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Abstract

We study the convergence properties of Social Hegselmann-Krause dynamics, a variant of the
Hegselmann-Krause (HK) model of opinion dynamics where a physical connectivity graph that
accounts for the extrinsic factors that could prevent interaction between certain pairs of agents
is incorporated. As opposed to the original HK dynamics (which terminate in finite time), we
show that for any underlying connected and incomplete graph, under a certain mild assumption,
the expected termination time of social HK dynamics is infinity. We then investigate the rate
of convergence to the steady state, and provide bounds on the maximum ε-convergence time
in terms of the properties of the physical connectivity graph. We extend this discussion and
observe that for almost all n, there exists an n-vertex physical connectivity graph on which
social HK dynamics may not even ε-converge to the steady state within a bounded time frame.
We then provide nearly tight necessary and sufficient conditions for arbitrarily slow merging
(a phenomenon that is essential for arbitrarily slow ε-convergence to the steady state). Using
the necessary conditions, we show that complete r-partite graphs have bounded ε-convergence
times.

1 INTRODUCTION

With social networks gaining omnipresence and their associated datasets becoming accessible to the
public, opinion dynamics has attracted researchers from a range of disciplines in recent times [8].
Besides having social scientific applications such as forecasting election results [21], opinion dy-
namics models are also used in engineering problems such as distributed rendezvous in a robotic
network [16].

Among the existing models, confidence-based models form a noteworthy class. In particular,
a well-known bounded-confidence model proposed in [12], also known as the Hegselmann-Krause
model (referred as the HK model from here on), has garnered a lot of interest in the last two
decades. Essentially, it models a non-linear time-varying system in which every agent’s opinion is
either a real number or a real-valued vector, and assumes that every agent has a confidence bound
defining his/her neighborhood (the set of agents influencing him/her at the given point in time).
At every time-step, each agent’s belief moves to the arithmetic mean of his/her neighbors’ beliefs.

To cite a few notable results, it was shown in [7] that HK dynamics always converge to a steady
state in finite time for every set of initial opinions. Later on, the termination time of the dynamics
was studied extensively and it is now known that for a system of n agents having scalar opinions, the
maximum termination time is at least Ω(n2) and at most O(n3) [1], [18], [24]. When the opinions
are multidimensional, the best known lower and upper bounds are Ω(n2) and O(n4), respectively
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[1], [17]. Other properties of interest such as inter-cluster distance and equilibrium stability were
studied in [3] and [4].

Even though a number of variants of the HK model have been proposed and analyzed (such as
the HK model with stubborn and flexible agents [10], the inertial HK model [5], and continuous-time
noisy variants [23]), very few models, such as the social HK model, proposed in [9], the generalized
Deffuant-Weisbuch model proposed in [22], and the social similarity-based HK model, proposed
in [6], address an important shortcoming that is central to the original model: the assumption
that every agent has access to every other agent’s opinion (regardless of whether or not he/she is
influenced by other agents).

Such an assumption is questionable, as on large scales a multitude of extrinsic factors such as
geographical separation along with differences in culture, nationality, socio-economic background,
etc., may drastically reduce the likelihood of two like-minded individuals contacting each other. To
address this issue, the social HK model incorporates a physical connectivity graph, denoted by Gph,
into the classical HK model. A pair of agents can access each other’s opinions if and only if the
corresponding vertices are adjacent in Gph.

The social HK model was proposed in [9], which provides a conjecture on the minimum value
of the confidence bound required to achieve consensus in the limit as the number of agents goes
to infinity. Subsequently, [2] provided an upper bound on the number of time steps in which two
agents separated by a minimum distance influence each other. Recently, in [20], we showed that
for any incomplete Gph and any continuous probability density function having the state space as
its support, the expected termination time of social HK dynamics is infinity.

This result motivates us to investigate the convergence properties of the social HK model in this
paper. We begin by introducing the original HK model, the social HK model, and the associated
terminology in Section 2. In Section 3, we provide the proof of the aforementioned result on the
expected termination time of the dynamics. In Section 4, we show that the conditional upper
bound on the maximum ε-convergence time provided in [20] is applicable to a wider class of initial
opinion distributions. In Section 5, we show that delaying an event that we call merging is the
only way to indefinitely delay a social HK system’s ε-convergence to the steady state. We then
provide a set of sufficient conditions and another set of necessary conditions for arbitrarily slow
merging, and use the necessary conditions to show that the ε-convergence time of a complete r-
partite graph is bounded. We conclude by observing that these conditions are nearly tight under
certain assumptions on the initial opinion distribution, and also provide some future directions.

A subset of the results of this work have also been reported in our conference paper [19] (to
appear), where we discriminate between consensus and non-consensus states, and provide sufficient
conditions for a physical connectivity graph to have an unbounded convergence time in each case.

Notation: We denote the set of real numbers by R, the set of positive real numbers by R+,
the set of integers by Z, the set of positive integers by N, and the set N ∪ {0} by N0. We define
[n] := {1, . . . , n}. We use I to denote the identity matrix (of the known dimension).

We denote the cardinality of a set S by |S|, the vector space of column vectors consisting of
n-tuples of real numbers by Rn, the ∞-norm in Rn by ‖·‖∞, and the all-one vector and the all-zero
vector in Rn by 1n and 0n, respectively, dropping the subscripts when the dimension is clear from
the context. For a set S, 1S denotes 1|S|.

An undirected graph on n vertices is G = (V,E) where V or V (G) is the set of vertices and
E = E(G) ⊆ V × V is the set of edges, with (i, j) ∈ E if and only if (iff) (j, i) ∈ E for i, j ∈ V .
If |V | = n, we can label the vertices so that V = [n], without loss of generality (w.l.o.g.). For
any vector w ∈ Rn and a subset of vertices VP ⊆ V , we let wP denote the restriction of w to
the coordinates specified by VP . Also, for any l ∈ [n], let w[l] denote the vector [w1 . . . wl]

T .
Throughout this work, all the graphs are undirected. We say that i and j are neighbors in G, if
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(i, j) ∈ E (and hence, (j, i) ∈ E). The set of neighbors of a node i in G is the set Ni := {j : (i, j) ∈
E} and the degree of node i is di := |Ni|. The adjacency matrix of G = ([n], E) is the n×n binary
matrix Aadj where (Aadj)ij = 1 iff (i, j) ∈ E, and the degree matrix of G is the diagonal matrix D
with Dii = di. We define the normalized adjacency matrix of G to be the matrix A := D−1Aadj .
The Laplacian of G is defined to be L := D−Aadj and the normalized Laplacian of G is defined to
be N := D−1/2LD−1/2 = I −D−1/2AadjD−1/2. For two graphs G1 = ([n], E1) and G2 = ([n], E2)
on n vertices, we let G1∩G2 = ([n], E1∩E2). For any subscript P , the normalized adjacency matrix
of a graph denoted by GP is denoted by AP . Finally, a complete graph (or clique) on n vertices is
the graph Kn := ([n], [n]× [n]).

2 PROBLEM FORMULATION

2.1 Original Model

Consider a network of n agents. For each k ∈ N, let xi[k] be the opinion of the ith agent at time
k. Then the state of the system at time k is defined as x[k] := [x1[k] x2[k] . . . xn[k]]T ∈ Rn.
Occasionally, we drop the indexing [k] for the state and its associated quantities when the context
makes the time index clear. In the original HK model, at time k, agents i and j are neighbors
iff |xi[k] − xj [k]| ≤ R, where R, the confidence bound, is assumed to be the same for every agent.
Thus, the set of neighbors of agent i at time k is:

Ni(x[k]) = {j ∈ [n] : |xi[k]− xj [k]| ≤ R} .

Note that i ∈ Ni for all i ∈ [n]. Also, i is a neighbor of j iff j is a neighbor of i. Therefore, we
can encode all of the information about the influences in the network at time k into an undirected
graph, Gc(x[k]), which we call the communication graph of the network at time k. This n-vertex
graph has a link between two vertices iff the corresponding agents are neighbors at time k. Observe
that Gc(x[k]) always has a self-loop at each vertex at all times. Finally, at every time instant, every
agent’s opinion shifts to the average of his/her neighbors’ current opinions:

xi[k + 1] =

∑
j∈Ni(x[k]) xj [k]

|Ni(x[k])|
. (1)

This being a bounded confidence model, it is possible that an agent does not have any neighbor
other than himself/herself, in which case, his/her opinion does not change i.e., xi[k + 1] = xi[k].
Such an agent is said to be isolated.

2.2 Modification

In the original HK dynamics, if the opinions of any two agents are within a distance of R from each
other, then the agents necessarily influence each other. This assumption is relaxed in the social
HK model by the introduction of a second graph, as described below.

Let the physical connectivity graph Gph = ([n], Eph) be an n-vertex graph wherein each vertex
represents an agent. Two agents i and j can communicate with each other iff their corresponding
vertices are adjacent in Gph. Hence, for two individuals to influence each others’ opinions, they not
only need to be similarly opinionated but also to be physically connected through Gph. Throughout
this paper, we assume that Gph is connected, time-invariant, and contains all the self-loops, i.e.,
(i, i) ∈ Eph for all i ∈ [n].
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Observe that in the special case that Gph is a complete graph, no external restrictions are
imposed on the interaction between any two agents. This case, therefore, is equivalent to the well-
known original model of the last subsection. However, the social HK generalization starts differing
from the original model when there is at least one pair of non-adjacent vertices in Gph, as will be
revealed next.

2.3 State-Space Representation

Each of the two models discussed above has the following state-space representation:

x[k + 1] = A (x[k])x[k], (2)

where A(x[k]) is the normalized adjacency matrix of Gph ∩Gc(x[k]). Thus, G̃[k] = Gph ∩Gc(x[k])
is the effective graph or the influence graph at time k. The original HK model is a special case
with Gph = Kn, which gives G̃[k] = Gc(x[k]).

Note the explicit dependence of the state evolution matrix on the state of the system at time k.
It arises from the dependence of the structure of the communication graph on the agents’ opinions
at the concerned time instant.

Now, let Aadj (x[k]) denote the adjacency matrix of G̃[k] and let D (x[k]) denote its degree
matrix. Then

x[k + 1] = D−1 (x[k]) ·Aadj (x[k]) · x[k]

which can be expressed more compactly as:

x[k + 1] = D−1Aadjx[k]. (3)

In other words, the state evolution matrix is given by A = D−1Aadj . (We drop the dependencies
of these matrices on x[k] for notational simplicity).

3 ANALYSIS OF TERMINATION TIME

With the help of standard consensus results such as [15], one can prove that irrespective of the
initial state of the social HK system, its convergence to a steady state is certain, i.e., for every simple
physical connectivity graph Gph and initial state x[0] = x0 ∈ Rn, the limit x∞(x0) := limk→∞ x[k]
exists. Here, we call x∞(x0) the steady state of the system corresponding to the initial state x0.

In this section, using the following definitions, we show that social HK dynamics on an incom-
plete physical connectivity graph may never attain the steady state in finite time.

Definition 1 (Termination Time). For an initial state x0 and a given physical connectivity graph
Gph, the termination time T (Gph, x0) is the time taken by the system to reach the steady state
corresponding to x0, i.e.:

T (Gph, x0) := inf{k ∈ N : x[k] = x∞(x0)}.

Next we define the maximum termination time for a given physical connectivity graph.

Definition 2 (Maximum Termination Time). For a given physical connectivity graph Gph, the
maximum termination time T ∗(Gph) is the supremum of termination times over all possible initial
states:

T ∗(Gph) := sup
x0∈Rn

T (Gph, x0).
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As a special case, it was shown in [18] and [24] that the maximum termination time of the
original HK dynamics satisfies cn2 ≤ T ∗(Kn) ≤ Cn3 asymptotically as n → ∞ when d = 1, for
some constants c, C > 0.

We now state a few properties of a class of normalized adjacency matrices that appear in the
state evolution dynamics (2). These properties form the basis of our results.

The following lemma is proven in [17] as well as [20].

