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Abstract

We consider distributed online convex optimization problems, where the distributed system consists

of various computing units connected through a time-varying communication graph. In each time step,

each computing unit selects a constrained vector, experiences a loss equal to an arbitrary convex function

evaluated at this vector, and may communicate to its neighbors in the graph. The objective is to

minimize the system-wide loss accumulated over time. We propose a decentralized algorithm with regret

and cumulative constraint violation in O(Tmax{c,1−c}) and O(T 1−c/2), respectively, for any c ∈ (0, 1),

where T is the time horizon. When the loss functions are strongly convex, we establish improved regret

and constraint violation upper bounds in O(log(T )) and O(
√
T log(T )). These regret scalings match

those obtained by state-of-the-art algorithms and fundamental limits in the corresponding centralized

online optimization problem (for both convex and strongly convex loss functions). In the case of bandit

feedback, the proposed algorithms achieve a regret and constraint violation in O(Tmax{c,1−c/3}) and

O(T 1−c/2) for any c ∈ (0, 1). We numerically illustrate the performance of our algorithms for the

particular case of distributed online regularized linear regression problems.

1 Introduction

The Online Convex Optimization (OCO) paradigm [1] has recently become prominent in various areas

of machine learning where the environment sequentially generating data is too complex to be efficiently

modeled. OCO portrays optimization as a process, and applies a robust and sequential optimization

approach where one learns from experiences as time evolves. Specifically, under the OCO framework, at

each time-step the learner commits to a decision and suffers from a loss, a convex function of the decision.

The successive loss functions are unknown beforehand and may vary arbitrarily over time. At the end of

each step, the loss function may be revealed (a scenario referred to as full information). Alternatively,

the experienced loss only might be available (bandit feedback). The objective of the decision maker is to

minimize the loss accumulated over time. The performance of an algorithm in OCO is assessed through
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the notion of regret, comparing the accumulated loss under the algorithm and that achieved by an Oracle

always selecting the best fixed decision. In case of full information feedback, it is known that the best

possible regret scales in O(
√
T ) (resp. O(log T )) for convex (resp. strongly convex) loss functions [2, 3, 4].

This paper extends the OCO framework to a distributed setting where (different) data is collected and

processed atN computing units in a network. More precisely, we consider scenarios where in each time-step,

each unit i commits to a decision xi(t) and then experiences a local loss equal to `i,t(xi(t)). Units update

their decision based on previously observed local losses and messages received from neighboring units with

the objective of identifying the decision x? = arg minx
∑T

t=1

∑N
i=1 `i,t(x) minimizing the accumulated

system-wide loss. Many traditional applications of the centralized OCO framework [1] naturally extend to

this distributed setting. As a motivating example, consider the following distributed online spam filtering

task (refer to [1] for a description of the spam filter design problem in a centralized setting). In each time-

step, each unit i (here an email server) receives an email characterized by a vector ai,t ∈ Rd (according to

the “bag-of-words” representation). Unit i applies for this email a filter represented by a vector xi(t) ∈ X
where X is convex compact subset of Rd, returns a label f(a>i,txi(t)), and experiences a loss equal to

`i,t(xi(t)) = (f(a>i,txi(t)) − yi,t)
2 where yi,t is the true email label (-1 for spam or 1 for valid). Note

that the sequences of loss functions are inherently different at various units because the latter receive

different emails. Nevertheless, each unit would ideally wish to identify and apply as fast as possible the

filter minimizing the system-wide loss, i.e., a filter that exploits the knowledge extracted from all emails,

including those received at other units. By leveraging this knowledge, each unit would adapt faster to an

adversary also modifying in an online manner spam emails. More generally the distributed OCO framework

can be applied to networks of learning agents, where each agent wishes to take advantage of what other

agents have learnt to speed up and robustify its own learning process.

1.1 Distributed Online Convex Optimization (DOCO) Framework

We describe here our distributed optimization problem in more detail. We consider a network of N

computing units described by a sequence of directed graphs Gt = {V, Et} with node set V = {1, . . . , N}
and edge set Et at time t. Gt represents the communication constraints at the end of time-step t: each

unit is allowed to send its decision at time t to its neighbors in Gt. Each unit i ∈ V is associated with a

sequence of convex loss functions {`i,t}Tt=1, where `i,t : Rd → R.

Optimization process. In each time-step t, each unit i ∈ V selects xi(t) ∈ Rd. Then, in case of full

information feedback, the loss function `i,t is revealed to unit i, whereas in case of bandit feedback, the loss

`i,t(xi(t)) is revealed only. Unit i finally receives vectors, functions of decisions selected by its neighbors

in Gt, i.e., xj(t) for j such that (j, i) ∈ Et, and updates its decision for the next time-step.

Decision constraints. The decisions should be selected in X a convex subset of Rd characterized by a

family of inequalities: X = {x ∈ Rd | cs(x) ≤ 0, s = 1, . . . , p}. Imposing such constrained decisions implies

that each unit should be able in each time-step to perform a projection onto X , which can be extremely

computationally expensive. To circumvent this difficulty, we adopt the notion of long-term constraints

introduced in [5]. Specifically, we only impose that the constraints are satisfied in a long run rather than
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in each time-step, i.e., that
∑T

t=1

∑N
i=1

∑p
s=1 cs(xi(t)) ≤ 0. This relaxation allows units to violate the

constraints by projecting onto a simpler set that contains X . Our results can be modified to account for

the actual constraints (but using projection steps).

Regrets and cumulative absolute constraint violation. The objective is to design distributed

sequential decision selection algorithms so that each unit identifies the decision minimizing the accumulated

system-wide loss. The performance of such an algorithm is hence captured by the regrets at the various

units. The regret at unit i is:

Reg(i, T ) :=

T∑
t=1

N∑
j=1

`j,t(xi(t))−
T∑
t=1

N∑
j=1

`j,t(x
?), (1)

where x? = arg minx∈X
∑T

t=1

∑N
j=1 `j,t(x). The system-level regret is defined as the worst possible regret

at all units: SReg(T ) , maxi=1,...,N Reg(i, T ). Now since we allow units to select decisions outside X ,

the performance of an algorithm is further characterized by the so-called cumulative absolute constraint

violation defined by: (here [a]+ = max{0, a})

CACV(T ) :=

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+. (2)

1.2 Main Results

We propose simple distributed algorithms where in each time-step, each unit combines information received

from its neighbors to update its decision and its local dual variable. Our algorithms enjoy the following

performance guarantees:

Full Information feedback. In the case of full information feedback, the proposed algorithms achieve

a system-level regret and a cumulative constraint violation in O(Tmax{1−c,c}) and O(T 1−c/2), respectively

and for any c ∈ (0, 1) (c expresses the trade-off between regret and cumulative constraint violation). Theses

bounds match those of centralized online optimization algorithms in [5, 6, 7]. When c = 1/2, we get a regret

scaling in O(
√
T ), which corresponds to the fundamental regret limits for centralized online problems [4],

which is rather surprising in view of the dynamically changing environment, the decentralized structure

of the algorithm, and the presence of the constraints. When the loss functions are strongly convex, we

establish improved upper bounds on the regret and cumulative connstraint violation in O(log(T )) and

O(
√
T log(T )). These bounds generalize to our distributed setting those derived in [7] for centralized

problems.

