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Integral quadratic constraints for asynchronous

sample-and-hold links

Michael Cantoni, Chung-Yao Kao, and Mark A. Fabbro

Abstract

A model is proposed for a class of asynchronous sample-and-hold operators that is relevant in the analysis of

embedded and networked systems. The model is parametrized by characteristics of the corresponding time-varying

input-output delay. Uncertainty in the relationship between the timing of zero-order-hold update events at the output

and the possibly aperiodic sampling events at the input means that the delay does not always reset to a fixed value.

This is distinct from the well-studied synchronous case in which the delay intermittently resets to zero at output

update times. The main result provides a family of integral quadratic constraints that covers the proposed model.

To demonstrate an application of this result, robust L2 stability and performance certificates are devised for an

asynchronous sampled-data implementation of a feedback loop around given linear time-invariant continuous-time

open-loop dynamics. Numerical examples are also presented.
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I. INTRODUCTION

The digital implementations of controllers generically involve plant output sampling and plant input

updates at discrete time instants. This leads to time-varying closed-loop dynamics, even when the plant

and controller are time invariant. In particular, at times between updates, the plant input is held constant

at a value determined by a plant output sample taken at a varying time in the past [1].

A well studied approach to the analysis of sampled-data control systems, called the “input delay”

approach, applies when the discrete-time controller implementation commutes with the hold operation, as

in the case of static gain feedback. Combinding the sampling and the hold operations yields a closed-loop

that can be modelled in a purely continuous-time fashion. More generally, sample-and-hold operators

arise in the study of digital networks of continuous-time dynamical systems [2]. It is well known that

sample-and-hold operators with synchronized sampling and hold event timing (i.e., synchronous sample-

and-hold) can be modelled as a saw-tooth time-varying delay that resets to zero at the possibly non-uniform

update/sampling instants [1], [3]–[6].

Implementation resource limitations may lead to asynchronous hold update and sample event sequences

at the output and input, respectively, of a sample-and-hold link. This can arise when there is variability

in the time consumed by the mechanisms used to process samples from sensors and communicate data to

actuators. When the timing of sample events and hold update events is not synchronized (i.e., asynchronous

sample-and-hold), the result is a time-varying delay that does not always reset to zero (or another constant

value) at hold update events. But like the synchronous case with aperiodic sampling, exact description of

the time-varying delay may not be possible ahead of time. Instead, the delay can be considered uncertain

and abstractly modelled by bounds on inter-update intervals, inter-sample intervals, and other relationships

reflecting asynchrony between output and input events. Ultimately, the model developed below is expressed

in terms of a perturbation of the identity (i.e., relative to the ideal link).
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The main contribution in what follows is a set of results that establish gain bound and passivity properties

of the aforementioned perturbation of the identity. This extends results in and [3], [4] and [6], where the

synchronous special case is studied; also see [7]–[10]. Combining the gain and passivity properties yields

a family of integral quadratic constraints (IQCs) that cover the uncertain asynchronous sample-and-hold

operator in a way that is suitable for robustness analysis in the vein of [11]. The results established here

go beyond the preliminary versions of the work reported in [12] and [13]. In particular, an additional

characteristic of the time-varying delay is accounted for more explicitly here. Its consideration leads to a

less conservative IQC cover, as discussed further in Sections IV. To illustrate use of the proposed model

and its IQC characterization, robust stability and performance certificates are devised for the sampled-data

implementation of a feedback loop, subject to resource limitations that lead to asynchronous sampling

and update events.

The input-output context of the IQC approach followed here is a distinguishing feature relative to

the more common approaches to sampled-data system analysis based on hybrid/impulsive state-space

modelling [14]–[18]. Further, in the state-space literature it is standard to relate all sample and update

events to a single time sequence, for which one interval bound holds. By contrast, in the structured input-

output approach developed here, characteristics of the sample and update event sequences are bounded

individually, and with respect to each other. Recent related work on asyncrohonous sample-data systems

within a state-space context can be found in [19]–[22]. While gain bounds on related operators play a

role in some of these papers, the combined exploitation of gain and passivity properties is not considered.

It is shown by example here that the consideration of both together can reduce conservativeness in the

resulting analysis.

The rest of the paper is organized as follows. First some notation and terminology are established.