Lemma 1. For any undirected graph Ĝ, the normalized adjacency matrix Â is similar to I − N̂
(where N̂ is the normalized Laplacian matrix). As a result, Â is diagonalizable.

The next result provides more information about the spectral properties of the adjacency matrix
of a graph, if we have mild additional structures on the graph.

Lemma 2. Let Ĝ be an undirected and incomplete graph that is connected and has all the self-loops.
Then, if the eigenvalues of the normalized adjacency matrix Â (labeled as {λi}ni=1) are ordered such
that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, we have 1 = λ1 > |λ2| > 0. Moreover, Â has at least one positive
eigenvalue besides 1.

Proof. The first part of the result is proven [20]. Since Â is a row-stochastic matrix, we have λ1 = 1.
To show that Â has a positive eigenvalue besides 1, we have

∑n
i=1 λi = 1 +

∑n
i=2 λi = Tr(Â), but

since Ĝ is incomplete, Tr(Â) > 1. Therefore,
∑n

i=2 λi > 0 and hence, λi > 0 for some i.

We are now ready to show that on average, social HK dynamics on an incomplete graph never
terminate.

Proposition 1. Let x[0] be a random vector over Rn whose distribution induces the Borel-measure
µ on Rn with µ(V ) > 0 for any non-empty open set V ⊂ Rn (or in other words, the probability
density function of x[0] is non-zero almost everywhere). Suppose that Gph is not a complete graph.
Then the expected termination time of the dynamics is infinite, i.e., Ex[0][T (Gph, x[0])] =∞.

Proof. It is sufficient to show that Pr(T (Gph, x[0]) =∞) > 0. Let S :=
{
x ∈ Rn : |maxi∈[n] xi −minj∈[n] xj | < R

}
.

Note that S is a nonempty open set in Rn and hence, µ(S) > 0. Also, whenever x[0] ∈ S, ev-
ery agent is within the confidence of every other agent and thus Gc(x[0]) is an n-clique. Also,
from the update rule (1), it follows that maxni=1 xi[k] is monotonically non-increasing and likewise,
minnj=1 xj [k] is monotonically non-decreasing (as functions of time k). Therefore, the communica-

tion graph remains a clique for all k, meaning that G̃[k] = Gph for all k ∈ N. In this case, the
dynamics become linear and time-invariant: A = A(x[k]) = A(x[0]) and hence, x[k] = Akx[0].

Furthermore, the diagonalizability of A (Lemma 1) implies that we can write any initial
state x0 ∈ Rn as a linear combination of the eigenvectors of A, i.e., there exist coefficients
c1(x0), c2(x0), . . . , cn(x0) ∈ R such that x0 = c1(x0)1 +

∑n
i=2 ci(x0)vi, where 1, v2, . . . , vn are

eigenvectors of A corresponding to λ1 = 1, λ2, . . . , λn. This means that: x[k] = c1(x0)1 +∑n
i=2 λ

k
i ci(x0)vi, for k ∈ N. Thus, we have x∞ = limk→∞ x[k] = α1 for some α ∈ R because

|λi| < 1 for i 6= 1 (by Lemma 2).
Now, consider a random initial vector x[0] = x0 ∼ µ. For k ∈ N, let us define the event Ek to

be the event where the termination time is k, i.e., Ek = {ω | T (Gph, x0(ω)) = k}. Then by our
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definition of termination time,

Pr(Ek | x0 ∈ S)

= Pr ({∃x∞ ∈ Rn : x[`] = x∞ iff ` ≥ k} | x0 ∈ S)

≤ Pr ({∃x∞ ∈ Rn : x[k] = x∞} | x0 ∈ S)

= Pr ({∃α ∈ R : x[k] = α1} | x0 ∈ S)

= Pr

({
∃α ∈ R : (c1 − α)1 +

n∑
i=2

λki civi = 0

}
| x0 ∈ S

)

= Pr

({
∃α′ ∈ R : α′1 +

n∑
i=2

λki ci(x0)vi = 0

}
| x0 ∈ S

)
.

Therefore, using the fact that the eigenvectors of a diagonalizable matrix are linearly independent
and from the fact that |λ2| > 0 (by Lemma 2), we have:

Pr(Ek | x0 ∈ S)

≤ Pr
({
λki ci(x0) = 0, i ∈ [n]\{1}

}
| x0 ∈ S

)
= Pr

({
c2(x0) = 0, λki ci(x0) = 0, i ∈ [n]\{1, 2}

}
| x0 ∈ S

)
≤ Pr ({c2(x0) = 0} |x0 ∈ S) . (4)

Observe c2(x0) = 0 only when x0 ∈ span(1, v3, . . . , vn) which is a subspace of dimension n− 1. By
the continuity of x0, it follows that Pr(c2(x0) = 0 | x0 ∈ S) = 0. Using this, and (4), we obtain
Pr(Ek | x[0] ∈ S) = 0. Therefore, the conditional probability of finite time termination, given that
the initial state lies in S is:

Pr(T (Gph, x[0]) <∞ | x[0] ∈ S) = Pr(∪∞k=0Ek | x[0] ∈ S)

= 0.

where the last equality follows from the fact that a countable union of infinitely many zero-
probability events is also a zero-probability event. We conclude the proof as follows:

Pr(T (Gph, x[0]) =∞)

≥ Pr (T (Gph, x[0]) =∞ | x[0] ∈ S) Pr(x[0] ∈ S)

= (1− Pr(T (Gph, x[0]) <∞ | x[0] ∈ S)) Pr(x[0] ∈ S)

= Pr(x[0] ∈ S) > 0.

In essence, Proposition 1 states that the expected termination time of the social HK dynamics
on any underlying incomplete Gph is infinity, which means that there is a continuum of initial states
starting from which social HK dynamics never terminate. This shows that the behavior of the HK
dynamics over complete graphs is indeed an anomaly.

4 BOUNDS ON THE CONVERGENCE TIME

Now that we know that a social HK system may never reach the steady state, the next pertinent
question is: how fast does it approach the steady state?

We begin with a few relevant definitions.
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Definition 3 (ε-Convergence). Given a physical connectivity graph Gph, an initial state x0, and
ε > 0, the system is said to have achieved ε-convergence at time N ≥ 0 if its state lies in the
ε-neighborhood of the steady state corresponding to x0, i.e., ‖x[k]− x∞(x0)‖ < ε, for all k ≥ N .

Based on this, we define the ε-convergence time as:

Definition 4 (ε-Convergence Time). For a given physical connectivity graph Gph, an initial state
x0 ∈ Rn, and a given ε > 0, the ε-convergence time kε(Gph, x0) is the time taken by the system to
achieve ε-convergence:

kε(Gph, x0) : = inf {N ∈ N : ‖x[k]− x∞(x0)‖ < ε,

for all k ≥ N} .

Similar to T ∗, we define k∗ε to be the supremum of ε-convergence times for all initial states.

Definition 5 (Maximum ε-Convergence Time). For a given physical connectivity graph Gph and
ε > 0, the maximum ε-convergence time k∗ε (Gph) is the supremum of ε-convergence times over all
possible initial opinions:

k∗ε (Gph) := sup
x0∈Rn

kε(Gph, x0). (5)

4.1 Lower Bound

We now provide a lower bound on the maximum ε-convergence time k∗ε (Gph) in terms of the
conductance of Gph. We borrow the definition of conductance from [14].

Let G = ([n], E) be an undirected graph on n vertices. For a subset S ⊂ [n], let ∂(S) := {(i, j) ∈
E | i ∈ S, j ∈ S̄}, where S̄ = [n]\S. In words, ∂S represents the set of edges that connect S to the
rest of the graph. Further, let d(S) denote the sum of the degrees of the vertices in S. Then we
have the following definition.

Definition 6 (Conductance). The conductance φ(G) of a graph G = ([n], E) is defined as:

φ(G) := min
S⊂[n]
S 6=∅

|∂(S)|
min

(
d(S), d(S̄)

) .
The next proposition states that a system whose physical connectivity graph has a low conduc-

tance might take a long time to converge to its steady state. See [20] for the proof.

Proposition 2. For any incomplete graph Gph and any given ε > 0, the maximum ε-convergence
time of the social Hegselmann-Krause dynamics, as defined in (5), satisfies

k∗ε (Gph) >
log
(
ε
√
2

R

)
log (1− 2φ(Gph))

. (6)

Remark 1. Proposition 2 can be used to compute a lower bound on the maximum ε-convergence
time in terms of n for graphs whose conductance is known as a function of n. For example, the
dumbbell graph on n vertices has φ = O

(
1
n2

)
[13] which yields k∗ε = Ω(n2).
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4.2 Upper Bound Applicable to a Class of Initial Opinions

We now show that if the influence graph remains connected and time-invariant until ε-convergence
to the steady state, then the latter is achieved in O(n2 log n · d(Gph)) steps, where d(Gph) denotes
the diameter of Gph.

Proposition 3. Suppose there exist ε > 0 and an initial state x0 ∈ Rn such that the influence
graph, G̃[k] remains connected and constant in time until ε-convergence is achieved. Then with x0
as the initial state, the social HK system achieves ε-convergence in O(n2 log n · d(Gph)) steps.

Proof. Let ε and x0 be as described above, and let x[0] = x0. Then observe that the state evo-
lution until ε-convergence can be expressed as x[k] = Akx0. For i ∈ {2, . . . , n}, let vi denote an
eigenvector of A corresponding to λi. Then, since A is diagonalizable (by Lemma 1), we have
x0 ∈ span{1, v2, . . . , vn}, i.e., x0 = c11 +

∑n
i=2 civi for some c1, c2, . . . , cn ∈ R. Consequently,

x[k] = c11 +
∑n

i=2 ciλ
k
i vi for 0 ≤ k ≤ kε(Gph, x0). Therefore, according to Lemma 1:

‖x[k]− c11‖ =

∥∥∥∥∥
n∑
i=2

ciλ
k
i vi

∥∥∥∥∥ =

∥∥∥∥∥Ak
n∑
i=2

civi

∥∥∥∥∥
=

∥∥∥∥∥D−1/2(In −N)kD1/2
n∑
i=2

civi

∥∥∥∥∥ =
∥∥∥D−1/2Mky

∥∥∥ .
where M = In −N and y =

∑n
i=2 ciD

1/2vi. Hence,

‖x[k]− c11‖ ≤ ‖D−1/2‖ind · ‖Mky‖.

Now observe that since D is a positive diagonal matrix,

‖D−1/2‖ind = max
i∈[n]
{(D−1/2)ii} =

(
min
i∈[n]
|Ni|

)− 1
2

≤ 1

where the inequality is due to the fact that every vertex of G has a self-loop. Thus,

‖x[k]− c11‖ ≤ ‖Mky‖ =
√
yTM2ky, (7)

because M is symmetric. Next, note that A = D−1/2MD1/2 implies that D1/21, D1/2v2, . . . , D
1/2vn

are the orthogonal eigenvectors of M . Therefore yTD1/21 = 0 and the Courant-Fischer theorem [11]
allows us to bound the expression above as:√

yTM2ky ≤
√
λ2k2 y

T y = |λ2|k‖y‖. (8)

The next step is to bound ‖y‖:

‖y‖ =

∥∥∥∥∥D1/2
n∑
i=2

civi

∥∥∥∥∥
≤
(

max
i∈[n]

Dii

) 1
2

∥∥∥∥∥
n∑
i=2

civi

∥∥∥∥∥ ≤ √n
∥∥∥∥∥

n∑
i=2

civi

∥∥∥∥∥ . (9)
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Now, we upper bound ‖
∑n

i=2 civi‖ as follows:∥∥∥∥∥
n∑
i=2

civi

∥∥∥∥∥ = ‖x[0]− c11‖

≤
√
nmax

j
|xj [0]− c1|

(a)

≤
√
n

∣∣∣∣max
p
xp[0]−min

q
xq[0]

∣∣∣∣
(b)

≤
√
n(n− 1)R ≤ n3/2R. (10)

Here, (a) follows from minq xq[0] ≤ c1 ≤ maxp xp[0], and (b) holds as G̃[0] is connected. Combining
(7)-(10) yields ‖x[k]− c11‖ ≤ n2R|λ2|k and using |λ2| ≤ 1− 1

n2d(Gph)
(Proposition 2.3 in [17]), we

get:

‖x[k]− c11‖ ≤ n2R
(

1− 1

n2d(Gph)

)k
.

