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Optimal Decentralized Control for Uncertain
Systems by Symmetric Gauss-Seidel

Semi-Proximal ALM
Jun Ma, Zilong Cheng, Xiaoxue Zhang, Masayoshi Tomizuka, Life Fellow, IEEE, and Tong Heng Lee

Abstract— The H2 guaranteed cost decentralized control
problem is investigated in this work. More specifically, on
the basis of an appropriate H2 re-formulation that we put
in place, the optimal control problem in the presence of pa-
rameter uncertainties is then suitably characterized by con-
vex restriction and solved in parameter space. It is shown
that a set of stabilizing decentralized controller gains for the
uncertain system is parameterized in a convex set through
appropriate convex restriction, and then an approximated
conic optimization problem is constructed. This facilitates
the use of the symmetric Gauss-Seidel (sGS) semi-proximal
augmented Lagrangian method (ALM), which attains high
computational effectiveness. A comprehensive analysis is
given on the application of the approach in solving the
optimal decentralized control problem; and subsequently,
the preserved decentralized structure, robust stability, and
robust performance are all suitably guaranteed with the
proposed methodology. Furthermore, an illustrative exam-
ple is presented to demonstrate the effectiveness of the
proposed optimization approach.

Index Terms— Convex optimization, convex restriction,
optimal control, decentralized control, parameter uncertain-
ties, parameter space, augmented Lagrangian method.

I. INTRODUCTION

Decentralized control has been widely applied to various
large-scale systems in view of several important attractive
properties, such as parallel computation of control variables,
ease of communication among controllers, sensors, and actua-
tors, etc. Typical applications of decentralized control in these
situations include electrical power network models, transporta-
tion systems, communication networks, robotics, etc. Further,
in general, a large-scale multi-input-multi-output (MIMO)
system can essentially be decomposed into a set of physically
coupled subsystems, and it then allows the independent design
of controllers suitably. As the decentralized control approach
has a multi-level control architecture, the control system thus
also exhibits some good robustness properties towards various
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structural perturbations that can occur in the high-level control
function, such as the breakdown of information exchanges
between subsystems.

Stabilization of a MIMO system by decentralized con-
trol has been rather thoroughly studied in the literature,
with methodologies such as Lyapunov-type methods [1] and
algebraic-type methods [2], [3]. On the other hand, although
there are already some optimal and robust control techniques
that are relatively straightforward and well-established, it is
still not easy to apply these relevant optimal and robust control
techniques to decentralized control; such as the common-
place usage of algebraic Riccati equations (AREs) for linear
quadratic regulator (LQR), linear quadratic Gaussian (LQG),
H2, and H8 control in the non-decentralized control situation.
The key evident reason is that the decentralized controller
gain matrix exhibits specific sparsity constraints. In view
of the sparsity constraints due to this decentralized control
architecture, various alternate controller design methods have
been presented to cater to this shortcoming [4]–[8]. Thus
in [9], through a problem re-formulation, sufficient conditions
are given such that the standard LQG theory could be applied.
Elsewhere in [10], in the LQR and H2 control problems, it is
noted that the gradient of a pre-defined objective function with
respect to the controller gain admits a closed-form solution,
which enables the use of the gradient descent method (after
the projection of the gradient onto the decentralized constraint
hyperplanes). However, this approach only gives the local
optimum that is highly dependent on controller initialization,
and it does not take the robustness issue into consideration.

To further address these shortcomings, several works on
parameterization have been proposed where approaches are
developed such that the constrained optimization problem
can be solved in extended parameter space. For example
in [11], [12], it is shown that the sparsity constraints can
be explicitly expressed in the parameter space, thereby in-
voking the development and utilization of a cutting-plane
optimization algorithm. In this framework, the global optimum
is then determined through an iterative framework, and also
robustness towards parameter uncertainties is ensured [13],
[14]. Nevertheless, a very real practical limitation is that the
convergence of the cutting-plane optimization algorithm is
rather slow. The first reason is that, due to the requirement
in the procedure for the generation of separating hyperplanes,
additional equality constraints are added to the linear program-
ming problem during each iteration (thereby adding to the
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computational burden). The second reason is that the nonlinear
constraints are solved through outer linearization, which is not
computationally effective; and these constraints are not always
exhaustively exactly satisfied but violated in a small number
of instances, even upon completion of all iterations. Recent
works on decentralized control by the use of block-diagonal
Lyapunov functions are presented in [15], which ensure a prop-
erty of sparsity invariance, and then the structural constraint on
the controller can be suitably transformed into the constraints
on Lyapunov variables. A complete generalization of this line
of work is given in [16], which utilizes a convex restriction to
reformulate the unstructured problem to an equivalent convex
program involving additional convex constraints to guarantee
the structural constraint on the controller.

