T ), t ∈ [T, T0/2),
0, t ∈ [T0/2, T + T0/2),
−c(t− T − T0/2), t ∈ [T + T0/2, T0).

(23)

Notice that p(t) has an interesting property that∫ T0

0

p(τ)dτ = 0. (24)

Remark 12: Though T0 is assumed to be strictly larger than
2T , it does not mean that T should be known exactly. In
practice, one can use an open loop estimation for getting a
sufficiently large upper bound T ′ > T . Then, T0 ≥ 2T ′ will
be the one we need. For the special case that G(ζ) is connected
for all ζ ∈ Λ, T ′ can be chosen arbitrarily small, so is T0.

For any ζ ∈ Λ, let L(ζ) = [lij(ζ)] ∈ RN×N be the
Laplacian matrix of the graph G(ζ), where lij(ζ) = −aij(ζ),
i 6= j, and lii(ζ) =

∑N
j=1 aij(ζ). Here for all ζ ∈ Λ, aij(ζ)

satisfy aii(ζ) = 0, and aij(ζ) = aji(ζ) > 0 if and only
if (j, i) ∈ E(ζ). Notice that L(ζ) is symmetric and positive
semi-definite for all ζ ∈ Λ [16], [36], [37].

Then, a distributed controller can be designed as follows:

vi = −kv
N∑
j=1

aij(λ(t))
[
cos(θi) sin(θi)

] [xi − xj
yi − yj

]
,

(25a)

wi = p(t)− kw
N∑
j=1

aij(λ(t))(θi − θj) (25b)

where kv, kw > 0 can be chosen arbitrarily. With this dis-
tributed controller (25), Problem 1 can be solved as stated in
the following theorem.

Theorem 2: Under Assumption 6, the distributed controller
(25) solves Problem 1.

The proof will be given in the following two subsections.
Specifically, in Section IV-C, the consensusability of the
system (18) is converted into the stability analysis of a closed
set that is called the consensus subspace. Then, uniform global
attractivity of the consensus subspace is guaranteed employing
Proposition 3 based on the concept of weak observability.

Remark 13: Like [31], in (25), the angle information of each
agent is assumed to be known by itself. In practice, the angle
information can be measured by using the gyroscope.

Remark 14: Notice that the GUJC switching network
topologies strictly include the UJC switching network topolo-
gies, hence Assumption 6 includes also the static network
topologies and the switching network topologies with every
switching graph being connected.

C. Coordinate Transformation

To depict the closed-loop system, a new matrix is needed
based on the graph Lapalacian matrix L(λ(t)). Given any ζ ∈
Λ and any B = [bij ] ∈ RN×N , let L(ζ,B) ∈ RN×N have the
(i, i) entry being

∑N
j=1 aij(ζ)bij and the (i, j), i 6= j, entry

being −aij(ζ)bij . Regarding this matrix, it holds that L(ζ) =
L(ζ, 1N1T

N ). Moreover, let L0 = I − (1/N)1N1T
N , which can

be viewed as a special case of L(ζ) with aij(ζ) = 1/N for
all i 6= j.

In the body frame, consider the following transformation[
x̃i
ỹi

]
=

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

] [
xi
yi

]
. (26)

Let x = [x̃1, . . . , x̃N ]T, y = [ỹ1, . . . , ỹN ]T, θ = [θ1, . . . , θN ]T,
and B∗ = [dcos0(θi − θj)x̃j + dsin0(θi − θj)ỹj ] where

dcos0(s) =

{
cos(s)−1

s , if s 6= 0
0, if s = 0

,

dsin0(s) =

{
sin(s)
s , if s 6= 0

1, if s = 0
.

Then, the closed-loop system composed of (18) and (25) can
be written into the following compact form

ẋ = p(t)y − kvL(λ(t))x+ L(λ(t), kvB∗ − kwy1T
N )θ,

ẏ = −p(t)x+ L(λ(t), kwx1T
N )θ,

θ̇ = p(t)1N − kwL(λ(t))θ. (27)
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In the rest of this section, Φ denotes the family of all
solution pairs ([xT, yT, θT]T, λ) of (27) such that Assumption
6 holds. The closed set

Ω =
{

[s1T
N , t1

T
N , l1

T
N ]T | s, t, l ∈ R

}
(28)

is called the consensus subspace. The following result trans-
lates the analysis of leaderless consensus into the analysis of
an equivalent invariance problem.

Lemma 1: Consider the closed-loop system (27). Suppose
Assumption 6 holds, Φst is UGB, and Ω is UGA w.r.t. Φ
and the Euclidean norm. Then, Problem 1 is solved by the
distributed controller (25).
Proof: Since Φst is UGB, all solution pairs ([xT, yT, θT]T, λ)
of (27) can be assumed to be forward complete based on
the maximum extension theorem of solutions [13]. Since the
transformation (26) is invertible and preserves the Euclidean
norm, all solutions of the closed-loop system with respect o the
original fixed frame are also forward complete and uniformly
global bounded. To solve Problem 1, it remains to verify
equation (21).

By the Gram-Schmidt orthogonalization theorem [15],

‖[xT, yT, θT]T‖Ω

=

√∥∥∥∥x− 1T
Nx

N
1N

∥∥∥∥2

+

∥∥∥∥y − 1T
Ny

N
1N

∥∥∥∥2

+

∥∥∥∥θ − 1T
Nθ

N
1N

∥∥∥∥2

.

(29)

If Ω is UGA w.r.t. Φ and the Euclidean norm, then for i =
1, . . . , N ,

lim
t→∞

(
[x̃i(t), ỹi(t), θi(t)]− [

1T
Nx(t)

N
,

1T
Ny(t)

N
,

1T
Nθ(t)

N
]

)
= 0

which in turn implies

lim
t→∞

([x̃i(t), ỹi(t), θi(t)]− [x̃j(t), ỹj(t), θj(t)]) = 0.