In Section III, the class of uncertain asynchronous sample-and-hold operators is formally defined. The

aforementioned gain bound and passivity properties are then derived, and combined to formulate the

IQC covers of the asynchronous sample-and-hol model, in Section IV. Corresponding robust stability and

performance certificates for the example sampled-data feedback loop are devised in Section V, where

numerical result are also presented. Concluding remarks are provided in Section VI.

II. PRELIMINARIES

The non-negative integers and the reals are denoted by N0 and R, respectively, and R>0 = (0,+∞)⊂R.

The space of square integrable functions defined on R≥0 = [0,+∞)⊂ R is denoted by L2, and the usual

L2 norm and inner product are denoted by ‖ · ‖L2
and 〈·, ·〉L2

, respectively. The extended L2 space is

denoted by L2e. This consists of functions f : R≥0 → R that satisfy Pτ f ∈ L2 for τ > 0, where Pτ is the

truncation operator; i.e., (Pτ f )(t) = f (t) for t ≤ τ , otherwise (Pτ f )(t) = 0. The set of right continuous

functions defined on R≥0 is denoted by Cr.

Let G : L2e → L2e be given. This is called a bounded operator if u ∈ L2 =⇒ Gu ∈ L2 and ‖G‖ =
supu∈L2

‖Gu‖L2
/‖u‖L2

is finite. If PτGPτ −PτG = 0 for all τ > 0, then G is called causal, and when it is

also bounded, G is called stable. If G is linear and bounded (not necessarily causal), the adjoint of the

restriction to L2 is denoted by G∗; i.e., 〈v,Gu〉L2
= 〈G∗v,u〉L2

for u,v ∈L2. If G is stable, linear, and time-

invariant (i.e., commutes with forward shift), then its restriction to L2 corresponds to multiplication by

a frequency domain transfer function. This transfer function, also denoted G for convenience, is analytic

in the right-half plane, with ‖G‖= esssupω∈R |G(jω)|, where j=
√
−1. If G admits the rational transfer

function G(s)=C(sI−A)−1B+D, the collection of matrices (A,B,C,D) is called a state-space realization.

The identity matrix is denoted by I.

Let ∆ : L2e → L2e be stable. Given self-adjoint Π : L2 → L2, the bounded causal operator ∆ : L2 → L2

is said to satisfy the IQC defined by Π if
〈[

v

∆v

]

,Π

[

v

∆v

]〉

L2

≥ 0 for all v ∈ L2.



When this property holds, it is written that ∆ ∈ IQC(Π). Dependence of the so-called multiplier Π on a

parameter X is denoted by Π(X).
Given causal G : L2e → L2e and ∆ : L2e → L2e, if for every [ dw

dv
] ∈ L2e ×L2e there exist unique [w

v ] ∈
L2e ×L2e such that

{

w = ∆v+dw

v = Gw+dv

, (1)

and the closed-loop map [[G,∆]] = ([ dw

dv
] ∈ L2e ×L2e) 7→ ([w

v ] ∈ L2e ×L2e)) is causal, then the feedback

interconnection is called well-posed. Moreover, if the induced norm of the restriction to L2 is also bounded

(i.e., ‖[[G,∆]]‖<+∞), then the closed-loop is said to be stable.

Proposition 1 ([11]): Let G : L2e → L2e and ∆ : L2e → L2e be stable operators. Suppose that [[G,α∆]]
is well-posed and that α∆ ∈ IQC(Π) for all α ∈ [0,1] for the given self-adjoint multiplier Π : L2e → L2e.

If there exists ε > 0 such that
〈[

Gw

w

]

,Π

[

Gw

w

]〉

L2

≤−ε‖w‖2
L2

for all w ∈ L2,

then [[G,∆]] is stable.

III. ASYNCHRONOUS SAMPLE-AND-HOLD

The event sequence (tk)k∈N0
⊂ R≥0 is admissible provided t0 = 0, tk+1 − tk > 0 for k ∈ N0, and

limk→+∞ tk =+∞. Given admissible event sequence T = (tk)k∈N0
, the following notation applies:

(i) ST denotes the sampling operator that maps the continuous-time signal v ∈ Cr∩L2e to the discretely

indexed signal ṽ = (ṽk)k∈N0
, such that ṽk = v(tk); and

(ii) HT denotes the hold operator that maps the discretely indexed signal ṽ = (ṽk)k∈N0
to the continuous-

time signal v ∈L2e such that v(t) = (HT ṽ)(t)= ṽk for t ∈ [tk, tk+1), k ∈N0. Note that v ∈L2e because

every finite truncation of the sequence ṽ is square summable.

