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Abstract—We present the online Newton’s method, a
single-step second-order method for online nonconvex op-
timization. We analyze its performance and obtain a dy-
namic regret bound that is linear in the cumulative varia-
tion between round optima. We show that if the variation
between round optima is limited, the method leads to a
constant regret bound. In the general case, the online
Newton’s method outperforms online convex optimization
algorithms for convex functions and performs similarly to
a specialized algorithm for strongly convex functions. We
simulate the performance of the online Newton’s method on
a nonlinear, nonconvex moving target localization example
and find that it outperforms a first-order approach.

Index Terms—online nonconvex/convex optimization,
time-varying optimization, Newton’s method, moving target
localization.

[. INTRODUCTION

N online or time-varying optimization one must sequen-

tially provide decisions based only on past information.
This problem arises in modeling resource allocation problems
in networks [1], [2], real-time deployment in electric power
systems [3], [4], and localization of moving targets problems
as in [5], [6].

We consider online optimization problems of the following
form. Let x; € R™ be the decision vector at time ¢. Let f; :
R™ — R be a twice differentiable function. We do not require
it to be convex. The problems are of the form

min f; (x¢) (1
Xt
fort =1,2,...,T where T is the time horizon. The decision
maker must solve (I) at each round ¢ using the information
from rounds ¢ — 1,# — 2,...,0. The objective function f; is

observed when the round ¢ ends. The goal is to provide real-
time decisions when information, time and/or resources are too
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limited to solve (I). We base our analysis on online convex
optimization [7]-[9] (OCO). We characterize our approach in
terms of the dynamic regret, defined as

T
Regret(T) = Z fe(xt) — fe(x1),
t=0

where x; € argmin, ¢y f(x). In the case of static regret, x;
is replaced by x* € arg min, y ZL f+(x). The static regret
does not capture changes in the optimal solution, and for this
reason we only work with dynamic regret. Our objective is
to design algorithms with a sublinear regret in the number
of rounds. A sublinear regret implies that, on average, the
algorithm plays the optimal decision [9], [10]. In this work,
we restrict ourselves to unconstrained problems. Constrained
online optimization is a topic for future work.

We propose the online Newton’s method (ONM) and show
that its dynamic regret is O (Vi + 1) where Vp is the cu-
mulative variation between round optima. ONM is an online
nonconvex optimization algorithm, which only assumes local
Lipschitz properties. We acknowledge that, to date, no regret
analysis has been given for first-order online approaches, e.g.,
online gradient descent [7] (OGD), under the current assump-
tions. However, given their convexity requirement and the poor
performance of OGD on the example in Section we believe
that first-order approaches are unlikely to have as good a bound
as ONM. We obtain a bound on the regret of ONM of the same
order as OCO methods for strongly convex functions when the
initial point is in a neighborhood of the global optimum, and
the variation between stationary optima is bounded. We also
provide a constant regret bound for settings where the total
variation between round optima is small. Moreover, OMN can
be used to solve problems of the form staty f; (x), i.e., to track
stationary points of f; under the aforementioned assumptions.
In this case, x; € {x € R"|Vf,(x) =0} in the dynamic
regret definition, and the same regret analysis holds.

We present a numerical example in which OMN is used
to track a moving target from noisy measurements (see [11]
and references therein). The online moving target localization
problem is nonconvex and thus conventional OCO algorithms
have no guarantee on their performance. We test the perfor-
mance of ONM on a moving target localization example and
find that it outperforms a gradient-based OCO algorithm.