Therefore, the condition below ensures ‖x[k]− c11‖ ≤ ε:

κ(ε) :=
log ε

n2R

log
(

1− 1
n2d(Gph)

) ≤ k ≤ kε(Gph, x0). (11)

Now, note that if G̃[k] remains constant permanently, then x∞(x0) = c11 because |λi| < 1 for i ≥ 2
by Lemma 2. As a result, kε(Gph, x0) = dκ(ε)e. On the other hand, if G̃[k] varies after ε-convergence,
then maxi xi[k] − minj xj [k] > R for k = kε(Gph, x0). This enforces kε(Gph, x0) < κ(R/2) be-
cause otherwise, as per (11), the network would satisfy ‖x[k]− c11‖ ≤ R/2 and consequently,
maxi xi[k] − minj xj [k] ≤ R for some k ≤ kε(Gph, x0), which would wrongly imply that G̃[k] = Gph
for all k ∈ N. Hence, kε(Gph, x0) ≤ min(dκ(ε)e, κ(R/2)).

Since ln
(

1− 1
n2d(Gph)

)
≈ − 1

n2d(Gph)
for sufficiently large n, we have κ(ε) ≈ n2d(Gph)

(
log n2R

ε

)
=

O(n2 log n · d(Gph)). Thus, kε(Gph, x0) = O(n2 log n · d(Gph)).

5 Arbitrarily Slow ε-Convergence

The results in the previous section prompts us to ask: What if the initial state does not enable
G̃[k] to remain constant in time? In such cases, the convergence time could be unbounded above
if the physical connectivity graph has more than three vertices. In other words, it is possible that
k∗ε (Gph) =∞.

Here is a relevant example from [2]. Let Gph be the path graph on 4 vertices, and let X ={
[−R, 0, R,−(R− δ)]T for δ ∈ (0, R/2)

}
. Then note that for x[0] ∈ X , we have x1[1] = −R/2,

x2[1] = 0, x3[1] = R/2 and x4[1] = −(R − δ) because at time 1, the sets of neighbours of the
first three agents are {1, 2}, {1, 2, 3} and {2, 3} respectively. In G̃[1], the fourth agent remains
disconnected from the first three agents because R > 2δ and the confidence interval of the fourth

agent at time 1 is [δ − 2R, δ]. By induction, we can show that x[k] =
[
−R/2k, 0, R/2k,−(R− δ)

]T
as long as the third and the fourth agents remain outside each others’ confidence intervals, i.e., as
long as R/2k + R − δ > R, or equivalently, as long as k < log2(R/δ). At time k = dlog2(R/δ)e,
however, agents 3 and 4 become neighbors. Thus, at k = dlog2(R/δ)e, the influence graph G̃[k]
is a connected graph satisfying maxi xi[k] −minj xj [k] = max{R/2k + R − δ, 2 · R/2k} ≤ R. This
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implies that x∞(x[0]) = c1 for some c ∈ R. Therefore, ε-convergence requires |xi[k] − c| ≤ ε
for i ∈ [n]. By the triangle inequality, this in turn requires |x3[k] − x4[k]| ≤ 2ε which is not
satisfied for k < dlog2(R/δ)e and ε < R/2. Hence, kε(Gph, x[0]) ≥ dlog2(R/δ)e. As a result,
k∗ε (Gph) ≥ supδ∈(0,R)dlog2(R/δ)e =∞.

We can generalize the example above to graphs having more than 4 vertices by choosing the
same initial opinions for agents 1 - 4, setting xi[0] = x4[0] for 5 ≤ i ≤ n, and by repeating the
above arguments. Therefore, we may state the following lemma without proof.

Lemma 3. For every n ≥ 4, there exists an n-vertex physical connectivity graph Gph such that
k∗ε (Gph) =∞ for all ε ∈ (0, R/2).

5.1 Underlying Phenomenon

In the example leading to Lemma 3, G̃[0] was a disconnected graph, and we could indefinitely delay
the formation of a link between two connected components of this graph so as to make kε(Gph, x[0])
arbitrarily large. The next proposition will clarify that for any Gph, this is the only way to make
kε(Gph, x[0]) arbitrarily large.

To establish this result, we define two kinds of events that can change the structure of G̃[k]
during opinion evolution.

Definition 7 (Link break). Let Gph = (V,Eph). A link break i−−j is said to occur at time k ≥ 1
if i, j ∈ V are such that the nodes i and j are adjacent in G̃[k − 1] but non-adjacent in G̃[k].

Note that a link (i, j) ∈ Eph breaks at time k iff |xi[k−1]−xj [k−1]| ≤ R, and |xi[k]−xj [k]| > R.

Definition 8 (Merging). Let G̃[k0−1] be a disconnected graph for some k0 ≥ 1, and let G1(x[k]) =
(V1, E1(x[k])) and G2(x[k]) = (V2, E2(x[k])) be two induced subgraphs of G̃[k] that are disconnected
from each other in G̃[k] at time k0−1. Then G1 and G2 are said to merge at time k0 if there exists
a pair of agents (i, j) ∈ V1×V2 such that i and j become neighbors at time k0, i.e., (i, j) ∈ Ẽ(x[k0]).

Besides merging and link breaks, the only kind of event that can alter the structure of G̃ is the
formation of a link between two agents belonging to the same component of this graph. We call
these events intra-component link formations.

We now borrow from [2] the definition of a Lyapunov function called energy and that of a
related quantity called active energy.

Definition 9 (Energy). Let G̃[k] = (V [k], E[k]). The energy of the social HK system at time k is
defined as:

E [k] :=
∑

(i,j)∈E[k]

|xi[k]− xj [k]|2 +
∑

(i,j)/∈E[k]

R2.

Definition 10 (Active energy). Let G̃[k] = (V [k], E[k]). The active energy of the social HK system
at time k is defined as:

Eact[k] :=
∑

(i,j)∈E[k]

|xi[k]− xj [k]|2.

Note that 0 ≤ E [k] ≤ 2
(
n
2

)
R2 for all k ∈ N.

Lemma 4. If i − −j occurs at time k + 1 for some k ∈ N, then there exist two agents p, q ∈ [n]
such that p ∈ Ni[k], q ∈ Nj [k], and |xp[k]− xq[k]| > R.
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Proof. Suppose the lemma is false, i.e., for every pair (p, q) ∈ Ni[k]×Nj [k], we have |xp[k]−xq[k]| ≤
R. Then:

|xi[k + 1]− xj [k + 1]|

≤ max

{
| max
q∈Nj [k]

xq[k]− min
p∈Ni[k]

xp[k]|,

| max
p∈Ni[k]

xp[k]− min
q∈Nj [k]

xq[k]|
}

≤ max
(p,q)∈Ni[k]×Nj [k]

|xp[k]− xq[k]| ≤ R.

The first inequality stems from the fact that HK dynamics are an averaging dynamics and each
agent’s opinion at any time instant is bounded by the minimum and the maximum of his/her
neighbors’ opinions at the previous time instant. The last inequality above implies that agents i
and j are neighbors at time k+ 1, thereby contradicting the fact that the link (i, j) breaks at time
k + 1.

Next, we need to establish that only finitely many link breaks can occur in any opinion evolution
process.

Lemma 5. The total number of link breaks during the entire process of opinion evolution is O(n5)
regardless of the structure of Gph and the initial state x[0] ∈ Rn.

Proof. Based on Proposition 1 of [2], we have:

E [k]− E [k + 1] ≥ (1− |λk|2)Eact[k] (12)

for k ∈ N, where
λk := {max |λ| : λ 6= 1 is an eigenvalue of A[k]},

and if we let deff(G) be the largest diameter of any connected component of the graph G, we have
the lower bound

1− |λk|2 ≥
3

2n2deff(G̃[k])
≥ 3

2n3
, (13)

which was derived in [17]. Here, we derive a lower bound on the active energy. Let i, j ∈ [n] and
suppose i − −j occurs at time k + 1 for some k ∈ N. Then by Lemma 4, we can find two agents
p, q ∈ [n] such that p ∈ Ni[k], q ∈ Nj [k], and |xp[k] − xq[k]| > R. Therefore, by the definition of
active energy, we have

Eact[k] (14)

≥ |xp[k]− xi[k]|2 + |xi[k]− xj [k]|2 + |xj [k]− xq[k]|2

≥ 1

3
(|xp[k]− xi[k]|+ |xi[k]− xj [k]|+ |xj [k]− xq[k]|)2

≥ 1

3
|xp[k]− xq[k]|2 > R2/3,

where the second and the third inequalities follow from the Cauchy-Schwarz and the triangle in-
equalities, respectively.

Combining (12), (13) and (14) yields:

E [k]− E [k + 1] ≥ R2

2n3
(15)
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which means that the energy of the network decreases every time a link breaks and the decrement
corresponding to each link break is at least R2/2n3. Since E [0] ≤ n2R2 and E [k] ≥ 0 for k ∈ N, the

maximum possible number of link breaks that can ever occur is at most n2R2

R2/2n3 = O(n5).

The next lemma bounds the maximum possible time interval between two consecutive link
breaks under the condition that no new link is formed during this interval.

Lemma 6. Let GP = (VP , EP ) be a connected component of G̃[k0] at some time k0 ≥ 0. Suppose
(i) no link break occurs between any two agents of GP until time k1 > k0, (ii) one or more link
breaks occur within GP at time k1, and (iii) no new edge is formed between a node in VP and
another node (in [n]) during the time interval (k0, k1). Then k1 − k0 = O(n3 log n).

Proof. First, observe that for every k in the range k0 ≤ k ≤ k1, there exist two agents pk, qk ∈ VP
such that |xpk [k]− xqk [k]| > R. If this were false for some k′ ∈ {k0, k0 + 1, . . . , k1}, we would have
maxi∈VP xi[k

′] −minj∈VP xj [k
′] ≤ R. Since the difference D[k] := maxi∈VP xi[k] −minj∈VP xj [k] is

monotonically non-increasing in k, this would imply that every agent of GP remains within the
confidence of every other agent of GP for all k ≥ k′, thus contradicting the occurrence of link breaks
within GP at time k1. Hence, De := D[k1 − 1] > R.

Next, by assumptions (i) and (iii), the constant graph GP remains a connected component of
G̃[k] during the interval (k0, k1). Let c1VP denote the steady state that we would have associated
with the original network if VP were its vertex set and xP [k0] (where xP denotes the restriction of
x to the coordinates specified by VP ) were its initial state, y[0]. In this hypothetical scenario, G̃[k]
would achieve De-convergence by time ∆ := k1− 1− k0 because mini yi[∆] ≤ c ≤ maxi yi[∆] would
yield:

max
i
|yi[∆]− c| = max

(
c−min

i
yi[∆],max

i
yi[∆]− c

)
≤ max

i
yi[∆]−min

i
yi[∆]

= max
i
xP i[∆ + k0]−min

j
xP j [∆ + k0]

= De.

Moreover, we would have G̃[k] = GP for k ∈ (0,∆]. Therefore, for ε > 0, any ε-convergence that
would occur by time ∆, would occur in O(|VP |3 log |VP |) = O(n3 log n) steps. Since De > R > 0,
the last paragraph implies that ∆ = O(n3 log n), thus completing the proof.

We are now ready to show that merging is unavoidable if we desire arbitrarily slow ε-convergence
to the steady state.

Proposition 4. In social HK dynamics, all the link breaks and intra-component link formations
always occur in O(n8 log n) time steps. Hence, if there exists ε > 0 such that k∗ε (Gph) = ∞, then
there exists a set X0 ⊂ Rn such that whenever x[0] ∈ X0, merging occurs at least once during the
process of opinion evolution.

