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Abstract—We consider the framework of transfer-entropy-
regularized Markov Decision Process (TERMDP) in which the
weighted sum of the classical state-dependent cost and the
transfer entropy from the state random process to the control
random process is minimized. Although TERMDPs are generally
formulated as nonconvex optimization problems, we derive an
analytical necessary optimality condition expressed as a finite set
of nonlinear equations, based on which an iterative forward-
backward computational procedure similar to the Arimoto-
Blahut algorithm is proposed. It is shown that every limit point of
the sequence generated by the proposed algorithm is a stationary
point of the TERMDP. Applications of TERMDPs are discussed
in the context of networked control systems theory and non-
equilibrium thermodynamics. The proposed algorithm is applied
to an information-constrained maze navigation problem, whereby
we study how the price of information qualitatively alters the
optimal decision polices.

I. INTRODUCTION

Transfer entropy [1] is a quantity that can be understood as
a measure of information flow between random processes. It is
a generalization of directed information, a concept proposed in
the information theory literature for the analysis of communi-
cation systems with feedback [2]–[4]. Closely related concepts
include the KL-causality measure [5], which was originally
introduced in the economic statistics literature for the causality
analysis.1 Recently, these concepts have been applied in a
broad range of academic disciplines, including neuroscience
[7], finance [8], and social science [9].

In this paper, we formulate the problem of transfer-entropy-
regularized Markov Decision Process (TERMDP), and de-
velop a numerical solution algorithm. TERMDP is an optimal
control problem in which we seek a causal decision-making
policy that minimizes the weighted sum of the classical state-
dependent cost and transfer entropy from the state random
process to the control actions. As we will discuss in the se-
quel, TERMDP predicts a fundamental performance limitation
of feedback control systems from an information-theoretic
perspective. The first context in which TERMDP naturally
arises is networked control systems theory, where the trade-off
between the best achievable control performance and the data
rate at which sensor information is fed back to the controller is
a central question. Prior work has shown that transfer entropy

1University of Texas at Austin, USA, ttanaka@utexas.edu; 2KTH
Royal Institute of Technology, Sweden, hsan@kth.se; 3KTH Royal Insti-
tute of Technology, Sweden, skoglund@kth.se.

1Sometimes (e.g., in statistical physics [6]), transfer entropy is used as a
synonym for directed information. It appears that the concepts of transfer
entropy [1], directed information [2], [3], and Kullback causality measure [5]
were introduced independently.

can be used as a proxy for the data rate on communication
channels, and thus solving TERMDP provides a fundamental
performance limitation of such systems. The second applica-
tion of TERMDP is non-equilibrium thermodynamics. There
has been renewed interests in the generalized second law of
thermodynamics, in which transfer entropy arises as a key
concept [10]. TERMDP in this context can be interpreted as
the problem of operating thermal engines at a nonzero work
rate near the fundamental limitation of the second law of
thermodynamics.

In contrast to the standard MDP [11], TERMDP penalizes
the information flow from the underlying state random pro-
cess to the control random process. Consequently, TERMDP
promotes “information-frugal” decision policies, under which
control actions tend to be statistically less dependent on the
underlying Markovian state dynamics. This is often a favorable
property in various real-time decision-making scenarios (for
both humans and robots) in which information acquisition,
processing, and transmission are costly operations. Therefore,
it is expected that TERMDP plays major roles in broader
contexts beyond the aforementioned applications, although the
interpretations of transfer entropy in each application must be
carefully discussed.

In the literature, a few alternative approaches have been
suggested to apply information-theoretic cost functions to
capture decision-making costs in MDPs. Similarities and dif-
ferences between TERMDP and the existing problem for-
mulations are noteworthy. The rationally inattentive control
problem [12], [13] has been motivated in a macroeconomic
context, where Shannon’s mutual information (a special case
of transfer entropy) is adopted as an attention cost for decision-
makers. The authors of [14]–[16] present a class of optimal
control problems in which control costs are modeled as the
Kullback-Leibler (KL) divergence from the “uncontrolled”
state trajectories to the “control” state trajectories. Alternative
information-theoretic decision costs in dynamic environments
include predictive information [17], past-future information-
bottleneck [18], and information-to-go [19], [20]. Information-
theoretic bounded rationality and its analogy to thermody-
namics are discussed in [21]. While intuitively plausible,
some of these problem formulations lack physical (or coding-
theoretic) justifications, unlike TERMDP, whose operational
interpretation can be found in the aforementioned contexts.

An equivalent problem formulation to TERMDP first ap-
peared in [22] and [23], where the problem was formulated in a
general (Polish state space) setup. Linear-Quadratic-Gaussian
(LQG) control with minimum directed information [24] is a
version of TERMDP specialized to the LQG regime. While
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the problem in the LQG setup was shown to be tractable
by semidefinite programming [24], algorithmic aspects of
TERMDP beyond the LQG regime have not been thoroughly
studied. Therefore, the primary goal of this paper is to provide
an efficient computational algorithm to find a stationary point
(an optimal solution candidate) of the given TERMDP. The
contributions of this paper are as follows:
• We derive a necessary optimality condition expressed as

a set of nonlinear equations involving a finite number
of variables. This result recovers, and partly strengthens,
results obtained in prior work [22].

• We propose a forward-backward iterative algorithm that
can be viewed as a generalization of the Arimoto-Blahut
algorithm [25], [26] to solve the optimality condition
numerically.

The proposed algorithm is the first application of the the
Arimoto-Blahut algorithm for transfer entropy minimization.
Our algorithm should be compared with the generalized
Arimoto-Blahut algorithm for transfer entropy maximization
proposed in [27]. The algorithm in [27] can be viewed as
a generalization of the Arimoto-Blahut “capacity algorithm”
in [25], while our proposed algorithm can be viewed as a
generalization of the Arimoto-Blahut “rate-distortion algo-
rithm” in [25]. Unfortunately, we discover that the proposed
algorithm may not converge to the global minimum due to
the non-convex nature of TERMDP. This result is somewhat
surprising as the global convergence of the original Arimoto-
Blahut rate-distortion algorithm, which is a special case of
our algorithm, is well-known. Nevertheless, observing that the
proposed algorithm belongs to the class of block coordinate
descent (BCD) algorithms, we show that every limit point
generated by the algorithm is guaranteed to be a stationary
point of the given TERMDP.

Organization of the paper: The problem formulation of
TERMDP is formally introduced in Section II. Mathemati-
cal preliminaries are summarized in Section III. Section IV
presents the main results. Derivation of the main results are
summarized in Section V. Section VI discusses applications of
the TERMDP framework. A numerical demonstration of the
proposed algorithm is presented in Section VII. We conclude
with a list of future work in Section VIII.

Notation: Upper case symbols such as X are used to
represent random variables, while lower case symbols such
as x are used to represent a specific realization. Notation
xlk , (xk, xk+1, ..., xl) and xt , (x1, x2, ..., xt) will be
used to specify subsequences. We use the natural logarithm
log(·) = loge(·) throughout the paper.

II. PROBLEM FORMULATION

We formulate TERMDP based upon the standard Markov
Decision Process (MDP) formalism [11] defined by a time
index t = 1, 2, ..., T , state space Xt, action space Ut, transition
probability pt+1(xt+1|xt, ut), cost functions ct : Xt×Ut → R
for each t = 1, 2, ..., T and cT+1 : XT+1 → R. For simplicity,
we assume that both Xt and Ut are finite. The decision policy
to be synthesized can be probabilistic and history-dependent
in general, and is represented by a conditional probability

distribution:
qt(ut|xt, ut−1). (1)

The joint distribution of the state and control trajectories is de-
noted by µt+1(xt+1, ut), which is uniquely determined by the
initial state distribution µ1(x1), the state transition probability
pt+1(xt+1|xt, ut) and the decision policy qt(ut|xt, ut−1) by
a recursive formula

µt+1(xt+1, ut)

= pt+1(xt+1|xt, ut)qt(ut|xt, ut−1)µt(x
t, ut−1). (2)

A stage-additive cost functional

J(XT+1, UT ) ,
T∑
t=1

Ect(Xt, Ut) + EcT+1(XT+1) (3)

is a function of random variables XT+1 and UT with a
joint distribution µT+1(xT+1, uT ). Transfer entropy is an
information-theoretic quantity defined as follows:

Definition 1: For nonnegative integers m and n, the transfer
entropy of degree (m,n) is defined by

Im,n(XT → UT ) ,
T∑
t=1

E log
µt+1(Ut|Xt

t−m, U
t−1
t−n)

µt+1(Ut|U t−1t−n)
(4)

=

T∑
t=1

∑
xt∈X t,ut∈Ut

µt+1(xt, ut) log
µt+1(ut|xtt−m, ut−1t−n)

µt+1(ut|ut−1t−n)
.

Using conditional mutual information [28], transfer entropy
can also be written as

Im,n(XT → UT ) ,
T∑
t=1

I(Xt
t−m;Ut|U t−1t−n). (5)

When m = ∞ and n = ∞, (4) coincides with directed
information [3]:

I(XT → UT ) ,
T∑
t=1

I(Xt;Ut|U t−1). (6)

The main problem studied in this paper is now formulated as
follows.