Related work. To the best of the our knowledge, ONM is the
first dynamic regret-bounded, single-step, second-order online
approach. ONM applies to general smooth nonconvex functions.
An online damped Newton method is proposed in [12] but
requires the objective function to be strongly convex and self-



concordant, and multiple Newton steps must be performed at
each round to obtain a sublinear dynamic regret bound. Ref-
erence [13] developed gradient-based algorithms for weakly
pseudo-convex functions. An online approach using multiple
gradient step-like updates at each round is proposed in [14]
to minimize the local regret of nonconvex loss functions.
Reference [15] proposed the first Newton step-like approach,
in which the Hessian is approximated by the outer product of
the gradient, but only provided a static regret analysis. This
work provides the tightest regret bound to date at O (logT),
but, to the best of our knowledge, no analysis based on
dynamic regret has been published. Several authors have pro-
posed dynamic regret bounded approaches. These approaches
include, for example, OGD [7], in which the author proposed
the first dynamic bound in terms of Vr, a specialized version
for o-strongly convex functions (cOGD) [10], dynamic mirror
descent (DMD) [16], a specialized optimistic mirror descent for
predictable sequences (OMD) [17], and several other context-
specific algorithms, e.g., [5], [6], [18]-[25].

Related work in parametric optimization has also inves-
tigated Newton step-like methods for time-varying noncon-
vex optimization [26], [27]. Reference [28] presents a dis-
crete time-sampling method consisting of a prediction and
a Newton-based correction step for continuous-time time-
varying convex optimization. Reference [29] proposed a reg-
ularized primal-dual algorithm to track solutions of time-
varying nonconvex optimization problems. A time-varying
Quasi-Newton method was investigated in the context of
the nonconvex optimal power flow in [30]. Their approach,
however, requires the approximate solution of a quadratic
program at each round instead of a single update rule as in
the present work. Our work also differs from the aforemen-
tioned references in that our algorithm can track any type of
stationary point, and we characterize its performance in terms
of dynamic regret.

[l. PRELIMINARIES

In this section, we introduce the second-order update and
several technical results we will use to prove the main theo-
rems.

A. Background

Let H; (x;) = V2f.(x;), the Hessian matrix at round ¢. The
online Newton’s method update is a Newton step with a unit
step size. Throughout this work, we assume that the update is
defined for all t =1,2,...,7T.

Definition 1 (Online Newton update): The online Newton
update is:

Xi+1 = X¢ — Ht_l (%) Vfi (x¢)

Let v; € R™, the variation in optimum, be defined as:
Xj 1 =X; +Vy. 2)

The total variation is

T T—1
Ve =[x =% =D vl
t=1 t=0

Deﬁng v to be the maximum variation between two rounds,
and V to be the maximum total variation. Then 7 =
maxyeqi 2.7} |[vell, and Vp < V.

B. Online Newton update

We first provide a lemma, which we use to derive bounds
on the ONM regret.

Lemma 1: [31, Section 2.7, Problem 7] Let M € R"*"
be a symmetric matrix and h > 0. Then,

1
HM_lH < 7 <~ |[|[Mv| > h|v]] Vv eR™
We now use the previous lemma and derive the following
identities regarding the Newton update.
Lemma 2 (Online Newton update identities): Suppose:

1) 3h; > 0 such that ||H; ' (x})| < &
2) 3B, L > 0 such that

% = x| < B = [[Hi (x) = He (x0)[| < Lo [lx = ;][5

3) Il — X7 < 7 = min {8, 2 .

Then, for the online Newton update, we have the following
two identities:

et — x| < It =l )
. 3L . 2
[xt+1 —x7 || < Tht [l — x| 4)

Proof: Consider the online Newton update given in
Definition |1} Subtracting x; on both side leads to

Xpp1 =% =% —x; — Hy 1 (x0) Vi (xt)
=X¢ — X}
—H; ' (x) Vi (x) + H; ' (x4) Vi (%)
=x; —x; + H; ' (x1) (Vi (x7) = Vi (%)) -

By the fundamental theorem of calculus, we have
Xi41 — Xp =X — X; +
H' (x)) /01 H, (x, + 7 (x} — x,)) (x} — %) dr.
Consequently,
X1 —x; = Hy ' (%) Hy (%) (% = x7) +
H; ! (x;) /01 H; (x¢ + 7 (X} — x¢)) (xf —x¢)dr
=H; ! (x) /1 H; (x;) (x; —x;)dr +
X 0
H; ' (xt)/o H; (x: + 7 (%} — x¢)) (xf —x¢)dr

= H[l (xt) /0 (Hy (x¢ + 7 (xf —x¢))