Bandit feedback. In the case of bandit feedback, the proposed algorithms achieve a system-level

regret and a cumulative constraint violation in O(d2Tmax{1−c/3,c}) and O(dT 1−c/2), respectively, for any

c ∈ (0, 1). For example, when c = 3
4 , the proposed algorithm attains a regret bound in O(d2T 3/4). The

performance guarantees can be improved to O(d2T 2/3 log(T )) and O(d
√
T log(T )) in the case of strongly

convex losses.
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1.3 Related Work

Early work on online convex optimization in a centralized setting include [2, 8]. Today we know that

a regret in O(
√
T ) is achievable in both full information and bandit feedback, see e.g. [9]. Projection-

free algorithms have been also developed [5, 6, 7] with regret and cumulative constraint violation in

O(Tmax{c,1−c}) and O(T 1−c/2) (c ∈ (0, 1)) in case of full information feedback ([7] uses the cumulative

squared constraint violation). Our algorithms achieve the same guarantees in a distributed setting.

It is worth zooming into the rich literature on centralized online convex optimization with bandit

feedback. In the seminal work [8], the authors designed an algorithm with one-point bandit feedback and

regret in O(d2T 3/4). The work [10] extended this algorithm to multi-point bandit feedback setting, where

multiple points around the decision can be queried for the loss function; they established O(d2
√
T ) and

O(d2 log(T )) regret bounds for general convex and strongly convex loss functions, respectively. The work

[5] studied the online bandit optimization with long-term constraints under two-point bandit feedback

for domain. They established O(
√
T ) and O(d2T 3/4) bounds on the regret and the cumulative constraint

violations, respectively. In this paper, we design distributed algorithms with one-point bandit feedback

only, and with the same regret guarantees as the centralized algorithm in [8].

Over the last few years, there have been a rising interest for the Distributed OCO framework. Partic-

ularly, [11, 12] propose distributed algorithms with O(
√
T ) regret, but require an exact projection onto

the decision set in each time-step. [13] presents a distributed online conditional gradient algorithm, re-

placing the projection steps by a much simpler linear optimization steps, but at the expense of worse and

sub-optimal regret guarantees, scaling in O(T 3/4). The other approach to avoid projections is to allow the

algorithm to violate the constraints, and has been studied in [14]. The problem studied in [14] is a special

case of our problem (where only one inequality constraint is considered), and the regret and cumulative

constraint violation guarantees obtained there are much worse than ours. The authors of [15, 16] also use

the long-term constraints approach to avoid projections, but analyze a very different optimization problem

where units have different decision variables, and no consensus among units is required. Finally it is worth

mentioning that all the aforementioned papers are restricted to full information feedback.

Notation and Terminology. Let ‖x‖ and [x]i to denote the Euclidean norm and the ith component

of a vector x ∈ Rd, respectively. Let ΠX [x] be the Euclidean projection of a vector x onto the set X . Let

Rp+ be the nonnegative orthant in Rp: Rp+ = {x ∈ Rp | [x]i ≥ 0, i = 1, . . . , p}. Denote the (i, j)-th element

of a matrix A by [A]ij . For a convex function f , a subgradient (resp. gradient when f is differentiable) at

a point x is denoted by ∂f(x) (resp. ∇f(x)). Given two positive sequences {at}∞t=1 and {bt}∞t=1, we write

at = O(bt) if lim supt→∞ at/bt <∞.

2 Full-Information Feedback

In this section, we focus on the case of full-information feedback, where at the end of each time-step, the

entire loss function `i,t is revealed to unit i. More precisely, unit i has access to the gradient of the loss

function `i,t at any query point. We make the following assumptions, which are standard in the literature
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e.g., [5, 6, 7, 17, 18, 19, 20, 21].

Assumption 1 X ⊆ B :=
{
x ∈ Rd | ‖x‖ ≤ RX

}
with RX > 0.

Assumption 2 The functions `i,t and cs are convex with bounded gradients:

max
i=1,...,N

max
t=1,...,T

max
x∈B
‖∇`i,t(x)‖ ≤ G`, max

s=1,...,p
max
x∈B
‖∇cs(x)‖ ≤ Gc.

We let G = max{G`, Gc}.

Assumption 3 There exists an integer B ≥ 1 such that the union graph (V, EkB+1 ∪ · · · ∪ E(k+1)B) is

strongly connected for all k ≥ 0.

Assumption 4 Associated with Gt there is the weight matrix A(t) which satisfies for all t ≥ 1:

(i) A(t) is doubly stochastic for all t ≥ 1, i.e.,
∑N

j=1[A(t)]ij = 1 and
∑N

i=1[A(t)]ij = 1, ∀i, j ∈ V;

(ii) There exists a scalar ζ > 0 such that [A(t)]ii ≥ ζ for all i and t ≥ 1, and [A(t)]ij ≥ ζ if (j, i) ∈ Et and

[A(t)]ij = 0 for all j otherwise.

Assumption 4 is quite standard in the literature on distributed online or offline optimization, and easy

to achieve in a distributed manner in real-world networks. For example, when bidirectional communication

between nodes is allowed, we can enforce symmetry on the node interaction matrix, which immediately

makes it doubly stochastic. There are also other methods to construct doubly stochastic matrices for a

network, see, e.g., [22, 23].

Algorithm 1 DOCO-LTC with full-information feedback

Input: Step sizes {βt}Tt=1, regularization parameters {ηt}Tt=1

Initialize: xi(1) = 0 ∈ Rd,λi(1) = 0 ∈ Rp, ∀i = 1, . . . , N

1: for t = 1 to T do

2: Unit i commits to a decision xi(t), and then after receiving `i,t, compute

yi(t) = xi(t)− βt

[
∇`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+

]

3: Unit i communicates yi(t) to its neighbors and updates its decision as

xi(t+ 1) = ΠB (pi(t)) , where pi(t) =

N∑
j=1

[A(t)]ijyj(t)

4: Unit i updates its dual variable: λi(t+ 1) = arg maxλ∈Rd
+

Li,t((xi(t+ 1),λ)

5: end for

The pseudo-code of our algorithm, DOCO-LTC (LTC stands for Long-Term Constraints), is presented

in Algorithm 1. It generalizes the algorithm in [7] to our distributed setting. In contrast to the literature

on (online) distributed optimization with inequality constraints [14, 15, 24], the algorithm does not need
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to maintain an iterative dual update process for every unit, which can be computed locally and explic-

itly. Moreover, no consensus updates on the dual variables are necessary, reducing the communication

complexity.

The design and convergence analysis of DOCO-LTC rely on the following online augmented Lagrangian

function associated with unit i ∈ V: for t ≥ 1,

Li,t(x,λ) , `i,t(x) +

p∑
s=1

[λ]s[cs(x)]+ −
ηt
2
‖λ‖2, (3)

where λ = [[λ]1, . . . , [λ]p]
T ∈ Rp+ is the vector of Lagrangian multipliers with [λ]s being associated with

the sth inequality constraint cs(x) ≤ 0 and ηt is the regularization parameter. We note that:

∇xLi,t(xi(t),λi(t)) = ∇`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+,

where ∂[cs(xi(t))]+ can be calculated as follows for s = 1, . . . , p:

∂[cs(xi(t))]+ =

{
∇cs(xi(t)), if cs(xi(t)) > 0

0, otherwise.