Added to all the above observations, quadratic invariance
(QI) serves as the necessary and sufficient condition for the
set of Youla parameters that respect the original informa-
tion constraint to be convex [17], [18], and then a feasible
controller admitting the optimal performance can be deter-
mined. Similar research results and insights are also reported
in [19]–[22]. However, QI is a somewhat stringent condition
for the convexity of decentralized control design problems.
To overcome the limitation of QI, some further researches
have been conducted. For instance, [23] presents the closest
subset and superset of the decentralized constraint, which are
quadratically invariant when the original problem is not. The
notion of sparsity invariance proposed in [24] can also be
applied to design optimally distributed controllers subject to
sparsity constraints on the controller structure; and it evidently
outperforms the nearest QI subset in some cases and is
also naturally applicable to the distributed static controller.
However, these techniques are also computationally expensive,
and the required conditions based on QI can also be rather too
stringent and rigorous for many practical cases.

In more recent works, a new optimization technique called
the augmented Lagrangian method (ALM) has been presented,
which has attracted considerable attention from researchers in
the optimal control area [25], [26]. However, for some ill-
conditioned optimization problems, a slow rate of convergence
can result from the application of the conventional ALM, and
for some large-scale optimization problems, the conventional
ALM cannot even be used to solve the given problem suc-
cessfully. Since the scale of the H2 optimization problem
under parameter uncertainties is usually very large, and the
condition number of the resulting optimization problem is
typically not clear, the conventional ALM is not feasible as a
proposed methodology for the specified optimization problem
here. To cater to the shortcomings of the conventional ALM,
in [27], a semi-proximal term is introduced into the augmented
Lagrangian function to ensure that the related sub-problems
can be solved effectively. Additionally, in [28], an approach
denoted as the symmetric Gauss-Seidel (sGS) technique is
applied to ensure the large-scale problem can be separated
into a group of sub-problems. Nevertheless, while promising,
all these methodologies essentially provide only rather generic
guidelines at this stage, and a more definite strategy and
formulation (with accompanying comprehensive analysis) is
still lacking on how to extend their usages in real-world

problems.
With all of the above descriptions as a back-drop, in

this work, we develop and propose a definite strategy and
formulation that uses the semi-proximal ALM and the sGS
to specifically solve the optimal decentralized control problem
with parameter uncertainties. On the basis of a parameter space
formulation with convex restriction, the optimization prob-
lem is restricted and approximated as a convex optimization
problem. Then, the sGS semi-proximal ALM is utilized to
determine the optimal solution effectively. Importantly here
in our formulation, the sparsity constraints resulting from
the decentralized control structure are satisfied. Additionally,
robust stability in the presence of parameter uncertainties
is guaranteed, and the system performance is maintained
within a prescribed level. This approach thus addresses all the
shortcomings as previously highlighted, and also attains high
computational effectiveness in solving the optimal decentral-
ized control problem.

The remainder of this paper is organized as follows. In
Section II, the problem formulation of the H2 guaranteed cost
decentralized control problem is given in its usual commonly-
encountered form. In Section III, we present and show how
the resulting optimization problem can be suitably constructed
in the parameter space through convex restriction. Next, since
this problem now takes the structure of a convex optimization
problem, we then present and develop the specific procedures
utilizing the sGS semi-proximal ALM for effective optimiza-
tion in this specific parameter space approximation of the H2

guaranteed cost decentralized control problem. In Section V,
an illustrative example is given to validate the results. Finally,
pertinent conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

The following notations are used in the remaining text.
Rmˆn (Rn) denotes the real matrix with m rows and n
columns (n dimensional real column vector). Sn denotes the
n dimensional real symmetric matrix. Sn` (Sn``) denotes the
n dimensional positive semi-definite (positive definite) real
symmetric matrix. The symbol A ą 0 (A ľ 0) means that
the matrix A is positive (semi-)definite, and A ą B (A ľ B)
means A ´ B is positive (semi-)definite. AT (xT ) denotes
the transpose of the matrix A (vector x). In represents the
identity matrix with a dimension of nˆn. The operator TrpAq
denotes the trace of the square matrix A. The operator xA,By
denotes the Frobenius inner product i.e. xA,By “ Tr

`

ATB
˘

for all A,B P Rmˆn. The norm operator based on the
inner product operator is defined by }x} “

a

xx, xy for all
x P Rmˆn. }Hpsq}2 represents the H2-norm of Hpsq. b
denotes the Kronecker product. eigpAq represents all the eigen-
values of the matrix A. blocdiagtA1, A2, ¨ ¨ ¨ , Anu denotes a
block diagonal matrix with diagonal entries A1, A2, ¨ ¨ ¨ , An.
diagta1, a2, ¨ ¨ ¨ , anu denotes a diagonal matrix with diagonal
entries a1, a2, ¨ ¨ ¨ , an.

Consider a linear time-invariant (LTI) system

9xptq“ Axptq `B2uptq `B1wptq, (1)
zptq“ Cxptq `Duptq, (2)
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with a static state feedback controller

uptq “ ´Kxptq, (3)

where x P Rn is the state vector with xp0q “ x0, u P Rm is
the control input, w P Rl is the exogenous disturbance input,
z P Rq is the controlled output, K P Rmˆn is the feedback
gain matrix. A, B1, B2, C, and D are constant real matrices
with appropriate dimensions. It is assumed that there is no
cross weighting between the state variables and the control
variables, i.e. CTD “ 0, and the control weighting matrix is
nonsingular, i.e. DTD ą 0. Also, as a usual practice, it is
assumed that pA,B2q is stabilizable and the pair pA,Cq has
no unobservable modes on the imaginary axis. Remarkably,
for a decentralized control problem, K is constrained to be
block diagonal.