—H; (x¢)) (x; —x¢)dr.
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Taking the norm of both sides, we have
1
|mwl—ﬁ—w£4@a/<Hmm+fu:—&»
0
*Ht (Xt)) (X;k — Xt) dT
1
<ML1@mﬂ/<Hm&+T@:—&»
0

—Ht (Xt)) (X;k — Xt) dr

The second and third assumptions allow us to upper bound
the argument of the integral using Lipschitz continuity of the
Hessian. This leads to

1
anl—xm\sHH;wxaH/‘anm:—xAFdT

Ly

= B G| 5 i =l (5)

We now derive a lower bound on the norm of the matrix
product H; (x;) v for all v € R™. We have
[Hy (x¢) v = [He (x¢) v+ He (x7) v = He (x7) V]|
> [[He () v = [He (%) v — He (x5) v |
2 [[He () v = [He (%) = He (<) [ v]]
where we have used the reverse triangle inequality. By
Lemma [T} we have
1] (o) vI[ = he VI = L e =3[ [V
= (he = Le [[x¢ = xz ) vl -
We use the converse of Lemma [I] to obtain
1

H (x| < ) (6)
I el < e
Substituting (@) in (3), we obtain:
L
t I =xill*. @)

X —x¥| <
R LYy gy

By assumption, ||x;41 — X;|| < 22 , and therefore (7) can be

bounded above as follows.

Ly ||lxi — x4

Xii1 — X X; — X
|| t+1 t”— 2(ht_Lt ||Xt_x?H) || t t”

o2

3L

< —t% l[x: — x| -
2 (ht L2 )
Hence, we obtain
%01 — x7[| < lIx¢ — x|, ®)

which is the first identity. Bounding the denominator of
yields the second identity:

Ly

41 — x| < ————— [Ix; — x|*
2 (e~ Li)
3L, 9
= Sl =
This completes the proof. ]

Newton’s method and our online extension can only be
used if the Hessian is invertible along the algorithm’s path,
and by construction, also invertible at the point the algorithm
converges to, X; . For minimization, this translates to a function
that is locally strongly convex in a ball of radius €; around
x; for all ¢ (Assumption 1 of Lemma [2). Without loss of
generality assume that 5; = v; = 2h;/3L;. For the Newtons
method to converge, it is enough for it to be initialized in a ball
of radius -y, around x; (Assumption 3 of Lemma [2). Note that
the 7,-ball does not need to be a subset of the aforementioned
e:-ball [32, Section 1.4]. Newtons method converges to the
solution even if it is initialized at a point outside the set
where the Hessian is positive definite. The Hessian of the loss
function f; is thus not necessarily positive definite for all x;,
t=1,2,...,7T. One may extend the results presented in this
manuscript for the cases where the Hessian is not invertible by
introducing modifications of the type discussed in [33, Section
3.4].

In brief, the previous result shows that if the Hessian is
nonsingular and locally Lipschitz at x; and the initial point
x; 1s close enough to xj, then the online Newton update at ¢
moves strictly closer to x;. Second, it shows that the update
approaches x;j at a quadratic rate.

The next result specifies a sufficient condition under which
the assumptions of Lemma [2] at round ¢ will also be satisfied
for round ¢ 4 1. The next results can be derived with time-
dependent parameters, but we use constant parameters to
simplify notation.

Lemma 3: Suppose ||x; —x;|| < v and v € (O, ?2)2) If
the online Newton update is used and v < v — 371'7 , then
x40 = x5 ]| <.

Proof: We first re-express the initial sufficient condition
for the online Newton update at ¢ + 1 using (2). We have

|41 = X540 ]| = lIxer1 — x5 + v
< xegr — x|+ [[vell
3L
< o lIxi = e + [Ivell,

where we used the identity (@) of Lemma 2] to obtain the last
bound. Thus,

3L
2h
We now upper bound 3£ ||x; — x¢||> 4 ||[v¢|. By assumption

we have ||x; — x7|| <:
3L

xi|* + v <7 = %41

lx} — _X:HH <7.