Moreover, the dual update λi(t+ 1) in DOCO-LTC can be calculated explicitly as follows:

[λi(t+ 1)]s =
[cs(xi(t+ 1))]+

ηt
, s = 1, . . . , p. (4)

Theorem 1 (Convex loss functions and full-information feedback) Under Assumptions 1–4, the

regret and cumulative constraint violation of DOCO-LTC with parameters ηt = 1
T c and βt = 1

apG2T c for

some c ∈ (0, 1), a > 1, and all t ≥ 1, satisfy: for all T ≥ 1,

SReg(T ) ≤ C̃Tmax{1−c,c} and CACV(T ) ≤ C̄T 1−c/2,

where C̃ = 1
2apNG

2R2
X + 1

apN(1+Ĉ)+ NĈ2

4a(a−1)p with Ĉ = 2N
(

3N
ψ2+1/B(1−ψ1/B)

+ 4
)

and ψ =
(

1− ζ
4N2

)−2
,

and C̄ =
√

N2

a−1
(
1 + 2apGRX + 1

2a
2p2G2R2

X
)
.

Theorem 1 shows that DOCO-LTC has the same guarantees as those of the centralized algorithms in

[5, 6, 7]. The user-defined parameter c tunes the trade-off between SReg and CACV (for c = 1/2, we get a

regret and constraint violation in O(
√
T ) and O(T 3/4)).

Communication cost vs. regret. The communication cost, i.e., the number of vectors transmitted

per round in the network, is simply equal to the number of edges in the network. Taking the case of

B = 1 (i.e., the graph is fixed and connected) as an example, we can establish that the regret bound in

Theorem 1 scales as O
(

N4

(1−σ2(A))2
Tmax{c,1−c}

)
, where σ2(A) is the second largest singular value of the

weight matrix A. If we choose the weight matrix as the maximum-degree weights (see, e.g., [25]), we have

the following conclusions: i) Random geometric graph: the regret bound scales as N6

log2(N)
Tmax{c,1−c} and

at most 2 log1+ε(N)N vectors are transmitted per round; ii) k-regular expander graph: σ2(A) is constant,

the regret bounds scales as N4Tmax{c,1−c} and 2kN vectors are transmitted per round; and iii) complete

graph: σ2(A) = 0 and N(N − 1) vectors are transmitted per round.

Next we improve DOCO-LTC performance guarantees when the loss functions are strongly convex.
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Assumption 5 The loss function `i,t is σ-strongly convex over B, that is, for any x,y ∈ B,

`i,t(x) ≥ `i,t(y) +∇`i,t(y)T(x− y) +
σ

2
‖x− y‖2.

Theorem 2 (Strongly convex loss functions and full-information feedback) Under Assumptions

1–5, the regret and cumulative constraint violation of DOCO-LTC with parameters ηt = 2pG2

σt and βt = 1
σt

for all t ≥ 1, satisfy: for all T ≥ 3,

SReg(T ) ≤ C̃sc log(T ), and CACV(T ) ≤ C̄sc

√
T log(T ),

where C̃sc = NG2

2σ (4 + 4Ĉ + Ĉ2) (Ĉ is shown in Theorem 1) and C̄sc = 4pNG3/2
√
σ

(√
RX +

√
G
σ

)
.

In the case of strongly convex loss functions, the regret and constraint violation guarantees of DOCO-

LTC also match those obtained by the centralized algorithm in [7]. Note that one cannot actually get a

better regret scaling, even in the centralized setting [4].

3 One-Point Bandit Feedback

This section is devoted to the case of bandit feedback, where at the end of each time-step, unit i can

observe the value of the loss function `i,t at only one point around xi(t). The pseudo-code of our algorithm

adapted to this feedback is presented in Algorithm 2.

The design and convergence analysis of our algorithm here rely on the smoothed version L̃i,t(x,λ) of

the online augmented Lagrangian function (3), i.e., L̃i,t(x,λ): for t ≥ 1,

L̃i,t(x,λ) , ˜̀
i,t(x; ε) +

p∑
s=1

[λ]s[cs(x)]+ −
ηt
2
‖λ‖2, (5)

where ˜̀
i,t(x; ε) = Ev [`i,t(x + εv)] is the smoothed loss function, and v is a vector uniformly distributed

over the unit sphere. As in the case of full information feedback, the dual update λi(t+1) can be calculated

explicitly according to (4).

In the case of bandit feedback, we need to introduce the shrinkage parameter π to ensure that the

random query point xi(t) + εtui(t) belongs to the set B. Indeed, we have:

‖xi(t) + εtui(t)‖ ≤ ‖xi(t)‖+ εt‖ui(t)‖ ≤ (1− π)RX + εt ≤ RX

where the second inequality follows from the fact that xi(t) ∈ (1 − π)B and ‖ui(t)‖ = 1 and the last

inequality holds when εt ≤ πRX .

To establish upper bounds on the regret and cumulative constraint violation of our algorithm, we make

the following standard assumption on the loss functions `i,t(x) (commonly adopted even in centralized

online bandit optimization [8]).

Assumption 6 The loss functions `i,t(x) are uniformly bounded over B:

sup
x∈B

max
i=1,...,N

max
t=1,...,T

|`i,t(x)| ≤ C.
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Algorithm 2 DOCO-LTC with one-point bandit feedback

Input: Step sizes {βt}Tt=1, regularization parameters {ηt}Tt=1, exploration parameters {εt}Tt=1, and shrink-

age parameter π

Initialize: xi(1) = 0 ∈ Rd,λi(1) = 0 ∈ Rp, ∀i = 1, . . . , N

1: for t = 1 to T do

2: Unit i commits to a decision xi(t), and then observes the loss `i,t(xi(t) + εtui(t)) where ui(t) is

randomly chosen on the unit sphere (‖ui(t)‖ = 1)

3: Unit i builds the following one-point gradient estimator:

∇̃`i,t(xi(t)) =
d

εt
`i,t(xi(t) + εtui(t))ui(t)

and computes

yi(t) = xi(t)− βt

[
∇̃`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+

]
4: Unit i updates its decision using yj(t) received from its neighbors as

xi(t+ 1) = ΠB (pi(t)) , where pi(t) =
N∑
j=1

[A(t)]ijyj(t)

5: Node i updates its dual variable λi(t+ 1) = arg maxλ∈Rd
+

L̃i,t((xi(t+ 1),λ)

6: end for

Since algorithms for bandit feedback are inherently randomized, we investigate averaged versions of the

regret and the cumulative constraint violation: E-SReg(T ) := maxi=1,...,N E[Reg(i, T )] and E-CACV(T ) :=∑T
t=1

∑N
i=1

∑p
s=1 E[[cs(xi(t))]+].

Theorem 3 (Convex functions with bandit feedback) Under Assumptions 1–4 and 6, the regret

and cumulative constraint violation of DOCO-LTC with parameters

ηt =
1

T c
, βt =

1

apG2T c
, εt =

1

T b
, π =

1

RXT b

for some c ∈ (0, 1), b = c/3 and all t ≥ 1, satisfy: for all T ≥ 1,

E-SReg(T ) ≤ C̃§Tmax{1−c/3,c} and E-CACV(T ) ≤ C̄§T 1−c/2,

where C̃§ = 3NG + NCĈd
apG + NC2d2

apG2 + 1
2apNG

2R2
X + NĈ2

4a(a−1)p (Ĉ is shown in Theorem 1) and C̄§ =√
N2

a−1

(
C2d2

G2 + 2apGRX + 1
2a

2p2G2R2
X

)
.