Problem 1: (TERMDP) Let the initial state distribution
µ1(x1) and the state transition probability pt+1(xt+1|xt, ut)
be given, and assume that the joint distribution µt+1(xt+1, ut)
is recursively given by (2). For a fixed constant β ≥ 0, the
Transfer-Entropy-Regularized Markov Decision Processes is
the optimization problem

min
{qt(ut|xt,ut−1)}Tt=1

J(XT+1, UT ) + βIm,n(XT → UT ). (7)

A few remarks are in order regarding this problem formula-
tion. First, the transfer entropy term in (7) is interpreted as an
additional cost corresponding to the information transfer from
the state random process Xt to the control random process Ut.
The regularization parameter β ≥ 0 can be thought of as the
cost of information transfer. When β = 0, the standard MDP
formulation is recovered. As we increase β > 0, the optimal
decision policy for (7) tends to be “information frugal” in order
to reduce Im,n(XT → UT ). That is, control actions generated
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by the policy becomes statistically less dependent on the state
of the system.

Second, in contrast to the standard MDP (i.e., β = 0)
for which optimal polities can be assumed deterministic and
history-independent (Markovian) without loss of generality
[11, Section 4.4], TERMDP (7) with β > 0 admits an optimal
policy that is randomized and history-dependent. Thus, the
cardinality of the solution space we must explore to solve (7)
is much larger than that of the standard MDP. However, in
Proposition 1 below, we show that one can assume without
loss of performance a structure of the optimal policy of the
form

qt(ut|xt, ut−1t−n) (8)

instead of (1). In other words, it is sufficient to consider a
policy that is dependent only on the most recent realization of
the state and the last n realizations of the control inputs.

Finally, the structure of the problem (7) is similar (but not
equivalent) to that of the KL control formulation in [14]. In
particular, if (m,n) = (0, 0), the transfer entropy cost (4)
becomes ∑T

t=1
E log

µt+1(Ut|Xt)

µt+1(Ut)
.

On the other hand, the KL control framework considers the
KL divergence cost of the form∑T

t=1
E log

µt+1(Ut|Xt)

rt+1(Ut|Xt)

where rt+1(ut|xt) is the conditional distribution specified by
a predefined “reference” policy. Unfortunately, this difference
renders (7) nonconvex as we will observe in Section IV-C.
Despite this disadvantage, we emphasize the importance of
studying TERMDP as it arises in some practical problems in
science and engineering as discussed in Section VI.

III. PRELIMINARIES

In this section, we summarize some technical results needed
to derive our main results in this paper.

A. Structure of the optimal solution
We first derive some important structural properties of the

optimal policy, which allow us to rewrite the main problem
(7) in a simpler form. The desired structural results can be
obtained by applying the dynamic programming principle to
(7). To this end, notice that (7) can be viewed as a T -stage
optimal control problem, in which the joint distribution µt is
the “state” of the system to be controlled by a multiplicative
control action qt via the state evolution equation (2). Introduce
the value function as

Vk
(
µk(xk, uk−1)

)
,

min
{qt}Tt=k

T∑
t=k

{
Ect(Xt, Ut) + I(Xt

t−m;Ut|U t−1t−n)
}
. (9)

The value function satisfies the Bellman equation

Vt
(
µt(x

t, ut−1)
)

= min
qt

{
Ect(Xt, Ut)

+I(Xt
t−m;Ut|U t−1t−n) + Vt+1(µt+1(xt+1, ut))

}
(10)

for t = 1, 2, ..., T , with the terminal condition

VT+1

(
µT+1(xT+1, uT )

)
= EµT+1cT+1(XT+1). (11)

The next proposition summarizes key structural results.
Proposition 1: For the optimization problem (7) and its

dynamic programming formulation (9)–(11), the following
statements hold for each k = 1, 2, ..., T .

(a) For each sequence of policies {qt(ut|xt, ut−1)}Tt=k,
there exists a sequence of policies of the form
{q′t(ut|xt, ut−1t−n)}Tt=k such that the value of the objective
function on the left hand side of (9) attained by {q′t}Tt=k
is less than or equal to the value attained by {qt}Tt=k.

(b) If the policy at time step k is of the form
q′k(uk|xk, uk−1k−n), the identity I(Xk

k−m;Uk|Uk−1k−n) =

I(Xk;Uk|Uk−1k−n) holds.
(c) The value function Vk(µk(xk, uk−1)) depends only on

the marginal distribution µk(xk, u
k−1
k−n).

Proof: See Appendix A.

An implication of Proposition 1 (a) is that the search for
the optimal policy for the original TERMDP (7) can be
restricted to the class of policies of the form qt(ut|xt, ut−1t−n)
without loss of performance. Proposition 1 (b) implies that,
as far as the policy of the form qt(ut|xt, ut−1t−n) is used, the
problem remains equivalent even after the transfer entropy
term Im,n(XT → UT ) is replaced by the transfer entropy
of degree (0, n):

I0,n(XT → UT ) =
∑T

t=1
I(Xt;Ut|U t−1t−n).

Proposition 1 (c) implies that the distribution µt(xt, u
t−1
t−n),

rather than the original µt(xt, ut−1), suffices as the state of the
considered problem. This “reduced” state evolves according to

µt+1(xt+1, u
t
t−n+1) =∑

xt∈Xt,ut−n∈Ut−n

pt+1(xt+1|xt, ut)qt(ut|xt, ut−1t−n)µt(xt, u
t−1
t−n).

(12)

Based on these observations, it can be seen that Problem 1
can be solved by solving the following simplified problem:

Problem 2: (Simplified TERMDP) Let the initial state
distribution µ1(x1) and the state transition probability
pt+1(xt+1|xt, ut) be given, and assume that the joint distri-
bution µt(xt, u

t−1
t−n) is recursively given by (12). For a fixed

constant β ≥ 0, the simplified TERMDP is the optimization
problem

min
{qt(ut|xt,ut−1

t−n)}Tt=1

J(XT+1, UT ) + βI0,n(XT → UT ). (13)

Notice that Proposition 1 implies that a global minimizer
for (13) is a global minimizer for (7). With an appropriate
notion of local optimality, it can also be shown that a local
minimizer for (13) is also a local minimizer for (7), as detailed
in Appendix B. For this reason, in what follows, we will
develop an algorithm that solves the simplified TERMDP (13)
rather than the original TERMDP (7).
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Proposition 1 implies that an optimal solution to both the
original and simplified TERMDP can be found by solving the
Bellman equation

Vt
(
µt(xt, u

t−1
t−n)

)
= min

qt

{
Ect(Xt, Ut)

+I(Xt;Ut|U t−1t−n) + Vt+1(µt+1(xt+1, u
t
t−n+1))

}
(14)

with the state transition rule (12) and the terminal condition

VT+1

(
µT+1(xT+1, u

T
T−n+1)

)
= EµT+1cT+1(XT+1). (15)

Notice that the Bellman equation (14) is simpler than the origi-
nal form (10). However, solving (14) remains computationally
challenging as the right hand side of (14) involves a nonconvex
optimization problem. In Section IV-C, we present a simple
numerical example demonstrating this nonconvexity.

B. Transfer entropy and directed information

In some applications (e.g., networked control systems, see
Section VI-A), we are interested in (7) with directed informa-
tion (m =∞ and n =∞), even though solving such a prob-
lem is often computationally intractable. In such applications,
approximating directed information with transfer entropy with
finite degrees is a natural idea. The next proposition describes
the consequence of such an approximation.

Proposition 2: For any fixed decision policy of the form
qt(ut|xt, ut−1t−n), t = 1, 2, ..., T , we have2

I0,n ≥ I0,n+1 ≥ · · · ≥ I0,∞.

Proof: See Appendix C.

The following chain of inequalities shows that the optimal
value of (13) with any finite n provides an upper bound on
the optimal value of (7) with (m,n) = (∞,∞).

min
{qt(ut|xt,ut−1)}Tt=1

J(XT+1, UT ) + βI∞,∞

= min
{qt(ut|xt,ut−1)}Tt=1

J(XT+1, UT ) + βI∞,∞ (16a)

= min
{qt(ut|xt,ut−1)}Tt=1

J(XT+1, UT ) + βI0,∞ (16b)

≤ min
{qt(ut|xt,ut−1

t−n)}Tt=1

J(XT+1, UT ) + βI0,∞ (16c)

≤ min
{qt(ut|xt,ut−1

t−n)}Tt=1

J(XT+1, UT ) + βI0,n. (16d)

Equalities (16a) and (16b) follows from Proposition 1 (a) and
(b), respectively. The inequality (16c) is trivial since any policy
of the form qt(ut|xt, ut−1t−n) is a special case of the policy of
the form qt(ut|xt, ut−1). The final inequality (16d) is due to
Proposition 2.

2Im,n is a short-hand notation for Im,n(XT → UT ).

C. Rate-distortion theory and Arimoto-Blahut Algorithm

In the special case with T = 1, n = 0, β = 1 and cT+1(·) =
0, the optimization problem (13) becomes

min
q(u|x)

Ec(X,U) + I(X;U) (17)

where the probability distribution p(x) on X is given. In this
special case, the problem (17) is convex, and the solution is
well-known in the context of rate-distortion theory [28].

Proposition 3: A conditional distribution q∗(u|x) is a global
minimizer for (17) if and only if it satisfies the following
condition p(x)-almost everywhere:

q∗(u|x) =
ν∗(u) exp {−c(x, u)}∑
u∈U ν

∗(u) exp {−c(x, u)}
(18a)

ν∗(u) =
∑

x∈X
p(x)q∗(u|x). (18b)

Proof: This result is standard and hence the proof is omitted.
See [29, Appendix A] and [30] for relevant discussions.