Proof. Let ε > 0 be such that k∗ε (Gph) =∞. Consider an arbitrary initial state x[0] ∈ Rn. Consider
the following two cases in the evolution of the dynamics: Case 1: no link formation ever takes places.
Then by Lemma 5, we know that at most O(n5) links break in the opinion evolution process, and by
Lemma 6, the maximum possible time interval between two consecutive link breaks is O(n3 log n).
Therefore, the time at which the last link breaks is at most O(n8 log n). After this point in time, the
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structure of G̃[k] never changes. Therefore, for any ε > 0, it takes O(n2 log(n)d(Gph)) additional
time steps to achieve ε-convergence. Hence, kε(Gph, x[0]) = O(n8 log n) + O(n2 log(n)d(Gph)) =
O(n8 log n).

Now, consider Case 2: at least one new link is formed during the evolution of the dynamics
(from the initial state x[0]) but no merging ever occurs. For r ∈ N\{0}, let tr denote the time at
which the r-th set of simultaneous link breaks occur and w.l.o.g., suppose the first link formation
occurs at a time k′ ∈ {tl, tl + 1, . . . , tl+1} for some l ∈ N\{0}. Let (i, j) denote this new link. Since
no merging occurs, (i, j) is formed within some connected component G′ of G̃. Thus, we have
|xi[k′−1]−xj [k′−1]| > R and |xi[k′]−xj [k′]| ≤ R. Also, no link formation or link break during the
time interval [tl, k

′ − 1] implies that G′ is a connected component of G̃[k] for all k ∈ [tl, k
′ − 1]. In

other words, the influence graph has a connected component that remains constant during the time
interval [tl, k

′− 1]. Therefore, the arguments used in the proof of Proposition 3 can be repeated to
show that k′ − tl = O(n2 log n · d(G1)) = O(n3 log n).

We can repeat the arguments used in the preceding paragraph for subsequent link formations.
Next, we estimate the maximum number of link formations that can occur in any opinion

evolution process. Note that there are at most n2 links in an n-vertex graph. So, it may appear
that at most n2 link formations can occur. However, every link break gives rise to the possibility
of a link formation. Therefore, the maximum number of link formations is O(n5) + n2 = O(n5).
Hence, if all the link breaks and intra-component link formations were to occur one after the other,
then by Lemma 5, all of these events would occur in O(n5 · n3 log n + n5 · n3 log n) = O(n8 log n)
steps. On the other hand, it is also possible that some of these events occur simultaneously, so
that the last of them occurs even sooner. After all the link breaks and link formations, however,
the structure of G̃ remains constant and ε-convergence is achieved in O(n3 log n) additional steps.
Thus, kε(Gph, x[0]) = O(n8(log n)) in Case 2.

Finally, since k∗ε (Gph) = ∞, there exists a set of initial states X0 ⊂ Rn that do not belong to
the above two cases, i.e., a merging event occurs during the evolution of the dynamics started at
those initial states.

5.2 Sufficient Conditions for Arbitrarily Slow Merging

Since the results of the previous subsection imply that arbitrarily slow merging between two com-
ponents of Gph is necessary as well as sufficient for arbitrarily slow ε-convergence, it is essential to
analyze the concept of arbitrarily slow merging in order to better understand the latter concept.
For this purpose, we provide conditions on the components of Gph that ensure that the time at
which the corresponding components of G̃[k] merge is unbounded when ε is sufficiently small.

Figure 1: Illustration for Proposition 5
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Proposition 5. Suppose GP0 and GQ0 are two subgraphs of Gph induced by the disjoint vertex sets
VP ⊂ V and VQ ⊂ V , respectively. Also, suppose the following conditions hold:

1. GP0 is a connected graph.

2. W.l.o.g., let 1, 2, . . . , l ∈ VP be the nodes of GP0 that are adjacent to VQ. Then AP0 has an
eigenvalue λ such that 0 < λ < 1, and there exists a corresponding eigenvector v such that
v1, v2, . . . , vl are all of the same sign, i.e., vivj > 0 for all i, j ∈ [l].

Let GP = GP [k] and GQ = GQ[k] denote the subgraphs of G̃[k] induced by VP and VQ, respectively,
and for x0 ∈ Rn, let kM (x0, VP , VQ) denote the time at which GP and GQ, merge for the first time,
under the condition that the initial state is x0. Then there exists a set XM of initial states such that
kM (x0, VP , VQ) <∞ for all x0 ∈ XM (i.e., merging occurs) and supx0∈XM kM (x0, VP , VQ) =∞.

Proof. W.l.o.g., let VP = {1, 2, . . . , p} and VQ = {p+ 1, p+ 2, . . . , p+ q} for some p, q ∈ [n]. Scale
v (outlined in condition (2) of the proposition) appropriately so as to satisfy vi < 0 for 1 ≤ i ≤ l
and maxi vi − minj vj ≤ R. Let v0 := −maxli=1 vi. Consider XM = {z ∈ Rn : zP = v, zQ =
(R − δ)1q for some δ ∈ (0, v0)}. Then observe that if x[0] ∈ XM , the range of allowed values of δ
ensures that G̃[0] is a disjoint union of GP0 , GQ0 , and possibly some other connected components.
This is because all the potential neighbours of VQ in VP , namely the nodes 1, 2, . . . l, are outside the
confidence interval [−δ, 2R − δ] of every agent in VQ, and because maxi xPi[0] − minj xPj [0] ≤ R
implies that GP0 is an induced subgraph of G̃[0]. Also, note that maxi xPi[0] − minj xPj [0] ≤ R
enforces xP [1] = AP0x[0] = λv.

Now, λ > 0 implies that xPi[1] = λvi < 0 for i ∈ [l]. Therefore, GP and GQ are also dis-
connected from each other in G̃[1] provided δ < λv0. Similarly, for k ≥ 1, we have xP [k] = λkv
implying that GP and GQ remain disconnected from each other as long as δ < λkv0, i.e., for k <
log1/λ(v0/δ). However, since λ < 1, a time is reached when k = dlog1/λ(v0/δ)e and consequently,

kM (x[0], VP , VQ) = dlog1/λ(v0/δ)e < ∞ because the agent having the opinion maxli=1 xPi[k] =

−λkv0 enters the confidence interval [−δ, 2R − δ] of its potential neighbor(s) in GQ. Therefore,
supx[0]∈XM kM (x[0], VP , VQ) = supδ∈(0,v0)dlog1/λ(v0/δ)e =∞.

5.3 Necessary Conditions for Arbitrarily Slow Merging

Having seen a set of sufficient conditions for arbitrarily slow merging, we now move on to present
the necessary conditions for a pair of subgraphs of the influence graph to exhibit this property. To
be precise, we ask: given two subgraphs GP [k] and GQ[k] of the influence graph G̃[k], can we find
a set of necessary conditions for GP and GQ to be able to merge at an arbitrary time κ ∈ N? The
main result of this subsection (Proposition 6) answers this question.

We begin with a few technical lemmas.

Lemma 7. Consider a vector subspace U ⊂ Rn such that for every v ∈ U \ {0}, we have vivj < 0
for some i, j ∈ [l]. Further, define φ : Rn \ {0} → R as

φ(v) = min

(∣∣∣∣mini∈[l] vi

maxi∈[l] vi

∣∣∣∣ , ∣∣∣∣maxi∈[l] vi

mini∈[l] vi

∣∣∣∣) .
Then there exists a constant γ > 0 such that φ(v) ≥ γ for all v ∈ U \ {0}.

Proof. Since φ(λv) = φ(v) for all λ ∈ R \ {0} and v ∈ Rn \ {0}, it suffices to prove the lemma for
v ∈ D := U ∩ {v ∈ Rn : ‖v‖ = 1}.
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Observe that D is the intersection of the unit ball and a vector subspace of Rn. Hence, it is a
compact set. Next, since φ is continuous on D, we know that infv∈D φ(v) is attained because D is
a compact set, i.e., U∗ := arg minv∈D φ(v) exists and is well defined. Hence, for all v ∈ D and any
u ∈ U∗, we have φ(v) ≥ minv∈D φ(v) = φ(u) > 0, which follows from the assumption of the lemma
enforcing maxi∈[l] ui > 0 > mini∈[l] ui.

Lemma 8. Let v ∈ Rl satisfy vivj < 0 for some i, j ∈ [n], and let γ ∈ R be any constant satisfying
0 < γ ≤ |maxi vi|/|mini vi|. Then for any u ∈ Rl, either

max
i

(v + u)i > 0 and

∣∣∣∣maxi(v + u)i
mini(v + u)i

∣∣∣∣ ≥ γ′ (16)

or

max
i

(v − u)i > 0 and

∣∣∣∣maxi(v − u)i
mini(v − u)i

∣∣∣∣ ≥ γ′ (17)

where γ′ := γ
γ+2 . Moreover, if (16) holds and mini(v − u)i < 0, then

max
i

(v + u)i ≥
γ|mini(v − u)i| −max(0,maxi(v − u)i)

γ + 1
. (18)

Proof. We first prove that either (16) or (17) holds. Before we begin, observe that γ > 0 implies
γ′ < min(1, γ).

Now, suppose neither (16) nor (17) is true. However, we know that maxi(v+u)i+maxi(v−u)i ≥
maxi[(v+u)+(v−u)]i = 2 maxi vi > 0. As a result, either maxi(v+u)i > 0 (in which case |maxi(v+
u)i| < γ′|mini(v + u)i|), or maxi(v − u)i > 0 (in which case |maxi(v − u)i| < γ′|mini(v − u)i|).
By implication, there exists a constant ε ∈ (0, γ′) such that P1 ≤ εM1 and P2 ≤ εM2, where
we define P1 := max(0,maxi(v + u)i), P2 := max(0,maxi(v − u)i), M1 := |mini(v + u)i| and
M2 := |mini(v − u)i|.

Now, three cases arise.
Case 1 : (mini(v + u)i)(mini(v − u)i) 6= 0 and either mini(v + u)i > 0 or mini(v − u)i > 0.

Suppose mini(v + u)i = M1 > 0. Then maxi(v + u)i/mini(v + u)i ≥ 1 ≥ γ′, thus contradicting the
inequality P1 ≤ εM1 and thereby proving the first part of the lemma. The subcase mini(v−u)i > 0
is handled similarly.

Case 2 : Either mini(v + u)i = 0 or mini(v − u)i = 0. Suppose mini(v + u)i = M1 = 0. If
maxi(v+u)i > 0, then we have εM1 = 0 < P1, which again results in a contradiction and establishes
the first part of the lemma. On the other hand, if maxi(v + u)i = 0, then it follows that u = −v.
Consequently, the assumptions made by the lemma lead to the following: maxi(v−u)i = 2 maxi vi >
0, and maxi(v−u)i ≥ 2γ|mini vi| = γ|mini(v−u)i| > γ′|mini(v−u)i|. These inequalities establish
(17) and hence prove the first assertion of the lemma. The subcase mini(v − u)i = 0 is handled
similarly.

Case 3 : mini(v + u)i = −M1 < 0 and mini(v + u)i = −M2 < 0. Observe that

2 max
i
vi = max

i
{(v + u) + (v − u)}i

≤ max
i

(v + u)i + max
i

(v − u)i

(a)

≤ P1 + P2 ≤ ε(M1 +M2). (19)
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Also,

2 min
i
vi = min

i
{(v + u) + (v − u)}i

≤ max
i

(v + u)i + min
i

(v − u)i

(b)

≤ P1 −M2 ≤ εM1 −M2. (20)

Similarly,
2 min

i
vi ≤ εM2 −M1. (21)

Within this case, two subcases arise. Subcase 1: Suppose both εM1−M2 < 0 and εM2−M1 < 0.
In other words, ε < η < 1/ε, where we define η := M1/M2. Consider the inequality εM1 −M2 < 0
first. Along with (20), it implies: |mini vi| ≥ 0.5|M2 − εM1|. Likewise, (19) and the assumption
maxi vi > 0 imply: |maxi vi| ≤ 0.5ε(M1 +M2). Combining these inequalities with the assumption
maxi vi ≥ γ|mini vi| yields:

ε(M1 +M2)

M2 − εM1
≥ γ. (22)

Similarly, the subcase inequality εM2 −M1 < 0, leads to:

ε(M1 +M2)

M1 − εM2
≥ γ. (23)

We express (22) and (23) in terms of η as (24)-(a) and (24)-(b) respectively:

γ − ε
ε(1 + γ)

(a)

≤ η
(b)

≤ ε(1 + γ)

γ − ε
, (24)

which is possible only if γ− ε ≤ ε(1 +γ), i.e., only if ε ≥ γ
γ+2 = γ′. This contradicts that ε ∈ (0, γ′),

thus establishing the first assertion of the lemma.
Finally, we have Subcase 2: εM2 −M1 ≥ 0 or εM1 −M2 ≥ 0. We assume the former w.l.o.g.