Synchronous sample-and-hold operators correspond to any composition of the form HTST . It is well

known that this is equivalent to a saw-tooth time-varying delay operator [1].

Lemma 1: Define m(t) = max{k | tk ∈ [0, t], k ∈ N0} and σ(t) = t − tm(t) for t ∈ R≥0. Further, for

v ∈ L2e, let

(Rσ v)(t) =

{

v(t −σ(t)) if t −σ(t)≥ 0,

0 otherwise.

Then Rσ y = HTST y for y ∈ Cr ∩L2e.

Proof: Observe that (HTST y)(t) = y(tm(t)) = y(t − (t − tm(t))) = (Rσ y)(t) for t ∈ R≥0.

Remark 1: Note that σ : R≥0 → R≥0 in Lemma 1 is piecewise linear with σ(tk) = 0 for tk ∈ T . The

discontinuities are limited to T and the derivative is 1 almost everywhere. Further, the time-varying delay

operator Rσ commutes with multiplication by any constant K; i.e., KRσ −Rσ K = 0.

Given admissible input sample and output update event sequences T ′ = (t ′k)k∈N0
and T ⋆ = (t⋆k )k∈N0

, the

composition HT ⋆ST ⋆HT ′ST ′ yields asynchronous sample-and-hold behaviour of the kind discussed in

the introduction; see Fig. 1. In view of Lemma 1, (HT⋆ST ⋆)(HT ′ST ′)y = Rσ⋆Rσ ′y for y ∈ Cr ∩L2e,

where σ⋆(t) = t − t⋆
n(t) and σ ′(t) = t − t ′

p(t) for t ∈ R≥0, with

n(t) = max{k | t⋆k ∈ [0, t], k ∈ N0} (2)

and

p(t) = max{k | t ′k ∈ [0, t], k ∈ N0}. (3)
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Fig. 1. Asynchronous sample-and-hold by composition: y′ = HT ′ST ′y and y⋆ = HT ⋆ST ⋆y′. See Lemma 2 for σ ′, σ ′′, and the proof of

Lemma 3 for ψl .

Lemma 2: With reference to (2) and (3), define q(t) = p(t⋆
n(t)) and σ ′′(t) = t − t ′

q(t) for t ∈ R≥0. Then

Rσ⋆Rσ ′ = Rσ ′′ .

Proof: For y ∈ L2e, note that y⋆(t) = (Rσ⋆Rσ ′y)(t) = y′(t −σ⋆(t)), where y′(t) = (Rσ ′y)(t) = y(t −
σ ′(t)) for t ∈ R≥0. That is, y⋆(t) = y(t −σ⋆(t)−σ ′(t −σ⋆(t))). Now by definition,

σ⋆(t)+σ ′(t −σ⋆(t)) = t − t⋆n(t)+(t − (t − t⋆n(t))− t ′p(t−(t−t⋆
n(t)))

)

= t − t ′q(t) = σ ′′(t).

As such, y⋆(t) = y(t −σ ′′(t)) = (Rσ ′′y)(t).
Remark 2: Note that σ ′′ : R≥0 →R≥0 in Lemma 2 is also piecewise linear, with discontinuities limited

to T ⋆. Moreover, the derivative is 1 almost everywhere. But σ ′′(t⋆k ) may be non-zero and varying for

t⋆k ∈ T ⋆; see Fig. 1. By constrast σ ′(t ′k) = 0 for k ∈ N0.

By way of example, consider bounded time-varying delay in a communication link between a sample

input buffer and a remote zero-order-hold output buffer. This can be modelled by the asynchronous

sample-and-hold composition HT ⋆ST ⋆HT ′ST ′ with T ⋆ = {t⋆k = t ′k +δk}k∈N0
for the given input sample

event sequence T ′ = (t ′k)k∈N0
, provided the delay satisfies 0 ≤ δk < t ′k+1− t ′k for every k ∈N0, so that T ⋆ is

an admissible event sequence (e.g., the minimum sample interval is greater than the maximum delay). As

another example, the asynchronous sample-and-hold operator HT ⋆ST ⋆HT ′ST ′ could be used to model

a shared buffer that is (over-)written at each (possibly aperiodic) time in T ′, and read asynchronously at

times in T ⋆ to update the output (e.g., in response to write events by the execution of a mechanism that

takes a variable time to complete, possibly exceeding the subsequent sample interval).