Note that DOCO-LTC achieves a regret scaling as T 3/4 when c = 3
4 , which is identical to that of

centralized online bandit optimization [8]. This is rather remarkable considering the decentralized nature

of the algorithm. Again, we can improve our bounds in the case of strongly convex loss functions.
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Theorem 4 (Strongly convex functions with bandit feedback) Under Assumptions 1–6, the re-

gret and cumulative constraint violation of DOCO-LTC with parameters

ηt =
2pG2

σt
, βt =

1

σt
, εt =

1

T b
, π =

1

RXT b

for b = 1
3 , and all t ≥ 1, satisfy: for all T ≥ 3,

E-SReg(T ) ≤ C̃§scT 2/3 log(T ) and E-CACV(T ) ≤ C̄§sc
√
T log(T ),

where C̃§sc = 3NG+ N
2σ

(
4CĈGd+ 4C2d2 + Ĉ2G2

)
(Ĉ is shown in Theorem 1) and C̄§sc = 4pNG√

σ

(√
GRX + Cd√

σ

)
.

4 Numerical Experiment

We illustrate the performance of the proposed algorithms using a simple experiment. Specifically, we

consider distributed online regularized linear regression problem over a network, formulated as follows:

minimize
∑T

t=1

∑N
i=1

1
2

(
ai(t)

Tx− bi(t)
)2

+ ρ‖x‖2

subject to cm(x) = L− [x]m ≤ 0, m = 1, . . . , d

cd+m(x) = [x]m − U ≤ 0, m = 1, . . . , d

(6)

where ρ ≥ 0 denotes the regularization parameter. The data (ai(t), bi(t)) ∈ Rd×R is revealed only to unit

i at time t.

Results on Synthetic Data. Every entry of ai(t) is generated uniformly at random within the interval

[−1, 1] and bi(t) is generated according to

bi(t) = ai(t)
Tx̄ + εi(t)

where [x̄]i = 1, for all 1 ≤ i ≤ bd/2c and 0 otherwise, and the noise εi(t) ∼ N (0, 1). Throughout the

experiments, we implement our algorithms over a time-varying directed network depicted in Fig. 1: the

network is not connected in every time-step, but the union graph of any two consecutive time instances

is strongly connected, that is, we have B = 2 in Assumption 3. The weight matrices associated with

the networks in Fig. 1 are generated according to the maximum-degree weights (see, e.g., [25]). We set

the parameters as follows: N = 6, d = 4, L = −0.15, U = 0.15, and RX = U
√
d. The performance of

DOCO-LTC is averaged over 10 runs.

(a) (b) (c) (d)

Figure 1: The network switches sequentially in a round robin manner between (a), (b), (c), and (d).

To get (not strongly) convex loss functions, we set ρ = 0. We run Algorithm 1 and Algorithm 2 with

c = 1/2 and c = 3/4 and plot the maximum regret maxi∈V Reg(i, T ), and CACV(T ) as a function of the
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time horizon T in Fig. 2(a) and Fig. 2(b), respectively. It can be seen from Fig. 2(a) that in the case of

full-information feedback, the regret is smaller for c = 1/2, while in bandit feedback setting, the regret

is smaller for c = 3/4. This is because c = 1/2 and c = 3/4 correspond to a balanced regret in the full-

information setting and bandit feedback setting. By balanced, we mean that 1 − c = c in Tmax{1−c,c} in

Theorem 1 and 1 − c/3 = c in Tmax{1−c/3,c} in Theorem 3, respectively. From Fig. 2(b) we also observe

that for both feedback models, CACV is smaller for a larger value of c, i.e., c = 3/4. This is in compliance

with the results established in Theorems 1 and 3. Finally, the performance is really degraded when going

from full information to bandit feedback. This was also expected.

Figure 2: SReg and CACV vs. time for convex costs.

In the case of strongly convex losses, we run Algorithm 1 and Algorithm 2 with ρ > 0, namely ρ = 1

and ρ = 2. We plot the performance of the algorithms as a function the time horizon in Fig. 3(a) and

Fig. 3(b), respectively. From Fig. 3, we confirm that the cost of bandit feedback is rather high. We also

observe the regret and the violation constraint are smaller and flatter than those achieved of non-strongly

convex loss functions (ρ = 0), for both feedback models. All these observations comply with the results

established in Theorems 2 and 4.

(a) (b)

Figure 3: SReg and CACV vs. time for strongly convex costs.

Results on Real Datasets. We demonstrate the efficiency of our proposed algorithms on two real

datasets selected from the LIBSVM1 repository. The details of the datasets are summarized in Table 1.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1: Summary of datasets

dataset # of features # of instances

mg 6 1385

bodyfat 14 252

We use the same network and parameters as those used in the synthetic data and let c = 1/2. For each

dataset, we run Algorithm 1 and Algorithm 2 with ρ = 0 and ρ = 1, respectively. We plot the performance

of the algorithms as a function the time horizon in Fig. 4 (mg dataset) and Fig. 5 (bodyfat dataset),

respectively. These numerical experiments on real-world datasets show the convergence of the proposed

algorithms and are consistent with the results established in Theorems 1–4. Finally, the performance is

really degraded when going from strongly convex loss functions to convex loss functions.

11



(a) (b)

Figure 4: SReg and CACV vs. time for mg dataset.

(a) (b)

Figure 5: SReg and CACV vs. time for bodyfat dataset.

(a) (b)

Figure 6: Comparison of the proposed algorithms with D-OCG on mg and bodyfat datasets.

We finally make comparisons with a standard distributed online projection-free algorithm (D-OCG in

[13]) using mg and bodyfat real datasets. The detailed results are provided in Fig. 6. From these plots

one can confirm that: (i) Our DOCO algorithm achieves better performance than D-OCG under the same

information feedback (of course, D-OCG exhibits no constraint violations); and (ii) For both algorithms,

the performance is degraded from full information to bandit feedback.
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5 Conclusions

In this paper, we consider the distributed online convex optimization problem with long-term constraints

under full-information and bandit feedback. By introducing and exploiting the notion of online augmented

Lagrangian function, we develop distributed algorithms that are based on consensus algorithms. For the

case of full-information feedback, we establish sub-linear regret and cumulative absolute constraint vio-

lations that match those of centralized online optimization in the literature. Moreover, we also establish

sub-linear regret and constraint violation in the case of bandit feedback, where the loss function can be

locally evaluated at one point in each time-step.

Appendix A Proof of Theorem 1

A.1 Key lemmas

The following two lemmas are crucial to the convergence analysis of Algorithm 1. The first lemma estab-

lishes the basic convergence results of Algorithm 1.

Lemma 1 (Basic Convergence) Let Assumptions 1 and 2 hold. For every node i• ∈ V and T ≥ 1, we

have

Reg(i•, T ) ≤
T∑
t=1

∑N
i=1 ‖xi(t)− x?‖2 −

∑N
i=1 ‖xi(t+ 1)− x?‖2

2βt
+NG2

T∑
t=1

βt

+G

T∑
t=1

N∑
i=1

‖xi•(t)− xi(t)‖ −
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+

(
1

ηt−1
− pG2 βt

η2t−1

)
.

Proof. To simplify the presentation, we write

∇i(t) , ∇xLi,t(xi(t),λi(t)).

We study the general evolution of ‖xi(t+ 1)− x?‖2,

‖xi(t+ 1)− x?‖2 = ‖ΠB (pi(t))− x?‖2 ≤ ‖pi(t)− x?‖2

13



where the inequality is based on the non-expansiveness of the Euclidean projection and x? ∈ X ⊆ B.