By (26), the following can be deduced:

lim
t→∞

([
xi(t)
yi(t)

]
−
[
xj(t)
yj(t)

])
= lim
t→∞

([
cos(θi)− cos(θj) − sin(θi) + sin(θj)
sin(θi)− sin(θj) cos(θi)− cos(θj)

] [
x̃i(t)
ỹi(t)

]
+

[
cos(θj) − sin(θj)
sin(θj) cos(θj)

] [
x̃i(t)− x̃j(t)
ỹi(t)− ỹj(t)

])
= 0.

This completes the proof. �
Lemma 1 has converted the leaderless consensus of the

system (18) described in Problem 1 into the analysis of
uniform global attractivity of the consensus subspace Ω.

D. Uniform Global Attractivity of Ω

In view of the third equation of (27), letting θ̂ = θ −
(1T
Nθ/N)1N , one gets

˙̂
θ = −kwL(λ(t))θ̂. (30)

Uniform global attractivity of Ω w.r.t. Φ and the Euclidean
norm can then be achieved by the following five steps:
• Step 1 shows that θ̂ = 0 is UGES, which is the key to

the rest.

• Step 2 shows that Φst is UGB.
• Step 3 shows that Ω is ULS w.r.t. Φ and the Euclidean

norm.
• Step 4 shows that bounded-output-energy condition (17)

holds.
• Step 5 shows that Ω is WO w.r.t. Φ.

As a consequence of Proposition 3, uniform global attractivity
of Ω w.r.t. Φ and the Euclidean norm can be obtained. Based
on Step 2 and Lemma 1, the proof of Theorem 2 is therefore
complete.

To make the overall process more digestible, a number of
technical lemmas are introduced, the proofs of which may be
found in the Appendix to the paper.

Lemma 2: Consider three functions αi : [s,+∞) → R≥0,
i = 1, 2, 3, for some s ∈ R. Suppose that α1 is locally
absolutely continuous, α2 is measurable, and α3 is Lebesgue
integrable. If

α̇1(t) ≤ −α2(t) + α3(t)(1 + α1(t)) (31)

for almost all t ∈ [s,+∞), then, for all t ≥ s, the following
inequalities hold:

α1(t) ≤ e
∫ t
s
α3(τ)dτ (1 + α1(s))− 1, (32)∫ +∞

s

α2(τ)dτ ≤ β(s)eβ(s) + (1 + β(s)eβ(s))α1(s) (33)

where 0 ≤ β(s) ,
∫ +∞
s

α3(τ)dτ < +∞.
Lemma 3: Let L0 = I − (1/N)1N1T

N . For any ζ ∈ Λ and
any B = [bij ] ∈ RN×N , the following hold:

1) ‖L0‖ ≤ 1.
2) L0L(ζ) = L(ζ) and L(ζ,B)L0 = L(ζ,B). Particularly,

L2
0 = L0.

3) uTL(ζ, v1T
N ) = vTL(ζ, u1T

N ), for any u, v ∈ RN .
4) ‖L(ζ,B)‖ ≤

√
N‖L(ζ)‖ρ(B) where ρ(B) =

(
∑N
i=1

∑N
j=1,j 6=i b

2
ij)

1/2.
Lemma 4: Under Assumption 6, there exists ε > 0 such that

for any λ ∈ Φsw, the inequality

uT

[∫ t+T

t

L(λ(τ))dτ

]
u ≥ ε, ∀t ∈ R≥0 (34)

holds for any unit vector u ∈ RN satisfying 1T
Nu = 0 where

T is the constant given in Assumption 6.
Step 1 – Uniform global exponential stability of θ̂ = 0:

Consider a positive definite and radially unbounded function
W = ‖θ̂‖2. Then, the time derivative of W along the
trajectories of the system (30), satisfy that

Ẇ = −2kwθ̂
TL(λ(t))θ̂ ≤ 0. (35)

So θ̂ = 0 is UGS [23]. Define a virtual output h1(θ̂, ζ) =
(2kwθ̂

TL(ζ)θ̂)1/2. Employing Lemma 2 with α1(t) =
W (θ̂(t)), α2(t) = |h1(θ̂(t), λ(t))|2, and α3(t) = 0, we have∫ +∞

s

|h1(θ̂(τ), λ(τ))|2dτ ≤ ‖θ̂(s)‖2, ∀s ≥ 0

which results in (17).
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Observe that Assumption 1 holds with f̂ = 0 · 1N and
ĥ1(θ̂, ζ) = L(ζ)θ̂. According to Proposition 2, the system
(30) can then be changed as

˙̂
θ = 0, ĥ1 = L(λ(t))θ̂. (36)

Let ¯̂
θ : R → RN be any bounded limiting zeroing-

output solution. Then, ¯̂
θ ≡ u1 is a constant function and

limn→∞ L(λn(t + tn))u1 = 0 for almost all t in R, some
{tn} ⊆ R≥0 and {λn} ⊆ Φsw with tn ≥ 2n for all n ∈ N.
Notice that θ̂ = L0θ. Since 1T

