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Arbitrary Order Fixed-Time Differentiators

Jaime A. Moreno, Member IEEE

Abstract

Differentiation is an important task in control, observation and fault detection. Levant’s

differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a

signal with a bounded high-order derivative. However, the convergence time, although finite,

grows unboundedly with the norm of the initial differentiation error, making it uncertain

when the estimated derivative is exact. In this paper we propose an extension of Levant’s

differentiator so that the worst case convergence time can be arbitrarily assigned independently

of the initial condition, i.e. the estimation converges in Fixed-Time. We propose also a family of

continuous differentiators and provide a unified Lyapunov framework for analysis and design.

I. INTRODUCTION

Given a (Lebesgue-measurable) signal f (t) defined on [0,∞) the objective of a

differentiator is to estimate as close as possible some of its time derivatives. Usually,

signal f (t) is composed of the base signal f0 (t), which we want to differentiate and is

assumed to be n-times differentiable, and a noise signal ν(t), that we will assume to be

uniformly bounded, i.e. f(t) = f0(t) + ν(t).
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In order to estimate the derivatives f
(i)
0 (t) = di

dti
f0 (t), for i = 1, · · · , n − 1, we

propose the following nonlinear family of differentiators (i = 1, · · · , n− 1)

ẋi = −kiφi (x1 − f) + xi+1 ,

ẋn = −knφn (x1 − f) ,
(1)

where the nonlinear output injection terms, given by

φi (z) = ϕi ◦ · · ·ϕ2 ◦ ϕ1 (z) , (2)

are the composition of the monotonic growing functions ϕi : R → R (note that ⌊z⌉p =
|z|psign(z))

ϕi (s) = κi ⌈s⌋
r0, i+1

r0, i + θi ⌈s⌋
r
∞, i+1

r
∞, i . (3)

ϕi is a sum of two (signed) power functions, with powers selected as r0, n = r∞, n = 1,

and for i = 1, · · · , n + 1

r0, i = r0, i+1 − d0 = 1− (n− i) d0 ,

r∞, i = r∞, i+1 − d∞ = 1− (n− i) d∞ ,
(4)

which are completely defined by two parameters −1 ≤ d0 ≤ d∞ < 1
n−1

. With this

selection the powers in (3) satisfy
r0, i+1

r0, i
≤ r∞, i+1

r∞, i
, so that the first term in ϕi (s) is

dominating for small values of s, while the second is dominating for large values of

s. This domination effect is naturally extended to the injection terms φi in (2). The

(internal) gains κi > 0 and θi > 0 can be selected as arbitrarily positive values, and

correspond to the desired weighting of each of the terms in ϕi (and therefore in φi).

One possible and simple selection is κi = µ and θi = 1 − µ for i = 1, · · · , n, with

0 < µ < 1 giving the weight of the low-power and the high-power terms. Note that,

since for d0 = −1 system (1) has a discontinuous right hand side, their solutions are

understood in the sense of Filippov [1].

Some well-known differentiators in the literature are homogeneous. For example, the

High-Gain observer used as differentiator in [2], [3] (see also [4]), being linear, is
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homogeneous of degree zero. The classical robust and exact differentiator proposed

by Levant [5], [6], [7] (see also [8]), has discontinuous injection terms and is also

homogeneous. A family of homogeneous differentiators, including the previous ones,

has been also proposed recently [9], [10], [8] for non positive homogeneity degrees, and

in [11] for arbitrary degrees.

Differentiator (1) is not homogeneous, but it is homogeneous in the bi-limit [12] (bl-

homogeneous for short), that is, near to the origin it is approximated by a homogeneous

system of degree d0 and far from the origin it is approximated by a homogeneous

system of degree d∞. Although the scaling properties of the homogeneous systems are

lost, the design of bl-homogeneous differentiators is more flexible, since the properties

near the origin and far from it can be assigned independently. In particular, by selecting

d0 = d∞ = d the differentiator (1) becomes homogeneous. For d = 0 one obtains

the High-Gain differentiator, for d = −1 Levant’s robust and exact differentiator is

recovered and for other values of d the family of differentiators in [9], [10], [8], [11] is

attained. Note that for d < 0 (resp. d = 0) the estimation converges in finite-time (resp.

exponentially). For d > 0 the convergence is asymptotic, but it attains any neighborhood

of zero in a time which is uniform in the initial conditions [12].

Of particular interest for a differentiator is a property that is only achieved when

d0 = d∞ = −1 [5], [6], [7]. In that case φn is discontinuous and it induces a Higher-Order

Sliding-Mode at the origin, allowing the estimation to converge (in the absence of noise)

exactly, robustly and in finite-time to the actual values of the signal derivatives, when

the n-th derivative of the signal is bounded by a non zero constant, i.e.