Here, the objective function is defined as

J “

ż 8

0

zptqT zptq dt. (4)

To optimize (4), it is equivalent to minimize the H2-norm of
the transfer function

Hpsq “ pC ´DKqpsIn ´A`B2Kq
´1B1, (5)

from w to z, and the objective function (4) can be re-
formulated as

JpKq“ }Hpsq}22 “ Tr
`

pC ´DKqWcpC ´DKq
T
˘

, (6)

where Wc is the controllability Gramian associated with the
closed-loop system.

If all the associated matrices in the system are precisely
known (there is no parameter uncertainty), the problem of
finding the optimal decentralized K to minimize the objective
function (4) is considered as an H2 decentralized control
problem. On the other hand, with the existence of parameter
uncertainties, the design of a decentralized controller such that
the upper bound to the H2-norm is minimized is referred to
as an H2 guaranteed cost decentralized control problem.

III. OPTIMIZATION PROBLEM FORMULATION IN
PARAMETER SPACE

It is assumed that A and B2 are subjected to parameter un-
certainties. Define p “ n`m, and then the following extended
matrices are introduced for an alternative representation of the
system:

F “

„

A ´B2

0 0



P Rpˆp, G “

„

0
Im



P Rpˆm,

Q “

„

B1B
T
1 0

0 0



P Sp, R “

„

CTC 0
0 DTD



P Sp. (7)

Assumption 1. The parameter uncertainties are structural
and convex-bounded.

Followed by Assumption 1, it is assumed that F belongs
to a polyhedral domain, which is expressed by a convex
combination of the extreme matrices, where F “

řM
i“1 ξiFi,

ξi ě 0,
řM
i“1 ξi “ 1 , Fi “

„

Ai ´B2,i

0 0



P Rpˆp denotes

the extreme vertex of the uncertain domain. Remarkably,

the precisely known system is a special case of the above
expression, where M “ 1.

Denote the block partition of a matrix W as

W “

„

W1 W2

WT
2 W3



P Sp, (8)

with W1 P Sn``, W2 P Rnˆm, W3 P Sm, and then denote
ΘipW q “ FiW `WFTi ` Q as a block partitioned matrix,
where

ΘipW q “

„

Θi,1pW q Θi,2pW q
ΘT
i,2pW q Θi,3pW q



P Sp, (9)

with Θi,1pW q P Sn,Θi,2pW q P Rnˆm,Θi,3pW q P Sm. With
an appropriate convex restriction, Theorem 1 presents a subset
of controller gains that preserve the decentralized structure,
robust stability, and robust performance, in the presence of
parameter uncertainties.

Theorem 1. For the controller with a specific decentralized
structure

K “ blocdiag tKD,1,KD,2, ¨ ¨ ¨ ,KD,mu , (10)

with KD,j P R1ˆDj , @j “ 1, 2, ¨ ¨ ¨ ,m, one can define the set

C “

!

W P Sp : W ľ 0,Θi,1pW q ĺ 0,@i “ 1, 2, ¨ ¨ ¨ ,M,

W1 “ blocdiagtW1D,1,W1D,2, ¨ ¨ ¨ ,W1D,mu,

W2 “ blocdiagtW2D,1,W2D,2, ¨ ¨ ¨ ,W2D,mu,

W1D,j P RDjˆDj ,W2D,j P RDj ,@j “ 1, 2, ¨ ¨ ¨ ,m
)

, (11)

and

K “
 

K “WT
2 W

´1
1 : W P C

(

, (12)

then,

(a) K P K holds the decentralized structure in (10).
(b) K P K stabilizes the closed-loop system in the presence

of model uncertainties.
(c) K P K gives xR,W y ě }Hipsq}

2
2,@i “ 1, 2, ¨ ¨ ¨ ,M

where }Hipsq}2 represents the H2-norm with respect to
the ith extreme system.

Proof of Theorem 1: For Statement (a), it can be easily
derived that WT

2 “ blocdiagtWT
2D,1,W

T
2D,2, ¨ ¨ ¨ ,W

T
2D,mu and

W´1
1 “ blocdiagtW´1

1D,1,W
´1
1D,2, ¨ ¨ ¨ ,W

´1
1D,mu. Then from (12),

K “ blocdiag
!