N θ̂ = 0, we have 1T
Nu1 = 0 in

view of (10) with χζ = {v ∈ RN | 1T
Nv = 0} for all ζ ∈ Λ. If

u1 6= 0, according to Lemma 4,

ε ≤ lim
n→+∞

uT
1

‖u1‖

(∫ tn+T

tn

L(λn(τ))dτ

)
u1

‖u1‖

=
1

‖u1‖2
uT

1

(∫ T

0

lim
n→+∞

L(λn(τ + tn))u1dτ

)
= 0

reaching a contradiction. So ¯̂
θ ≡ 0, and hence, θ̂ = 0 is WO

w.r.t. Φ̂ = {(θ̂, λ)} where θ̂ is a complete solution of (30) and
λ is in Φsw. From Corollary 3, θ̂ = 0 is UGAS. Furthermore,
since the system (30) is linear, the so-called scaling invariant
property holds. Hence, θ̂ = 0 is UGES [23, Lemma 1], i.e.,
there exist a > 0 and b > 0 such that

‖θ̂(t)‖ ≤ ae−b(t−s)‖θ̂(s)‖, ∀ t ≥ s ≥ 0. (37)

This completes Step 1.
Step 2 – Uniform global boundness of Φst: By Lemma 3

and due to θ̂ = L0θ,

‖θ̂(t)‖ ≤ ‖θ(t)‖, ∀ t ∈ R≥0. (38)

By the mean value theorem, |dcos0(s)| ≤ 1 and |dsin0(s)| ≤ 1
for any s ∈ R. Based on the Cauchy inequality, the following
holds:

ρ(B∗) ≤
√

2(

N∑
i=1

N∑
j=1,j 6=i

(dcos2
0(θi − θj)x̃2

j + dsin2
0(θi − θj)ỹ2

j ))
1
2

≤
√

2(

N∑
i=1

(‖x‖2 + ‖y‖2))
1
2 =
√

2N(‖x‖2 + ‖y‖2)
1
2 . (39)

With a Lyapunov-like function U = ‖x(t)‖2 + ‖y(t)‖2, the
time derivative of U satisfies

U̇(t) = −2kvx
T(t)L(λ(t))x(t) + 2kvx

T(t)L(λ(t), B∗)θ̂(t)

≤ 2kv
√
N‖L(λ(t))‖‖θ̂(t)‖‖x(t)‖ρ(B∗)

≤ ãe−b(t−s)‖θ(s)‖(1 + U(t)) (40)

with ã = 2
√

2aNkv maxζ∈Λ ‖L(ζ)‖, where Lemma 3 and
(37) - (39) were used. Employing Lemma 2 with α1(t) =
U(t), α2(t) = 0, and α3(t) = ãe−b(t−s)‖θ(s)‖ gives us that

U(t) ≤ F 2
1 (x(s), y(s), θ(s)) (41)

for any t ≥ s ≥ 0, where F1(x, y, θ) = e
ã‖θ‖

2b (1+x2 +y2)1/2.

Notice that 1T
N θ̇(t) = Np(t). Then, 1T

Nθ(t) = 1T
Nθ(s) +

N
∫ t
s
p(τ)dτ for any t ≥ s ≥ 0. This, together with (24),

(37), and (38), gives us that

‖θ(t)‖ ≤ ‖θ̂(t)‖+

∥∥∥∥1T
Nθ(t)

N
1N

∥∥∥∥
≤ a‖θ̂(s)‖+

1√
N

(
|1T
Nθ(s)|+

∣∣∣∣N ∫ t

s

p(τ)dτ

∣∣∣∣)
≤ F2(θ(s)) (42)

for any t ≥ s ≥ 0, where F2(θ) = (a + 1)‖θ‖ +
√
N∫ T0

0
|p(τ)|dτ .

Now (41) and (42) lead to

‖[xT(t), yT(t), θT(t)]T‖ =
(
U(t) + ‖θ(t)‖2

) 1
2 ≤ F (s)

for any t ≥ s ≥ 0 where F (s) = (F 2
1 (x(s), y(s), θ(s)) +

F 2
2 (θ(s)))1/2. Thus, Φst is UGB. This completes Step 2.
Step 3 – Uniform Lyapunov stability of Ω: Similar to (39),

max{ρ(x1T
N ), ρ(y1T

N )} ≤
√

2N(‖x‖2 + ‖y‖2)
1
2 . (43)

Notice that for any t ≥ s ≥ 0,

max{‖L(λ(t), kvB∗ − kwy1T
N )‖, ‖L(λ(t), kwx(t)1T

N )‖}
≤ N 1

2 ‖L(λ(t))‖
·max{kvρ(B∗) + kwρ(y(t)1T

N ), kwρ(x(t)1T
N )}

≤
√

2N(kv + kw) max
ζ∈Λ
‖L(ζ)‖F1(x(s), y(s), θ(s)) (44)

where Lemma 3 and (37), (39), (41), (43) were used.
Consider a Lyapunov like function V =
‖[xT(t), yT(t), θT(t)]T‖2Ω. By (29), V = ‖L0x(t)‖2 +
‖L0y(t)‖2 + ‖L0θ(t)‖2. For any r > 0 and any t ≥ s ≥ 0
with ‖[xT(s), yT(s), θT(s)]T‖ ≤ r, the time derivative of V
satisfies that

V̇ (t) = 2p(t)xT(t)L0y(t)− 2p(t)yT(t)L0x(t)

− 2kvx
T(t)L(λ(t))x(t)− 2kwθ̂

T(t)L(λ(t))θ̂(t)

+ 2(L0x(t))TL(λ(t), kvB∗ − kwy1T
N )θ̂(t)

+ 2(L0y(t))TL(λ(t), kwx(t)1T
N )θ̂(t)

≤ ¯̄a(r)V
1
2 (s)e−b(t−s)(1 + V (t))

with ¯̄a(r) = 2
√

2aN(kv+kw) maxζ∈Λ ‖L(ζ)‖e ãr2b (1+r2)
1
2 ≥

0, where Lemma 3 and (37), (38), (44) were used. Employing
Lemma 2 with α1(t) = V (t), α2(t) = 0, and α3(t) =
¯̄a(r)V 1/2(s)e−b(t−s) gives us that

V (t) ≤ e
¯̄a(r)
b V

1
2 (s)(1 + V (s))− 1

for any r > 0 and any t ≥ s ≥ 0 with
‖[xT(s), yT(s), θT(s)]T‖ ≤ r.