∣

∣

∣
f
(n)
0 (t)

∣

∣

∣
≤ ∆.

For all other values of d0 = d∞ > −1, convergence is only achieved if ∆ = 0.

One disadvantage of homogeneous (including Levant’s exact) differentiators with

negative homogeneity degree, is that the convergence time, although finite, grows unboundedly

(and faster than linearly) with the size of the initial estimation error. One of the nice

features of the bl-homogeneous design in general [12], and of the proposed differentiator
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(1) in particular, is that assigning a positive homogeneity degree to the ∞-limit approximation

d∞ > 0 and a negative homogeneity degree to the 0-limit approximation d0 < 0, it is

possible to counteract this effect: Convergence of the estimation will be achieved in

Fixed-Time (FxT) [13], that is, the estimation error converges globally, in finite-time and

the settling-time function is globally bounded by a positive constant T , independent of

the initial estimation error. This is an important feature, since the differentiator can be

designed such that we are sure that after an arbitrarily assigned time T the estimation is

correct no matter what the initial conditions are. Moreover, if d0 = −1 exact and robust

estimation is obtained for all signals having bounded Lipschitz constant

∣

∣

∣
f
(n)
0 (t)

∣

∣

∣
≤ ∆,

and not only for time polynomial signals, for which f
(n)
0 (t) ≡ 0. For the first order

differentiator (i.e. n = 2) this property has been obtained in [14], [15], [16], [17], using

quadratic-like Lyapunov functions [18], [19]. This approach for the discontinuous first-

order differentiator has been extended and refined in [20], where a detailed gain scaling

has been developed and a tight convergence time estimation has been obtained, using

the results of [21]. For differentiators of arbitrary order this can be achieved by using

a switching strategy between two homogeneous differentiators of positive and negative

degrees, as it is proposed in [22]. In [13] also a switching strategy between homogeneous

differentiators with restricted degrees is presented.

This work can be seen as an extension to an arbitrary order of the smooth strategy of

combining two homogeneous differentiators proposed in [14], [15], [16], and in the

recent work [20]. Our construction extends to the discontinuous case the recursive

observer design developed for continuous homogeneous observers in [23], [24] and

highly improved in [12], [25] for continuous bl-homogeneous observers. Although many

combinations in the selection of d0 ≤ d∞ are possible, we are particularly interested in

the cases −1 ≤ d0 ≤ 0 ≤ d∞ < 1
n−1

, and especially when d0 = −1.

In Section II, some necessary concepts on bl-homogeneous functions and systems are

briefly recalled. Section III presents the main properties of the proposed differentiator.
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Section IV contains all the proofs. A simulation example is presented in Section V. In

Section VI we draw some conclusions.

II. PRELIMINARIES

Our notation is fairly standard. We recall briefly some definitions of homogeneity and

homogeneity in the bi-limit. However, for precise definitions and properties, we refer the

reader to [27], [28], [29] for homogeneity of continuous or discontinuous systems, and

to [12], [30] for homogeneity in the bi-limit of continuous or discontinuous systems,

respectively.

For a vector x ∈ R
n, all real values ǫ > 0, and n positive real numbers ri > 0

the dilation operator is defined as ∆r

ǫx = [ǫr1x1, ..., ǫ
rnxn]

⊤
. Constants ri > 0 are the

weights of the coordinates xi, and r := [r1, ..., rn] is the vector of weights. A function

V : Rm 7→ R
n (resp. a vector field f : Rn 7→ R

n) is said to be r-homogeneous of degree

l ∈ R, or (r, l)-homogeneous for short, if for all ǫ > 0 and for all x ∈ R
m \ {0} the

equality V (∆r

ǫx) = ǫlV (x) (resp., f(∆r

ǫx) = ǫl∆r

ǫf(x)) holds.

A function ϕ : Rn 7→ R is said to be homogeneous in the 0-limit with associated

triple (r0, l0, ϕ0), if it is approximated near x = 0 by the (r0, l0)-homogeneous function

ϕ0. It is said to be homogeneous in the ∞-limit with associated triple (r∞, l∞, ϕ∞),

if it is approximated near x = ∞ by the (r∞, l∞)-homogeneous function ϕ∞. Similar

definitions apply for vector fields and set-valued vector fields. Finally, a function ϕ :

R
n 7→ R (or a vector field f : Rn → R

n, or set-valued vector field F : Rn ⇒ R
n) is said

to be homogeneous in the bi-limit, or bl-homogeneous for short, if it is homogeneous

in the 0-limit and homogeneous in the ∞-limit.