Expanding the right-hand side, we further obtain

N∑
i=1

‖xi(t+ 1)− x?‖2 ≤
N∑
i=1

∥∥∥∥∥∥
N∑
j=1

[A(t)]ij [xj(t)− βt∇j(t)]− x?

∥∥∥∥∥∥
2

≤
N∑
i=1

N∑
j=1

[A(t)]ij‖xj(t)− x? − βt∇j(t)‖2

≤
N∑
i=1

‖xi(t)− x? − βt∇i(t)‖2

=
N∑
i=1

‖xi(t)− x?‖2 + β2t

N∑
i=1

‖∇i(t)‖2 − 2βt

N∑
i=1

∇i(t)T(xi(t)− x?)

≤
N∑
i=1

‖xi(t)− x?‖2 + β2t

N∑
i=1

‖∇i(t)‖2

− 2βt

N∑
i=1

[Li,t(xi(t),λi(t))− Li,t(x
?,λi(t))] (7)

where the second and third inequalities follow from the doubly stochasticity of A(t) and the last inequality

from the convexity of Li,t(x,λ) with respect to x. Combining the preceding inequality with the definition

of online augmented Lagrangian function in (3), yields

N∑
i=1

[
`i,t(xi(t)) +

p∑
s=1

[λi(t)]s[cs(xi(t))]+ −
ηt
2
‖λi(t)‖2

−

(
`i,t(x

?) +

p∑
s=1

[λi(t)]s[cs(x
?)]+ −

ηt
2
‖λi(t)‖2

)]

≤
∑N

i=1 ‖xi(t)− x?‖2 −
∑N

i=1 ‖xi(t+ 1)− x?‖2

2βt
+
βt
2

N∑
i=1

‖∇i(t)‖2. (8)

On the other hand, it follows from Assumption 2 that

‖∇i(t)‖2 =

∥∥∥∥∥∇`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+

∥∥∥∥∥
2

≤ 2‖∇`i,t(xi(t))‖2 + 2p

p∑
s=1

[λi(t)]
2
s‖∂[cs(xi(t))]+‖2

≤ 2G2 + 2pG2
p∑
s=1

[λi(t)]
2
s

= 2G2 + 2pG2
p∑
s=1

[cs(xi(t))]
2
+

η2t−1
(9)
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where the last equality follows from the dual update (4). Combining the inequalities (8) and (9), and using

the fact that [λi(t)]s = [cs(xi(t))]+
ηt−1

(cf. (4)), we obtain

N∑
i=1

[`i,t(xi(t))− `i,t(x?)] ≤
∑N

i=1 ‖xi(t)− x?‖2 −
∑N

i=1 ‖xi(t+ 1)− x?‖2

2βt
+NG2βt

−
N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+

(
1

ηt−1
− pG2 βt

η2t−1

)
. (10)

The left-hand side can be further lower bounded by

`i,t(xi(t)) = `i,t(xi•(t)) + `i,t(xi(t))− `i,t(xi•(t)) ≥ `i,t(xi•(t))−G‖xi(t)− xi•(t)‖ (11)

summing the inequalities in (10) over t = 1, . . . , T , and using the bound (11) and definition of regret (1),

we arrive at the desired conclusion. �

Remark 1 The first two terms in Lemma 1 are optimization errors that are common in the analysis of

online optimization algorithms, the third term is the cost of aligning the decisions of nodes, and the last

term is the penalty incurred by the violation of constraints.

The second lemma establishes a bound on the disagreement among all the nodes, which is measured

by the difference between the norms of decisions of nodes.

Lemma 2 (Disagreement) Let Assumptions 1–4 hold. For every node i• ∈ V and T ≥ 1, we have

T∑
t=1

N∑
i=1

‖xi•(t)− xi(t)‖ ≤ NĈG
T∑
t=1

βt + ĈG
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+
βt
ηt−1

where Ĉ is given in Theorem 1.

Proof. By deriving the general expressions for the average decision x̄(t+1) = 1
N

∑N
i=1 xi(t+1) and xi(t+1)

it follows that

N∑
i=1

‖x̄(t+ 1)− xi(t+ 1)‖ ≤
N∑
i=1

t∑
m=1

βm

N∑
j=1

∣∣[A(t,m)]i,j −N−1
∣∣ ‖∇j(m)‖

+
N∑
i=1

t−1∑
m=1

N∑
j=1

∣∣[A(t,m+ 1)]i,j −N−1
∣∣ · ‖ΠB(pj(m))− pj(m)‖

+ 2

N∑
i=1

‖ΠB(pi(t))− pi(t)‖ (12)

where A(t,m) = A(t) · · ·A(m), ∀t ≥ m ≥ 1 and A(t, t) = A(t). On the other hand, by resorting to

Corollary 1 in [26], we have that, for all t ≥ m ≥ 1,

∣∣[A(t,m)]i,j −N−1
∣∣ ≤ (1− ζ

4N2

) t−m
B
−2
. (13)

Combining the inequalities (12) and (13), we obtain

T∑
t=1

N∑
i=1

‖x̄(t)− xi(t)‖ ≤
(

3N

ψ2+1/B(1− ψ1/B)
+ 4

) T−1∑
t=1

βt

N∑
i=1

‖∇i(t)‖. (14)
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Then, combining (9) and (14) with the following inequality,

N∑
i=1

‖xi•(t)− xi(t)‖ =

N∑
i=1

‖xi•(t)− x̄(t) + x̄(t)− xi(t)‖

=
N∑
i=1

‖xi•(t)− x̄(t)‖+
N∑
i=1

‖x̄(t)− xi(t)‖

≤ (N + 1)
N∑
i=1

‖x̄(t)− xi(t)‖

we arrive at the conclusion. The proof is complete. �

A.2 Proof of the theorem

We consider an arbitrary unit i• ∈ V and establish a regret bound for that unit. Combining the results in

Lemmas 1 and 2, we have

Reg(i•, T ) ≤
T∑
t=1

∑N
i=1 ‖xi(t)− x?‖2 −

∑N
i=1 ‖xi(t+ 1)− x?‖2

2βt
+ (1 + Ĉ)NG2

T∑
t=1

βt

+ ĈG2
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+
βt
ηt−1

−
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+

(
1

ηt−1
− pG2 βt

η2t−1

)
. (15)

Substituting ηt = 1
T c and βt = 1

apG2T c into the preceding inequality, yields

Reg(i•, T ) ≤ 1

2
apG2

(
N∑
i=1

‖xi(1)− x?‖2
)
T c +

1

ap
N(1 + Ĉ)T 1−c

+
1

ap
Ĉ

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+ −
(

1− 1

a

)
T c

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+. (16)

We turn our attention to bound the last two terms. To this end, write

ρ ,
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+ (17)

which implies that

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+ ≥

1

pNT

(
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+

)2

=
1

pNT
ρ2 (18)

because of the inequality that (a1 + · · ·+ an)2 ≤ n
∑n

i=1 a
2
i . Hence, (16) now becomes

Reg(i•, T ) ≤ 1

2
apNG2R2

XT
c +

1

ap
N(1 + Ĉ)T 1−c +

1

ap
Ĉρ−

(
1− 1

a

)
1

pNT 1−c ρ
2︸ ︷︷ ︸

,f(ρ)

. (19)
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where we have used Assumption 1, i.e.,
∑N

i=1 ‖xi(1) − x?‖2 =
∑N

i=1 ‖x?‖2 ≤ NR2
X . We can replace the

term f(ρ) by the following,

max
ρ≥0

f(ρ) =

(
Ĉ
ap

)2
4
(
1− 1

a

)
1

pNT 1−c

=
NĈ2

4a(a− 1)p
T 1−c. (20)

Hence, combining the inequalities (19) and (20), we finally have

Reg(i•, T ) ≤ 1

2
apNG2R2

XT
c +

1

ap
N(1 + Ĉ)T 1−c + max

ρ≥0
f(ρ)

≤ 1

2
apNG2R2

XT
c +

(
1

ap
N(1 + Ĉ) +

NĈ2

4a(a− 1)p

)
T 1−c. (21)

Therefore, we complete the first statement of Theorem 1.