Notice that liml→0+(e¯̄a(r)l/b(1 + l2)− 1)1/2 = 0. Then, by
continuity, for any ε > 0, there exists δ = δ(r, ε) > 0 such
that 0 ≤ (e¯̄a(r)l/b(1 + l2) − 1)1/2 < ε, for any 0 ≤ l < δ.
Thus, for any t ≥ s ≥ 0, if ‖[xT(s), yT(s), θT(s)]T‖Ω < δ
and ‖[xT(τ), yT(τ), θT(τ)]T‖ ≤ r, for all τ ≥ s, then
‖[xT(t), yT(t), θT(t)]T‖Ω < ε, for any t ≥ s ≥ 0. which shows
that Ω is ULS w.r.t. Φ and the Euclidean norm. This completes
Step 3.
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Step 4 – Bounded-output-energy condition: Define the vir-
tual output h(x, θ, ζ) = [(2kvx

TL(ζ)x)1/2, ‖L0θ‖]T. By (37),
(38), (41), and the last inequality of (40),

‖2kvxT(t)L(λ(t), B∗)θ̂(t)‖ ≤
ã‖θ(s)‖(1 + F 2

1 (x(s), y(s), θ(s)))e−b(t−s). (45)

It follows that∫ t

s

‖h(x(τ), θ(τ), λ(τ))‖2dτ

=

∫ t

s

2kwx
T(τ)L(λ(τ))x(τ)dτ +

∫ t

s

‖L0θ(τ)‖2dτ

≤ U(s) +

∫ t

s

2kvx
T(τ)L(λ(τ), B∗)θ̂(τ)dτ +

a2

2b
‖L0θ(s)‖2

≤ ‖x(s)‖2 + ‖y(s)‖2 +
ã

b
‖θ(s)‖

(
1 + F 2

1 (x(s), y(s), θ(s))
)

+
a2

2b
‖θ(s)‖2 (46)

for any t ≥ s ≥ 0, where (37), (38), (45), and the first equality
of (40) were used. Letting t→∞, the bounded-output-energy
condition (17) holds. This completes Step 4.

Step 5 – Weak observability of Ω: By zeroing the virtual
output h and using Lemma 3, Assumption 1 holds with f̂ =
[p(t)yT,−p(t)xT, p(t)1N ]T and ĥ = h, where for any ζ ∈ Λ,
and B ∈ RN×N , L(ζ,B)θ = L(ζ,B)(L0)θ was used. Then,
the system (27) can be changed as

ẋ = p(t)y, ẏ = −p(t)x, θ̇ = p(t)1N . (47)

Let [x̄T, ȳT, θ̄ T]T : R→ R3N be any bounded limiting zeroing-
output solution. Then, [x̄T, ȳT, θ̄ T]T satisfies (11) and (12)
for some {tn} ⊆ R≥0 and {λn} ⊆ Φsw with tn ≥ 2n.
By the compactness of [0, T0], there exist 0 ≤ t0 ≤ T0

and a subsequence {tnk} of {tn} such that limk→∞(tnk −
btnk/T0cT0) = t0 where T0 is the period of p(t) and btnk/T0c
denotes the greatest integer less than or equal to tnk/T0. As
a consequence, limk→∞ p(t + tnk) = p(t + t0) for almost
all t ∈ R. Thus, [x̄T(t), ȳT(t), θ̄ T(t)]T is a solution of the
system (47) where p(t) is replaced by p(t+t0). For simplicity,
consider the transformation [˜̄xT(t), ˜̄yT(t), ˜̄θ T(t)]T = [x̄T(t −
t0), ȳT(t− t0), θ̄ T(t− t0)]T for all t ∈ R. Then, [˜̄xT, ˜̄yT, ˜̄θ T]T

is just a solution of the system (47).
Let Im0 = [mT0/2, T + mT0/2) and Im1 = [T +

mT0/2, (m+1)T0/2) for any m ∈ Z. We then have Im0 ∪Im1 =
[mT0/2, (m+ 1)T0/2) and R = ∪m∈Z(Im0 ∪ Im1 ). In view of
(23), due to p(t) = 0, we have

˜̄x(t) = um, ˜̄y(t) = vm (48)

for all t ∈ Im0 and for some constants um, vm ∈ RN .
According to (12) and the fact that L(λ(t)) is positive semi-
definite,

lim
k→+∞

L(λnk(t− t0 + tnk))um

= lim
k→+∞

(L(λnk(t− t0 + tnk))x̄(t− t0) = 0 (49)

for almost all t ∈ Im0 . By Lemma 3, this further implies
limk→+∞ L(λnk(t − t0 + tnk))ûm = 0 with ûm = L0um.
If ûm 6= 0, according to Lemma 4,

ε ≤ lim
k→+∞

ûT
m

‖ûm‖

(∫ T−t0+tnk+
mT0

2

−t0+tnk+
mT0

2

L(λnk(τ))dτ

)
ûm
‖ûm‖

=
ûT
m

‖ûm‖2
∫ T+

mT0
2

mT0
2

lim
k→+∞

(Lnkλ(τ − t0 + tnk))ûmdτ = 0

reaching a contradiction. Hence, L0um = ûm = 0 for all
m ∈ Z. By continuity, we then conclude that

L0 ˜̄x(t) = ûm = 0, (50)

for all m ∈ Z and all t ∈ [mT0/2, T + mT0/2]. For t ∈ Im1 ,
[(L0 ˜̄x(t))T, (L0 ˜̄y(t))T]T satisfies

L0
˙̄̃x = (−1)mc(t− T − mT0

2
)L0 ˜̄y,

L0
˙̄̃y = −(−1)mc(t− T − mT0

2
)L0 ˜̄x.