Of course, the composition of two different synchronous sampled-and-hold operators is just one possible

way to arrive at the piecewise linear delay features of asynchronous sample-and-hold operators (e.g., see [2]

where a structured model is proposed that accommodates sample re-ordering by virtue of delay that can

exceed the minimum sample interval). Nonetheless, given the preceding examples of practical relevance,

attention is restricted here to the class arising via the composition HT⋆ST ⋆HT ′ST ′ . Exact description of

such an operator requires knowledge of the input sample event sequence T ′ and the output hold update

event sequence T ⋆. These are typically not available ahead of time. On the other hand, it is often possible

to bound the inter-sample interval, inter-update interval, and other relationships between the corresponding

events.

The subsequent developments pertain to uncertain asynchronous sample-and-hold operators defined by

the composition HT ⋆ST ⋆HT ′ST ′ and the tuple (τ ′,τ⋆,τ◦,τ♮) ∈ R>0 ×R>0 × [0,τ⋆]× [0,min{τ◦,τ ′}] of

bounds such that the event sequences T ′ = (t ′k)k∈N0
and T ⋆ = (t⋆k )k∈N0

satisfy the following constraints,



where φk = min{t | t ∈ T ⋆∩ [t ′k,+∞)} and k ∈ N0:

0 < t ′k+1 − t ′k ≤ τ ′, 0 < t⋆k+1 − t⋆k ≤ τ⋆,

φk − t ′k ≤ τ◦ ≤ τ⋆, and

φk −max{t | t ∈ T ′∩ [0,φk]} ≤ τ♮ ≤ min{τ◦,τ ′}.
(4)

The bounds τ ′ and τ⋆ are limits on inter-sample and inter-update intervals, respectively. The bound τ◦

limits the interval between any sample event and the subsequent hold update event, whereas τ♮ limits

the interval between such updates and the preceding sample event. As such, these two bounds reflect

the degree of asychrony between the sample and hold event sequences. The bound τ♮ is not considered

in [12], [13]. In general, τ♮ ≤ τ◦, since there could be multiple sample events per hold update (and vice

versa).

Remark 3: With reference to Fig. 1, it follows that τ ′+ τ◦ is an upper bound on the intervals of time

between resets of the time-varying delay σ ′′, and τ♮ is an upper bound on the value to which it resets.

See the proof of Lemmas 3 and 4 in the next section, where both bounds play an important role in the

derivation of IQCs for the class of asynchronous sample-and-hold operators considered.

Let F : L2e →L2e be any stable low-pass linear time-invariant system (i.e., F has strictly proper transfer

function with no poles in the closed right-half plane). Then on L2e, HT ⋆ST ⋆HT ′ST ′F = (I −∆)I †F ,

where

∆ = (id−HT⋆ST ⋆HT ′ST ′)I = (id−Rσ ′′)I , (5)

Rσ ′′ is defined in Lemma 2 for the realizations T ′ and T ⋆ of the sample and hold event sequences,

and id is the identity on L2e. The operators I : L2e → L2e and I † : D → L2e denote integration and

differentiation, respectivley; i.e., I = (v ∈ L2e) 7→ ((t 7→
∫ t

0 v(x)dx) ∈ L2e) and I I †y = y for all y in the

subspace D ⊂ L2e of piecewise differentiable functions. Note that the range of F is contained in D and

that I †F is stable with proper transfer function sF(s). The properties of F also ensure boundedness of

the input sampling operation ST ′F on the space L2 [23]. Finally, note that ∆ is causal.

IV. IQC BASED COVERS (MAIN RESULTS)

Bounded gain and input feedforward passivity properties are now established for the uncertain operator

∆ in (5), given the tuple (τ ′,τ⋆,τ◦,τ♮) ∈ R>0 ×R>0 × [0,τ⋆]× [0,min{τ◦,τ ′}] of bounds such that (4)

holds for the corresponding sample and hold event sequences T ′ and T ⋆. Combining these leads to the

main result, in which a family of IQCs is provided for ∆.

Lemma 3 (Bounded Gain): For every v ∈ L2,

‖∆v‖L2
≤

(

2(τ ′+ τ◦)/π +
√

(τ ′+ τ◦)τ♮
)

‖v‖L2
.