Condition (18) is required only p(x)-almost everywhere since
for x such that p(x) = 0, q∗(u|x) can be chosen arbitrarily.
Commonly, the denominator in (18a) is called the partition
function:

φ∗(x) ,
∑

u∈U
ν∗(u) exp {−c(x, u)} .

By substitution, it is easy to show that the optimal value of
(17) can be written in terms of ν∗(u) as

−
∑

x∈X
p(x) log

{∑
u∈U

ν∗(u) exp{−c(x, u)}
}
, (19)

or more compactly as Ep(x){− log φ∗(X)}. This quantity is
often referred to as free energy [6], [31].

The Arimoto-Blahut algorithm is an iterative algorithm to
compute q∗(u|x) satisfying (18) numerically. It is based on
the alternating updates:

ν(k)(u) =
∑

x∈X
p(x)q(k−1)(u|x) (20a)

q(k)(u|x) =
ν(k)(u) exp{−c(x, u)}∑
u∈U ν

(k)(u) exp{−c(x, u)}
. (20b)

The algorithm is first proposed for the computation of channel
capacity [26] and for the computation of rate-distortion func-
tions [25]. Clearly, the optimal solution (q∗, ν∗) is a fixed point
of the algorithm (20). Under a mild assumption, convergence
of the algorithm is guaranteed; see [26], [32], [33]. The main
algorithm we propose in this paper to solve the simplified
TERMDP (13) can be thought of as a generalization of the
Arimoto-Blahut “rate-distortion algorithm.”

D. Block Coordinate Descent Algorithm

The Arimoto-Blahut algorithm can be viewed as a block
Coordinate Descent (BCD) algorithm applied to a special
class of objective functions. In this subsection, we summarize
elements of the BCD method and a version of its convergence
results that is relevant to our analysis. Consider the problem

min f(x) (21a)
s.t. x ∈ X = X1 ×X2 × ...×XN (21b)
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where the feasible set X is the Cartesian product of closed,
nonempty and convex subsets Xi ⊆ Rni for i = 1, 2, ..., N ,
and the function f : Rn1+...+nN → R ∪ {∞} is continuously
differentiable on the sublevel set {x ∈ X : f(x) ≤ f(x(0))},
where x(0) ∈ X is a given initial point. We call x∗ ∈ X a
stationary point for (21) if it satisfies ∇f(x∗)>(y − x∗) ≥ 0
for every y ∈ X , where ∇f(x∗) is the gradient of f at x∗.
If f is convex, every stationary point is a global minimizer
of f . The BCD algorithm for (21) is defined by the following
cyclic update rule:

x
(k)
1 ∈ arg min

x1

f(x1, x
(k−1)
2 , ..., x

(k−1)
N ) (22a)

x
(k)
2 ∈ arg min

x2

f(x
(k)
1 , x2, x

(k−1)
3 , ..., x

(k−1)
N ) (22b)

· · ·
x
(k)
N ∈ arg min

xN

f(x
(k)
1 , x

(k)
2 , ..., xN ). (22c)

A number of sufficient conditions for the convergence of the
BCD algorithm are known in the literature (e.g., [33]–[35] and
references therein). For instance, if f is pseudoconvex and
has compact level sets, then every limit point of the sequence
{x(k)} generated by the BCD algorithm is a global minimizer
of f [35, Proposition 6]. This result can be applied to show
the global convergence of the Arimoto-Blahut algorithm (20),
simply by noticing that the objective function in (17) can be
written as a convex function of ν and q as

f(ν, q) =
∑

x∈X ,u∈U
p(x)q(u|x)

(
c(x, u) + log

q(u|x)

ν(u)

)
and that (20) is equivalent to the BCD update rule (22). In
the absence of the convexity assumption on f , it is typically
required that each coordinate-wise minimization is uniquely3

attained in order to guarantee that every limit point of the
BCD algorithm is a stationary point [34, Proposition 2.7.1].
Unfortunately, the generalized Arimoto-Blahut algorithm we
introduce in this paper for the TERMDP is a BCD algorithm
applied to a nonconvex objective function, and the uniqueness
of the coordinate-wise minimizer cannot be assumed. Thus,
none of the above results are applicable to prove the conver-
gence. Fortunately, the requirement of the uniqueness of the
coordinate-wise minimizer can be relaxed when N = 2 (two-
block BCD algorithms). The following result is due to [35,
Corollary 2] and [33, Theorem 4.2 (c)].

Lemma 1: Consider the problem (21) with N = 2, and
suppose that the sequence {x(k)} generated by the two-block
BCD algorithm (22) has limit points. Then, every limit point
x∗ of {x(k)} is a stationary point of the problem (21).

Lemma 1 is critical to obtain one of our main results
(Theorem 2) below.

IV. MAIN RESULTS

This section summarizes the main results (Theorems 1 and
2) of this paper. Derivations are deferred to Section V.

3The counterexample by Powell [36] with N = 3 shows that the lack of
uniqueness of the coordinate-wise minimizer can result in a BCD algorithm
with a limit point which is not a stationary point.

A. Necessary Optimality Condition

The first technical result states that a necessary optimality
condition for the simplified TERMDP (13) is given by the
nonlinear condition (23) in terms of (µ∗, ν∗, ρ∗, φ∗, q∗).

Theorem 1: If {q∗t }Tt=1 is a local minimizer for (13),
then there exist variables {µ∗t+1, ν

∗
t , ρ
∗
t , φ
∗
t }Tt=1 satisfying

the set of nonlinear equations (23) together with the ini-
tial condition µ∗1(x1) = p1(x1) and the terminal condition
φ∗T+1(xT+1, u

T
T−n+1) , exp{−cT+1(xT+1)}.

The optimality condition (23) can be utilized to develop
a numerical algorithm to find an optimal solution candidate
to the simplified TERMDP (13). Unfortunately, it will soon
be shown that the optimality condition (23) is only necessary
in general. Since (23) is a nonlinear condition, it is possible
that (23) admits multiple distinct solutions, some of which
may correspond to local minima and saddle points of the
simplified TERMDP (13). Theorem 1 is closely related to the
previously obtained condition in [22] and [23]. Theorem 1
refines the results of [22] and [23] by incorporating the
underlying Makovian structure of the simplified TERMDP
(13).

B. Forward-Backward Arimoto-Blahut Algorithm

As the second contribution, we propose an iterative algo-
rithm to solve (23) numerically. To this end, we classify the
five equations into two groups. Equations (23a) and (23b) form
the first group (characterizing variables µ∗ and ν∗), and equa-
tions (23c)-(23e) form the second group (characterizing vari-
ables ρ∗, φ∗, and q∗). Observe that if the variables (ρ∗, φ∗, q∗)
are known, then the first set of equations, which can be viewed
as the Kolmogorov forward equation, can be solved forward in
time to compute (µ∗, ν∗). Conversely, if the variables (µ∗, ν∗)
are known, then the second set of equations, which can be
viewed as the Bellman backward equation, can be solved
backward in time to compute (ρ∗, φ∗, q∗). Hence, to compute
these unknowns simultaneously, the following boot-strapping
method is natural: first, the forward computation is performed
using the current best guess of the second set of unknowns,
and then the backward computation is performed using the
updated guess of the first set of unknowns. The forward-
backward iteration is repeated sufficiently many times. The
proposed algorithm is summarized in Algorithm 1. Notice that
Algorithm 1 is a generalization of the standard Arimoto-Blahut
algorithm (20), which can be recovered as a special case with
T = 1, m = n = 0 and CT+1(·) = 0.

Clearly, solutions of (23) are fixed points of Algorithm 1.
The second main result of this paper is stated as follows.

Theorem 2: For each initial condition (24), the sequence
q(k) generated by Algorithm 1 has a limit point. Moreover,
every limit point q∗ satisfies (23).

Theorems 1 and 2 together imply that every limit point of
Algorithm 1 is an optimal solution candidate for TERMDP.
The following remarks clarify some limitations of our main
results, which require further analysis in future work.