Solving this equation, one gets

[L0 ˜̄x(t)]i = rmi sin

(
(−1)m

∫ t−T−mT0
2

0

c(τ)dτ + ψmi

)
,

(51)

[L0 ˜̄y(t)]i = rmi cos

(
(−1)m

∫ t−T−mT0
2

0

c(τ)dτ + ψmi

)
(52)

for any i = 1, . . . , N and some rmi ∈ R≥0, ψmi ∈ [0, 2π),
where [L0 ˜̄x(t)]i and [L0 ˜̄y(t)]i denote the i-th entry of L0 ˜̄x(t)
and L0 ˜̄y(t), respectively. Observe that from (50),

L0 ˜̄x(T +mT0/2) = L0 ˜̄x((m+ 1)T0/2) = 0

for all m ∈ Z. We claim that rmi = 0 for all m ∈ Z and all
i = 1, . . . , N . Otherwise, in view of (51),

sin(ψmi) = sin

(
(−1)m

∫ −T+
T0
2

0

c(τ)dτ + ψmi

)
= 0.

This gives that ψmi = k1π and (−1)m
∫ −T+T0/2

0
c(τ)dτ +

ψmi = k2π for some k1, k2 ∈ Z. Then,∫ −T+
T0
2

0

c(τ)dτ = (−1)m(k2 − k1)π,

reaching a contradiction, since
∫ −T+T0/2

0
c(τ)dτ 6= kπ for all

k ∈ Z. Thus, rmi = 0 for all m ∈ Z and all i = 1, . . . , N ,
which in turn implies that [(L0 ˜̄x(t))T, (L0 ˜̄y(t))T]T = 0 for all
t ∈ Im1 and all m ∈ Z. By (48),

L0vm = lim
t→(T+

mT0
2 )

−
L0 ˜̄y(t) = L0 ˜̄y

(
T +

mT0

2

)
= 0.

As a result, [(L0 ˜̄x(t))T, (L0 ˜̄y(t))T]T = 0 for all t ∈ Im0 and all
m ∈ Z. Thus, we can conclude that [(L0 ˜̄x(t))T, (L0 ˜̄y(t))T]T =
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Fig. 1. The graphs Gi, i = 1, 2, 3.

0 for all t ∈ R, and hence [(L0x̄(t))T, (L0ȳ(t))T]T ≡ 0. This,
together with L0θ̄ ≡ 0, gives us that

‖[x̄T(t), ȳT(t), θ̄ T(t)]T‖Ω =

(‖L0x̄(t)‖2 + ‖L0ȳ(t)‖2 + ‖L0θ̄(t)‖2)
1
2 = 0

for all t ∈ R, which shows that Ω is WO w.r.t. Φ. This
completes Step 5.

It therefore follows that Theorem 2 holds, as Proposition 3
implies that Ω is UGA w.r.t. to Φ and the Euclidean norm. This
concludes the main result for leaderless consensus without
dwell-time conditions.

Remark 15: It is of interest to relate the above attractivity
analysis to some other methods in literature.
• The closed-loop system (27) is indeed a switched NLTV

system. Therefore, as mentioned in the introduction,
most of the early versions of invariance principles [5],
[7], [8], [12], [14], [32], [38], [40] for linear/nonlinear
time-invariant switched systems cannot be adopted. This
challenge is handled here by the new concept of limiting
zeroing-output solution as given in Definition 3 and
the new technique of changing dynamics and output as
proposed in Proposition 2.

• Clearly, no dwell-time conditions have been imposed on
the switching signal, which makes the result a lot easier
to apply in a real world condition. Dwell-time conditions
are notoriously hard to enforce in complex switching situ-
ations. To the best of the authors’ knowledge, there were
only invariance principles for linear time-invariant sys-
tems presented in [5], [38] without dwell-time constraints,
which is based on the linear algebraic techniques. As can
be seen from the proof of Theorem 1, some techniques
from real analysis like the Arzela-Ascoli Lemma have
been employed to address switched NLTV systems.

• It is possible to make use of the well-known Barbalat’s
Lemma [18] (or a generalized version for piecewise
continuous signals [42]) to get the convergence of the
output signal h(x(t), θ(t), λ(t)), in view of (46). How-
ever, by doing so, one may only get the convergence of
L(λ(t))x(t) and L0θ(t), but not L0x(t) and L0y(t). In
contrast, by careful checking the new concept of weak
observability as introduced in Definition 5, we can decide
on the convergence of L0x(t) and L0y(t). Moveover,
Barbalat’s Lemma only deals with a single solution,
not a family of solutions, demanding additional steps to
conclude on uniform attractivity.
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Fig. 2. Time responses of the switching signal and the consensus errors.

• Other methods such as the Matrosov-type theorems [41],
[44] and the Krasovskii-LaSalle-type theorems [26] re-
quire the attractivity set to be compact and uniformly
Lyapunov stable. Since the consensus subspace Ω given
in (28) is merely closed and not compact, neither of these
methods are obviously applicable.