Then η ≤ ε < γ′ < 1 < 1/ε. Hence εM1 −M2 < 0, implying (24)-(a) again. On eliminating η by
using the observation η ≤ ε, we obtain (γ+ 1)ε2 + ε− γ ≥ 0. Since ε is positive by assumption, this
inequality requires ε ≥ γ

γ+1 ≥ γ′ which contradicts ε ∈ (0, γ′), thereby proving that either (16) or
(17) holds.

For the second part, given that (16) holds, we have maxi(v + u)i = P1 > 0. Note that if
P1 ≥ M2 = |mini(v − u)i|, then (18) follows from γ > 0. So, suppose that P1 < M2. Then
(20)-(b) implies that 2|mini vi| ≥M2 −P1. Likewise, maxi vi > 0 and (19)-(a) together imply that
2|maxi vi| ≤ P1+P2. Combining these inequalities with the lemma assumption maxi vi ≥ γ|mini vi|
yields P1+P2

M2−P1
≥ γ, rearranging which we obtain:

P1 ≥
γM2 − P2

γ + 1

which is equivalent to (18).

For the next result, we will need to consider a normalized adjacency matrix, suitably combine
its eigenvectors associated with repeated eigenvalues, and carefully account for the sign flips arising
from powers of negative eigenvalues. For this purpose, we introduce the Elimination Method.
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The Elimination Method

Let {λi}τi=1 ⊂ R, {ui}τi=1 ⊂ Rn and l ∈ [n] be fixed, and let Sj [k] :=
∑τ

i=1 λ
k
i uij for all k ∈ N and

j ∈ [l]. Then the Elimination Method is as follows:

1. Find a minimal set of real numbers, {µi}mi=1, such that {λi}ni=1 = {±µi}mi=1 ∪ {0}, and
µ1 > · · · > µm > 0.

2. For each i ∈ [m], find νi, σi ∈ [τ ] satisfying λνi = µi = −λσi , and define u+i := uνi and
u−i := uσi . If no such νi (respectively, σi) exists, then set u+i = 0 (respectively, u−i = 0).

3. For i ∈ [m], define αi = maxlj=1 |u
+
ij + u−ij | and ζi = maxlj=1 |u

+
ij − u

−
ij |. Further, define vi

by: vi :=
(
u+i + u−i

)
/αi if αi 6= 0 and vi := 0 otherwise. Likewise, let zi :=

(
u+i − u

−
i

)
/ζi if

ζi 6= 0 and let zi := 0 otherwise.

4. If αi = ζi = 0, discard µi from {µj}mj=1, decrement the value of m by 1, and re-enumerate
{µj}mj=1 so that µ1 > µ2 > · · · > µm.

As a result of this procedure, we have the following relations for all j ∈ [l]:

Sj [k] =

m∑
i=1

αiµ
k
i vij ∀ k ∈ N : k is even, (25)

Sj [k] =

m∑
i=1

ζiµ
k
i zij ∀ k ∈ N : k is odd. (26)

The vectors, {vi}mi=1 and {zi}mi=1 will be called even-k vectors and odd-k vectors respectively.
We now recast Lemma 8 into a more useful form.

Lemma 9. Let {λi}τi=1 ⊂ R, {ui}τi=1 ⊂ Rn and l ∈ [n] be fixed, and let Sj [k] :=
∑τ

i=1 λ
k
i uij.

Suppose that for every pair (λi, ui) satisfying 0 < λi < 1 and (ui)[l] 6= 0, we have maxp∈[l] uip > 0,
minp∈[l] uip < 0 and |maxp∈[l] uip|/|minq∈[l] uiq| ≥ γ0, where γ0 ∈ R+ is a constant. Further, for

each i ∈ [m], let p(i) := arg maxlj=1 vij and p̃(i) := arg maxlj=1 zij, where vi and zi are given by the
Elimination Method. Then for every i ∈ [m], we have

max
(
vip(i), zip̃(i)

)
≥ γ̂0,

where γ̂0 := γ0
2+γ0

. Furthermore, if vip(i) < γ̂0 (respectively, zip̃(i) < γ̂0), then ζi/αi ≥ γ̂0 (respectively
αi/ζi ≥ γ̂0).

Proof. Consider any i ∈ [m] and let q(i) := arg minlj=1 vij and q̃(i) := arg minlj=1 zij .

Now, two possibilities arise: either (u+i )[l] = 0 or (u+i )[l] 6= 0. If (u+i )[l] = 0, then (vi)[l] = −(zi)[l].
Hence, either vip(i) ≥ |viq(i)| or zip̃(i) ≥ |ziq̃(i)|. Since max

(
maxf∈[l] |vif |,maxf∈[l] |zif |

)
= 1 ≥ γ̂0

due to the Elimination Method, we have max
(
vip(i), zip̃(i)

)
≥ γ̂0.

On the other hand, if (u+i )[l] 6= 0, then µi = λνi for some νi ∈ [τ ]. Hence, maxf∈[l] u
+
if > 0 and

|maxf∈[l] u
+
if |/|minf∈[l] u

+
if | ≥ γ0. In the light of Lemma 8, this implies that either

αivip(i) > 0 and |vip(i)| ≥ γ̂0|viq(i)|, (27)

or
ζizip̃(i) > 0 and |zip̃(i)| ≥ γ̂0|ziq̃(i)|. (28)
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If (27) holds, then as a result of the Elimination Method, 1 = maxf∈[l] |vif | = max
(
|vip(i)|, |viq(i)|

)
.

Since αi ≥ 0, this means that either |vip(i)| = 1 ≥ γ̂0, or |vip(i)| ≥ γ̂0|viq(i)| = γ̂0. Thus, |vip(i)| ≥ γ̂0
in either subcase. Similarly, (28) leads to the conclusion that |zip̃(i)| ≥ γ̂0.

For the second part, suppose vip(i) < γ̂0. Then zip̃(i) ≥ γ̂0 by the first assertion. We now
consider two cases.

Case (a): maxf∈[l] |vif | = 0, implying that αi = 0. By (28), ζi 6= 0. Thus, ζi/αi =∞ > γ̂0.
Case (b): maxf∈[l] |vif | > 0. Then maxf∈[l] |vif | = 1 due to the Elimination Method. Fur-

thermore, γ̂0 < 1 by the definitions of γ0 and γ̂0. Now, the assumption vip(i) < γ̂0 and the facts
maxf∈[l] |vif | = 1, γ̂0 < 1 and maxf∈[l] |vif | = max(|vip(i)|, |viq(i)|) together imply that |viq(i)| = 1.
Consequently, vip(i) < γ̂0|viq(i)|. Therefore, by Lemma 8,

ζizip̃(i) ≥
γ0|αiviq(i)| −max

(
αivip(i), 0

)
γ0 + 1

=
γ0αi −max

(
αivip(i), 0

)
γ0 + 1

.

If vip(i) ≤ 0, then the above yields:

ζi
αi
≥ γ0

(γ0 + 1)zip̃(i)
≥ γ0
γ0 + 1

> γ̂0

because 0 < zip̃(i) ≤ maxf∈[l] |zif | = 1. On the other hand, if vip(i) > 0, then

ζi
αi
≥
γ0 − vip(i)
γ0 + 1

>
γ0 − γ̂0
γ0 + 1

= γ̂0.

The next lemma is the last technical lemma. It forms the crux of the main results of this
subsection.

Lemma 10. Let {λi}τi=1 and {Ui}τi=1 be such that |λi| < 1 and Ui is a linear subspace of Rl for
each i ∈ [τ ], where l ∈ N. Further, suppose λi > 0 for some i ∈ [τ ]. Let K be the set of all kM ∈ N
such that

τ∑
i=1

λki uij < δ for all 1 ≤ k < kM and all j ∈ [l], (29)

and

τ∑
i=1

λkMi uit ≥ δ for some t ∈ [l], (30)

hold for some δ ∈ R and some (u1, . . . , uτ ) ∈
∏τ
i=1 Ui. If supK = ∞, then there exists a d ∈ [τ ]

such that λd > 0 and a corresponding non-zero vector v ∈ Ud such that vivj ≥ 0 for all i, j ∈ [l].

Proof. Suppose the lemma is false, i.e., supK =∞, and vivj < 0 for some i, j ∈ [l] whenever there
exists a d ∈ τ such that v ∈ Ud \ {0} and λd > 0. The rest of the proof is organized into six steps.

Step 1: By Lemma 7, there exists a positive constant γd that lower bounds the ratios |maxp∈[l] vp|/|minq∈[l] vq|
and |minp∈[l] vp|/|maxq∈[l] vq| for all v ∈ Ud satisfying v[l] 6= 0. Since τ <∞, the positive constant
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γ0 := mind∈[τ ]:λd>0 γd lower bounds these ratios for every d ∈ [τ ] for which λd > 0. Thus, every
non-zero vector lying in Ud has both positive and negative entries that are significant in magnitude.

Step 2: It is clear that if {λi}τi=1 are distinct, then for k � 1, Sj [k] will have just one significant
term, thereby simplifying our analysis. Since this assumption is invalid, we proceed as follows: pick
any kM ∈ K ∩ [4,∞), let (u1, u2, . . . , uτ ) and δ be such that (29) and (30) hold, and perform the
Elimination Method so as to express Sj [k] as:

Sj [k] =
m∑
i=1

αiµ
k
i vij ∀ j ∈ [l], k ≤ kM : k is even, (31)

and for odd k ≥ 1, independently as:

Sj [k] =
m∑
i=1

ζiµ
k
i zij ∀ j ∈ [l], k ≤ kM : k is odd. (32)

Note that µi < 1 for all i ∈ [m] because |λi| < 1 for i ∈ [m]. Next, note that {αi}i∈[m] and {ζi}i∈[m]

are determined completely by (u1, u2, . . . , uτ ). Also, w.l.o.g., we assume that kM is even (otherwise,
we can set u′i = λiui and k′M = kM − 1 so that (29) and (30) hold for the primed variables). Since
kM ≥ 4, (29) and (30) imply that αi 6= 0 for some i ∈ [m] and hence, αi > 0 for some i ∈ [m]. All
of this implies that for k � 1, if there exist i ∈ [τ ] and j ∈ [l] such that vij > 0 and |αiµki vij | is
much greater than δ as well as other terms in Sj [k], then (29) will be violated..

Step 3: This motivates us to identify an index s ∈ [m] such that the greatest entry of vs, say
vsp, is comparable to 1 and dominates the corresponding sum Sp[k]. For this purpose, we wish to
ascertain that its weight αs is comparable to all weights αi for i = s+ 1, . . . ,m and is much greater
than the weights αi for i = 1, . . . , s− 1 as µi > µs for i < s. It is also helpful to compare vsp with∑m

i=s |vip|. With this in mind, we let γ̂0 := γ0/(2 + γ0), and for each s ∈ [m] that satisfies αs > 0,
we define the following quantities:

ρs1 = max
i≤s−1

αi
αs
, ρs2 = min

i≥s

αs
αi
,

p(s) ∈ arg max
j∈[l]

vsj , q(s) ∈ arg min
j∈[l]

vsj ,

vs0 =

{
vsp(s), if vsp(s) ≥ γ̂0
1, otherwise

, and

τs =
vs0

maxlr=1 (
∑m

i=s |vir|)
.