Remark 1:
1) Since (23) is only a necessary optimality condition, a limit

point may not be a local minimum of the given TERMDP.
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µ∗t+1(xt+1, u
t
t−n+1) =

∑
xt∈Xt

∑
ut−n∈Ut−n

pt+1(xt+1|xt, ut)q∗t (ut|xt, ut−1t−n)µ∗t (xt, u
t−1
t−n) (23a)

ν∗t (ut|ut−1t−n) =
∑
xt∈Xt

q∗t (ut|xt, ut−1t−n)µ∗t (xt|ut−1t−n), ∀ut−1t−n such that µt(ut−1t−n) > 0 (23b)

ρ∗t (xt, u
t
t−n+1) = ct(xt, ut)−

∑
xt+1∈Xt+1

pt+1(xt+1|xt, ut) log φ∗t+1(xt+1, u
t
t−n+1) (23c)

φ∗t (xt, u
t−1
t−n) =

∑
ut∈Ut

ν∗t (ut|ut−1t−n) exp
{
−ρ∗t (xt, utt−n+1)

}
(23d)

q∗t (ut|xt, ut−1t−n) =
ν∗t (ut|ut−1t−n) exp

{
−ρ∗t (xt, utt−n)

}
φ∗t (xt, u

t−1
t−n)

, ∀(xt, ut−1t−n) such that µt(xt, ut−1t−n) > 0 (23e)

Algorithm 1: Forward-Backward Arimoto-Blahut Algorithm
Initialize:

q
(0)
t (ut|xt, ut−1t−n) > 0 for t = 1, 2, ..., T ; (24)

φ
(k)
T+1(xT+1, u

T
T+1−n) , exp{−cT+1(xT+1)} for k = 1, 2, ...,K;

for k = 1, 2, ...,K (until convergence) do
// (Forward path);
for t = 1, 2, ..., T do

µ
(k)
t+1(xt+1, u

t
t−n+1) =

∑
xt∈Xt

∑
ut−n∈Ut−n

pt+1(xt+1|xt, ut)q(k−1)t (ut|xt, ut−1t−n)µ
(k)
t (xt, u

t−1
t−n); (25a)

ν
(k)
t (ut|ut−1t−n) =

∑
xt∈Xt

q
(k−1)
t (ut|xt, ut−1t−n)µ

(k)
t (xt|ut−1t−n); (25b)

// (Backward path);
for t = T, T − 1, ..., 1 do

ρ
(k)
t (xt, u

t
t−n) = ct(xt, ut)−

∑
xt+1∈Xt+1

pt+1(xt+1|xt, ut) log φ
(k)
t+1(xt+1, u

t
t−n+1); (26a)

φ
(k)
t (xt, u

t−1
t−n) =

∑
ut∈Ut

ν
(k)
t (ut|ut−1t−n) exp

{
−ρ(k)t (xt, u

t
t−n)

}
; (26b)

q
(k)
t (ut|xt, ut−1t−n) =

ν
(k)
t (ut|ut−1

t−n) exp
{
−ρ(k)t (xt,u

t
t−n)

}
φ
(k)
t (xt,u

t−1
t−n)

; (26c)

Return q(K)
t (ut|xt, ut−1t−n);

Section IV-C below presents an example in which one of
the limit points is a saddle point.

2) Theorem 2 does not guarantee the existence of
limk→∞ q(k) (e.g., the sequence may oscillate between
distinct points). However, we were not able to construct
such a counterexample.

3) In the classical Arimoto-Blahut algorithm, there is a known
stopping criterion by which suboptimality of the iteration
is estimated effectively (e.g., [25, Fig. 3]). Currently, such
a stopping criterion is not known for Algorithm 1.

The number of arithmetic operations to perform a sin-
gle forward-backward path in Algorithm 1 is estimated as
O(T |X |2|U|n+1). Notice that it is linear in T , grows expo-
nentially with n, and does not depend on m.

C. Nonconvexity

Due to the nonconvexity of the value functions in (14),
the optimality condition (23) is only necessary in general.
In fact, depending on the initial condition, Algorithm 1 can
converge to different stationary points corresponding to local
minima and saddle points of the considered TERMDP (13).
To demonstrate this, consider a simple problem instance of the
TERMDP (13) with T = 2, n = 0, X = {0, 1}, U = {0, 1},

ct(xt, ut) =

{
0 if ut = xt

1 if ut 6= xt

for t = 1, 2, and c3(x3) ≡ 0. The initial state distribution is
assumed to be µ1(x1 = 0) = µ1(x1 = 1) = 0.5, and the state
transitions are deterministic in that

pt+1(xt+1|xt, ut) =

{
1 if xt+1 = ut

0 if xt+1 6= ut.
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To see that this problem has multiple distinct local minima,
we solve the Bellman equation (14) numerically by griding
the space of probability distributions. Specifically, at t = 2,
the value function V2(µ2(x2)) is computed by solving the
minimization

V2(µ2(x2)) = min
q2(u2|x2)

{Ec2(X2, U2) + I(X2;U2)}.

Since µ2(x2) is an element of a single-dimensional probability
simplex, it can be parameterized as µ2(x2 = 0) = λ and
µ2(x2 = 1) = 1 − λ with λ ∈ [0, 1]. For each fixed λ, the
minimization above is solved by the standard Arimoto-Blahut
iteration:

ν
(k)
2 (u2) =

∑
x2∈{0,1}

µ2(x2)q
(k−1)
2 (u2|x2)

φ
(k)
2 (x2) =

∑
u2∈{0,1}

ν
(k)
2 (u2) exp{−c2(x2, u2)}

q
(k)
2 (u2|x2) =

ν
(k)
2 (u2) exp{−c2(x2, u2)}

φ
(k)
2 (x2)

.

After the convergence, the value function is computed as

V2(µ2(x2)) = −
∑

x2∈{0,1}

µ2(x2) log φ
(k)
2 (x2).

Fig. 1 (Left) shows V2(µ2(x2)) as a function of λ. It is
clearly nonconvex. After V2(µ2(x2)) is obtained, the Bellman
equation at time t = 1 can be evaluated as

V1(µ1(x1)) = min
q1(u1|x1)

{Ec1(X1, U1)+I(X1;U1)+V2(µ2(x2))}.
(27)

Due to the nonconvexity of V2(µ2(x2)), the objective function
in the minimization (27) is a nonconvex function of q1(u1|x1).
Fig. 1 (Right) shows the objective function in (27) plotted as
a function of q1 parameterized by θ0 and θ1:

q1(u1 = 0|x1 = 0) = θ0

q1(u1 = 1|x1 = 0) = 1− θ0
q1(u1 = 0|x1 = 1) = θ1

q1(u1 = 1|x1 = 1) = 1− θ1.

Clearly, it is a nonconvex function, admitting two local minima
(A and C) and a saddle point (B). Each of them is a fixed point
of Algorithm 1.

V. DERIVATION OF MAIN RESULTS

This section provides technical details of the proofs of
Theorems 1 and 2.

A. Preparation

The first step is to rewrite the objective function in (13)
as an explicit function of qT . For each t = 1, 2, ..., T , let
µt(xt|ut−1t−n) be the conditional distribution obtained from
µt(xt, u

t−1
t−n) whenever µt(ut−1t−n) > 0. Define the conditional

distribution νt by

νt(ut|ut−1t−n) =
∑

xt∈Xt
qt(ut|xt, ut−1t−n)µt(xt|ut−1t−n). (28)

0 0.5 1
0

0.1

0.2

0.3

0.4

V
al

ue
 fu

nc
tio

n,
 V

2

0.8

0.
8

0.8

11.
21.
41.6

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

1

A

B

C

Fig. 1. Left: The value function V2. Right: Contour plot of the objective
function Ec1(x1, u1)+I(X1;U1)+V2(µ2(x2)) in (27) as a function of θ0
and θ1. Stationary points A and B are local minima, whereas C is a saddle
point. Two sample trajectories of the proposed forward-backward Arimoto-
Blahut algorithm (Algorithm 1) started with different initial conditions are also
shown. It can be shown that A, B and C are all fixed points of Algorithm 1.

When µt(ut−1t−n) = 0, νt is defined to be the uniform distribu-
tion on Ut. For each t = 1, 2, ..., T , we consider νt and qt as
elements of Euclidean spaces, i.e.,

νt(ut|ut−1t−n) ∈ R|Ut−n|×···×|Ut| (29a)

qt(ut|xt, ut−1t−n) ∈ R|Ut−n|×···×|Ut|×|Xt|. (29b)

Since νt and qt are conditional probability distributions, they
are entry-wise non-negative (denoted by νt ≥ 0 and qt ≥ 0)
and∑
ut∈Ut

νt(ut|ut−1t−n) = 1 ∀ut−1t−n ∈ U t−1t−n (30a)∑
ut∈Ut

qt(ut|xt, ut−1t−n) = 1 ∀(xt, ut−1t−n) ∈ Xt × U t−1t−n. (30b)

Thus, the feasibility sets for νT and qT are

Xν = {νT : (29a), (30a) and νt ≥ 0 for every t = 1, 2, ..., T};
Xq = {qT : (29b), (30b) and qt ≥ 0 for every t = 1, 2, ..., T}.

Using µt, νt and qt, the stage-wise cost in (13) can be written
as

`t(µt, νt, qt) , Ect(Xt, Ut) + I(Xt;Ut|U t−1t−n)

=
∑
xk∈Xk

∑
ukk−n∈U

k
k−n

µk(xk, u
k−1
k−n)qk(uk|xk, uk−1k−n)

×

(
log

qk(uk|xk, uk−1k−n)

νk(uk|uk−1k−n)
+ck(xk, uk)

)
for t = 1, 2, ..., T and

`T+1(µT+1) , EcT+1(XT+1)

=
∑

xT+1∈XT+1

µT+1(xT+1)cT+1(xT+1)

for the final time step. Thus, the objective function in (13) is

f(νT , qT ) =
∑T

t=1
`t(µt, νt, qt) + `T+1(µT+1). (31)
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Notice that we consider (31) as a function of νT and qT ,
which turns out to be convenient in order to view Algorithm 1
as a two-block BCD algorithm. Our problem is to minimize
f(νT , qT ) over Xν × Xq subject to the equality constraint
(28). However, the following result states that (28) will be
automatically satisfied by a coordinate-wise minimizer νT of
f(νT , qT ) for a fixed qT .

Lemma 2: [25, Theorem 4(b)] Let qT ∈ Xq be fixed. Then

min f(νT , qT ) (32a)

s.t. νT ∈ Xν (32b)

is a convex optimization problem with respect to νT , and an
optimal solution is given by (28).