Proof: Let θ0 = 0 = t ′0 = t⋆0 . With l = 0 even, define

θl+1 =

{

min{t | t ∈ T ′∩ (θl,∞)} if l is even

min{t | t ∈ T ⋆∩ [θl,∞)} if l is odd
, ψl = θ2l,

and λl = maxT ′∩ [0,ψl] for l ∈ N0. Each ψl corresponds to a hold output update with the most recent

sample, taken at λl; see Fig. 1. Further, ψl−1 < λl ≤ ψl for l ∈ N, and ψl →+∞ as l →+∞.

Let w = ∆v. With reference to (5) and Lemma 2, note that w(t) =
∫ t

λl
v(x)dx for t ∈ [ψl,ψl+1) and

l ∈ N0. So with

wl(t) =
∫ t

ψl

v(x)dx and wl(t) =
∫ ψl

λl

v(x)dx



for t ∈ [ψl,ψl+1), and wl(t) = wl(t) = 0 otherwise, it follows that w = w+w, where w = ∑l∈N0
wl and

w=∑l∈N0
wl . Since w(ψl)= 0, and d

dt
w(t)= v(t) for t ∈ (ψl,ψl+1), it follows as also noted in [5, Lem. 3.2]

that application of Wirtinger’s inequality [24, Thm. 256], with v ∈ L2, gives

‖w‖2
L2

= ∑
l∈N0

∫ ψl+1

ψl

w(x)2 dx

≤ ∑
l∈N0

4(ψl+1−ψl)
2

π2

∫ ψl+1

ψl

v(x)2 dx

≤
(

2(τ ′+ τ◦)
π

‖v‖L2

)2

. (6)

The last inequality above holds because (ψl+1−ψl) = (θ2l+1−θ2l)+(θ2(l+1)−θ2l+1)≤ τ ′+τ◦ for l ∈N0

by (4). Further,

‖w‖2
L2

= ∑
l∈N0

(ψl+1 −ψl)(

∫ ψl

λl

v(x)dx)2

≤ ∑
l∈N0

(ψl+1 −ψl)(ψl −λl)

∫ ψl

λl

v(x)2 dx

≤
(

√

(τ ′+ τ◦)τ♮ · ‖v‖L2

)2

. (7)

The equality above holds because w(t) is constant for t ∈ [ψl,ψl+1). The first inequality holds by

application of Jensen’s inequality [26, Thm. 3.3], and the second because (ψl − λl) ≤ τ♮ by (4) and
∫ ψl

λl
v(x)2 dx ≤

∫ λl+1

λl
v(x)2 dx.

In view of (6) and (7), it follows that w,w ∈ L2, and hence, w = w+w ∈ L2. Further, the claimed gain

bound holds by the triangle inequality; i.e., ‖w‖L2
≤ ‖w‖L2

+‖w‖L2
.

Remark 4: Synchronous sample-and-hold corresponds to T ′ = T ⋆, and thus, τ◦ = τ♮ = 0. In this case,

the L2 gain bound in Theorem 3 is 2τ ′/π , which is exactly the induced norm of the corresponding ∆,

as shown in [3]; i.e., the bound is tight. The gain bound provided in the preliminary work [12], [13]

corresponds to taking τ♮ = τ◦. However, this can be conservative. For example, if the hold output is

simply a down-sampled version of the input, then τ♮ can be taken to be zero, although τ◦ is non-zero,

making the gain bound tighter.

Lemma 4 (Input Feedforward Passivity): For v ∈ L2, the following holds: 〈∆v,v〉L2
+(τ♮/2)‖v‖2

L2
≥ 0.

Proof: Using notation from the proof of Lemma 3, with w = ∆v ∈ L2, d
dt

w(t) = v(t), and thus,

w(t)v(t) = 1
2

d
dt

z(t), where z = w2, for l ∈ N0 and t ∈ (ψl,ψl+1). As such,

∫ ψl+1

ψl

w(x)v(x)dx =
1

2

(

(
∫ ψl+1

λl

v(x)dx)2 − (
∫ ψl

λl

v(x)dx)2

)

.

This implies

0 ≤
∫ ψl+1

ψl

w(x)v(x)dx+
1

2
(

∫ ψl

λl

v(x)dx)2.

By application of Jensen’s inequality [26, Thm. 3.3], it follows that

0 ≤
∫ ψl+1

ψl

w(x)v(x)dx+((ψl −λl)/2)
∫ ψl

λl

v(x)2 dx

≤
∫ ψl+1

ψl

w(x)v(x)dx+((ψl −λl)/2)

∫ λl+1

λl

v(x)2 dx.