Similarly, for each s ∈ [m] satisfying ζs 6= 0, we define:

ρ̃s1 = max
i≤s−1

ζi
ζs
, ρ̃s2 = min

i≥s

ζs
ζi
,

p̃(s) ∈ arg max
j∈[l]

zsj , q̃(s) ∈ arg min
j∈[l]

zsj ,

zs0 =

{
zsp̃(s), if zsp̃(s) ≥ γ̂0
1, otherwise

, and

τ̃s =
zs0

maxlr=1 (
∑m

i=s |zir|)
.
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We also let ρ11 = 0 if α1 > 0 and ρm2 = 1 if αm > 0. Similarly, ρ̃11 = 0 if ζ1 > 0 and ρ̃m2 = 1 if
ζm > 0.

Now, let us bound τs:

τs
(a)

≥ γ̂0

maxlr=1 (
∑m

i=s |vir|)
(b)

≥ γ̂0
(m− s+ 1)

≥ γ̂0
n
. (33)

Here, (a) holds because γ̂0 ≤ vs0, and (b) holds because |v(i)j | ≤ 1. On the other hand,

τs ≤
1

maxlr=1 (
∑m

i=s |vir|)
≤ 1

maxlj=1 |vsj |
= 1. (34)

Step 4: We now analyze the evolution of the quantities defined above as kM → ∞. Consider

any sequence, {y(h)}∞h=1 = {(u(h)1 , . . . , u
(h)
τ , δ(h))}∞h=1, of variables associated with an increasing and

unbounded sequence of solutions {k(h)M }∞h=1 ⊂ K. Since m < ∞, there exists an index Me ∈ [m]

and a subsequence {y(hg)}∞g=1 of the original sequence {y(h)}∞h=1 such that Me ∈ arg maxi∈[m] α
(hg)
i

(where α
(h)
i := αi(y

(h))), for all g ∈ N. Pick such a subsequence and relabel it as {y(h)}∞h=1, so that

0 ≤ α
(h)
i /α

(h)
Me
≤ 1 for all i ∈ [m].Now that {α(h)

i /α
(h)
Me
}∞h=1 is bounded for each i ∈ [m], we may

assume (by passing to yet another subsequence if necessary) that ηi := limh→∞ α
(h)
i /α

(h)
Me

exists for
each i ∈ [m].

Now, let r = min{i ∈ [m] : ηi > 0}. Since µi decreases with i, we observe that r indexes the

most dominant vector among those that continue to survive even as we increase k
(h)
M (or as we

increase h). Then ηb = 0 for b ∈ [i − 1] and hence, limh→∞ ρ
(h)
r1 = 0 and limh→∞ ρ

(h)
r2 = ηr > 0.

Thus, there exists an h0 ∈ N such that for all h ≥ h0:

ηr/2 < ρ
(h)
r2 ≤ 3ηr/2, (35)

k
(h)
M is large enough, and ρ

(h)
r1 is small enough (as will be made precise later).

Step 5: Our next goal is to show that the greatest positive entry of the dominant vectors is
eventually upper bounded by γ̂0. We first restrict ourselves to even-k vectors. We assume h ≥ h0,
drop the superscript (h) to reduce clutter in notation, and show that:

vrp(r) < γ̂0. (36)

We will assume the contrary and show that vr dominates other vectors for a range of values
of k. We will then show that for (29) to hold, the contribution of vr should be upper bounded by
some function of δ, whereas for (30) to hold, it should also be lower bounded by a quantity that
approaches 0 as h → ∞. To begin, let p = p(r), suppose vrp ≥ γ̂0 so that vr0 = vrp and assume
that k is even. Then, by (31):

Sj [k] =

r−1∑
i=1

αiµ
k
i vij + αrµ

k
rvrj +

m∑
i=r+1

αiµ
k
i vij , (37)

and by (29), this implies:

r−1∑
i=1

αiµ
k
i vij + αrµ

k
rvrj +

m∑
i=r+1

αiµ
k
i vij < δ, (38)
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for k in the range 2 ≤ k < kM and j ∈ [l].
Observe that for any j ∈ [l]:∣∣∣∣∣

r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vij

∣∣∣∣∣
(a)

≤

(
r−1∑
i=1

αi|vij |

)
µk1 +

(
m∑

i=r+1

αi|vij |

)
µkr+1

(b)

≤

(
r−1∑
i=1

|vij |

)
ρr1αrµ

k
1 +

(
m∑

i=r+1

|vij |

)
ρ−1r2 αrµ

k
r+1

(c)

≤ rρr1αrµ
k
1 +

(
m∑

i=r+1

|vij |

)
ρ−1r2 αrµ

k
r+1

(d)

≤ rρr1αrµ
k
1 + (ρr2τr)

−1αrµ
k
r+1vr0, (39)

where (a) is due to the ordering of the set {µi}mi=1, Triangle Inequality and the fact that αi ≥ 0,
(b) follows from the definitions of ρr1 and ρr2, (c) follows from the fact that maxlt=1 |vit| = 1, and
(d) follows from the definitions of τr and vr0.

Now, we identify a range of k over which the contribution from µr dominates the contributions
from both µr+1 and µ1. Let kre := max(0, 2d0.5 log(µr/µr+1)(40/ηrτr)e) and k′r := 2b0.5 log(µ1/µr+1)(

vr0
rρr1ρr2τr

)c.
Then, for ρr1 small enough, (33), (34), and (35) ensure that kre ≤ k′r <∞, and

rρr1αrµ
k
1 ≤ (ρr2τr)

−1αrµ
k
r+1vr0 for k ≤ k′r, (40)

Furthermore, the definition of kre and (35) imply that

(ρr2τr)
−1αrµ

k
r+1vr0 ≤ 0.05αrµ

k
rvr0 for k ≥ kre. (41)

Combining (39), (40) and (41) yields:∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vij

∣∣∣∣∣ ≤ 0.1αrµ
k
rvr0 (42)

for kre ≤ k ≤ k′r and j ∈ [l]. Thus, if (36) fails, then the contribution of the dominant vector vr
is much greater than the combined contributions of other even-k vectors when kre ≤ k ≤ k′r. Now,
(42), the assumption vrp ≥ γ̂0, and (38) at j = p together result in the following:

δ > αrµ
k
rvrp −

∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vip

∣∣∣∣∣
≥ 0.9αrµ

k
rvr0 for kre ≤ k ≤ k′r. (43)

By (37), (42), and (43), we have:

Sj [k] ≤ αrµkrvrj +

∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vij

∣∣∣∣∣
≤ 1.1αrµ

k
rvr0 (44)

≤ 1.1αrµ
kre+log1/µr (11/9)
r vr0 < δ, (45)
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for all j ∈ [l] and k ∈
[
kre + log1/µr(11/9),min(k′r, kM )

]
(which is a non-empty interval for a small

enough ρr1 and a large enough kM due to the definition of k′r).
In particular,

S
(h)
j [k(h)m ] ≤ 1.1α(h)

r µk
(h)
m
r vr0 < δ(h), (46)

where k
(h)
m := min(k

′(h)
r , k

(h)
M ). On the other hand, for (30) to hold for an arbitrarily large kM , we

need vrp to be much greater than δ so as to compensate for the corresponding (small) value of µkMr .
This leads to a contradiction. To elaborate, let t(h) ∈ [l] be the index satisfying (30). Then, for
every h ≥ h0, (30), (46), and (43) imply:

m∑
i=1

α
(h)
i u

(h)

it(h)

(
µ
k
(h)
M
i − µk

(h)
m
i

)
= S

(h)

t(h)
[k

(h)
M ]− S(h)

t(h)
[k(h)m ]

≥ δ(h) − 1.1α(h)
r µk

(h)
m
r vr0

> 0.9α(h)
r µkrer vr0 − 1.1α(h)

r µk
(h)
m
r vr0. (47)

Division by α
(h)
r and rearranging the terms yield:

1.1µk
(h)
m
r vr0 +

m∑
i=1

α
(h)
i

α
(h)
r

uit(h)

(
µ
k
(h)
M
i − µk

(h)
m
i

)
> 0.9µkrer vr0. (48)

However, the left-hand side of (48) tends to zero as h→∞ (since ηr > 0) because limh→∞ ρ
(h)
r1 = 0

implies that limh→∞ k
′(h)
r = ∞ and in turn that limh→∞ k

(h)
m = ∞, whereas the right-hand side

remains positive. This contradicts our assumption on vrp, thus proving (36).
Now, we establish the odd-k analog of (36). Note that the assumption that kM is even forbids

us from repeating our previous arguments.
By (35), (36) and Lemma 9, we have

ζ(h)r ≥ γ̂0α(h)
r > 0 (49)

for h ≥ h0. Therefore, analogous to Me, ηi for i ∈ [m], and r, we define Mo := arg maxi∈[m] ζ
(h)
i for

h ≥ h0, η̃i := limh→∞ ζ
(h)
i /ζ

(h)
Mo

for i ∈ [m], and r̃ := min{i ∈ [m] : η̃i > 0}, respectively (by passing

to a subsequence of {y(h)[0]}∞h=1 if necessary). Also, note that we did not use the assumption that

k
(h)
M is even until (46). This implies that if zr̃p̃(r̃) ≥ γ̂0 holds, then similar to δ(h) > 0.9α

(h)
r µkrer vr0,

we have:

δ(h) > 0.9ζ
(h)
r̃ µkror̃ zr̃0, (50)

where kro := max(0, 2d0.5 log(µr̃/µr̃+1)(40/η̃r̃ τ̃r̃)e). On the other hand, St(h) [k
(h)
M ] ≥ δ(h) implies:

δ(h) ≤
m∑
i=1

α
(h)
i µ

k
(h)
M
i vij ≤ α

(h)
Me
µ
k
(h)
M

1 m (51)

since |vij | ≤ 1. Then, (50) and (51) result in:

α
(h)
Me

ζ
(h)
r̃

≥ 0.9µkror zr0
m

(
1

µ1

)k(h)M

,
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implying that limh→∞(α
(h)
Me
/ζ

(h)
r̃ ) =∞. Hence:

lim
h→∞

ζ
(h)
r

α
(h)
r

= lim
h→∞

ζ
(h)
r

ζ
(h)
Mo

·
ζ
(h)
Mo

ζ
(h)
r̃

·
ζ
(h)
r̃

α
(h)
Me

·
α
(h)
Me

α
(h)
r

= η̃r · η̃−1r̃ · 0 · η
−1
r = 0

because η̃r̃ and ηr are positive by the definitions above. However, this would have contradicted
(49). Therefore:

zr̃p̃(r̃) < γ̂0. (52)

Step 6: Note that (36), (52), and Lemma 9 imply that r 6= r̃. We may assume that r < r̃ because

the case r > r̃ can be handled similarly. Then by the definition of r̃, we have limh→∞ ζ
(h)
r /ζ

(h)
r̃ = 0.

Furthermore, by applying Lemma 9 to both r and r̃, we obtain min(α
(h)
r̃ /ζ

(h)
r̃ , ζ

(h)
r /α

(h)
r ) ≥ γ̂0.

Therefore,

lim
h→∞

α
(h)
r̃

α
(h)
Me

= lim
h→∞

α
(h)
r̃

ζ
(h)
r̃

·
ζ
(h)
r̃

ζ
(h)
r

· ζ
(h)
r

α
(h)
r

· α
(h)
r

α
(h)
Me

≥ γ̂0 · ∞ · γ̂0 · ηr =∞

because ηr > 0 by our definition of r. But this contradicts the definition of Me, thereby proving
the lemma.

We can now state the first main result of this subsection.

Lemma 11. For every initial state x[0] ∈ Rn, let GP [k] = GP (x[k]) = (VP , EP (x[k])) and GQ[k] =
GQ(x[k]) = (VQ, EQ(x[k])) be two vertex-disjoint induced subgraphs of G̃[k] such that GP0, the
subgraph of Gph induced by VP , is connected. Also, let X denote the set of all x[0] ∈ Rn satisfying
assumptions below:

(a). All the agents of GQ[0] have the same opinion value, i.e., xi[0] = xQ for all i ∈ VQ, where
xQ ∈ R is constant in time but depends on x[0].

(b). GP [k] and GQ[k] merge for the first time ever at some time κ(x[0]) ∈ N.