Therefore, the simplified TERMDP (13) can be written as

min f(νT , qT ) (33a)

s.t. νT ∈ Xν , q
T ∈ Xq. (33b)

(Including the equality constraint (28) in (33) does not alter the
the optimal solution because of Lemma 2.) Notice that if qT∗ is
a local minimizer for (13), then there exists a vector νT∗ ∈ Xν
such that (νT∗, qT∗) is a local minimizer for (33). Moreover,
a local minimizer (νT∗, qT∗) is necessarily a coordinate-wise
local minimizer. By coordinate-wise convexity (which will be
shown below) of f(νT , qT ), we have:

νT∗ ∈ arg minνT∈Xν f(νT , qT∗) (34a)

qT∗ ∈ arg minqT∈Xq f(νT∗, qT ). (34b)

Therefore, (34) is a necessary condition for qT∗ to be a
local minimizer for the simplified TERMDP (13). In the next
subsection, we further show that (34) implies the condition
(23), which thus shows that (23) is a necessary optimality
condition for the simplified TERMDP (13). This argument
outlines the proof of Theorem 1, which will be detailed in
Section V-C.

B. Analysis of Algorithm 1

For the analysis of Algorithm 1, a key observation is that
it is the two-block BCD algorithm applied to (34):

νT (k) = arg minνT∈Xν f(νT , qT (k−1)) (35a)

qT (k) = arg minqT∈Xq f(νT (k), qT ). (35b)

To prove that the backward path (26) is equivalent to the
coordinate-wise minimization (35b), we remark that the min-
imization problem (35b) can be viewed as an optimal control
problem with respect to the control actions qT = (q1, ..., qT ).
The next lemma essentially shows that the backward path (26)
is solving (35b) by backward dynamic programming.

Lemma 3: Suppose

(ν
(k)
1 , ..., ν

(k)
T ) ∈ Xν ,

(q
(k−1)
1 , ..., q

(k−1)
τ−1 , qτ , q

(k)
τ+1, ..., q

(k)
T ) ∈ Xq,

and {µt+1}Tt=1 is the sequence of probability measures gen-
erated by (q

(k−1)
1 , ..., q

(k−1)
τ−1 , qτ , q

(k)
τ+1, ..., q

(k)
T ) via (12). Let

ρ
(k)
τ , φ

(k)
τ and q

(k)
τ be the parameters obtained by computing

(26) backward in time for t = T, ..., τ . Then, for each
τ = T, T − 1, ..., 1, the following statements hold:

(a) The function

f(ν
(k)
1 , ..., ν

(k)
T , q

(k−1)
1 , ..., q

(k−1)
τ−1 , qτ , q

(k)
τ+1, ..., q

(k)
T )

is convex in qτ ≥ 0, and any global minimizer q◦τ
satisfies q◦τ = q

(k)
τ almost everywhere with respect to

µτ (xτ , u
τ−1
τ−n).

(b) The cost-to-go function under the policy {q(k)t }Tt=τ is
linear in µτ :∑T

t=τ
`t(µt, ν

(k)
t , q

(k)
t ) + `T+1(µT+1)

= −
∑
xτ∈Xτ

∑
uτ−1
τ−n∈U

τ−1
τ−n

µτ (xτ , u
τ−1
τ−n) log φ(k)τ (xτ , u

τ−1
τ−n).

Proof: The proof is by backward induction. For the time
step T , we have

f(ν
(k)
1 , ..., ν

(k)
T , q

(k−1)
1 , ..., q

(k−1)
T−1 , qT )

=
∑

xT∈XT

∑
uTT−n∈UTT−n

µT (xT , u
T−1
T−n)qT (uT |xT , uT−1T−n)

×

(
log

qT (uT |xT , uT−1T−n)

ν
(k)
T (uT |uT−1T−n)

+ρ
(k)
T (xT , u

T
T−n)

)
+ const. (36)

where µT , ν(k)T , ρ
(k)
T and “const.” do not depend on qT .

Convexity of (36) in qT is clear, as qT log qT is a convex
function in qT . Moreover, minimization of (36) in terms of
qT has the same structure as the minimization problem (17)
in terms of q(u|x). Therefore, it follows from Proposition 3
that the minimizer q◦T for (36) is given by q◦T = q

(k)
T . This

establishes (a) for the time step τ = T . The statement (b) for
τ = T can be directly shown by substituting the expression
of q(k)t given by (26c) with t = T into (36):

`T (µT , ν
(k)
T , q

(k)
T ) + `T+1(µT+1)

=
∑

xT∈XT

∑
uTT−n∈UTT−n

µT (xT , u
T−1
T−n)q

(k)
T (uT |xT , uT−1T−n)

×

(
log

q
(k)
T (uT |xT , uT−1T−n)

ν
(k)
T (uT |uT−1T−n)

+ ρ
(k)
T (xT , u

T
T−n)

)
(37a)

=
∑

xT∈XT

∑
uTT−n∈UTT−n

µT (xT , u
T−1
T−n)q

(k)
T (uT |xT , uT−1T−n)

×
(
− log φ

(k)
T (xT , u

T−1
T−n)

)
(37b)

= −
∑

xT∈XT

∑
uT−1
T−n∈U

T−1
T−n

µT (xT , u
T−1
T−n) log φ

(k)
T (xT , u

T−1
T−n)

×
∑

uT∈UT

q
(k)
T (uT |xT , uT−1T−n)︸ ︷︷ ︸

=1

. (37c)

To complete the proof, we show that if (b) holds for the
time step τ +1, then both (a) and (b) hold for the time step τ .
Since (b) is hypothesized for τ + 1, using ρ(k)τ , it is possible
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to write

f(ν
(k)
t , ..., ν

(k)
T , q

(k−1)
1 , ..., q

(k−1)
τ−1 , qτ , q

(k)
τ+1, ..., q

(k)
T )

=
∑
xτ∈Xτ

∑
uττ−n∈Uττ−n

µτ (xτ , u
τ−1
τ−n)qτ (uτ |xτ , uτ−1τ−n)

×

(
log

qτ (uτ |xτ , uτ−1τ−n)

ν
(k)
τ (uτ |uτ−1τ−n)

+ ρ(k)τ (xτ , u
τ
τ−n)

)
+ const. (38)

where µτ , ν(k)τ , ρ(k)τ and “const.” do not depend on qτ .
Namely, (38) is convex in qτ . Proposition 3 is applicable
once again to conclude that a minimizer coincides with q

(k)
τ

almost everywhere with respect to µτ (xτ , u
τ−1
τ−n). Hence, (a)

is established for the time step τ . The statement (b) for τ can
be shown by a direct substitution. The details are similar to
(37).

C. Proof of main results

Based on the observations so far, the main theorems in this
paper are established as follows.

Proof of Theorem 1: For a given {q∗t }Tt=1, we define
{µ∗t }Tt=1 via (23a) and hence (23a) is automatically satisfied.
By Lemma 2, for any locally optimal solution {q∗t }Tt=1 to
(13), there exist variables {ν∗t }Tt=1 satisfying (23b), such that
{ν∗t , q∗t }Tt=1 is a locally optimal solution to (33). Since local
optimality implies coordinate-wise local optimality, for each
t = 1, 2, ..., T , q∗t is a local minimizer of

f(ν∗1 , ..., ν
∗
T , q
∗
T , ..., q

∗
t+1, qt, q

∗
t−1, ..., q

∗
1). (39)

However, Lemma 3 is applicable (with ν
(k)
τ = ν∗τ for τ =

1, ..., T , q(k)τ = q∗τ for τ = t + 1, ..., T and q
(k−1)
τ = q∗τ for

τ = 1, ..., t− 1) to conclude that (39) is convex in qt ≥ 0 and
hence

q∗t ∈ arg min
qt≥0

f(ν∗1 , ..., ν
∗
T , q
∗
T , ..., q

∗
t+1, qt, q

∗
t−1, ..., q

∗
1).

Moreover, Lemma 3 (a) also implies that if the parameters
{ρ∗τ , φ∗τ}Tτ=t are calculated by (23c)-(23d) backward in time,
then any global minimizer

q◦t ∈ arg min
qt≥0

f(ν∗1 , ..., ν
∗
T , q
∗
T , ..., q

∗
t+1, qt, q

∗
t−1, ..., q

∗
1)

satisfies

q◦t =
ν∗t (ut|ut−1t−n) exp

{
−ρ∗t (xt, utt−n)

}
φ∗t (xt, u

t−1
t−n)

µt-almost everywhere. Hence (23e) must hold.

Proof of Theorem 2: The fact that the sequence q(k)

generated by Algorithm 1 has a limit point follows from the
fact that Xq is a compact set.

To show that every limit point of the sequence (ν(k), q(k))
generated by Algorithm 1 is a stationary point for (33), observe
that
(a) The update rule (25b) is equivalent to (35a); and
(b) The update rule (26c) is equivalent to (35b).

The fact (a) follows from Lemma 2 and (b) follows from
Lemma 3. Therefore, Algorithm 1 is equivalent to the two-
block BCD algorithm to which Lemma 1 is applicable.

Finally, we claim that every stationary point for (33) satisfies
(23). To see this, notice that every stationary point (νT∗, qT∗)
is a coordinate-wise stationary point. Since f(νT , qT ) is
coordinate-wise convex, (νT∗, qT∗) is a coordinate-wise min-
imizer, i.e., (34) holds. By Lemma 2, conditions (23a) and
(23b) are necessary for (34a). By Lemma 3 (with ν

(k)
τ = ν∗τ

for τ = 1, ..., T , q(k)τ = q∗τ for τ = t+1, ..., T and q(k−1)τ = q∗τ
for τ = 1, ..., t − 1), conditions (23c)-(23e) are necessary for
(34b).