E. Simulation Results

An example is provided to illustrate the above control
design. Consider a switching graph G(ζ), with ζ ∈ {1, 2, 3},
as shown in Fig. 1. The switching signal λ(t) is defined as
follows:

λ(t) =


1, if (k + l

k+1 )T ′ ≤ t < (k + l+1/3
k+1 )T ′,

2, if (k + l+1/3
k+1 )T ′ ≤ t < (k + l+2/3

k+1 )T ′,

3, if (k + l+2/3
k+1 )T ′ ≤ t < (k + l+1

k+1 )T ′

where k ∈ Z+, l = 0, 1, . . . , k, and T ′ is chosen arbitrarily.
It is of interest to see that the proposed switching signal λ(t)
does not satisfy any dwell-time conditions, since the time slot
of two sequenced switching time instants approaches 0 as k →
+∞. This is also illustrated in the first picture of Fig. 2.

Notice that Assumption 6 holds with τa = T ′/6 and
T = T ′. Hence, G(λ(t)) is GUJC. Applying Theorem 2, a
simulation with kv = kw = 1, c(t) ≡ 5, T ′ = π, and T0 = 3T ′

is reported in the last three pictures of Fig. 2, in which
x̂i = xi−(x1+x2+x3+x4)/4, ŷi = yi−(y1+y2+y3+y4)/4,
and θ̂i = θi − (θ1 + θ2 + θ3 + θ4)/4 denote the consensus
errors. It can be seen that satisfactory converging behavior is
obtained.

V. CONCLUSION

A generalization of the LaSalle invariance principle as well
as the integral invariance principle for switched NLTV systems
was proposed. By introducing a virtual output coming from
the derivative of a Lyapunov-like function, with the help of
limiting zeroing-output solutions and weak detectability, it is
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possible to capture the complex limiting behaviors of switched
NLTV systems to conclude uniform attractivity with respect to
some closed set. Using a consensus problem of mobile robots
under switching topology, it was shown how the proposed
results can be applied to achieve consensus by design, without
requiring uniform Lyapunov stability or imposing unnatural
dwell-time conditions. Our future work is directed towards
developing the design framework further.

APPENDIX

PROOFS OF MAIN THEOREM & COROLLARIES

A. Proof of Theorem 1

Suppose Ω is not UGA w.r.t. Φ and the Euclidean norm.
Then, there exist ε0 > 0 and r0 ≥ 0 such that for each T ′ > 0,
there exist (x, λ) ∈ Φ and a pair (s̄, t̄) satisfying t̄ ≥ s̄ +
T ′ ≥ s̄ ≥ Ini(x), ‖x(s̄)‖ ≤ r0 and ‖x(t̄)‖Ω ≥ ε0. Since
‖x(s̄)‖ ≤ r0 and the origin is UGUB, there exist T0 > 0 and
M0 > 0 such that ‖x(t)‖ ≤M0, for all t ≥ s̄+ T0.

Let T1 = T (ε0,M0) > 0 be the constant given in
Assumption 2. For each n ∈ N, choose T ′ = α(n) +T0 +T1.
Then, there exist (xn, λn) ∈ Φ and a pair (s̄n, t̄n) satisfying
t̄n ≥ s̄n + α(n) + T0 + T1 ≥ s̄n ≥ Ini(xn), and

‖xn(s̄n)‖ ≤ r0 and ‖xn(t̄n)‖Ω ≥ ε0. (53)

Let t′ = T0 + T1 + s̄n − Ini(xn) ≥ T1. Then, we have t̄n ≥
α(n) + t′ + Ini(xn) and

‖xn(τ)‖ ≤M0, ∀τ ≥ t′ + Ini(xn) ≥ s̄n + T0. (54)

According to (53) and Assumption 2, there exists

tn ≥ 2n+ t′ + Ini(xn) = 2n+ T0 + T1 + s̄n (55)

such that ‖xn(tn)‖Ω ≥ δ0 , δ(ε0,M0) and the inequality∫ tn+n

tn−n ‖h(τ, x(τ), λ(τ))‖2 ≤ 1/n holds. Therefore,

0 ≤ lim
n→∞

∫ n

−n
‖h(τ + tn, xn(τ + tn), λn(τ + tn))‖2dτ

= lim
n→∞

∫ tn+n

tn−n
‖h(τ, xn(τ), λn(τ))‖2dτ ≤ lim

n→∞

1

n
= 0.

Employing [26, Lemma A1] (or its original form [19,
Theorem 1.4 of Chapter 12]), there exists a subsequence {nk}
of {n} such that

lim
k→+∞

h(τ + tnk , xnk(τ + tnk), λnk(τ + tnk)) = 0 (56)

for almost all τ in R. Notice that (55) results in tnk ≥ 2nk +
T0 + T1 + s̄nk ≥ k + T0 + s̄nk , for all k ∈ N. Particularly,

‖xnk(τ + tnk)‖ ≤M0, ∀k ∈ N, ∀ − k ≤ τ ≤ k. (57)

Since fζ , for all ζ ∈ Λ, are almost uniformly bounded, we
have

‖xnk(t+ tnk)− xnk(s+ tnk)‖

=

∥∥∥∥∥
∫ t+tnk

s+tnk

f(τ, xnk(τ), λnk(τ))dτ

∥∥∥∥∥ ≤M∗|t− s|
for all s, t ∈ [−k, k] and some M∗ > 0. For any ε > 0, this
implies ‖xnk(t+tnk)−xnk(s+tnk)‖ < ε, for all s, t ∈ [−k, k]

with |t− s| < ε/M∗. Thus, {xnk(·+ tnk) : [−k, k]→ Rp} is
equi-continuous. Based on (57), {xnk(· + tnk)} is uniformly
bounded. Hence there is a subsequence {xnkm (·+ tnkm )} of
{xnk(·+ tnk)} converging uniformly to a continuous function
x̄ : R → Rp on every compact subset of R according to
Arzela-Ascoli Lemma [19, Theorem 3.1 of Chapter 3]. By
(55), (56), and noticing that nkm ≥ km ≥ m, for all m ∈ N,
the following hold:
• {tnkm } ⊆ R≥0 and {(xnkm , λnkm )} ⊆ Φ.
• tnkm ≥ 2nkm + Ini(xnkm ) ≥ 2m+ Ini(xnkm ).
• {xnkm (· + tnkm )} converges uniformly to x̄ on every

compact subset of R.
• limm→+∞ h(τ + tnkm , xnkm (τ + tnkm ), λnkm (τ +
tnkm )) = 0 for almost all τ in R.