WT
2D,1W

´1
1D,1,W

T
2D,2W

´1
1D,2, ¨ ¨ ¨ ,W

T
2D,mW

´1
1D,m

)

,

which holds the decentralized structure in (10).
For Statement (b), Θi,1pW q ĺ 0 is equivalent to

AiW1 ´B2,iW
T
2 `W1A

T
i ´W2B

T
2,i `B1B

T
1 ĺ 0. (13)

Since W1 ą 0, we have

pAi ´B2,iW
T
2 W

´1
1 qW1 `W1pAi ´B2,iW

T
2 W

´1
1 qT

`B1B
T
1 ĺ 0. (14)

It is straightforward that K “WT
2 W

´1
1 stabilizes the extreme

system and then we have W2 “W1K
T , and subsequently we

can construct W “

„

W1 W1K
T

KW1 W3



. From Schur comple-

ment, W3 is a free variable to choose such that W ľ 0 is
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ensured. W ľ 0 is not a necessary condition to stabilize the
extreme systems, but it indeed provides a norm bound to the
controller gain. It is straightforward that, to ensure the stability
over the entire uncertain domain which is convex, it suffices
to check the stability at the vertices of the convex polyhedron.
Therefore, if the stability holds for all the extreme systems,
then the stability for the entire uncertain domain is guaranteed.

For Statement (c), first, we have W1 ľ Wc,i. Then, from
Schur complement, W ľ 0 leads to

W3 ľ WT
2 W

´1
1 W2 “ KW1K

T ľ KWc,iK
T . (15)

Therefore, it follows that xR,W y ě }Hipsq}
2
2.

Definition 1. The system (2) is called robustly strongly
decentralized stabilizable if C ‰ H.

It can be seen that xR,W y provides an upper bound to
}Hipsq}

2
2. Then, it is aimed to solve the optimization problem

W “ argmintxR,W y : W P C u, which yields K “

WT
2 W

´1
1 P K , such that the upper bound to the H2-norm

is minimized. Hence, the optimization problem is summarized
in the following form:

minimize
WPSp

xR,W y

subject to W ľ 0,

Θi,1pW q ĺ 0, @i “ 1, 2, ¨ ¨ ¨ ,M

W P Φpsq, (16)

and Φpsq denotes the set of all W satisfying the sparsity
constraints.

Remark 1. Problem (16) is a convex restriction of the orig-
inal H2 guaranteed cost decentralized control problem, and
Theorem 1 characterizes a subset of stabilizing decentralized
controller gains. Pertinent approaches of convex restriction can
be found in [11], [12]. Besides, several approaches can be used
to reduce the conservatism, such as those presented in [16],
[24].

It is obvious that the operator Θi,1pW q is a bounded
linear operator (affine to W ), and the sparsity constraints
are linear equality constraints. Since the objective function
is also a linear function, and the optimization variable W
is confined in a convex cone, thus it falls into the category
of the convex optimization problem, where C is a convex
set. In particular, the optimization problem is a linear conic
programming problem. In this paper, the sGS semi-proximal
ALM is introduced to solve the given optimization problem.

To express the optimization problem explicitly, we define a
matrix V “

“

In 0nˆm
‰

, and then the optimization problem
can be equivalently expressed in the matrix form, where

minimize
WPSp

xR,W y

subject to W P Sp`
´V

`

FiW `WFTi `Q
˘

V T P Sn`
´Vj1WVj2 “ 0

@i “ 1, 2, ¨ ¨ ¨ ,M, @j “ 1, 2, ¨ ¨ ¨ , N. (17)

Remark 2. By splitting W1 and W2 into m2 sub-blocks, the

zero blocks in W1 can be expressed by mpm´ 1q{2 equality
constraints (because W1 is symmetric), and the zero blocks in
W2 can be expressed by another mpm´1q equality constraints.
Therefore, N “ 3mpm´1q{2. Obviously, adjacent zero blocks
can be combined into one single equality constraint, thus N “

3mpm ´ 1q{2 is not the minimum number of the equality
constraints. For the sake of illustration purposes and without
loss of generality, the adjacent zero blocks are not combined
in the following analysis.

Define Ψi “ ´V pFiW`WFTi `QqV
T ,@i “ 1, 2, ¨ ¨ ¨ ,M .

Then the optimization problem can be denoted in a compact
form, which is shown as

minimize
WPSp

xR,W y

subject to GpW q P K, (18)

where GpW q is a linear mapping given by

GpW q “ pW,Ψ1,Ψ2, ¨ ¨ ¨ ,ΨM ,

V11WV12, V21WV22, ¨ ¨ ¨ , VN1WVN2q, (19)

and the convex cone K can be denoted as

K “ Sp` ˆ Sn` ˆ ¨ ¨ ¨ ˆ Sn`
looooooomooooooon

M

ˆt0v11ˆv12u ˆ t0v21ˆv22u ˆ ¨ ¨ ¨ ˆ t0vN1ˆvN2
u

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

N

, (20)

where for all i “ 1, 2, ¨ ¨ ¨ , N , the scalars vi1 and vi2 denote
the number of rows of the matrix Vi1 and the number of the
columns of the matrix Vi2, respectively. Since the positive
semi-definite cone is self-dual, it is straightforward to express
the dual cone K˚ as