3L
=2l =l + el < S0+ el

Upper boundmg |lve]| yields
3L 3L, _
° <= .
on + [lvell < o5 +7 )

If we assume that the right-hand term of (9) can be bounded
above by 7, we obtain

3L 5 _ *

TSy =[x = x|l <7

Hence, if v %72 for v € (0, gg) then

[xe+1 = x| <. n

< v -



Thus, if the initial decision x; is close enough to x; and the
variation v < y — gi +2, Lemma [2| can be used sequentially.
This is formalized in the next section.

[1. ONLINE NEWTON’S METHOD

We now present ONM, described in Algorithm [I] for online
nonconvex optimization.

Algorithm 1 Online Newton’s Method (ONM)

Parameters: Given h, L, and £5.
Initialization: Receive xo € R such that ||xo — x§| <
v = min {B , 3—2 .

1: fort=0,1,2,...,T do

2:  Play the decision x;.

3:  Observe the outcome at ¢: f;(xy).

4:  Update the decision:

(%) Vi (xe)

Xt41 = Xt - H

5: end for

First, we present an O (Vi + 1) general regret bound for
ONM in Theorem [I] and then discuss its implication.
Theorem 1 (Regret bound for ONM): Suppose that

1) 3h > 0 such that |[H;'(x})|| < £ for all t =
1,2,...,T;

2) 38,L > 0 such that ||x—xf|| < § =

[H: (x) = Hy (xp)[| < Llx = x|
3) Ixg € R™ such that ||xg — x§|| < v :min{ﬁ,% ;
4 U<y =5
5 3¢ > 0 such that ||x—x}| < =
|fe(x) — fe(x)| < l|lx —xf|| forall t =1,2,...,T

Then, the regret of ONM is bounded above by

Regret(T) <

l
W(VT‘F(S)’
oh

where § = || fxT||2>. Equivalently,
Regret(T) < O(Vr+1) and is sublinear in the number
of rounds if Vp < O (T).

Proof:  First, observe that the third assumption of
Lemma [2] is always met after an online Newton update for
¥ < — 3ky2 and that y € (0, 22) by Lemma

Next, we obtain an upper bound on the sum of ||x; — x} ||
over t = 1,2,...,T by adapting [10]’s proof technique. We
then use this result to upper bound the regret of ONM. For
t > 1, we have

2
% (Jxo — x51° —

e = [l = e = x; = x4+ x4 |
< e = xiaf| + iy = i (10)
3L
< oy ki =l + Ixia = x|, an

where we first used the triangle inequality to obtain (T0) and
then identity @) of Lemma [] for (IT). Summing (TT) from

t =1 to 1T, we obtain

T

3L 2
anﬁxrn_z i1 — x|+ [y — x|
t=1

t:l

= ”Xt - x| +Z||Xt = x|

,_.

2 = 2

X X — — || X — X .
2p 1700 2h oo
Thus, we have

Z l[x: = x| < Z " —xilP 4+ Ve 46, (12)
where we used the definitions: Vp = Z;le Hx;ﬂl —x; |
and § = 3£ (on —x||* — x5 — x¢||*). Before solving for
(|

T
5 (=il = 3 I = xil) < Ve+a a3
=1

Using Lemma we can lower bound |[x; — x|
v |lx¢ — x;|| in the left-hand side of (I3). We then obtain

T
3 (nxt X -

t=1

L *
Sl = xil ) < Vit

and equivalently,

Z\Ixt xt||< ><VT+5
where ( - ﬁ'y) > (0 because 7y € (O, 32) The sum of errors

is thus bounded by
-1
Z Ix: — %7 < (1 — 'y> (Vr+9). (14)
Now, recall the definition of the regret:

th Xt

By assumption, f; is locally ¢-Lipschitz for all x;. The regret
can be bounded above by

= fi(x)-

Regret

T
Regret(T) < Y /|x¢ —xj]|. (15)
Substituting (T4) in (T3) yields
4
Regret(T) < ——;— (Vr +9),
T 2h
which completes the proof. [ ]