III. PROPERTIES OF THE DIFFERENTIATOR

The main result of this work states that the differentiator (1), in the absence of noise,

is able to estimate asymptotically the first n−1 derivatives of the signal f0 (t). Let S n
0 ,
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{

f (n) (t) ≡ 0
}

represent the class of polynomial signals, while S
n
∆ ,

{
∣

∣f (n) (t)
∣

∣ ≤ ∆
}

corresponds to the the class of n-Lipschitz signals.

Theorem 1. Assume that the signal f (t) satisfy the stated conditions. Select −1 ≤
d0 ≤ d∞ < 1

n−1
and choose arbitrary positive (internal) gains κi > 0 and θi > 0,

for i = 1, · · · , n. Assume further that

∣

∣

∣
f
(n)
0 (t)

∣

∣

∣
≤ ∆ for some non negative Lipschitz

constant ∆ > 0 if d0 = −1 or ∆ = 0 if d0 > 0. Under these conditions and in the absence

of noise (ν (t) ≡ 0), there exist appropriate gains ki > 0, for i = 1, · · · , n, such that the

solutions of the bl-homogeneous differentiator (1) converge globally and asymptotically

to the derivatives of the signal, i.e. xi (t) → f
(i−1)
0 (t) as t → ∞. In particular, they

converge in Fixed-Time, i.e. xi (t) → f
(i−1)
0 (t) as t → T̄ , for i = 1, · · · , n, if either

(a) −1 < d0 < 0 < d∞ < 1
n−1

and f (t) ∈ S n
0 , or

(b) −1 = d0 < 0 < d∞ < 1
n−1

and f (t) ∈ S n
∆.

All proofs are given in Section IV. The distinguishing feature of the differentiator (1),

compared to their homogeneous counterparts, is that it converges within a Fixed-Time

when d0 < 0 < d∞. For the discontinuous differentiator (d0 = −1) this is accomplished

for a much larger class of signals, since S n
0 ⊂ S n

∆, and S n
∆ is much larger than S n

0 .

Remark 2. The selection of the function ϕi in (3) is dictated by the simplicity and

concreteness of the presentation. However, a rather large family of functions can be

selected if they satisfy similar appropriate conditions.

A. Differentiation error dynamics and Lyapunov function

Defining the differentiation error as ei , xi − f
(i−1)
0 , their dynamics satisfy (i =

1, · · · , n− 1)

ėi = −kiφi (e1 − ν) + ei+1 ,

ėn = −knφn (e1 − ν) + δ (t) ,
(5)
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where δ (t) = −f
(n)
0 (t). For the variables z1 = e1

1
, zi = ei

ki−1
for i = 2, · · · , n, the

dynamics of (5) becomes

żi = −k̃i (φi (z1 − ν)− zi+1) ,

żn = −k̃n
(

φn (z1 − ν)− δ̄ (t)
)

,
(6)

where for i = 1, · · · , n,

k̃i =
ki
ki−1

, k0 = 1 , δ̄ (t) = −f (n) (t)

kn
.

For the convergence proof we will use a (smooth) bl-homogeneous Lyapunov Function

V . To define it we select for n ≥ 2 two positive real numbers p0 and p∞, corresponding

to the homogeneity degrees of the 0-limit and the ∞-limit approximations of V , such

that

p0 ≥ max
i∈{1,··· , n}

{

r0, i
r∞, i

(2r∞, i + d∞)

}

,

p∞ ≥ 2 max
i∈{1,··· , n}

{r∞, i}+ d∞ ,

(7)

p0
r0, i

<
p∞
r∞, i

. (8)

For i = 1, · · · , n choose arbitrary positive real numbers β0, i > 0, β∞, i > 0 and define

the functions

Zi (zi, zi+1) =
∑

j={0,∞}

(9)

βj,i

[

rj,i
pj

|zi|
pj

rj,i − zi ⌈ξ⌋
pj−rj,i

rj,i +
pj − rj,i

pj
|ξ|

pj

rj,i

]

where ξ = ϕ−1
i (zi+1), and for i = 1, · · · , n − 1, ϕ−1

i is the inverse function of ϕi

(3). For i = n take ξ = zn+1 ≡ 0, i.e. Zn (zn) = β0, n
1
p0
|zn|p0 + β∞, n

1
p∞

|zn|p∞ . The

Lyapunov Function candidate is then defined as

V (z) =
n−1
∑

j=1

Zj (zj , zj+1) + Zn (zn) . (10)