As (ψl −λl)≤ τ♮ by (4), summing over l∈N0 yields the result.



Remark 5: Lemma 4 reveals that (τ♮/2)id+∆ is passive; i.e., −(τ♮/2) ≤ 0 is a lower bound for the

input feedforward passivity index [10]. This is tighter than the one that follows from [12, Lem. 5], where

τ♮ = τ◦, giving the weaker constraint 〈∆v,v〉L2
≥−(τ◦/2)‖v‖2

L2
, since τ♮ ≤ τ◦ in general.

Theorem 1: Let β = ( 2(τ ′+ τ◦)/π +
√

(τ ′+ τ◦)τ♮ )2 and

Π(X ,Y) =

([

v

w

]

∈L2 7→ (t∈R≥0 7→
[

βX + τ♮Y Y

Y −X

][

v(t)
w(t)

]

)∈L2

)

.

Then ∆ ∈ IQC(Π(X ,Y)) for every X ≥ 0 and Y ≥ 0.

Proof: For arbitrary v ∈ L2, let w = ∆v. Note that
〈[

v

w

]

,Π(X ,Y)

[

v

w

]〉

L2

= β‖X1/2v‖2
L2

−‖X1/2w‖2
L2

+2〈Y 1/2w,Y 1/2v〉L2
+ τ♮

∥

∥

∥
Y 1/2v

∥

∥

∥

2

L2

. (8)

Since the time-varying delay Rσ ′′ , and thus ∆ = (Id−Rσ ′′)I , commute with multiplication by a constant

gain (see Remark 1), X1/2w = ∆X1/2v and Y 1/2w = ∆Y 1/2v. With Lemma 3, this implies β‖X1/2v‖2
L2

−
‖X1/2w‖2

L2
≥ 0 in (8). Similarly, the remaining terms in (8) are non-negative by Lemma 4. In summary,

〈[ v
∆v ],Π(X ,Y)[ v

∆v ]〉L2
≥ 0 for v ∈ L2.
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I
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Fig. 2. A sampled-data implementation of a feedback loop (top) and a loop-transformation for robust stability and performance analysis via

Proposition 1 and Theorem 1 (bottom).

V. ROBUST PERFORMANCE ANALYSIS OF AN EXAMPLE SAMPLED-DATA FEEDBACK LOOP

Consider the top part of Fig. 2, which shows the digital implementation of a disturbance matching

feedback loop. The path from the sensor to the actuator comprises a low-pass filter F and a sample

buffer of depth one; i.e., it can only store one sample. This buffer is (over-)written with sensor samples

by an external trigger. It is read to update the actuator in response to such events with variable delay.

This feedback path can be modelled by the asynchronous sampled-and-hold operator HT⋆ST ⋆HT ′ST ′F ,

where the sensor sampling events T ′ and actuator update events T ⋆ satisfy (4) for an appropriate tuple of

bounds (τ ′,τ⋆,τ◦,τ♮) ∈R>0 ×R>0× [0,τ⋆]× [0,min{τ◦,τ ′}]. To illustrate an application of the results in

Section IV, closed-loop stability and performance are considered below with

τ ′ = h, τ⋆ = (1+δ )h, τ◦ = δh, and τ♮ = h ·min{δ ,1}, (9)

for h> 0 and δ ≥ 0. This corresponds to a bound δh ≥ 0 on the actuator update response time, which may

exceed the maximum sample interval when δ > 1. In the following, the anti-aliasing filter F and transfer



function P are such that the feedback interconnection [[P,−F]] is stable; i.e., the ideal closed-loop with

infinitely frequent sampling and synchronous hold is stable. For the sake of argument, the performance

weight transfer function in the loop-transformed system at the bottom of Fig. 2 is taken to be W (s)= F(s).
Using (5) and Lemma 3, note that HT ⋆ST ⋆HT ′ST ′F = F −∆I †F is stable. As such, stability of the

feedback interconnection [[P,−HT⋆ST ⋆HT ′ST ′F ]] in the top of Fig. 2 is equivalent to stability of the

closed-loop map d 7→ y. Specifically, any L2 disturbance at the plant output can as such be transferred

to the plant input, and if y is an element of L2 for d ∈ L2, then so is u = d −HT ⋆ST ⋆HT ′ST ′Fy.