(c). GP [k] is a connected graph for 0 ≤ k < κ(x[0]).

(d). No link break occurs within GP [k] until time κ(x[0]).

Furthermore, for some l ∈ R, let [l] index the set of nodes of GP [0] that are adjacent to one or
more nodes of GQ[0] in the graph Gph, as shown in Fig. 2.

Now, suppose supx[0]∈X κ(x[0]) = ∞. Then AP0 has an eigenpair (λ, v) such that 0 < λ < 1,
vi 6= 0 for some i ∈ [l], and vivj ≥ 0 for all i, j ∈ [l].

Proof. By Lemma 2, AP0 always has an eigenvalue λ ∈ (0, 1). So, if the assertion of this lemma is
false, then for every eigenpair (λ, v) of AP0 with 0 < λ < 1, we have vpvq < 0 for some p, q ∈ [l],
while supx[0]∈X κ(x[0]) =∞.

Now, for GP and GQ to merge for the first time at κ = κ(x[0]), we require GP [k] and GQ[k] to
be (I): disconnected from each other in G̃[k] until time κ, and (II): connected with each other in
G̃[κ].
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Figure 2: Illustration for the Proof of Lemma 11

Given that GQ[0] is at the consensus state xQ and the set of potential neighbors of GQ in GP
is [l], condition (I) is equivalent to:

|xi[k]− xQ| > R ∀ i ∈ [l], k ≤ κ− 1. (53)

Since no link break occurs within GP [k] until the merging event of interest takes place, GP [k]
remains connected in G̃[k] until κ(x[0]). Moreover, since supx[0]∈X κ(x[0]) =∞, and because all the

intra-component link formations taking place in G̃[k] occur in O(n8 log n) steps as per Proposition
4, we may choose an x[0] ∈ Rn such that κ(x[0]) is large enough and GP [k] remains constant and
connected during a time interval [kc, κ(x[0])) for some kc < κ(x[0]). As a result, we may further
assume that for a sufficiently large κ(x[0]), the sub-network of Gph corresponding to GP0 achieves
R/4-convergence to a consensus state c01P at some time kR ∈ [kc, κ(x[0])). We now shift the origin
of our time axis to kR, thus obtaining GP [0] = GP0 . Also, w.l.o.g., we assume c0 ≤ xQ. Then (53)
along with R/4-convergence together yield the following necessary condition for (a):

xj [k] < xQ −R ∀ j ∈ [l], k ∈ {0, 1, . . . , kM − 1}, (54)

where kM := κ − kR. In this setting, condition (II) is equivalent to |xi[kM ] − xQ| ≤ R for some
i ∈ [l]. An implication is:

xt[kM ] ≥ xQ −R for some t ∈ [l]. (55)

By Lemma 1, we can express x[k] in terms of the eigenpairs {(λi, ui)}nPi=1 of AP0 in order to rewrite
(54) and (55) as:

nP∑
i=2

λki uij < δ for all 0 ≤ k < kM and all j ∈ [l], (56)

and

nP∑
i=2

λkMi uit ≥ δ for some t ∈ [l], (57)

where δ := xQ − R − c0 and the sum index i ≥ 2 because λ1 = 1 and u1 = c01P . Since |λi| < 1
for all 2 ≤ i ≤ nP and maxnPi=2 λi > 0 by Lemma 2, an application of Lemma 10 immediately yields
the required condition on AP0 .
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We now generalize Lemma 11 by allowing both the subgraphs GP and GQ to have any of the
initial states that force them to remain connected components of the influence graph until they
merge (or forever if they do not merge). However, we will need a definition and some notation.

Suppose GP0 = (VP , EP0) and GQ0 = (VQ, EQ0) are two induced subgraphs of Gph such that
VP ∩ VQ = ∅. Let {(ie, je)}be=1 ⊂ VP × VQ be the set of boundary edges of {GP0 , GQ0} in Gph
(i.e., the set of edges connecting GP0 with GQ0 in Gph), and let {1} ∪ {λd}md=1 be the union of the
sets of eigenvalues of AP0 and AQ0 (such that λd 6= 1 for all d ∈ [m]). Further, for each d ∈ [m],
let Ud(P ) (respectively, Ud(Q)) be the eigenspace of λd with respect to AP0 (respectively, AQ0) if
λd is an eigenvalue of AP0 (respectively, AQ0), and let Ud(P ) = {0} (respectively, Ud(Q) = {0}),
otherwise. Finally, for each d ∈ [m], let fPbr(u) := [ui1 . . . uib ]

T for all u ∈ Ud(P ), and let fQbr(w) :=

[wj1 . . . wjb ]
T for all w ∈ Ud(Q). Note that the dimensions of fPbr(u) and fQbr(w) equal b for all

u ∈ Ud(P ) and w ∈ Ud(Q).

Definition 11. For each d ∈ [m], the boundary-restricted eigenspace of λd associated with {GP0 , GQ0}
is the set ÛPQd := ÛPd + ÛQd , where ÛPd := span({fPbr(v) : v ∈ Ud(P )}) and ÛQd := span({fQbr(v) :

v ∈ Ud(Q)}). We refer to any vector v ∈ ÛPQd as a boundary-restricted eigenvector of {GP0 , GQ0}
corresponding to the eigenvalue λd.

Proposition 6. For every initial state x[0] ∈ Rn, let GP [k] = GP (x[k]) = (VP , EP (x[k])) and
GQ[k] = GQ(x[k]) = (VQ, EQ(x[k])) be two vertex-disjoint induced subgraphs of G̃[k], and let X
denote the set of all x[0] ∈ Rn satisfying the assumptions below:

(i). GP [k] and GQ[k] merge at time kM (x[0]) ∈ N for the first time.

(ii). GP [k] and GQ[k] are connected graphs for 0 ≤ k < kM (x[0]).

(iii). No link breaks within GP [k] or GQ[k] until time kM (x[0]).

Next, let GP0 and GQ0 be the subgraphs of Gph induced by VP and VQ, respectively, and let b be the
number of boundary edges of {GP0 , GQ0} in Gph. Furthermore, let {λd}md=1 ∪ {1} be the union of
the sets of eigenvalues of AP0 and AQ0 such that λd 6= 1 for d ∈ [m].

Now, suppose supx[0]∈X kM (x[0]) =∞. Then there exists an index d ∈ [m] such that 0 < λd < 1

and a corresponding vector v̂ ∈ ÛPQd satisfying v̂e 6= 0 for some e ∈ [b] and v̂ev̂f ≥ 0 for all e, f ∈ [b].

Proof. Since no link break occurs within GP [k] or GQ[k] until they merge, both of them remain
connected in G̃[k] until kM (x[0]). Moreover, since supx[0]∈X kM (x[0]) = ∞, and because all the

intra-component link formations taking place in G̃[k] occur in O(n8 log n) steps as per Proposition
4, we may choose an x[0] ∈ Rn such that kM (x[0]) is large enough, and GP [k] and GQ[k] both
remain constant and connected during a time interval [kc, kM (x[0])) for some kc < kM (x[0]). As a
result, we may further assume that the sub-networks of Gph corresponding to GP0 and GQ0 achieve
R/4-convergence to their respective consensus states at some time kR ∈ [kc, kM (x[0])). We now
shift the origin of our time axis to kR, thus obtaining GP [0] = GP0 and GQ[0] = GQ0 .

Now, we express the initial states of GP and GQ as

xP [0] = cP1P +

m∑
d=1

βPd v
P
d

xQ[0] = cQ1Q +

m∑
d=1

βQd v
Q
d ,
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where cP , cQ ∈ R depend on our choice of xP [0] and xQ[0], and the vectors are chosen such that for

each d ∈ [m], vPd (respectively, vQd ) is an eigenvector of AP0 (respectively, AQ0) corresponding to

λd iff λd is an eigenvalue of AP0 (respectively, AQ0) and vPd = 0 (respectively, vQd = 0) otherwise.
This is possible because AP0 and AQ0 are diagonalizable by Lemma 1. In addition, we assume that

{vPd }md=1 \ {0} and {vQd }
m
d=1 \ {0} are bases of eigenvectors for AP0 and AQ0 , respectively.

Next, let {(ie, je)}be=1 ⊂ VP × VQ enumerate the set of boundary edges of {GP0 , GQ0} in Gph.
Note that assumption (i) requires |xie [k]− xje [k]| > R for all e ∈ [b] and 0 ≤ k < kM := kM (x[0]),
and |xit [kM ]− xjt [kM ]| ≤ R for some t ∈ [b]. Now, for a given e ∈ [b], we could either have

xie [k]− xje [k] > R, or (58)

xje [k]− xie [k] > R (59)

for a particular k ∈ [0, kM ). Suppose (58) holds at some k1 ∈ [0, kM ) and (59) at some k2 ∈ [0, kM ).
Then max(xie [k1]−xie [k2], xje [k2]−xje [k1]) > R. But this contradicts the assumption that both GP
and GQ have achieved R/4-convergence to their respective consensus states at time 0. Therefore,
for a given e ∈ [b], if (58) holds for some k ∈ [0, kM ), then it must hold for all k ∈ [0, kM ). Similarly,
we can show that for a given k ∈ [0, kM ), if (58) holds for some e ∈ [b], then it must hold for all
e ∈ [b]. The same applies to (59). Hence, w.l.o.g., we assume (59) for all e ∈ [b] and all 0 ≤ k < kM .

Now, for each d ∈ [m], let v̂d := [v̂d1 . . . v̂db]
T , where v̂de = βPd vdie−β

Q
d vdje for e ∈ [b]. Further,

let δ := cQ − R − cP . With these definitions and the assumption given by (59), we can express
assumption (i) of the proposition as:

m∑
d=1

λkdv̂de < δ for all 0 ≤ k < kM and all e ∈ [b],

and
∑m

d=1 λ
kM
d v̂dt ≥ δ for some t ∈ [b]. Since |λd| < 1 for all d ∈ [m] and maxd λd > 0 by Lemma

2, and since (v̂1, . . . , v̂m) ∈
∏m
d=1 Û

PQ
d , the assertion of Proposition 6 now follows immediately from

Lemma 10.

5.4 Graphs with Finite Maximum ε-Convergence Time

We now show that the ε-convergence time of a complete r-partite graph is bounded. For this
purpose, we characterize the eigenvectors of the normalized adjacency matrix of a complete r-
partite graph that has all the self-loops.

For n ∈ N, we define a complete r-partite graph G = ([n], E) to be a graph with partitioning of
its vertices into V1, . . . , Vr ⊂ [n], and (i, j) ∈ E iff (i, j) /∈ ∪rl=1V

2
l . Let G have all the n self-loops,

let A ∈ Rn×n be the normalized adjacency matrix of G, and let ni := |Vi| ≥ 1 for i ∈ [r]. For each
i ∈ [r], let Vi = {Ni−1 + 1, . . . , Ni}, where Nj :=

∑j
i=1 ni for j ∈ [r] and N0 := 0. Finally, we define

the matrix B ∈ Rr×r by:

Bij :=

{
1

n−ni+1 if j = i
nj

n−ni+1 if j 6= i
,

and let {w(i)}qi=1 be an eigenvector basis for B with {λ(i)}qi=1being the corresponding eigenvalues.

Lemma 12. The matrices A and B (as described above) have the following properties:

(i) For each i ∈ [r] such that ni ≥ 2 and each t ∈ {2, . . . , ni}, the vector v(i,t) ∈ Rn, defined as:

v
(i,t)
j :=


+1, if j = Ni−1 + 1

−1, if j = Ni−1 + t

0, otherwise

,

26



is an eigenvector of A corresponding to 1/(n − ni + 1). Moreover, the set U1 := {v(i,t) : 2 ≤
t ≤ ni, i ∈ [r]} is a set of linearly independent vectors.

(ii) For each i ∈ [q], the vector ṽ(i) ∈ Rn, defined as ṽ
(i)
p = w

(i)
j for all p ∈ Vj and j ∈ [r], is an

eigenvector of A corresponding to λ(i).

(iii) The eigenvectors of B span Rr, i.e., q = r.