We are left to bound the CACV. From (10) it follows that

T∑
t=1

N∑
i=1

[`i,t(xi(t))− `i,t(x?)] ≤
T∑
t=1

∑N
i=1 ‖xi(t)− x?‖2 −

∑N
i=1 ‖xi(t+ 1)− x?‖2

2βt

−
T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+

(
1

ηt−1
− pG2 βt

η2t−1

)

+NG2
T∑
t=1

βt (22)

the right-hand side can be bounded by following similar lines as that of the regret analysis, that is,

r.h.s. of (22) ≤ 1

2
apNG2R2

XT
c +

1

ap
NT 1−c −

(
1− 1

a

)
T c

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+ (23)

the left-hand side on (22) can be bounded as follows, according to Assumptions 1 and 2:

l.h.s. of (22) ≥ −G
T∑
t=1

N∑
i=1

‖xi(t)− x?‖ ≥ −2NGRXT. (24)

Combining (23) and (24) and regrouping terms, we have

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+ ≤

a2p

2(a− 1)
NG2R2

X +
N

(a− 1)p
T 1−2c +

2a

a− 1
NGRXT

1−c

≤ N

a− 1

(
1

p
+ 2aGRX +

1

2
a2pG2R2

X

)
T 1−c

the desired bound follows by combining the preceding inequality and (18). The proof is complete.

Appendix B Proof of Theorem 2

We first derive the bound on CACV. Note that Li,t(x,λ) is σ-strongly convex, according to Assumption 5.

This fact, combined with (7), leads to

N∑
i=1

‖xi(t+ 1)− x?‖2 ≤
N∑
i=1

‖xi(t)− x?‖2 + β2t

N∑
i=1

‖∇i(t)‖2

− 2βt

N∑
i=1

[
Li,t(xi(t),λi(t))−Li,t(x

?,λi(t))+
σ

2
‖xi(t)− x?‖2

]
(25)

17



regrouping the terms, we further have

T∑
t=1

N∑
i=1

[Li,t(xi(t),λi(t))− Li,t(x
?,λi(t))]

≤
T∑
t=1

∑N
i=1 ‖xi(t)− x?‖2 −

∑N
i=1 ‖xi(t+ 1)− x?‖2

2βt

− σ

2

T∑
t=1

‖xi(t)− x?‖2 +
T∑
t=1

βt
2

N∑
i=1

‖∇i(t)‖2

=
1

2

T∑
t=2

(
1

βt
− 1

βt−1
− σ

) N∑
i=1

‖xi(t)− x?‖2 +
1

2

(
1

β1
− σ

) N∑
i=1

‖xi(1)− x?‖2

− 1

2βT

N∑
i=1

‖xi(T + 1)− x?‖2 +
T∑
t=1

βt
2

N∑
i=1

‖∇i(t)‖2.

Substituting βt = 1
σt into the preceding inequality and dropping the negative term, yields

T∑
t=1

N∑
i=1

[Li,t(xi(t),λi(t))− Li,t(x
?,λi(t))] ≤

T∑
t=1

βt
2

N∑
i=1

‖∇i(t)‖2. (26)

Noting that λi(t) is the maximizer of Li,t((xi(t),λ) over λ ∈ Rp+, i.e., Li,t(xi(t),λi(t)) ≥ Li,t(xi(t),λ) for

all λ ∈ Rp+, we have the following estimate for all λ ∈ Rp+, according to (26),

T∑
t=1

N∑
i=1

[Li,t(xi(t),λ)− Li,t(x
?,λi(t))] ≤

T∑
t=1

βt
2

N∑
i=1

‖∇i(t)‖2. (27)

Expanding the left-hand side by using the definition of online augmented Lagrangian function in (3), we

further have
T∑
t=1

N∑
i=1

[
`i,t(xi(t)) +

p∑
s=1

[λ]s[cs(xi(t))]+ −
ηt
2
‖λ‖2

−

(
`i,t(x

?) +

p∑
s=1

[λi(t)]s[cs(x
?)]+ −

ηt
2
‖λi(t)‖2

)]

≤
T∑
t=1

βt
2

N∑
i=1

‖∇i(t)‖2 ≤ NG2
T∑
t=1

βt + pG2
T∑
t=1

N∑
i=1

βt‖λi(t)‖2 (28)

where we recalled (9). Applying ηt = 2pG2βt to (28), we find that the last terms on both sides will cancel

each other out. This leads to

T∑
t=1

N∑
i=1

[`i,t(xi(t))− `i,t(x?)] +

p∑
s=1

(
T∑
t=1

N∑
i=1

[c(xi(t))]+

)
[λ]s −

p∑
s=1

(
1

2
N

T∑
t=1

ηt

)
[λ]2s︸ ︷︷ ︸

,g(λ)

≤ NG2
T∑
t=1

βt (29)

note that (29) holds for all λ ∈ Rd+, and hence we can replace g(λ) by the following,

max
λ∈Rp

+

g(λ) ≤
T∑
t=1

N∑
i=1

[`i,t(x
?)− `i,t(xi(t))] +NG2

T∑
t=1

βt ≤ 2NGRXT +NG2
T∑
t=1

βt (30)
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where the last inequality follows from the same reasoning as that of (24). For the left-hand side on (30),

we have

max
λ∈Rd

+

g(λ) =

p∑
s=1

(∑T
t=1

∑N
i=1[cs(xi(t))]+

)2
2N
∑T

t=1 ηt
≥

(∑T
t=1

∑N
i=1

∑p
s=1[cs(xi(t))]+

)2
2pN

∑T
t=1 ηt

(31)

Combining the inequalities (30) and (31) with the following estimate,

T∑
t=1

1

t
= 1 +

T∑
t=2

1

t
≤ 1 +

∫ T

1

1

u
du = 1 + log(T ) (32)

we further obtain for all T ≥ 3,

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+ ≤
√

16p2N2G3RX
σ

T log(T ) +
16p2N2G4

σ2
log2(T )

≤

(
4pNG3/2

√
RX√

σ
+

4pNG2

σ

)√
T log(T ). (33)

Next, we turn our attention to the first statement, i.e., the regret bound. Again We consider an arbitrary

unit i• ∈ V. Combining the inequalities (30) and (31), and using the notation (17), we obtain

NG2
T∑
t=1

βt −
1

2pN
∑T

t=1 ηt
ρ2 ≥

T∑
t=1

N∑
i=1

[`i,t(xi(t))− `i,t(x?)]