K˚ “ Sp` ˆ Sn` ˆ ¨ ¨ ¨ ˆ Sn`
looooooomooooooon

M

ˆRv11ˆv12 ˆ Rv21ˆv22 ˆ ¨ ¨ ¨ ˆ RvN1ˆvN2
loooooooooooooooooooooooomoooooooooooooooooooooooon

N

. (21)

Define the linear space X in terms of the cone K, which is
given by

X “ Sp ˆ Sn ˆ ¨ ¨ ¨ ˆ Sn
looooooomooooooon

M

ˆRv11ˆv12 ˆ Rv21ˆv22 ˆ ¨ ¨ ¨ ˆ RvN1ˆvN2
loooooooooooooooooooooooomoooooooooooooooooooooooon

N

, (22)

and it is straigtforward that the cone K Ă X and the dual cone
K˚ Ă X .

Assumption 2. Problem (16) is strictly feasible.

Under Assumption 2, Slater’s condition is satisfied. There-
fore, strong duality always holds for the proposed optimiza-
tion problem, and the optimal solution to the linear conic
optimization problem (18) can be obtained by solving the
corresponding dual problem, due to the difficulty to deal
with the primal problem directly. In terms of the optimization
problem (18), the Lagrangian function is defined as

LpW ;Xq “ xR,W y ´ xX,GpW qy , (23)
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where X “ pX0, X1, ¨ ¨ ¨ , XM`N q P K˚ is the Lagrange
multiplier. It follows that the Lagrangian dual function θpXq
is obtained by

θpXq “ min
WPSp

!

xR,W y ´ xX,GpW qy
)

. (24)

It is shown that the Lagrangian dual function can be denoted
in the explicit form, where

min
WPSp

!

xR,W y ´ xX,GpW qy
)

“
@

X1 `X2 ` ¨ ¨ ¨ `XM , V QV
T
D

`

min
WPSp

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xR,W y ´ xX0,W y

`

M
ÿ

i“1

@

FTi V
TXiV ` V

TXiV Fi,W
D

` 1
2

N
ÿ

j“1

@

V Tj1XM`jV
T
j2 ` Vj2X

T
M`jVj1,W

D

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

(25)

For the sake of simplicity in the remaining text, we define

FpX1, X2, ¨ ¨ ¨ , XM q “ ´
@

X1 `X2 ` ¨ ¨ ¨ `XM , V QV
T
D

ApX0, X1, ¨ ¨ ¨ , XM`N q “ ´X0 `

M
ÿ

i“1

´

FTi V
TXiV

`V TXiV Fi

¯

`
1

2

N
ÿ

j“1

´

V Tj1XM`jV
T
j2 ` Vj2X

T
M`jVj1

¯

.(26)

For all i “ 0, 1, ¨ ¨ ¨ ,M ` N , AipX0, X1, ¨ ¨ ¨ , Xi´1, Xi`1,
Xi`2, ¨ ¨ ¨ , XM`N q is used to denote the linear functions, in
which the terms related to Xi is removed from the linear
function ApX0, X1 ¨ ¨ ¨ , XM`N q.

Now we can denote the Lagrangian dual function explicitly,
which is given by

θpXq “

#

´FpX1, X2, ¨ ¨ ¨ , XM q if ApXq `R “ 0

´8 otherwise.
(27)

The Lagrangian dual problem is to maximize the Lagrangian
dual function, and thus, the Lagrangian dual problem is given
by

minimize
XPX

FpX1, X2, ¨ ¨ ¨ , XM q

subject to ApXq `R “ 0, X P K˚. (28)

For any linear space Y and any convex set C Ă Y , define
the indicator function δCpvq such that for any v P Y , it follows
that

δCpvq “

#

0 if v P C
`8 otherwise.

(29)

Finally, the optimization problem can be equivalently con-
verted to the form with only one linear equality constraint,
which is given in the following form:

minimize
XPX

FpX1, X2, ¨ ¨ ¨ , XM q ` δSp
`
pX0q ` δSn

`
pX1q

`δSn
`
pX2q ` ¨ ¨ ¨ ` δSn

`
pXM q

subject to ApXq `R “ 0. (30)

IV. SGS SEMI-PROXIMAL ALM FOR OPTIMAL
DECENTRALIZED CONTROL

In the following text, the sGS semi-proximal ALM is
presented to solve the dual problem (30). Notably, in the
remaining text in this section, variable X is considered as
the optimization variable of the problem (30) and the variable
W is considered as the Lagrange multiplier.
Step 1: Initialization.

Choose the parameters σ ą 0 and τ P p0, p1 `
?

5q{2q,
the parameter αi such that the linear operator Si is a positive
operator, the initial matrices pX0;W 0q P X ˆ Sp, and the
parameter of the stopping criterion ε ą 0.
Step 2: Update of the optimization variable X.