VI. INTERPRETATIONS

In this section, we discuss two applications of TERMDP in
engineering and scientific contexts in which transfer entropy
plays central roles.

A. Networked Control Systems

The first application is the analysis of networked control
systems, where the sensor data is transmitted to the controller
over a rate-limited communication channel. Fig. 2 shows a
discrete-time, finite-horizon MDP setup in which a decision
policy must be realized by a joint design of encoder and
decoder, together with an appropriate codebook for discrete
noiseless channel. Most generally, assume that an encoder is a
stochastic kernel et(wt|xt, wt−1) and a decoder is a stochastic
kernel dt(ut|wt, ut−1). At each time step, a codeword wt is
chosen from a codebook Wt such that |Wt| = 2Rt . We refer
to R =

∑T
t=1Rt as the rate of communication. The next

proposition claims that the rate of communication in Fig. 2 is
fundamentally lower bounded by the directed information.

Proposition 4: Let the encoder and the decoder be
any stochastic kernels of the form et(wt|xt, wt−1) and
dt(ut|wt, ut−1). Then R log 2 ≥ I(XT → UT ).
Proof: Note that

R log 2=
∑T

t=1
Rt log 2

≥
∑T

t=1
H(Wt)

≥
∑T

t=1
H(Wt|W t−1, U t−1)

≥
∑T

t=1
H(Wt|W t−1, U t−1)−H(Wt|Xt,W t−1, U t−1)

=
∑T

t=1
I(Xt;Wt|W t−1, U t−1)

, I(XT →WT ‖UT−1).

The first inequality is due to the fact that entropy of a discrete
random variable cannot be greater than its log-cardinality.
Notice that a factor log 2 appears since we are using the natural
logarithm in this paper. The second inequality holds because
conditioning reduces entropy. The third inequality follows
since entropy is nonnegative. The last quantity is known as the
causally conditioned directed information [37]. The feedback
data-processing inequality [24]

I(XT → UT ) ≤ I(XT →WT ‖UT−1)

is applicable to complete the proof.
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State Transition 
𝑝𝑝𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡) 

Encoder Decoder 

𝑋𝑋𝑡𝑡 𝑈𝑈𝑡𝑡 

𝑊𝑊𝑡𝑡 

Discrete noiseless channel 
 with alphabet size 2𝑅𝑅𝑡𝑡  

Fig. 2. MDP over discrete noiseless channel.

Proposition 4 provides a fundamental performance limi-
tation of a communication system when both encoder and
decoder have full memories of the past. However, it is also
meaningful to consider restricted scenarios in which the en-
coder and decoder have limited memories. For instance:
(A) The encoder stochastic kernel is of the form et(wt|xtt−m)

and the decoder stochastic kernel is of the form
dt(ut|wt, utt−n); or

(B) The encoder stochastic kernel is et(wt|xtt−m, ut−1t−n) and
the decoder is a deterministic function ut = dt(wt). The
encoder has an access to the past control inputs ut−1t−n
since they are predictable from the past wt−1t−n because
the decoder is a deterministic map.

The next proposition shows that the transfer entropy of degree
(m,n) provides a tighter lower bound in these cases.

Proposition 5: Suppose that the encoder and the decoder
have structures specified by (A) or (B) above. Then

R log 2 ≥ Im,n(XT → UT ).

Proof: See Appendix D.

By solving the TERMDP (7) with different β ≥ 0, one can
draw a trade-off curve between J(XT+1, UT ) and I(XT →
UT ). Proposition 5 means that this trade-off curve shows a
fundamental limitation of the achievable control performance
under the given data rate.

The tightness of the lower bounds provided by Proposi-
tions 4 and 5 (i.e., whether it is possible to construct an
encoder-decoder pair such that the data rate matches its lower
bound while satisfying the desired control performance) is the
natural next question. In the LQG control setup, this question
has been studied in [38]–[41]. In these references, it is shown
that the conservativeness of the lower bound provided by
Proposition 4 is no greater than a small constant. Beyond the
LQG setting, the question is currently wide open.

B. Maxwell’s demon

Maxwell’s demon is a physical device that can seemingly
violate the second law of thermodynamics, which turns out to
be a prototypical thought-experiment that connects statistical
physics and information theory [6]. One of the simplest
forms of Maxwell’s demon is a device called the Szilard
engine. Below, we introduce an application of TERMDP to
the analysis of the efficiency of a generalized Szilard engine
extracting work at a non-zero rate (in contrast to the common
assumption that the engine is operated infinitely slowly).

Consider a single-molecule gas trapped in a box (“engine”)
that is immersed in a thermal bath of temperature T0 (Fig. 3).

The state of the engine at time t is represented by the position
and the velocity of the molecule, which is denoted by Xt ∈ X .
Assume that the state space is divided into finite cells so that
X is a finite set. Also, assume that the evolution of Xt is
described by a discrete-time random process.

At each time step t = 0, 1, ..., T − 1, suppose that one of
the following three possible control actions Ut can be applied:
(i) insert a weight-less barrier into the middle of the engine
box and move it to the left at a constant velocity v for a unit
time, (ii) insert a barrier into the middle of the box and move
it to the right at the velocity v for a unit time, or (iii) do
nothing. At the end of control actions, the barrier is removed
from the engine. We assume that the insertion and removal
of the barrier is frictionless and as such do not consume any
work. The sequence of operations is depicted in Fig. 3. Denote
by p(xt+1|xt, ut) the transition probability from the state xt
to another state xt+1 when control action ut is applied. By
Ec(Xt, Ut) we denote the expected work required to apply
control action ut at time t when the state of the engine is
xt.4 This quantity is negative if the controller is expected to
extract work from the engine. Work extraction occurs when
the gas molecule collides with the barrier and “pushes” it in
the direction of its movement.

Right before applying a control action Ut, suppose that
the controller makes (a possibly noisy) observation of the
engine state, and thus there is an information flow from Xt

to U t. For our discussion, there is no need to describe what
kind of sensing mechanism is involved in this step. However,
notice that if an error-free observation of the engine state
Xt is performed, then the controller can choose a control
action such that Ec(Xt, Ut) is always non-positive. (Consider
moving the barrier always to the opposite direction from the
position of the gas molecule.) At first glance, this seems to
imply that one can construct a device that is expected to
cyclically extract work from a single thermal bath, which is
a contradiction to the Kelvin-Planck statement of the second
law of thermodynamics.

It is now widely recognized that this paradox (Maxwell’s
demon) can be resolved by including the “memory” of the
controller into the picture. Recently, a generalized second law
is proposed by [10], in which transfer entropy plays a critical
role. Viewing the combined engine and memory system as
a Bayesian network comprised of Xt and Ut (see [10] for
details), and assuming that the free energy change of the
engine from t = 0 to t = T is zero (which is the case when the
above sequence of operations are repeated in a cyclic manner
with period T ), the generalized second law [10, equation (10)]
reads

T−1∑
t=0

Ec(Xt, Ut) + kBT0I(XT−1
0 → UT−10 ) ≥ 0 (40)

where kB [J/K] is the Boltzmann constant. The above in-
equality shows that a positive amount of work is extractable
(i.e., the first term can be negative), but this is possible only
at the expense of the transfer entropy cost (the second term

4Here, we do not provide a detailed model of the function c(xt, ut). See for
instance [42] for a model of work extraction based on the Langevin equation.
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Fig. 3. Modified Szilard engine. The controller performs the following steps
in a unit time. (a) The controller makes (a possibly noisy) observation of the
state Xt of the engine. (b) One of the three possible control actions Ut (move
the barrier to the left or to the right, or do nothing) is applied. (c) At the end
of control action, the barrier is removed.

must be positive).5 Given a fundamental law (40), a natural
question is how efficient the considered thermal engine can be
by optimally designing a control policy q(ut|xt, ut−1). This
can be analyzed by minimizing the left hand side of (40),
which is precisely the TERMDP problem (7).

VII. NUMERICAL EXPERIMENT

In this section, we apply the proposed forward-backward
Arimoto-Blahut algorithm (Algorithm 1) to study how the
price of information affects the level of information-frugality,
which yields qualitatively different decision policies.

Consider a situation in which Alice, whose movements
are described by Markovian dynamics controlled by Bob,
is traveling through a maze shown in Fig. 4. Suppose that
Bob knows the geometry of the maze (including start and
goal locations), but observing Alice’s location is costly. We
model this problem as an MDP where the state Xt is the cell
where Alice is located at time step t, and Ut is a navigation
instruction given by Bob. The observation cost is characterized
by the transfer entropy. We assume five different instructions
are possible; u = N,E, S,W and R, corresponding to go
north, go east, go south, go west, and rest. The initial state is
the cell indicated by “S” in Fig. 4, and the motion of Alice is
described by a transition probability p(xt+1|xt, ut).

The transition probability is defined by the following rules.
At each cell, a transition to the indicated direction occurs
w.p. 0.8 if there is no wall in the indicated direction, while
transitions to any open directions (directions without walls)
occurs w.p. 0.05 each. With the remaining probability, Alice
stays in the same cell. If there is a wall in the indicated
direction, or u = R, then transition to each open direction
occurs w.p. 0.05, while Alice stays in the same cell with the
remaining probability.