By Theorem [T} ONM regret is bounded above by O (V7 + 1).
The regret of OGD for strongly convex functions has an upper
bound of the same order [10]. Similar to cOGD, our approach
requires Vi < O (T) to have a sublinear regret. An advantage
of our approach is that it does not require (strong-)convexity
or Lipschitz continuous gradients. Assumption 1 of Theorem ]
requires the Hessian to be nonsingular at x;. It does not require



LESAGE-LANDRY et al.: SECOND-ORDER ONLINE NONCONVEX OPTIMIZATION

ft to be strongly-convex nor even convex. An example of such
an objective function is the least-squares range measurement
problem for localizing a moving target by an array of sensors.
This problem is nonconvex, but at its optimum, the Hessian
is nonsingular and Lipschitz continuous. This example will be
explored in detail in Section Other potential applications
of ONM are concave-convex games [34, Section 10.3.4]. We
note that ONM can be applied to track any kind of stationary
point, e.g., a saddle point arising from minimax problems.
OGD and DMD for convex functions both have
O <\/T(VT + 1)) regret bounds [7], [16]. This requires

Vr < O (\/T and convexity for sublinear regret. The
example presented in Section emphasizes the importance
of our result as standard OCO cannot offer a performance
guarantee on nonconvex loss functions and may perform
poorly. OGD, cOGD and DMD do, however, have extensions
to handle time-invariant constraints in the dynamic regret
setting [1], [2], [29], [35]-[37].

Remark 1: Convexity is not required for ONM to attain opti-
mality. Assuming local Lipschitz properties, if ||xo — x§|| < v
and variations are bounded, the decision x; remains in the
neighbourhood of the optimum regardless of the convexity of
the loss function.

We now show that the regret bound of ONM reduces to a
constant when the total variation is bounded. We first present
a lemma about the convergence of a quadratic map, and then
proceed to the regret bound.

Lemma 4 (Quadratic map convergence): Let x4 =
cx? +v for n € N and where ¢ > 0 and v > 0. If z¢ € [0,7)
and v < 4%, then (x,,) — = where

1+\/1—4cv

T T e 2c

1—+1—4cv
r=—.
- 2c

The proof is provided in the Appendix. Let

— h 6L (V + |lxo0 — x5])
E=_—|1 1- 16
3T +\/ N ; (16)
h 6L (V + |lxo — x5l
E=_—|1-4/1- 17
= 3L \/ h {17

Corollary 1 (Constant regret bound of ONM): Suppose all
the assumptions of Theorem I are met. If v < E and
V+lxo —x3] < then the regret of ONM is upper bounded
by

ot
Regret(T) < (E.

Equivalently, we have Regret(T) < O (1).
Proof: Consider the error at round ¢, ||x; — x;||. By the
triangle inequality,

* *
— X1t Xt—l”

< [l =i || + [l = x|

e = x| = [Jxe —x;

5
Using identity (@) of Lemma 2] we have
2
Ixe = x5 || < ef|xi_y = x| a-xs o as)
where ¢ = 3L Let e, = |x, —x}| and recall that v, =
|51 — x7|- We rewrite (T8) as

2
e < cej_q + V1.

Summing through time yields

T T T

2
Eetécg q,y+§ Vi1,
t=1 t=1 t=1

or equivalently,

T T-1 T-1
E etgcg ef—l—g vt + €g.
t=0 t=0 t=0

The sum of squares is bounded above by the square of the
sum, and thus

19)

T T—1 2
S sC(zet> Ve
t=0 t=0
where we also used the definition Vi = ZZ:Ol ve. Let Ep =
S er. We re-express as
Er <cEF_, + Vi +eq.
Finally, we have
Er <cE%_, +V + e, (20)

where Vp = ZtT;()l ||X;k 11— X} “g V. Note that we obtain
E and E by applying Lemma 4| to the sequence obtained
when (20) is met with equality.