Also observe that the feedback interconnection [[P,−F]] is stable, and thus, that if w ∈ L2 in the loop-

transformed system at the bottom of Fig. 2, then y ∈ L2. Therefore, verification that the interconnection

[[(I †F [0 id ] [[P,−F]]
[

id
0

]

),∆]] is stable, implies [[P,−HT⋆ST ⋆HT ′ST ′F]] is stable.

Define

G =

[

Gzd Gzw

Gvd Gvw

]

=

[

W 0

0 I †F

]

[[P,−F]]

[

id id

0 0

]

,

noting that Gzd , Gzw, Gvd and Gvw are all stable linear time-invariant systems with proper transfer

functions. Then [[P,−HT⋆ST ⋆HT ′ST ′F ]] is stable if [[Gvw,∆]] is stable. Further, the weighted closed-

loop performance map d 7→ z =Wu is given by Gzd +Gzw [0 id ] [[Gvw,∆]]
[

id
0

]

Gvd , which is bounded in this

case. Given any state-space realization

G(s) =

[

Cz

Cv

]

(sI−A)−1
[

Bd Bw

]

+

[

Dzd Dzw

Dvd Dvw

]

,

with A Hurwitz, the following stability and performance certificates are now established via Theorem 1,

Proposition 1 and the so-called Kalman-Yakubovic-Popov (KYP) lemma [25]. The following notation

applies below: For symmetric matrix M = M⊤ ∈ R
n×n, M ≻ 0 means there exist c > 0 such that x⊤Mx ≥

c x⊤x for all x ∈ R
n, and M ≺ 0 means −M ≻ 0.

Theorem 2 (Robust Stability): Given h> 0 and δ ≥ 0, let β = (2(1+δ )h/π+
√

(1+δ )h2 ·min{δ ,1})2

and η = h ·min{δ ,1}. If X ≥ 0, Y ≥ 0 and Q = Q⊤ exist such that

[

A Bw

I 0

]⊤[

0 Q

Q 0

][

A Bw

I 0

]

+

[

Cv Dvw

0 I

]⊤[

βX +ηY Y

Y −X

][

Cv Dvw

0 I

]

≺ 0, (10)

then [[P,−HT⋆ST ⋆HT ′ST ′F]] is stable for all event sequences T ′ and T ⋆ consistent with (4) and (9).

Proof: The interconnection [[Gvw,α∆]] is well-posed for α ∈ [0,1] since the so-called instantaneous

gain of α∆ = (v ∈ L2 7→ (t ∈R≥0 7→ α
∫ t

q(t) v(t) dx ∈ L2)) is zero; see [27]. Further, since ‖α∆v‖= α‖∆v‖
and 〈α∆v,v〉L2

=α〈∆v,v〉 for v∈L2, Lemmas 3 and 4 hold with α∆ in place of ∆ for α ∈ [0,1]. Therefore,

as in the proof of Theorem 1, it follows that α∆∈ IQC([βX+ηY Y
Y −X

]) for every X ≥ 0, Y ≥ 0, and α ∈ [0,1].
Now applying Proposition 1, if there exists X ≥ 0, Y ≥ 0 and ε > 0 such that

〈[

Gvww

w

]

,

[

βX +ηY Y

Y −X

][

Gvww

w

]〉

L2

≤−ε‖w‖2
L2

(11)

for all w ∈ L2, then [[Gvw,∆]] is stable, which as discussed above, implies [[P,−HT⋆ST ⋆HT ′ST ′F]] is

stable. As such, the stated result holds by application of the KYP lemma [25], whereby the existence of

X ≥ 0, Y ≥ 0 and ε > 0 such that (11) holds for all w ∈ L2 is equivalent to the existence of X ≥ 0, Y ≥ 0

and Q = Q⊤ such that (10) holds.



Theorem 3 (Robust Performance): With the notation of Theorem 2, given γ > 0, if X ≥ 0, Y ≥ 0 and

Q = Q⊤ exist such that
[

A
[

Bd Bw

]

I 0

]⊤[

0 Q

Q 0

][

A
[

Bd Bw

]

I 0

]

+





[

Cz

Cv

] [

Dzd Dzw

Dvd Dvw

]

0 I





⊤








I 0 0 0

0 βX +ηY 0 Y

0 0 −γ2I 0

0 Y 0 −X













[

Cz

Cv

] [

Dzd Dzw

Dvd Dvw

]

0 I



≺ 0, (12)

then [[P,−HT⋆ST ⋆HT ′ST ′F ]] is stable and ‖d 7→ z =Wu‖ ≤ γ for all T ′ and T ⋆ that are consistent with

(4) and (9).