5The consistency with the classical second law is maintained if one accepts
Landauer’s principle, which asserts that erasure of one bit of information from
any sort of memory device in an environment at temperature T0 [K] requires
at least kBT0 log 2 [J] of work. See [43] for the further discussions.

At each time step t = 1, 2, ..., T , the state-dependent cost
is defined by ct(xt, ut) = 0 if xt is already the target cell
indicated by “G” in Fig. 4, and ct(xt, ut) = 1 otherwise.
The terminal cost is 0 if xT+1 = G and 10000 otherwise.
We consider transfer entropy Im,n(XT → UT ) to quantify
the price of information that Bob must acquire about Alice’s
location. With some nonnegative weight β, the overall control
problem can be written as (7).

As shown in Fig. 4, there are two qualitatively different
paths from the origin to the target. The path A is shorter than
the path B, and hence Bob will try to navigate Alice along path
A when no information-theoretic cost is considered (i.e., β =
0). However, navigating Alice along the path A requires Bob
to have accurate information about Alice’s current location, as
this path is “risky” (there are many side roads with dead ends).
The path B is longer, but navigating through it is simpler;
rough knowledge about Alice’s location is sufficient to provide
correct instructions. Hence, it is expected that Bob would try to
navigate Alice through A when information is relatively cheap
(β is small), while he would choose B when information is
expensive (β is large).

Fig. 6 shows the solutions to the considered problem.
Solutions are obtained by iterating Algorithm 1 sufficiently
many times in four different conditions. Each plot shows a
snapshot of the state probability distribution µt(xt) at time
t = 25. Fig. 6 (a) is obtained under the setting that the cost
of information is high (β = 10), the planning horizon is long
(T = 55), and the transfer entropy of degree (m,n) = (0, 0)
is considered. Accordingly, a decision policy of the form
of qt(ut|xt) is considered. It can be seen that with high
probability, the agent is navigated through the longer path.
In Fig. 6 (b), the cost of information is reduced (β = 1)
while the other settings are kept the same. As expected, the
solution chooses the shorter path. Fig. 5 shows the time-
dependent information usage in (a) and (b); it shows that the
total information usage is greater in situation (b) than in (a).

We note that this simulation result is consistent with a
prior work [20], where similar numerical experiments were
conducted. Using Algorithm 1, we can further investigate the
nature of the problem. Fig. 6 (c) considers the same setting
as in (a) except that the planning horizon is shorter (T = 45).
This result shows that the solution becomes qualitatively
different depending on how close the deadline is even if the
cost of information is the same. Finally, Fig. 6 (d) considers
the case where the transfer entropy has degree (m,n) = (0, 1)
and the decision policy is of the form of qt(ut|xt, ut−1).
Although the rest of simulation parameters are unchanged
from (a), we observe that the shorter path is chosen in this
case. This result demonstrates that the solution to (7) can be
qualitatively different depending on the considered degree of
transfer entropy costs.

VIII. SUMMARY AND FUTURE WORK

In this paper, we considered a mathematical framework of
transfer-entropy-regularized Markov Decision Process (TER-
MDP), which is motivated both in engineering (networked
control systems) and scientific (non-equilibrium thermody-
namics) contexts. We derived structural properties of the
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Fig. 4. Information-regularized optimal navigation
through a maze.
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Fig. 5. Information usage by the policies (a) and (b) in
Fig. 6.
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Fig. 6. State probability distribution µt(xt) at t = 25.

optimal solution, and provided a necessary optimality con-
dition written as a set of coupled nonlinear equations. We
proposed an iterative numerical algorithm (forward-backward
Arimoto-Blahut algorithm) in which every limit point of the
generated sequence is guaranteed to be a stationary point of
the given TERMDP. By numerical simulation (information-
constrained maze navigation), it was demonstrated that the
proposed algorithm can be used to find an optimal solution
candidate.

The proposed algorithm has several limitations as sum-
marized in Remark 1, which must be addressed in future
work. Improvement of the convergence speed of the proposed
algorithm is also necessary for many applications. Finally, the
roles of transfer entropy in engineering and scientific applica-
tions (including networked control systems, non-equilibrium
thermodynamics and beyond) and implications of TERMDP
solutions studied in this paper need further investigation.
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APPENDIX

A. Proof of Proposition 1

Our proof is based on backward induction.
k = T : We prove (a) first. For a given

policy qT (ut|xT , uT−1), let λT (xT , uT ) ,
qT (uT |xT , uT−1)µT (xT , uT−1) be the joint distribution
induced by qT . Notice that

λT (xT , uT−1) = µT (xT , uT−1) (41)

holds by construction. Let λT (xT , u
T
T−n) and λT (xT , u

T−1
T−n)

be marginals of λT (xT , uT ). Construct a new policy q′T as

q′T (uT |xT , uT−1T−n) ,
λT (xT , u

T
T−n)

λT (xT , u
T−1
T−n)

(42)

if λT (xT , u
T−1
T−n) > 0, and as an arbitrary probability distribu-

tion on UT if λT (xT , u
T−1
T−n) = 0. Let

λ′T (xT , uT ) , q′T (uT |xT , uT−1T−n)µT (xT , uT−1) (43)

be the joint distribution induced by q′T . Then, we have

λT (xT , u
T
T−n) = λ′T (xT , u

T
T−n), (44)

which can be directly verified as

λ′T (xT , u
T
T−n)

=
∑

xT−1∈XT−1

uT−n−1∈UT−n−1

q′T (uT |xT , uT−1T−n)µT (xT , uT−1) (45a)

=
∑

xT−1∈XT−1

uT−n−1∈UT−n−1

q′T (uT |xT , uT−1T−n)λT (xT , uT−1) (45b)

= q′T (uT |xT , uT−1T−n)λT (xT , u
T−1
T−n)

= λT (xT , u
T
T−n) (45c)

where the equality (45a) holds by definition (43), (45b) by
(41), and (45c) by the construction (42). Now the Bellman
equation at k = T reads

VT (µT (xT , uT−1)) = min
qT

JcT (λT ) + JIT (λT )
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where

JcT (λT ) = EλT ,pT+1 (cT (XT , UT ) + cT+1(XT+1))

JIT (λT ) = IλT (XT
T−m;UT |UT−1T−n).

To establish (a) for k = T , it is sufficient to show that
JcT (λT ) = JcT (λ′T ) and JIT (λT ) ≥ JIT (λ′T ). The first equality
holds because of (44). To see the second inequality,

JIT (λT ) = IλT (XT
T−m;UT |UT−1T−n) (46a)

≥ IλT (XT ;UT |UT−1T−n) (46b)

= Iλ′T (XT ;UT |UT−1T−n) (46c)

= Iλ′T (XT ;UT |UT−1T−n)

+ Iλ′T (XT−1
T−m;UT |XT , U

T−1
T−n) (46d)

= Iλ′T (XT
T−m;UT |UT−1T−n) (46e)

= JIT (λ′T ). (46f)

The equality (46c) follows from (44). The second term in (46d)
is zero since UT is independent of XT−1

T−m given (XT , U
T−1
T−n)

by construction of λ′T in (43). Hence the statement (a) is
established for k = T .

The statement (b) follows immediately from the above
discussion. To establish (c), notice that due to (a), we can
assume the optimal policy of the form qT (uT |xT , uT−1T−n)
without loss of generality. Hence, due to (b), the Bellman
equation at k = T can be written as

VT (µT (xT , uT−1)) = min
qT (uT |xT ,uT−1

T−n)

{
I(XT ;UT |UT−1T−n)

+ EcT (XT , UT ) + EcT+1(XT+1)
}
.

Since the last expression depends on µT (xT , uT−1)
only through its marginal µT (xT , u

T−1
T−n), we conclude

that VT (µT (xT , uT−1)) is a function of the marginal
µT (xT , u

T−1
T−n) only. This establishes (c) for k = T .

k = t: Next, we assume (a), (b) and (c) hold for k = t+ 1.
To establish (a), (b) and (c) for k = t, notice that under the
induction hypothesis, we can assume without loss of generality
that policies for k = t + 1, t + 2, ..., T are of the form
qk(uk|xk, uk−1k−n), and that the value function at k = t + 1
depends only on µt+1(xt+1, u

t
t−n+1). With a slight abuse of

notation, the latter fact is written as

Vt+1(µt+1(xt+1, ut)) = Vt+1(µt+1(xt+1, u
t
t−n+1)).

Thus, the Bellman equation at k = t can be written as

Vt
(
µt(x

t, ut−1)
)

= min
qt(ut|xt,ut−1)

{
Ect(Xt, Ut)

+I(Xt
t−m;Ut|U t−1t−n) + Vt+1(µt+1(xt+1, u

t
t−n+1))

}
. (47)

Now, using the similar construction to the case for k = T , one
can show that for every qt(ut|xt, ut−1), there exists a policy
of the form q′t(ut|xt, ut−1t−n) such that the value of the objective
function in the right hand side of (47) attained by q′t is less
than or equal to the value attained by qt. This observation
establishes (a) for k = t. Statements (b) and (c) for k = t
follows similarly.