The regret is bounded above by

th Xt
T

<Y X —x7],
t=0

because f; is locally ¢-Lipschitz around x; for all £. The right-
hand side of (ZI) is a non-decreasing sum and thus

— fi(x})

Regret

2L

T+n

T) <{ lim E Ix: — %51,
n—oo
t=0

Regret(

and equivalently,

Regret(T) </{ lim Eri,.
n—oo
By assumption, By = [|xo — x| < F and V + ||xo — x§|| <
6’—2. Therefore Lemma 4| yields

Regret(T) < (E,

which completes the proof. [ ]
A constant bound is desirable because it implies that (i) the
total error by the algorithm is bounded and (ii) the average
regret will converge more rapidly to O than a bound that
depends on 7" or Vr.



The constant bound provided by Corollary [I] is strictly
tighter than the bound in Theorem 1 when, in addition to
Corollary [Is assumptions, we have

E(l—y)<Vr+4,

fory € (0, 3£ F). For example, if [|xo — x}|| = [|xr — x%|| =
0, i.e., the initial optimum is known and the decisions made by
the algorithm approximately converged after 7' rounds given
a fixed total variation, then the constant bound is strictly less
than Theorem 1’s bound if
h
E(l y) < VT < 6 I’
for y € (0, %E) We remark that there always exists § €
(0, 3 E) such that E(1 —7) < £
Lastly, a tighter regret bound implies that the total maximum
error made by the algorithm is smaller. It thus provides a better

representation of the algorithm’s actual performance.

[V. EXAMPLE

In this section, we evaluate the performance of ONM in a
numerical example based on localizing a moving target [11].
Let x, € R? be the location of the target at time ¢, and a; € R?
be the position of sensor ¢. The range measurement is given
by

di = [|x¢ — & + wi,

for ¢+ = 1,2,...m, where m is the number of sensors
and w; models noise. Localizing a target based on range
measurements leads to the following nonlinear, nonconvex
least-squares problem:

m
. 2
—all —d 22
Jnin, 2 (lIxe —agll = i)™, 22)
fort = 1,2,...,T. The objective is to sequentially estimate

the position of the target while only having access to past
information. We use ONM to track the target’s location in
real-time. No other online convex optimization algorithms can
guarantee performance on nonconvex loss functions like (22)).

We compare ONM with OGD [7]. As previously mentioned,
OGD does not guarantee adequate performance, but fits the
sequential nature of the problem.

Let x; be the actual position of the target at time ¢. The
target’s position evolves as x;, ; = X} +Vv;, where we describe

. . T
v; in the next subsections. We set xj; = (2 1) and assume
x( is known, i.e., xo = x. We consider three sensors. The

T T
sensors are located at a; = (% %) , ag = (0 %) , and

T )
as = (% 0) . Each sensor 7 produces a range measurement,

d;, which is corrupted by Gaussian noise w ~ N(0, o). For

all simulations, we set ¥ = Z- and OGD’s step size to 1 =

3L
1/VT.

A. Moving target localization with oNM
We first evaluate the performance of ONM in the general
by
case. We set vy = WI where b; ~ Bernoulli(0.5)

and let o, = 0.01%. All sufficient conditions of Theorem
are satisfied. Figure [I] presents the experimental regret of ONM

x10~4
1.75 1 — ONM ”’/’——
-—- 0GD L7
1.50 1 eIt
/”
-
1.25 1 //
5 e
= 1.004 ’,/
o 0.754 ,’
o /
U
0.501 -/,
)
0.251
0.00 . ! ; !
0 20 40 60 80
Round

Fig. 1. Regret of moving target localization with oNM (averaged out of
1000 simulations)

2.0047 ...0..
2.003 1
2.002
2.001 4
2.000 4
1.999 4 ”
1.998 1

1.997 1

0.994 0.996 0.998

xT

0.990 0.992 1.000

Fig. 2. Localization of a moving target with oNM

and OGD for localizing a moving target averaged over 1000
simulations. The regret is sublinear in both cases, but ONM
attains a much lower regret than OGD. The experimental regret
is bounded above by Theorem [IJs bound. The bound is not
shown in Figure [T] because it is several order of magnitude
larger than the experimental regret.

The tracking performance is presented in Figure 2} 0GD
effectively fails to follow the target. ONM, which is guaranteed
to stay in the neighborhood of the target, remains accurate at
every time step.