Proof: This performance analysis extension of the stability result in Theorem 2 is standard. A brief

proof is provided for completeness. By the KYP lemma [25], the existence of X ≥ 0, Y ≥ 0 and Q = Q⊤

such that (12) holds is equivalent to the existence of X ≥ 0, Y ≥ 0 and ε > 0 such that
〈

[

G [ d
w ]

[ d
w ]

]

,

[

I 0 0 0
0 βX+ηY 0 Y

0 0 −γ2I 0
0 Y 0 −X

]

[

G [ d
w ]

[ d
w ]

]

〉

L2

≤−ε‖ [ d
w ]‖2

2

for all [ d
w ] ∈ L2. With d = 0, this implies (11) holds for all w ∈ L2, since 〈Gzww,Gzww〉L2

≥ 0. Thus,

[[P,−HT⋆ST ⋆HT ′ST ′F ]] is stable, as seen in the proof of Theorem 2. Moreover, with [ z
v ] = G [ d

w ] and

w = ∆v as shown in Fig. 2, it follows that

〈z,z〉L2
− γ2〈d,d〉L2

≤−ε‖[ d
w ]‖2

L2
−〈[ v

∆v ] ,
[

βX+ηY Y
Y −X

]

[ v
∆v ]〉L2

≤ 0,

since the term involving v is non-negative by Theorem 1.

Remark 6: Verification of (10) or (12) is a standard question of linear matrix inequality (LMI) feasibility.

It can be decided by posing a finite-dimensional semi-definite program. To this end, the CVX package [28]

with default solver SDPT3 [29] is used here.

Numerical results are given in Figs. 3 and 4 for P(s) = 1/s and F(s) = 1/(0.1s+ 1), whereby the

nominal interconnection [[P,−F]] is stable. Fig. 3 shows the largest value of the inter-sample interval

bound h > 0 for which the condition (10) can be verified numerically, as the hold update asynchrony

bound δ is varied from 0 to 2. As might be expected, with increasing δ the largest verifiable h > 0

decreases. Fig. 4 shows the smallest L2-gain bound γ on the closed-loop map d 7→ z, for which the

condition (12) can be verified, over a grid of (h,δ ) pairs. As might be expected, the verified gain bound

increases sharply as (h,δ ) approaches the approximate “stability boundary” shown in Fig. 3. For this

example, it turns out that fixing Y = 0 in (10) and (12) yields the same results; i.e., only the gain bound

part of the IQC from Lemma 3 is important in this example.

Consider P(s) = 0.9(Tzs−1)/(s2+2s+1) and F(s) = 1/(0.1s+1) with Tz = 0.05 and Tz = 0.2, noting

that the nominal [[P,−F]] is stable in both cases. Fig. 5 shows the largest inter-sample interval bound

h > 0 for which (10) can be verified with X ≥ 0 and Y ≥ 0 (blue-star Tz = 0.2, green-plus Tz = 0.05),

and with X ≥ 0 and Y = 0 fixed (red-circle Tz = 0.2, grey-diamond Tz = 0.05). The latter corresponds to

consideration of the gain-bound IQC only in the analysis. For this example, it is clear that accounting for

the input feedforward passivity IQC from Lemma 4 leads to much less conservative results. The reduction

in conservativeness is more significant for the smaller value of Tz.

VI. CONCLUSION

A model for a class of asynchronous sampled-and-hold operators is proposed and characterized by

a family of IQCs. The model is parametrized by bounds on the uncertain inter-sample interval and the

asynchrony between input sample events and zero-order-hold output update events. In principle, the IQC

representation can be used to devise robust stability and performance certificates for sampled-data networks
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of dynamical systems, as illustrated here for a feedback network with one asynchronous sample-and-hold

link. For more complicated networks, it is expected that the IQC framework will facilitate exploitation of

network structure as in [31], for example, and the consideration of non-linearities, such as link quantization

as in [2], [30], for example, and in the sub-system dynamics more generally. Within a networked systems

context, additional IQC may be also used to encode known bounds on relationships between related

links, as in the case of a common source and sampling sequence, but distinct hold update sequences, as

considered in [12] for example. Ongoing work is continuing in these directions.
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