Thus, x̄ is a limiting zeroing-output solution. By (54) and (55),
we have ‖x̄(τ)‖ = limm→+∞ ‖xnkm (τ + tnkm )‖ ≤ M0 <
+∞, for all τ ∈ R. According to weak observability, 0 <
δ0 ≤ limm→+∞ ‖xnkm (tnkm )‖Ω = ‖x̄(0)‖Ω = 0, reaching
a contradiction. Therefore, Ω must be UGA w.r.t. Φ and the
Euclidean norm. This completes the proof.

B. Proof of Corollary 1

Let Φ = {(x, λ)}. Since x is bounded, Φst is UGB (and
hence UGUB) w.r.t. Φ. In view of Theorem 1, it remains to
show that Assumption 3 implies Assumption 2 in such a case.

Actually, under Assumption 3, for each n ∈ N, there exists
Tn ∈ N such that∫ t+T0

t

‖h(τ, x(τ), λ(τ))‖2dτ ≤ T0

2n(n+ T0)
, ∀t ≥ Tn.

Let ε ≥ 0 and r > 0 be any constants. Choose T = T0, δ = ε,
and α(n) = Tn+2n, for all n ∈ N. Let t ≥ T be any constant.
Assume that there exists s′ ≥ α(n) + t + Ini(x) such that
‖x(s′)‖Ω ≥ ε. Let s = s′ ≥ α(n)+t+Ini(x) ≥ 2n+t+Ini(x).
Then, we have ‖x(s)‖Ω ≥ ε = δ. Furthermore, let dn/T0e be
the minimum positive integer that is larger than or equal to
n/T0. So n ≤ dn/T0eT0 < (n/T0 + 1)T0 = n+ T0. Hence,

s−
⌈
n

T0

⌉
T0 ≥ α(n)−

⌈
n

T0

⌉
T0 + t+ Ini(x)

> Tn + 2n− n− T0 + T0 ≥ Tn.
This leads to following inequality∫ s+n

s−n
‖h(τ, x(τ), λ(τ))‖2dτ

≤
∫ s+d nT0

eT0

s−d nT0
eT0

‖h(τ, x(τ), λ(τ))‖2dτ

≤
d nT0
e−1∑

i=−d nT0
e

∫ s+(i+1)T0

s+iT0

‖h(τ, x(τ), λ(τ))‖2dτ

≤ 2d n
T0
e max
−d nT0

e≤i<d nT0
e

{∫ s+iT0+T0

s+iT0

‖h(τ, x(τ), λ(τ))‖2dτ

}

≤
2d nT0

eT0

2n(n+ T0)
≤ 1

n
.

Thus, Assumption 2 holds. This completes the proof.
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C. Proof of Corollary 2

In view of Theorem 1, it remains to show that Assumption
4, together with the fact that Ω is UULS w.r.t. Φ and the
Euclidean norm, implies Assumption 2.

Let ε > 0 and r > 0 be any constants. For each n ∈ N,
let εn = min

{
1/r, 1/4n2

}
. Then, 0 < εn < 1. According

to Assumption 4, there exist Tn , T (εn) > 0 and Mn ,
M(εn) > 0 such that∫ t

s

‖h(τ, x(τ), λ(τ))‖2dτ ≤Mn + εn(t− s) (58)

for any (x, λ) ∈ Φ and any (s, t) with Ini(x) + Tn ≤ s ≤ t
and ‖x(τ)‖ ≤ 1/εn, ∀s ≤ τ ≤ t. Without lose of generality,
we may assume that Tn and Mn are both positive integers by
choosing larger constants.

Choose α(n) = 4n2Mn + 2nTn, ∀n ∈ N. Let T0 ,
T (ε, r) > 0 and δ0 , δ(ε, r) > 0 be the constants given
in the definition of UULS (see Definition 2). For any t′ ≥ T0,
let (x, λ) ∈ Φ with

‖x(τ)‖Ω ≤ r ≤
1

εn
, ∀τ ≥ t′ + Ini(x), (59)

and ‖x(s′)‖Ω ≥ ε for some s′ ≥ α(n)+ t′+Ini(x). We claim
that

‖x(τ)‖Ω ≥ δ, ∀t′ + Ini(x) ≤ τ ≤ α(n) + t′ + Ini(x). (60)

Otherwise, there exists s′′ satisfying

T0 + Ini(x) ≤ t′ + Ini(x) ≤ s′′ ≤ α(n) + t′ + Ini(x) ≤ s′

such that ‖x(s′′)‖Ω < δ. Since Ω is UULS w.r.t. Φ and the
Euclidean norm, it holds that ‖x(s′)‖Ω < ε in view of (59),
reaching a contradiction. Thus, (60) holds.