≥ Reg(i•, T )−G
T∑
t=1

N∑
i=1

‖xi•(t)− xi(t)‖. (34)

Applying Lemma 2 to the preceding inequality gives

Reg(i•, T ) ≤ NG2(1 + Ĉ)
T∑
t=1

βt−
1

2pN
∑T

t=1 ηt
ρ2+ĈG2

T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]+
βt
ηt−1

(35)

substituting the expressions for βt and ηt into (35), we have

Reg(i•, T ) ≤ NG2(1 + Ĉ)
T∑
t=1

βt +
1

2p
Ĉρ− 1

2pN
∑T

t=1 ηt
ρ2︸ ︷︷ ︸

,h(ρ)

. (36)

Then, following an argument similar to that of (20) and (21), we get

Reg(i•, T ) ≤ NG2(1 + Ĉ)
T∑
t=1

βt +
( 1
2p Ĉ)2

4 1
2pN

∑T
t=1 ηt

≤ NG2(1 + Ĉ)
T∑
t=1

βt +
1

8p
NĈ2

T∑
t=1

ηt

≤

(
2NG2(1 + Ĉ)

σ
+
NĈ2G2

2σ

)
log(T ). (37)

The proof is complete.
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Appendix C Proof of Theorem 3

C.1 Key lemma

The proof relies on the properties of the one-point gradient estimator ∇̃`i,t(xi(t)), which can be viewed as

a distributed version of the one in [8]. In particular, we have the following lemma that characterizes the

properties of the one-point gradient estimator and the relation between `i,t(x) and its smoothed version

˜̀
i,t(x; ε).

Lemma 3 (i) Let G be the uniform Lipschitz constant of the loss functions `i,t(x) over B, then the

smoothed loss functions ˜̀
i,t(x) are Lipschitz continuous with the same constant G and we have that,

for all x ∈ B, ∣∣∣˜̀i,t(x; ε)− `i,t(x)
∣∣∣ ≤ Gε.

(ii) The one-point gradient estimator satisfies

E
[
∇̃`i,t(xi(t))

]
= ∇˜̀

i,t(xi(t); εt).

(iii) Let Assumption 6 hold, then the one-point gradient estimator satisfies∥∥∥∇̃`i,t(xi(t))∥∥∥ ≤ Cd

εt
.

C.2 Proof of the theorem

Denote

∇̃i(t) , ∇̃`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+ (38)

then, it follows from Lemma 3(ii) that

E
[
∇̃i(t)

]
= ∇˜̀

i,t(xi(t); εt) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+ = ∇xL̃i,t(xi(t),λi(t)). (39)

Following similar lines as that of Lemma 1, we immediately have

N∑
i=1

‖xi(t+ 1)− x?π‖2 =

N∑
i=1

‖xi(t)− x?π‖2 + β2t

N∑
i=1

∥∥∥∇̃i(t)∥∥∥2 − 2βt

N∑
i=1

∇̃i(t)T(xi(t)− x?π) (40)

where x?π = (1 − π)x? ∈ (1 − π)X ⊆ (1 − π)B. Taking expectation on both sides of (40) and using (39),

yields
N∑
i=1

E
[
L̃i,t(xi(t),λi(t))− L̃i,t(x

?,λi(t))
]

≤
∑N

i=1 E[‖xi(t)− x?π‖2]−
∑N

i=1 E[‖xi(t+ 1)− x?π‖2]
2βt

+
βt
2

N∑
i=1

E
[∥∥∥∇̃i(t)∥∥∥2] . (41)
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Using the definition (5), the left-hand side on (41) becomes

N∑
i=1

E

[
˜̀
i,t(xi(t); εt) +

p∑
s=1

[λi(t)]s[cs(xi(t))]+ −
ηt
2
‖λi(t)‖2

−

(
˜̀
i,t(x

?
π; εt) +

p∑
s=1

[λi(t)]s[cs(x
?
π)]+ −

ηt
2
‖λi(t)‖2

)]

=
N∑
i=1

E
[
˜̀
i,t(xi(t); εt)− ˜̀

i,t(x
?
π; εt)

]
+

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

]
ηt−1

(42)

where the equality follows from [cs(x
?
π)]+ = 0, because x?π ∈ (1− π)X ⊂ X . On the other hand, it follows

from (38) and Lemma 3(iii) that

E
[∥∥∥∇̃i(t)∥∥∥2] = E

∥∥∥∥∥∇̃`i,t(xi(t)) +

p∑
s=1

[λi(t)]s∂[cs(xi(t))]+

∥∥∥∥∥
2


≤ 2E
[
‖∇̃`i,t(xi(t))‖2

]
+ 2pG2

p∑
s=1

E
[
[λi(t)]

2
s

]
≤ 2C2d2

1

ε2t
+ 2pG2

p∑
s=1

E
[
[cs(xi(t))]

2
+

]
η2t−1

(43)

this, combined with equations (41) and (42), gives

N∑
i=1

E
[
˜̀
i,t(xi(t); εt)− ˜̀

i,t(x
?
π; εt)

]
≤ NC2d2

βt
ε2t

+

∑N
i=1 E

[
‖xi(t)− x?π‖2

]
−
∑N

i=1 E
[
‖xi(t+ 1)− x?π‖2

]
2βt

−
N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

]( 1

ηt−1
− pG2 βt

η2t−1

)
. (44)

the left-hand side on (44) can be further lower bounded by utilizing the relation between the losses `i,t

and their smoothed variants ˜̀
i,t (cf. Lemma 3(i)), given as follows:

˜̀
i,t(xi(t); εt)− ˜̀

i,t(x
?
π; εt) ≥ `i,t(xi(t))− `i,t(x?π)− 2Gεt

≥ `i,t(xi(t))− `i,t(x?)−GRXπ − 2Gεt (45)

where the last inequality follows from the fact that `i,t is G-Lipschitz and ‖x?‖ ≤ RX . Summing the

inequalities in (44) over t = 1, . . . , T and using (45), we find that

T∑
t=1

N∑
i=1

E [`i,t(xi(t))− `i,t(x?)] ≤ NGRXπT + 2NG

T∑
t=1

εt +NC2d2
T∑
t=1

βt
ε2t

+

T∑
t=1

∑N
i=1 E

[
‖xi(t)− x?π‖2

]
−
∑N

i=1 E
[
‖xi(t+ 1)− x?π‖2

]
2βt

−
T∑
t=1

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

]( 1

ηt−1
− pG2 βt

η2t−1

)
. (46)
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On the other hand, we have the following estimate of the disagreement among nodes by resorting to

Lemma 2:

T∑
t=1

N∑
i=1

E [‖xi•(t)− xi(t)‖] ≤ Ĉ
T−1∑
t=1

βt

N∑
i=1

E
[∥∥∥∇̃i(t)∥∥∥]

≤ Ĉ
T∑
t=1

βt

N∑
i=1

(
Cd

εt
+G

p∑
s=1

E [[cs(xi(t))]+]

ηt−1

)

≤ NCĈd
T∑
t=1

βt
εt

+ ĈG

T∑
t=1

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]+

] βt
ηt−1

(47)

where the second inequality is based on (43). Combining inequalities (46) and (47), and following an

argument similar to that of Theorem 1, we obtain

E [Reg(i•, T )] ≤ NGRXπT + 2NG

T∑
t=1

εt +NCĈGd

T∑
t=1

βt
εt

+NC2d2
T∑
t=1

βt
ε2t

+

T∑
t=1

∑N
i=1E

[
‖xi(t)− x?π‖2

]
−
∑N

i=1 E
[
‖xi(t+ 1)− x?π‖2

]
2βt

+ ĈG2
T∑
t=1

N∑
i=1

p∑
s=1

E [[cs(xi(t))]+]
βt
ηt−1

−
T∑
t=1

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

]( 1

ηt−1
− pG2 βt

η2t−1

)
. (48)

Substituting ηt = 1
T c , βt = 1

apG2T c , εt = 1
T b and π = 1

RXT b into the preceding inequality, and following

similar lines as that of Theorem 1, yields

E [Reg(i•, T )] ≤ 3NGT 1−b +
NCĈd

apG
T 1+b−c +

NC2d2

apG2
T 1+2b−c

+
1

2
apNG2R2

XT
c +

NĈ2

4a(a− 1)p
T 1−c. (49)

It follows from some simple algebra that the choice of b = c
3 yields the optimal regret boundO(Tmax{1−c/3,c}).