November 5, 2020 DRAFT
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Proposition 3. Let the hypothesis of Theorem 1 be satisfied, and select p0 and p∞ such

that (7) and (8) are fulfilled. Under these conditions and in the absence of noise, there

exist gains ki > 0, for i = 1, · · · , n, such that V (z) in (10) is a C1, bl-homogeneous

Lyapunov function for the estimation error dynamics (6) for any selection −1 ≤ d0 ≤
d∞ < 1

n−1
and if ∆ = 0 in case d0 6= −1. Moreover, V satisfies the differential inequality

(11) for some positive constants η0, η∞

V̇ (z) ≤ −η0V
p0+d0

p0 (z)− η∞V
p∞+d∞

p∞ (z) . (11)

Thus, z = 0 is a Globally Asymptotically Stable equilibrium point of (6). In particular,

if d0 < 0 < d∞ then z = 0 is Fixed-Time Stable (FxTS) [26], that is, it is globally

FTS and the settling-time function T (z0) is globally bounded by a positive constant T ,

independent of z0, i.e., ∃T ∈ R>0 such that ∀z0 ∈ R
n, T (z0) ≤ T . T (·) is continuous

at zero and locally bounded. Moreover, the Fixed-Time T can be estimated from (11) as

T̄ ≤ p0
d0η∞

(

p∞d0
p0d∞

− 1

)(

η0
η∞

)
1

( p∞d0
p0d∞

−1)
. (12)

Theorem 1 is in fact a consequence of this proposition.

B. Gain Calculation

Stabilizing gains ki > 0, i = 1, · · · , n, for the differentiator (6) can be calculated

using V (z).

Proposition 4. Let the hypothesis of Proposition 3 be satisfied. A sequence of stabilizing

gains ki > 0, for i = 1, · · · , n, can be calculated backwards as follows:

(a) Select knκn > ∆ and k̃n > 0.

(b) For i = n− 1, n− 2, · · · , 1 select

k̃i > ωi

(

k̃i−1, · · · , k̃n
)

.

November 5, 2020 DRAFT
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Functions ωi are given by (18), in Section IV-A, and are obtained from V and V̇ .

Each function ωi depends on the previous gains
(

k̃i−1, · · · , k̃n
)

, β0, j , β∞, j , d0, d∞,

p0, p∞, κj , and θj . Due to the recursive nature of the process, gains
(

k̃j, · · · , k̃n
)

are

appropriate for the differentiator of order n− j + 1.

C. Convergence acceleration and scaling the Lipschitz constant ∆

Perform on system (1), for arbitrary constants α > 0 and L > 0, the following scaling

of the gains,

κi →
(

Ln

α

)

d0
r0, i

κi , θi →
(

Ln

α

)
d∞

r
∞, i

θi , ki → Liki . (13)

It is easy to show that the linear state transformation

ei →
Ln−i+1

α
ei ,

together with a time scaling t → Lt, transforms the scaled error system to system (5).

This means that the convergence is accelerated and the Lipschitz constant increased as

T (z0) →
1

L
T (z0) , ∆ → α∆ .

Using the scaling (13), it is possible to assign an arbitrary pair of (worst case)

convergence time T̄ ∗ and Lipschitz constant ∆∗ to the differentiator, following the

procedure:

(i) Given d0 < 0 < d∞, κj > 0 and θj > 0, fix a set of stabilizing gains ki and the

corresponding supported perturbation size ∆, using e.g. Proposition 4.

(ii) Calculate the corresponding fixed-convergence time T̄ , either by means of (12) or

by simulations.

(iii) Select the scaling gains (α, L) of (13) as α ≥ ∆∗/∆ and L ≥ T̄ ∗/T̄ .

This procedure generalizes to an arbitrary order and arbitrary degrees that proposed

in [20] for the first order differentiator with d0 = −1. Note that this scaling, using two

parameters, is novel also for the homogeneous case.
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D. Effect of noise and the perturbation δ (t)

In the presence of noise the estimation error cannot be zero asymptotically, but it is

uniformly and ultimately bounded. Moreover, when d0 > −1 and ∆ > 0 the estimation

error is also only uniformly and ultimately bounded. This also happens when d0 = −1,

d∞ > −1 and the differentiator gains are not sufficiently large to fully compensate the

effect of δ (t).

Proposition 5. Let the hypothesis of Theorem 1 be satisfied and select stabilizing gains

ki for the differentiator (1). If −1 < d0 ≤ d∞ < 1
n−1

or −1 = d0 < d∞ < 1
n−1

then the

estimation error system (6) is Input-to-State Stable (ISS), considering ν (t) and δ (t) as

inputs.