Let s = (2in + 1)n + t′ + Ini(x) for some Tn ≤ in ≤
2nMn + Tn − 1 satisfying that∫ 2(in+1)n

2inn

‖y(τ)‖2dτ =

min
Tn≤i≤2nMn+Tn−1

∫ 2(i+1)n

2in

‖y(τ)‖2dτ,

where y(τ) , h(τ + t′+ Ini(x), x(τ + t′+ Ini(x)), λ(τ + t′+
Ini(x))). Then, we have s ≥ 2n+ t′+Ini(x), and by (58) and
(59), ∫ s+n

s−n
‖h(τ, x(τ), λ(τ))‖2dτ

= min
Tn≤i≤2nMn+Tn−1

∫ 2(i+1)n

2in

‖y(τ)‖2dτ

≤ 1

2nMn

∫ 2(2nMn+Tn)n

2Tnn

‖y(τ)‖2dτ

≤ Mn

2nMn
+

4n2Mnεn
2nMn

≤ 1

2n
+

1

2n
=

1

n
.

Notice that

t′ + Ini(x) ≤ (2in + 1)n+ t′ + Ini(x) ≤ α(n) + t′ + Ini(x).

Then, by (60), we have ‖x(s)‖Ω ≥ δ. Thus, Assumption 2
holds. This completes the proof.

PROOFS OF TECHNICAL LEMMAS

D. Proof of Lemma 2

Denote

α(t) = 1 + α1(t)− e
∫ t
s
α3(τ)dτ (1 + α1(s)), ∀t ≥ s.

Then, it can be verified that α(·) is locally absolutely contin-
uous. In view of (31) and the fact that α2(·) ≥ 0 and α3(·) is
Lebesgue integrable, we have

α̇(t) = α̇1(t)− α3(t)e
∫ t
s
α3(τ)dτ (1 + α3(s))

≤ −α2(t) + α3(t)(1 + α1(t))− α3(t)e
∫ t
s
α3(τ)dτ (1 + α3(s))

≤ α3(t)α(t)

for almost all t ≥ s. This further implies that

d

dt

[
e
∫ t
s
α3(τ)dτα(t)

]
= e

∫ t
s
α3(τ)dτ (α̇(t)− α3(t)α(t)) ≤ 0

for almost all t ≥ s. Thus, e
∫ t
s
α3(τ)dτα(t) is non-increasing,

and hence for all t ≥ s,

α(t) ≤ e
∫ t
s
α3(τ)dτα(t) ≤ e

∫ s
s
α3(τ)dτα(s) = α(s) = 0.

Therefore, 1+α1(t)−e
∫ t
s
α3(τ)dτ (1+α1(s)) ≤ 0 for all t ≥ s,

which results in (32).
Now integrating both sides of (31) and by using (32), one

gets∫ t

s

α2(τ)dτ ≤ α1(s)− α1(t) + max
s≤τ≤t

{1 + α1(τ)}
∫ t

s

α3(τ)dτ

≤ α1(s) + (1 + α1(s))e
∫ t
s
α3(τ)dτ

∫ t

s

α3(τ)dτ

≤ α1(s) + r(s)er(s)(1 + α1(s))

for all t ≥ s. By taking the limit, (33) holds. This completes
the proof.

E. Proof of Lemma 3

1) Since L0 is symmetric with all eigenvalues being 0 or 1,
‖L0‖ ≤ 1.

2) This property can be directly verified by noticing that
1TNL(ζ) = 0 and L(ζ,B)1N = 0.

3) Let u = [u1, . . . , uN ]T and v = [v1, . . . , vN ]T. Notice
that the i-th entry of the low vector uTL(ζ, v1T

N ) is

−
N∑

j=1,j 6=i

ujaji(ζ)vj + ui

N∑
j=1

aji(ζ)vi

= −
N∑

j=1,j 6=i

vjaji(ζ)uj + vi

N∑
j=1

aji(ζ)ui

which is exactly the i-th entry of the low vector vTL(ζ, u1T
N ).

4) Recall that for any C = [cij ] ∈ RN×N , we have

max
1≤i,j≤N

|cij | ≤ ‖C‖ ≤ (

N∑
i=1

N∑
j=1

c2ij)
1
2
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by the equivalence of matrix norms [15, Page 314]. Then,
together with the Cauchy inequality, we have

‖L(ζ,B)‖2 ≤
N∑
i=1

N∑
j=1,j 6=i

a2
ij(ζ)b2ij +

N∑
i=1

(

N∑
j=1,j 6=i

aij(ζ)bij)
2

≤ ‖L(ζ)‖2
N∑
i=1

N∑
j=1,j 6=i

b2ij +

N∑
i=1

(

N∑
j=1,j 6=i

a2
ij(ζ))(

N∑
j=1,j 6=i

b2ij)

≤ N‖L(ζ)‖2
N∑
i=1

N∑
j=1,j 6=i

b2ij

which gives that ‖L(ζ,B)‖ ≤
√
N‖L(ζ)‖ρ(B). This com-

pletes the proof.

F. Proof of Lemma 4

Let (τa, T ) be the pair as in Assumption 6. Notice that for
any t ∈ R≥0 and any vector u ∈ RN ,

uT

[∫ t+T

t

L(λ(τ))dτ

]
u ≥ τauT

 ∑
ζ∈λτa [t,t+T )

L(ζ)

u.
It can be verified that

∑
ζ∈λτa [t,t+T ) L(ζ) is a Lapalacian

matrix of a connected graph Gτaλ ([t, t + T )). Denote S
the cluster of the subset S of Λ in which (V,∪ζ∈SE(ζ))
is a connected graph. Notice that S is a finite set. Let
ε′ = minS∈S

{
σmin

(∑
ζ∈S L(ζ)

)}
> 0, where for any

symmetric matrix A, σmin(A) denotes its minimum positive
eigenvalue. According to [37, Lemma 3.3], the inequality
uT
[∑

ζ∈λτa [t,t+T ) L(ζ)
]
u ≥ ε′‖u‖2 holds for all u ∈ RN

with 1T
Nu = 0. Therefore, (34) holds with ε = τaε

′. This
completes the proof.
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