B. Constant regret bound

We test OMN when there is limited variation in the tar-
get’s location. This case illustrates the O (1) regret bound of

6(-1)"V T
81, so that 37 [ls]| <

S st = V, and set V according to the sufficient
condition of Corollary Lastly, we let g, = 1 X 106,
Figure 3] shows the constant regret for ONM. As in the previous
example, ONM’s regret is lower than OGD’s. Figure [3] shows
the tracking performance. ONM outperforms OGD, which never
reaches the vicinity of the target’s position. The zoomed-

Corollary We set s; =
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Regret [a.u.]

0 T T T T
0 20 40 60 80

Round

Fig. 3.
variation

Regret of moving target localization with oxM for limited total

0.000301 ...q..

0.00025 4

0.00020 4

= 0.00015

0.00010 4

0.00005 4

T

0.00000 ¥=2 , = 5 — :
0.00000  0.00005 0.00010  0.00015  0.00020  0.00025
T +1

Fig. 4. Localizing a moving target with oNM for limited total variation
(zoomed section: 10 last rounds)

in section of Figure [] presents the last ten rounds of the
simulations. Here we see that ONM achieves virtually perfect
performance when measurement noise is low and v; extremely
small.

V. CONCLUSION

In this work, we presented a second-order approach, the
online Newton’s method (ONM), for online nonconvex opti-
mization problems. We only assume local Lipschitz properties
on the objective function and bounded variations between the
round optima. We provide two regret bounds: an O (Vp + 1)
regret bound for the general case and a constant O (1) regret
bound for when the total variation between optima is limited.
The first bound is similar to results in the literature but with
an important difference: it also holds for nonconvex problems.
We conclude with a moving target localization example using
ONM. We show that our approach properly tracks a moving
target using noisy range measurements and outperforms online
gradient descent. In future work, we will investigate tighter
regret bounds for ONM by taking advantage of the quadratic
convergence rate of the Newton’s update shown in Lemma [2}

Another possible future direction is combining first-order and
second-order updates in a hybrid framework, which could
result in better regret bounds under less stringent requirements.

APPENDIX
PROOF OF LEMMA[4]

We split the initial condition of the sequence (z,), xg €
[0,7Z), into two subsets: (i) zg € [z, T), and (ii) zo € [0, z].
Case (i) zo € [z,T): First, we show that z,, is strictly
decreasing or equivalently, z,4+1; < z,. This condition is
equivalent to cx2 —x,,+v < 0, which holds for all z,, € (z,7)
and v < i. This further implies that z,, < T if ¢ € [z,T).
As result, z,, never converges to = even though 7 is a fixed
point of the map on the left-hand-side of the aforementioned

inequality. Moreover, letting x,, = z for any n € N, we have

Tp41 = c@Q +v

<1 — VI —401})2
=c|——F——| +tv

2c
1—+1—4cv

2c N
Thus, x, > z,41 and z < z,, < 7T for all n € N assuming
xo € [Z,z). The infimum, inf, ey z, = z, is attained because
of the strict monotonicity and z being a fixed point of the map.
Now, by the monotone convergence theorem, a monotonically
decreasing and bounded below sequence converges and it
converges to its infimum. Thus, (x,) — z for any xg € [z, T)
and v < .

Case (ii) zg € [0,z]: Similar to above, we show that the
sequence is monotonically increasing, or equivalently, x, <
Tp41. Similar to the previous case, this is equivalent to 0 <
cx? — x,, +v. The inequality holds strictly for all z,, € [0, z).
Moreover, if z,, = z for n € N, then z,,1; = z from the
above demonstration and z is a fixed point of the map.

Hence, z,, € [0,z] for all n € N if zy € [0,z]. The
supremum, sup,,cy &n = Z, is reached for any initial condition
because of the strict monotonicity and the fact that z is a
fixed point of the map. Similarly to the previous case, by the
monotone convergence theorem, a monotonically increasing
and bounded above sequence converges and it converges to
its supremum. Therefore, (x,,) — z for any z¢ € [0, z] and
v < i. Putting the results for two initial condition intervals
together then proves the lemma. [ ]
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