B. Local minima of simplified TERMDP

Let q = {q(ut|xt, ut−1)}Tt=1 be a given policy. We say that
the joint distribution λ(xT , uT ) is induced by q if it is defined
as

λ(xT , uT ) =

T∏
t=1

q(ut|xt, ut−1)p(xt|xt−1, ut−1)

with the initial time condition p(x1|x0, u0) = µ(x1). As in
the proof of Proposition 1, we construct a new policy q′ =
{q′(ut|xt, ut−1t−n)}Tt=1 from λ(xT , uT ) by

q′(ut|xt, ut−1t−n) =
λ(xt, u

t
t−n)

λ(xt, u
t−1
t−n)

for each t = 1, 2, ..., T . For simplicity of the analysis, we
assume that λ(xT , uT ) satisfies the following condition:

Assumption 1: For each t = 1, 2, ..., T and (xt, u
t−1
t−n) ∈

Xt × U t−1t−n, we have λ(xt, u
t−1
t−n) > 0.

Although this assumption is somewhat restrictive, it is valid
when, for instance, the transition probability p(xt|xt−1, ut−1)
and the policy q(ut|xt, ut−1) assign a nonzero probability
mass to each element of Xt and Ut, respectively. Denote by
λ′(xT , uT ) the joint distribution induced by q′, i.e.,

λ′(xT , uT ) =

T∏
t=1

q′(ut|xt, ut−1)p(xt|xt−1, ut−1)

=

T∏
t=1

λ(xt, u
t
t−n)

λ(xt, u
t−1
t−n)

p(xt|xt−1, ut−1). (48)

We write the construction of q′ from q via the procedure
above as q′ = π(q), where π : Q → Q′ is a map-
ping from the space Q of general policies of the form
{q(ut|xt, ut−1)}Tt=1 to the space Q′ of simplified policies of
the form {q(ut|xt, ut−1t−n)}Tt=1. Notice that Q′ ⊂ Q.

We first show that π is a continuous mapping with respect
to an appropriate metric on Q. Suppose q̄ ∈ Q and q̃ ∈ Q are
given policies, and let λ̄ and λ̃ be joint distributions induced
by q̄ and q̃, respectively. We define a metric ‖q̄− q̃‖ as the `1
distance between λ̄ and λ̃:

‖q̄ − q̃‖ ,
∑

xT∈XT ,uT∈UT
|λ̄(xT , uT )− λ̃(xT , uT )|. (49)

Claim 1: Suppose q̄ ∈ Q and q̃ ∈ Q satisfy Assumption 1.
For every ε > 0, there exists δ > 0 such that

‖q̄ − q̃‖ < δ ⇒ ‖π(q̄)− π(q̃)‖ < ε.

Proof: Let λ̄′ and λ̃′ be joint distributions induced by
q̄′ = π(q̄) and q̃′ = π(q̃), respectively. Notice that ‖q̄− q̃‖ < δ
means that

∑
XT ,UT |λ̄(xT , uT ) − λ̃(xT , uT )| < δ, which

implies that

|λ̄(xt, u
t
t−n)− λ̃(xt, u

t
t−n)| < δ and

|λ̄(xt, u
t−1
t−n)− λ̃(xt, u

t−1
t−n)| < δ.

Since (48) shows that λ′(xT , uT ) for each (xT , uT ) ∈ X T ×
UT is a rational function of λ(xt, u

t
t−n) and λ(xt, u

t−1
t−n), and
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a rational function is continuous in the domain of strictly pos-
itive denominators, for each ε > 0 and (xT , uT ) ∈ X T ×UT ,
there exists δ > 0 such that ‖q̄ − q̃‖ < δ implies

|λ̄′(xT , uT )− λ̃′(xT , uT )| < ε

|X T ||UT |
,

which further implies

‖π(q̄)− π(q̃)‖ = ‖q̄′ − q̃′‖

=
∑

xT∈XT ,uT∈UT
|λ̄′(xT , uT )− λ̃′(xT , uT )|

<
∑

xT∈XT ,uT∈UT

ε

|X T ||UT |

= ε.

The next claim shows that π leaves an element of Q′ invariant.
Claim 2: Suppose q ∈ Q′ and the induced joint distribution

λ satisfies Assumption 1. Then π(q) = q.
Proof: By definition,

λ(xt, ut) =

t∏
k=1

q(uk|xk, uk−1k−n)p(xk|xk−1, uk−1).

Therefore,

λ(xt, u
t
t−n) =

∑
xt−1∈X t−1

ut−n−1Ut−n−1

t∏
k=1

q(uk|xk, uk−1k−n)p(xk|xk−1, uk−1)

= q(ut|xt, ut−1t−n)
∑

xt−1∈X t−1

p(xt|xt−1, ut−1)

×
∑

ut−n−1∈Ut−n−1

t−1∏
k=1

q(uk|xk, uk−1k−n)p(xk|xk−1, uk−1)

(50)

and

λ(xt, u
t−1
t−n) =

∑
ut∈Ut

λ(xt, u
t
t−n)

=
∑

xt−1∈X t−1

p(xt|xt−1, ut−1)

×
∑

ut−n−1∈Ut−n−1

t−1∏
k=1

q(uk|xk, uk−1k−n)p(xk|xk−1, uk−1).

(51)

Let q′ = π(q). Then, from (50) and (51), we have

q′(ut|xt, ut−1t−n) =
λ(xt, u

t
t−n)

λ(xt, u
t−1
t−n)

= q(ut|xt, ut−1t−n).

Therefore, π(q) = q.

We are now ready to prove the following proposition stating
that a local minimum for the simplified TERMDP (13) is a
local minimum for the original TERMDP (7). For a given
policy q ∈ Q, denote by

f(q) = J(XT+1, UT ) + βIm,n(XT → UT )

the value of the TERMDP (7). By Proposition 1, it also follows
that if q ∈ Q′, then f(q) is equal to the value of the simplified
TERMDP (13), i.e.,

f(q) = J(XT+1, UT ) + βI0,n(XT → UT ).

Proposition 6: Suppose q∗ = {q∗(ut|xt, ut−1t−n)}Tt=1 ∈ Q′
satisfies Assumption 1. If q∗ is a local minimizer for the
simplified TERMDP (13), i.e.,
(a) there exists ε > 0 such that f(q∗) ≤ f(q′) holds for all

q′ ∈ Q′ with ‖q′ − q∗‖ < ε.
Then, q∗ is a local minimizer for the original TERMDP (7),
i.e.,
(b) there exists δ > 0 such that f(q∗) ≤ f(q) holds for all

q ∈ Q with ‖q − q∗‖ < δ.
Proof: Pick a constant ε > 0 such that the condition (a)
holds. By continuity of π (Claim 1), there exists a constant
δ > 0 such that

q ∈ Q, ‖q − q∗‖ < δ ⇒ ‖π(q)− q∗‖ < ε. (52)

Here, we have used the fact that π(q∗) = q∗ (Claim 2).
To complete the proof by contradiction, suppose the nega-

tion of the condition (b) holds:
(¬b) for every δ > 0, there exists q̄ ∈ Q such that ‖q̄−q∗‖ < δ

and f(q̄) < f(q∗).
Now, pick a policy q̄ ∈ Q such that ‖q̄ − q∗‖ < δ and

f(q̄) < f(q∗). (53)

If we write q̄′ , π(q̄) ∈ Q′, it also follows from (52) that

‖q̄′ − q∗‖ < ε. (54)

By Proposition 1, (53) implies that

f(q̄′) ≤ f(q̄) < f(q∗). (55)

However, (54) and (55) contradict (a). Therefore, the condition
(b) must hold.

C. Proof of Proposition 2

For each n′ ≥ n,

I0,n′(X
T → UT ) =

∑T

t=1
I(Xt;Ut|U t−1t−n′)

=
∑T

t=1
H(Ut|U t−1t−n′)−H(Ut|Xt, U

t
t−n′)

=
∑T

t=1
H(Ut|U t−1t−n′)−H(Ut|Xt, U

t
t−n).

In the last step, we used the fact that H(X|Y, Z) = H(X|Y )
holds when X and Z are conditionally independent given
Y . By the structure of qt(ut|xt, ut−1t−n), Ut and (Xt, U

t−1
t−n)

is conditionally independent of U t−n−1t−n′ . Now,

I0,n′(X
T → UT )− I0,n′+1(XT → UT )

=
∑T

t=1

(
H(Ut|U t−1t−n′)−H(Ut|U t−1t−n′−1)

)
≥ 0

since entropy never increases by conditioning.
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D. Proof of Proposition 5

For each t = 1, 2, ..., T , we have

I(Xt
t−m;Wt|U t−1t−n)

= I(Xt
t−m;Wt, Ut|U t−1t−n)

= I(Xt
t−m;Ut|U t−1t−n) + I(Xt

t−m;Wt|U tt−n)

≥ I(Xt
t−m;Ut|U t−1t−m).

The first equality is due to the particular structure of the
decoder specified by (A) or (B). Thus∑T

t=1
I(Xt

t−m;Wt|U t−1t−n) ≥ Im,n(XT → UT ).

The proof of Proposition 5 is complete by noticing the
following chain of inequalities.

R log 2=
∑T

t=1
Rt log 2

≥
∑T

t=1
H(Wt)

≥
∑T

t=1
H(Wt|W t−1, U t−1t−n)

≥
∑T

t=1
H(Wt|U t−1t−n)−H(Wt|Xt

t−m, U
t−1
t−n)

=
∑T

t=1
I(Xt

t−m;Wt|U t−1t−n).
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