The bound on CACV can be derived by lower bounding the left-hand side on (44), that is,

N∑
i=1

E
[
˜̀
i,t(xi(t); εt)− ˜̀

i,t(x
?
π; εt)

]
≥ −G

N∑
i=1

E[‖xi(t)− x?π‖] ≥ −2NGRX

where the first inequality follows from Lemma 3(i) and the last one from Assumption 1. This, combined

with (44) and the expressions of ηt = 1
T c , βt = 1

apG2T c , εt = 1
T b and π = 1

RXT b , leads to

T∑
t=1

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

]
≤ N

a− 1

(
2aGRXT

1−c +
1

2
a2pG2R2

X +
C2d2

pG2
T 1+2b−2c

)
≤ N

a− 1

(
2aGRX +

1

2
a2pG2R2

X +
C2d2

pG2

)
T 1−c (50)
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where in the last inequality we used b = c
3 . The desired result follows by combining the preceding inequality

with the following,

T∑
t=1

N∑
i=1

p∑
s=1

E [[cs(xi(t))]+] ≤ E

(pNT T∑
t=1

N∑
i=1

p∑
s=1

[cs(xi(t))]
2
+

)1/2


≤

(
pNT

T∑
t=1

N∑
i=1

p∑
s=1

E
[
[cs(xi(t))]

2
+

])1/2

(51)

because of Jensen’s inequality. The proof is complete.

Appendix D Proof of Theorem 4

We first claim that the strongly convexity of the loss functions `i,t implies the strongly convexity of their

smoothed variants ˜̀
i,t with the same constant σ. This fact leads us to the following bound that is analogous

to (26):
T∑
t=1

N∑
i=1

E
[
L̃i,t(xi(t),λi(t))− L̃i,t(x

?,λi(t))
]
≤

T∑
t=1

βt
2

N∑
i=1

E
[∥∥∥∇̃i(t)∥∥∥2] . (52)

Following an argument similar to that of Theorem 2, we can replace the left-hand side on (52) by the

following, due to the fact that λi(t) is the maximizer of L̃i,t((xi(t),λ) over λ ∈ Rp+:

T∑
t=1

N∑
i=1

E
[
L̃i,t(xi(t),λ)− L̃i,t(x

?
π,λi(t))

]
=

T∑
t=1

N∑
i=1

E

[
˜̀
i,t(xi(t)) +

p∑
s=1

[λ]s[cs(xi(t))]+ −
ηt
2
‖λ‖2

−

(
˜̀
i,t(x

?
π) +

p∑
s=1

[λi(t)]s[cs(x
?
π)]+ −

ηt
2
‖λi(t)‖2

)]

=
T∑
t=1

N∑
i=1

E
[
˜̀
i,t(xi(t))− ˜̀

i,t(x
?
π)
]

+ E [g(λ)] +
1

2

T∑
t=1

N∑
i=1

ηtE
[
‖λi(t)‖2

]
(53)

where g(λ) is defined in (29). On the other hand, using (43) we have

E
[∥∥∥∇̃i(t)∥∥∥2] ≤ 2C2d2

1

ε2t
+ 2pG2E

[
‖λi(t)‖2

]
(54)

Combining the equations (52), (53) and (54), and using ηt = 2pG2βt, we find that for all λ ∈ Rp+ and

T ≥ 3,

E [g(λ)] ≤
T∑
t=1

N∑
i=1

E
[
˜̀
i,t(x

?
π)− ˜̀

i,t(xi(t))
]

+NC2d2
T∑
t=1

βt
ε2t

≤ 2NGRXT +
NC2d2

σ
T 2b

T∑
t=1

1

t

≤ 2NGRXT +
2NC2d2

σ
T 2b log(T ) (55)
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where we recalled (32). Substituting λ = λ?, the maximizer of g(λ) over λ ∈ Rp+, into the (55), the

left-hand side on (55) becomes

E [g(λ?)] =

p∑
s=1

E
[(∑T

t=1

∑N
i=1[cs(xi(t))]+

)2]
2N
∑T

t=1 ηt
≥

p∑
s=1

(∑T
t=1

∑N
i=1 E [[cs(xi(t))]+]

)2
2N
∑T

t=1 ηt

≥

(∑T
t=1

∑N
i=1

∑p
s=1 E [[cs(xi(t))]+]

)2
2pN

∑T
t=1 ηt

(56)

where the first inequality follows from Jensen’s inequality. Combining the inequalities in (32), (55), and

(56), yields

T∑
t=1

N∑
i=1

p∑
s=1

E [[cs(xi(t))]+] ≤ 4pNG3/2
√
RX√

σ

√
T log(T ) +

4pNGCd

σ
T 1/3 log(T )

where we used b = 1
3 .

We now turn our attention to the regret bound. It follows from (55) and (56) that

T∑
t=1

N∑
i=1

E
[
˜̀
i,t(xi(t))− ˜̀

i,t(x
?
π)
]
≤ NC2d2

T∑
t=1

βt
ε2t
− (E [ρ])2

2pN
∑T

t=1 ηt

this, combined with (45), further leads to

T∑
t=1

N∑
i=1

E [`i,t(xi(t))− `i,t(x?)] ≤ NGRXπT+2NG

T∑
t=1

εt+NC
2d2

T∑
t=1

βt
ε2t
− (E [ρ])2

2pN
∑T

t=1 ηt
. (57)

Then, following the similar lines as that of Theorem 2 and using the disagreement estimate (47), we find

that

E [Reg(i•, T )] ≤ NGRXπT + 2NG

T∑
t=1

εt +NCĈGd

T∑
t=1

βt
εt

+NC2d2
T∑
t=1

βt
ε2t

+ ĈG2E [ρ]
βt
ηt−1

− (E [ρ])2

2pN
∑T

t=1 ηt︸ ︷︷ ︸
=h(E[ρ])

≤ NGRXπT+2NG

T∑
t=1

εt+NCĈGd

T∑
t=1

βt
εt

+NC2d2
T∑
t=1

βt
ε2t

+
1

8p
NĈ2

T∑
t=1

ηt (58)

where the last inequality follows from the same reasoning as that of (35)–(37). This, combined with

ηt = 2pG2

σt , βt = 1
σt , εt = 1

T b and π = 1
RXT b , leads to

E [Reg(i•, T )] ≤ 3NGT 1−b +
2NCĈGd

σ
T b log(T ) +

2NC2d2

σ
T 2b log(T ) +

NĈ2G2

2σ
log(T ) (59)

hence, the optimal regret bound follows by setting b = 1
3 . The proof is complete.
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