For backward sGS sweep, define the augmented Lagrangian
function as

LσpX;W q “ FpX1, X2, ¨ ¨ ¨ , XM q ` δSp
`
pX0q ` δSn

`
pX1q

`δSn
`
pX2q ` ¨ ¨ ¨ ` δSn

`
pXM q

`
σ

2

›

›ApXq `R´ σ´1W
›

›

2
´

1

2σ
}W }2, (31)

where W P Sp is the Lagrange multiplier for the augmented
Lagrangian function. Notice that there are three groups of
variables in the optimization problem: the variable X0 is
related to the positive semi-definite constraint for the Lagrange
multiplier W ; the variables X1, X2, ¨ ¨ ¨ , XM are regarding
the positive semi-definite constraints of a group of linear
functions; the variables XM`1, XM`2 ¨ ¨ ¨ , XM`N are related
to the linear equality sparsity constraints for the Lagrange
multiplier W . The sub-problems in the backward sGS sweep
will be solved in terms of these three groups of variables
separately.

We begin with the sub-problem of the third group. For all
i “ N,N ´ 1, ¨ ¨ ¨ , 1, the sub-problem with respect to the
variable XM`i is given by

X̄k`1
M`i “ argmin

XM`iPRvi1ˆvi2

Lσ
´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
M`i´1,

XM`i, X̄
k`1
M`i`1, X̄

k`1
M`i`2, ¨ ¨ ¨ , X̄

k`1
M`N ;W k

¯

. (32)

where X̄k`1
M`i denotes the solution to the sub-problem (32)

in the pk ` 1qth iteration, Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
M`i´1, and W k

denote the values of the optimization variable and the
Lagrange multiplier in the kth iteration, respectively, and
X̄k`1
M`i`1, X̄

k`1
M`i`2, ¨ ¨ ¨ , X̄

k`1
M`N denote the updated optimiza-

tion variables in the pk ` 1qth iteration.
Since the sub-problem is an unconstrained optimization

problem, the optimality condition is given by

0 “ Vi1

”

A
´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
M`i´1, XM`i,

X̄k`1
M`i`1, X̄

k`1
M`i`2, ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

Vi2,

(33)

and then we have

X̄k`1
M`i “ ´2Vi1

”

AM`i

´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
M`i´1, X̄

k`1
M`i`1,

X̄k`1
M`i`2, ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

Vi2. (34)
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In terms of minimizing the augmented Lagrangian function
with respect to the variable Xi for all i “M,M ´1, ¨ ¨ ¨ , 1, a
proximal term must be considered in the sub-problem during
the iterations. To include the proximal term without influ-
encing the convergence of the algorithm, we firstly introduce
the positive linear operator. For any linear space Y , a linear
operator S : Y Ñ Y is positive, which means that for all
v P Y , it follows that xv,Spvqy ě 0. The sub-problem in
terms of the variable Xi in the backward sGS sweep is given
by

X̄k`1
i “ argmin

XiPSn
Lσ

´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
i´1, Xi, X̄

k`1
i`1 ,

X̄k`2
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N ;W k

¯

`
1

2

›

›Xi ´X
k
i

›

›

2

Si
, (35)

where Si is a positive linear operator. To solve this sub-
problem effectively, Si is chosen as

SipXq “ αiIpXq ´ σV FiFTi V TX ´ σV FiV TXV FiV T

´σV FTi V
TXV FTi V

T ´ σXV FiF
T
i V

T , (36)

where I denotes an identity operator, and one positive choice
of αi is the maximum eigenvalue of the vectorization matrix,
which is

αi “ σmax
 

eig
`

V FiF
T
i V

T b I ` I b V FiF
T
i V

T

`pV FTi V
T q b pV FiV

T q ` pV FiV
T q b pV FTi V

T q
˘(

. (37)

Before presenting the optimality condition to the sub-
problem, Theorem 2 is introduced to determine the projection
operator.

Theorem 2. The projection operator ΠCp¨q with respect to the
convex cone C can be expressed as

ΠC “ pI ` αBδCq
´1, (38)

where Bp¨q denotes the sub-differential operator, and α P R
can be an arbitrary real number.

Proof of Theorem 2: Define a finite dimensional Euclidean
space X equipped with an inner product and its induced norm
such that C Ă X . For any x P X , there exists z P X such that
z P pI ` αBδCq

´1pxq. Then it follows that

x P pI ` αBδCqpzq “ z ` αBδCpzq. (39)

Note that the projection operator ΠCpzq can be expressed as

ΠCpzq “ argmin
zPW

"

δCpxq `
1

2α
}z ´ x}2

*

. (40)

Since the optimization problem in (40) is strictly convex, the
sufficient and necessary optimality condition for the optimiza-
tion problem of the projection operator can be expressed as

0 P αBδCpxq ` z ´ x, (41)

which is equivalent to (39). Note that the projection onto a
convex cone is unique. Therefore, the mapping from x to z is
also unique, which means the operator pI ` αBδCq

´1p¨q is a
point-to-point mapping.