(iv) If λ(i) 6= 1, then λ(i) ≤ 0 for all i ∈ [r].

(v) U := ∪rj=1{v(j,t) : 2 ≤ t ≤ nj} ∪ {ṽ(i)}ri=1 is an eigenvector basis for A.

Proof. Observe that for all p ∈ [r], the degree of each vertex in Vp, with its self-loop counted, is
n− np + 1. Hence, given i ∈ [r], for all p ∈ [r] \ {i} and j ∈ Vp, we have:

(Av(i,t))j =
1

n− np + 1

(
v
(i,t)
Ni−1+1 + v

(i,t)
Ni−1+t

)
= 0 =

1

n− np + 1
v
(i,t)
j .

Next, if j = Ni−1 + 1, then

(Av(i,t))j =
1

n− ni + 1
v
(i,t)
Ni−1+1 + 0 · v(i,t)Ni−1+t

=
1

n− ni + 1
v
(i,t)
j .

Similarly, (Av(i,t))j = v
(i,t)
j /(n − ni + 1) also holds for j = Ni−1 + t. Finally, for j ∈ Vi \ {Ni−1 +

1, Ni−1 + t}, we have (Av(i,t))j = Ajj · 0 +
∑

s∈V \Vi Ajs · 0 = v
(i,t)
j /(n− ni + 1). So, for each i ∈ [r]

and each t ∈ {2, . . . , ni}, v(i,t) is an eigenvector of A corresponding to 1
n−ni+1 . By taking linear

combinations, we can easily see that {v(i,t) : 2 ≤ t ≤ ni, i ∈ [r]} are linearly independent vectors.
This proves (i).

As for (ii), for any j ∈ [r] and p ∈ Vj , we have:

(Aṽ(i))p =
n∑
s=1

Apsṽ
(i)
s

=
1

n− nj + 1
· ṽ(i)p +

∑
l∈[r]\{j}

∑
m∈Vl

1

n− nj + 1
· ṽ(i)m


=

1

n− nj + 1
· w(i)

j +
∑

l∈[r]\{j}

nl
n− nj + 1

· w(i)
l

=

r∑
l=1

Bjlw
(i)
l = (Bw(i))j = (λ(i)w(i))j = λ(i)ṽ(i)p .

In order to prove (iii), note that B = D1SD2, where D1 := diag( 1
n−n1+1 , . . . ,

1
n−nr+1), D2 :=

diag(n1, . . . , nr), and S is the symmetric r × r matrix given by:

Sij =

{
1
ni

if j = i

1 if j 6= i
.
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Now, observe that the commutativity of diagonal matrices allows us to expressD1SD2 asDA(DBSDB)D−1A ,

where DA := (D1D
−1
2 )

1
2 and DB := (D1D2)

1
2 . Thus, B = DA(DBSDB)D−1A is similar to the sym-

metric matrix DBSDB and hence, its eigenvectors span Rr, i.e., q = r.
As for (iv), for any λ(i) 6= 1, we know that D

1
2 ṽ(i) is an eigenvector of D

1
2AD−

1
2 which is

a symmetric matrix as per Lemma 1 of [20]. Hence, {D
1
2 ṽ(i)}ri=1 is an orthogonal set. Since

1 ∈ {ṽ(i)}ri=1, this implies that

1TDṽ(i) = 0 if i ∈ [r] and λ(i) 6= 1, (60)

thereby forcing each ṽ(i) to have both positive and negative entries. Now, pick any i ∈ [r] for which

λ(i) 6= 1, and let s ∈ [r] be the index such that w
(i)
j ≥ 0 for j ∈ [s] and w

(i)
j < 0 otherwise (we can

always label the vertices suitably so that such an s exists). Then (60) implies that 1 ≤ s ≤ r − 1.
Consequently, we have the following relations:

λ(i)|w(i)
1 | =

|w(i)
1 |+

∑s
j=2 nj |w

(i)
j | −

∑r
j=s+1 nj |w

(i)
j |

n− n1 + 1

−λ(i)|w(i)
s+1| =

∑s
j=1 nj |w

(i)
j | −

∑r
j=s+2 nj |w

(i)
j | − |w

(i)
s+1|

n− ns+1 + 1
.

On the basis of this, we have the following for λ(i) /∈ {0, 1}:

0 < (n− n1 + 1)|w(i)
1 |+ (n− ns+1 + 1)|w(i)

s+1|

= −
(n1 − 1)|w(i)

1 |+ (ns+1 − 1)|w(i)
s+1|

λ(i)
,

implying λ(i) < 0 because n1, ns+1 ≥ 1 by assumption.
For part (v), note that U1 and {ṽ(i)}ri=1 are linearly independent sets by assertions (i) and

(ii). Also, observe that span{ṽ(i) | i ∈ [r]} = span⊥{v(j,t) | j ∈ [r], t ∈ {2, . . . , nj}} because

ṽ(i)T v(j,t) = w
(i)
j × 1 + w

(i)
j ×−1 = 0. Finally, noting that |U | =

∑r
j=1(nj − 1) + r =

∑r
j=1 nj = n,

we conclude that U is an eigenvector basis for A.

Remark 2. Points (1), (4) and (5) of Lemma 12, along with the fact that eigenspaces are linear,
imply that every eigenpair (λ, v) of A that satisfies λ ∈ (0, 1), corresponds to some i ∈ [r] such that
|Vi| ≥ 2 and vs = 0 for all s /∈ Vi. Furthermore,

∑
s∈Vi vs = 0 for such an i.

We are now well equipped to establish our main result.

Proposition 7. Let n ∈ N and ε > 0 be given, and let Gph = ([n], Eph) be a complete r-partite
graph for some r ∈ [n]. Then k∗ε (Gph) <∞.

Proof. If Gph is a complete 1-partite graph, then Eph = ∅ and hence k∗ε (Gph) = 0. On the other
hand, if r = n, then Gph = Kn. In this case, k∗ε (Gph) = O(n3) <∞ by [18] and [20]. Therefore, we
assume 1 < r < n hereafter.

Suppose kε(Gph) =∞. From Proposition 4, we know that arbitrarily slow convergence happens
only in the presence of arbitrarily slow merging and that all the other structural changes in G̃[k]
occur in O(n8 log n) steps. Hence, it suffices to show that no two connected components of the
influence graph can take an arbitrarily long period of time to merge, under the assumption that no
link breaks occur.
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For this purpose, let V1, . . . , Vr be the r parts of Gph, and let VP , VQ ⊂ [n] be any two disjoint
sets. Further, let {(ie, je)}be=1 ⊂ VP × VQ be the set of boundary edges connecting GP0 and GQ0

in Gph, and let {1} ∪ {λd}md=1 be the union of the sets of eigenvalues of AP0 and AQ0 (such that
λd 6= 1 for all d). Now, since Gph is a complete r-partite graph, it follows that GP0 and GQ0 are
also complete p-partite and q-partite graphs for some p, q ∈ [r], and their parts are given by the
partitions {VP ∩ Vi}ri=1 \ {∅} and {VQ ∩ Vi}ri=1 \ {∅}, respectively.

Next, for each initial state x[0] ∈ Rn, let GP [k] = GP (x[k]) = (VP , EP (x[k])) and GQ[k] =
GQ(x[k]) = (VQ, EQ(x[k])) be disconnected from each other in G̃[k] = G̃(x[k]) until they merge at
time kM (x[0], VP , VQ). As per our earlier reasoning, we may restrict our attention to the subset
X (VP , VQ) ⊂ Rn of initial states for which (i) kM (x[0], VP , VQ) < ∞, i.e., merging occurs, (ii) no
link breaks occur within GP [k] or GQ[k] until they merge, i.e., for k ≤ kM (x[0], VP , VQ), and (iii)
both GP [k] and GQ[k] are connected graphs for k ≤ kM (x[0], VP , VQ).

Now, suppose supx[0]∈X (VP ,VQ) kM (x[0], VP , VQ) = ∞. Then Proposition 6 implies that there

exists a d ∈ [m] with λd ∈ (0, 1) and a corresponding vector v ∈ ÛPQd satisfying ve 6= 0 for some
e ∈ [b] and vfvg ≥ 0 for all f, g ∈ [b]. Since ve = uie + wje for some u ∈ Ud(P ) and w ∈ Ud(Q),
we have either uie 6= 0 or wje 6= 0. W.l.o.g., we assume uie > 0 (and hence that (λd, u) is an
eigenpair of AP0). Now, let ρ ∈ [r] and σ ∈ [r] denote the indices for which ie ∈ VPρ := VP ∩ Vρ
and je ∈ VQσ := VQ ∩ Vσ. Then observe that ρ 6= σ because (ie, je) ∈ Eph. Also, by Remark 2,
λd ∈ (0, 1) implies that

∑
s∈VPρ us = 0. Hence, there exists another node z ∈ VPρ such that uz < 0.

Now, two cases arise: either |VQσ| = 1 or |VQσ| ≥ 2.
Consider Case 1: |VQσ| = 1, i.e., VQσ = {je}. Now, if λd is not an eigenvalue of AQ0 , then Ud =

{0}, which means w = 0. Hence, wje = 0. Otherwise, by Remark 2, Lemma 12 requires wje = 0
because λd > 0 and |VQσ| < 2. Thus, wje = 0 is true whenever |VQσ| = 1. Moreover, ρ 6= σ implies
that (z, je) ∈ Eph. Since z ∈ VP and je ∈ VQ, we may denote z by if and je by jf so that (z, je) is
the f -th boundary edge, (if , jf ), for some f ∈ [b]. But now, vf = uif + wjf = uz + wje = uz < 0,
whereas ve = uie > 0. As a result, vevf < 0, thus contradicting the requirement vfvg ≥ 0 for all
f, g ∈ [b].

On the other hand, in Case 2: |VQσ| ≥ 2, both wje = 0 and wje 6= 0 are possible subcases. If
wje = 0, then we simply repeat the arguments of the previous paragraph to show that vevf < 0
for some f ∈ [b]. So, assume wje 6= 0. Then (λd, w) is necessarily an eigenpair of AQ0 . Therefore,
the requirement

∑
s∈VQσ ws = 0 of Lemma 12 implies wywje < 0 for some y ∈ VQσ. First, suppose

wje > 0 and wy < 0. Then, ρ 6= σ implies that (z, y) ∈ Eph and hence that (z, y) is a boundary edge.
By denoting (z, y) as the f -th boundary edge (if , jf ) for some f ∈ [b], we have vf = uif + wjf =
uz + wy < 0. However, we still have ve = uie + wje > 0, implying that vevf < 0. Now, assume
wje < 0 and wy > 0. Then, by denoting the boundary edges (z, je) and (ie, y) as (iα, jα) and
(iβ, jβ), respectively for some α, β ∈ [b], we have vα = uz + wje < 0 and vβ = uie + wy > 0. This
implies that vαvβ < 0. Thus, the requirement vfvg ≥ 0 for all f, g ∈ [b] is violated in Case 2 as
well.

Hence, supx[0]∈X (VP ,VQ) kM (x[0], VP , VQ) < ∞. Note that this applies to every selection of
VP ⊂ V and VQ ⊂ V such that VP ∩ VQ = ∅. Moreover, since the number of such choices of VP
and VQ is finite, we conclude that no merging event can be delayed indefinitely in the social HK
dynamics on the given Gph. This completes the proof.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have investigated the convergence properties of the social HK model of opinion
dynamics. We have shown that for certain physical connectivity graphs, we cannot even guarantee ε-
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convergence to the steady state within a bounded time-frame, much less termination in finite time.
In addition, we have shown that complete r-partite graphs have bounded ε-convergence times.
Moreover, we can observe that the necessary and sufficient conditions provided by Proposition
5 and Lemma 11 are nearly tight (i.e., tight under the assumption vivj 6= 0, in addition to the
other assumptions made by these two results). However, finding a set of necessary and sufficient
conditions for arbitrarily slow merging (and thereby for arbitrarily slow ε-convergence) that are
tight in the most general case, remains an interesting open problem. Also open is the problem of
finding other classes of graphs that have bounded ε-convergence times.
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