Then the optimality condition to the sub-problem of the

second group is given by

0 P ´V QV T ` BδSn
`
pXiq

`σV Fi

”

A
´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
i´1, Xi, X̄

k`1
i`1 ,

X̄k`1
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

V T

`σV
”

A
´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
i´1, Xi, X̄

k`1
i`1 ,

X̄k`2
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

FTi V
T

`Si
`

Xi ´X
k
i

˘

. (42)

Define

LHSi
´

Xk
0 , X

k
1 ¨ ¨ ¨ , X

k
i , X̄

k`1
i`1 , X̄

k`1
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N ;W k

¯

“ V QV T ´ σV Fi

”

Ai

´

Xk
0 , X

k
1 ¨ ¨ ¨ , X

k
i´1, X̄

k`1
i`1 ,

X̄k`1
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

V T

´σV
”

Ai

´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
i´1, X̄

k`1
i`1 ,

X̄k`1
i`2 , ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

FTi V
T

´

´

σV FiF
T
i V

TXk
i ` σV FiV

TXk
i V FiV

T

`σV FTi V
TXk

i V F
T
i V

T ` σXk
i V FiF

T
i V

T ´ αiX
k
i

¯

,

(43)

and then it follows that

X̄k`1
i “ ΠSn

`

”

α´1
i LHSi

´

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
i ,

X̄k`1
i`1 , X̄

k`2
i`1 , ¨ ¨ ¨ , X̄

k`1
M`N ;W k

¯ı

, (44)

where ΠSn
`
p¨q denotes the projection operator in terms of the

positive semi-definite cone, and the projection results can be
obtained by Lemma 1.

Lemma 1. Projection onto the positive semi-definite cone
can be computed explicitly. Let X “

řn
i“1 λiviv

T
i P Sn

be the eigenvalue decomposition of the matrix X with the
eigenvalues satisfying λ1 ě λ2 ě ¨ ¨ ¨ ě λn, where vi denotes
the eigenvector corresponding to the ith eigenvalue. Then the
projection onto the positive semi-definite cone of the matrix
X can be expressed by

ΠSn
`
pXq “

n
ÿ

i“1

max tλi, 0u viv
T
i . (45)

Then it is aimed to determine the solution to the sub-
problem of the first group, where the sub-problem in terms
of the variable X0 in the backward sGS sweep is given as

Xk`1
0 “ argmin

X0PSp
Lσ

´

X0, X̄
k`1
1 , X̄k`2

1 , ¨ ¨ ¨ , X̄k`1
M`N ;W k

¯

.

(46)

The optimality condition is given by

0 P σ´1BδSp
`
pX0q `X0

´

”

A0

´

X̄k`1
1 , X̄k`1

2 , ¨ ¨ ¨ , X̄k`1
M`N

¯

`R´ σ´1W k
ı

,

(47)
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which gives

Xk`1
0 “ ΠSp

`

”

A0

´

X̄k`1
1 , X̄k`1

2 , ¨ ¨ ¨ , X̄k`1
M`N

¯

`R´ σ´1W k
ı

. (48)

For forward sGS sweep, for all i “ 1, 2, ¨ ¨ ¨ ,M , the second
group optimization variables in the forward sGS sweep are
given by

Xk`1
i “ ΠSn

`

”

α´1
i LHSi

´

Xk`1
0 , Xk`1

1 , ¨ ¨ ¨ , Xk`1
i´1 ,

X̄k`1
i , X̄k`1

i`1 , ¨ ¨ ¨ , X̄
k`1
M`N ;W k

¯ı

. (49)

For all i “ 1, 2, ¨ ¨ ¨ , N , the third group optimization variables
in the forward sGS sweep are given by

Xk`1
M`i “ ´2Vi1

”

AM`i

´

Xk`1
0 , Xk`1

1 , ¨ ¨ ¨ , Xk`1
M`i´1,

X̄k`1
M`i`1, X̄

k`1
M`i`2, ¨ ¨ ¨ , X̄

k`1
M`N

¯

`R´ σ´1W k
ı

Vi2. (50)

Step 3: Update of the Lagrange multiplier W.
The Lagrange multiplier can be determined by

W k`1 “W k ´ τσ
”

A
´

Xk`1
0 , Xk`1

1 , ¨ ¨ ¨ , Xk`1
M`N

¯

`R
ı

. (51)

Step 4: Stopping criterion.
The relative residual error in terms of the optimization

variable X0 is given by

errkX0
“

›

›

›
Xk

0 ´ΠSp
`
pXk

0 ´W
kq

›

›

›

1` }W k} `
›

›Xk
0

›

›

. (52)

For all i “ 1, 2, ¨ ¨ ¨ ,M , the relative residual errors in terms
of the optimization variable Xi are given by

errkXi
“

›

›

›

›

›

›

Xk
i ´ΠSn

`

”

V QV T ` V FiWV T

`VWFTi V
T `Xk

i

ı

›

›

›

›

›

›

1`

›

›

›

›

V QV T ` V FiWV T

`VWFTi V
T

›

›

›

›

`
›

›Xk
i

›

›

. (53)

For all i “ 1, 2, ¨ ¨ ¨ , N , the relative residual errors in terms
of the optimization variable XM`i are given by

errkXM`i
“
›

›Vi1W
kVi2

›

› , (54)

and the relative residual error in terms of the equality con-
straint is given by

errkeq “

›

›A
`

Xk
0 , X

k
1 , ¨ ¨ ¨ , X

k
M`N

˘

`R
›

›

1` }R}
. (55)

Define

errmax “ max
!

errk`1
X0

, ¨ ¨ ¨ , errk`1
XM`N

, errk`1
eq

)

, (56)

the optimization process will be terminated if errmax ă ε, and
W k`1 is the optimal solution to the optimization problem (18).
Step 5: Increase of the iteration index.

Set k “ k ` 1 and go back to Step 2.

V. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the above results, Exam-
ple 1 is given, which presents a decentralized controller design

problem, where the state matrix and the control input matrix
are randomly chosen such that their elements are stochastic
variables uniformly distributed over r0, 1s. The optimization
algorithm is implemented in Python 3.7.5 with Numpy 1.16.4,
and executed on a computer with 16G RAM and a 2.2GHz
i7-8750H processor (6 cores). The parameters for initialization
is given by: σ “ 1, τ “ 0.618, X0 “ 0, W 0 “ 0, and the
stopping criterion is set as ε “ 10´3.

Example 1. Consider x “
“

x1 x2 x3
‰T

and a linear
system

9x“ Ax`B2u`B1w,

z“ Cx`Du,

u“ ´Kx,

where

A “

»

–

0.1054 0.6248 0.1958
0.2393 0.6948 0.6950
0.4520 0.3189 0.8708

fi

fl , B1 “

»

–

1 0 0
0 1 0
0 0 1

fi

fl ,

B2 “

»

–

0.9315 0.7939
0.9722 0.1061
0.5317 0.7750

fi

fl , C “

»

–

1 0 0
0 0 0
0 0 0

fi

fl , D “

»

–

0 0
1 0
0 1

fi

fl ,

and K is a block diagonal matrix with a prescribed structure.

To validate the effectiveness of the proposed methodology
in terms of different scales, we vary the number of uncertain
parameters in A from 1, 4, to 9 by imposing parameter
uncertainties to the leading principal sub-matrices of A and
also A itself, with a magnitude of ˘5% of their nominal
values. In this case, the number of extreme systems M “ 2,
16, and 512, respectively. For B2, no parameter uncertainty is
imposed.

Based on this example, the performance of our proposed
methodology is compared with the solvers SCS and CVXOPT,
and the results of comparison are shown in Table I, where
“Yes” or “No” denote the success or failure upon execution
of the approach, respectively. It is observed that SCS is not
able to return the solution successfully in all three cases. For
CVXOPT, the solution can be obtained for the cases when
M “ 2 or 16. However, it cannot scale to the case when
M “ 512 and return the optimization results successfully. On
the contrary, our proposed approach is capable of returning
reliable optimization results successfully for all the scenarios.
Also, when comparing the second-order algorithm to the first-
order algorithm, it would be the case that when a relatively
large duality gap is given, the first-order method should be
faster theoretically, but the second-order method can achieve
a very precise solution (which would be usually impractical
for the first-order optimization algorithm). This is a generally
typical observation that may be noted for such methodologies.

Taking the case that M “ 512 as an example, the optimal
W is given by

W “

»

—

—

—

—

–

9.5658 ´0.7779 0 1.2594 0
´0.7779 0.5043 0 0.7632 0

0 0 1.5605 0 4.6878
1.2594 0.7632 0 1.8644 ´0.0007

0 0 4.6878 ´0.0007 14.3733

fi

ffi

ffi

ffi

ffi

fl

,
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TABLE I
COMPARISON RESULTS OF SCS, CVXOPT, AND ALM

SCS CVXOPT ALM
M=2 No Yes Yes
M=16 No Yes Yes

M=512 No No Yes

0 5 10 15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 1. System response in Example 1

and the optimal decentralized controller gain K is given by

K “

„

0.2913 1.9626 0
0 0 3.0040



.

It can be seen that the decentralized structure is preserved,
and the upper bound to }Hpsq}22 is TrpRW q “ 11.4302. In
the simulation, w is characterized as a vector of the impulse
disturbance, and an extreme system with all the uncertain
parameters at their lower bounds is used. The responses of
all state variables are illustrated in Fig. 1, and it can be seen
that the robust stability is guaranteed for this extreme system.
Also, it is worthwhile to mention that the stability is ensured
for all the uncertain systems within the uncertain domain.

VI. CONCLUSION

This paper presents a highly effective optimization algo-
rithm for the optimal decentralized control problem with pa-
rameter uncertainties. With parameterization of the stabilizing
controller gain in the extended parameter space, the problem is
restricted and approximated as a convex optimization problem
through appropriate convex restriction, which is solved by the
sGS semi-proximal ALM. Furthermore, in the detailed devel-
opment and methodology that we present here (which goes
beyond just “generic” guidelines), both the closed-loop stabil-
ity and the system performance are guaranteed in the presence
of model uncertainties. An illustrative example demonstrates
the applicability and effectiveness of the proposed approach.
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