It follows from Proposition 5 that if noise and perturbation are bounded, then the

estimation error z will be also bounded, and if (ν (t) , δ (t)) → 0 then e (t) → 0. The

precision for small noise signals is determined by the 0-limit approximation and it is

therefore identical to the one of the homogeneous differentiator of homogeneity degree

d0 [6], [7], [8], [10]. In particular, when d0 = −1, |ν (t)| ≤ ǫ, |δ (t)| ≤ ∆ the following

inequalities are achieved in finite-time

∣

∣

∣
xi (t)− f

(i−1)
0 (t)

∣

∣

∣
≤ λi∆

i−1

n |ǫ|
n−i+1

n , ∀t ≥ T .

IV. PROOF OF THE RESULTS: A LYAPUNOV APPROACH

We write (6) in compact form as ż ∈ F (z) + bδ̄ (t), where b = [0, · · · , 0, 1]T ∈ R
n.

Since for d0 = −1 the function φn (z1) is set-valued due to the sign function, F (z) is

in general a set-valued vector field which satisfies standard assumptions.

Since for i = 1, · · · , n−1, r0, i > 0 and r∞, i > 0, each function ϕi (zi) in (3) is C on

R, C1 on R \ {0}, strictly increasing and surjective. Its inverse ϕ−1
i (zi) is well-defined,

C on R, C1 on R \ {0}, and also strictly increasing. For ϕn (zn) the same is true if

November 5, 2020 DRAFT
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d0 > −1. If d0 = −1 function ϕn (zn) = κn ⌈zn⌋0 + θn ⌈zn⌋1+d∞ is discontinuous in

zn = 0, and C1 on R \ {0}.

Since d∞ > d0, ϕi (zi) in (3) is homogeneous in the 0-limit and in the ∞-limit,

with approximating functions ϕi, 0 (zi) = κi ⌈zi⌋
r0, i+1

r0, i and ϕi,∞ (zi) = θi ⌈zi⌋
r
∞, i+1

r
∞, i ,

respectively. For i = 1, · · · , n − 1, the inverse ϕ−1
i (s) is also homogeneous in the

0-limit and in the ∞-limit, with approximating functions ϕ−1
i, 0 (s) = 1

θi
⌈s⌋

r
∞, i

r
∞, i+1 and

ϕ−1
i,∞ (s) = 1

κi
⌈s⌋

r0, i

r0, i+1 , respectively. Note also that when d∞ > 0, for i = 1, · · · , n− 1,

ϕ−1
i, 0 (s) is homogeneous of negative degree, and therefore ϕ−1

i (s) not differentiable at

s = 0. However,
⌈

ϕ−1
i (s)

⌋µ
is differentiable at s = 0 for every µ ≥ r∞, i+d∞

r∞, i
, and

∣

∣ϕ−1
i (s)

∣

∣

µ
for every µ >

r∞, i+d∞

r∞, i
.

For i = 1, · · · , n − 1, functions φi in (2), being compositions of ϕj , are C on R,

C1 on R \ {0}, strictly increasing and surjective. In case d0 = −1, function φn (z1) =

κn ⌈z1⌋0 + θn ⌈ϕn−1 ◦ · · ·ϕ2 ◦ ϕ1 (z1)⌋
r
∞, n+1

r∞, n is discontinuous. Since it is used in the

Differential Inclusion (6), using the Filippov’s regularization procedure [1] it will become

an upper semi-continuous set-valued function, where the sign function ⌈s⌋0 is defined as

usually for s 6= 0, but for s = 0 its values are an interval, i.e. ⌈0⌋0 = [−1, 1] ∈ R. φi’s

are also homogeneous in the 0-limit and in the ∞-limit, with approximating functions

φi,0 (s) = Ki,0 ⌈s⌋
r0,i+1

r0,1 , φi,∞ (s) = Ki,∞ ⌈s⌋
r
∞,i+1

r
∞,1 ,

where Ki,0 =
∏i

j=1 κ

r0,i+1

r0,j+1

j , Ki,∞ =
∏i

j=1 θ

r
∞,i+1

r
∞,j+1

j . For δ (t) ≡ 0 system (6) is bl-

homogeneous with homogeneity degrees d0 and d∞ and weights r0 = [r0, 1, · · · , r0, n]
and r∞ = [r∞,1, · · · , r∞, n] as in (4).

Since ϕn (zn) is not involved in the definition of Zi, it has to satisfy weakened

conditions compared to the other functions ϕi. From the properties of functions ϕi

it follows that Zi is C on R. For Zi to be C1 on R the powers in (9) have to be

sufficiently large, what is the case if (7) is fulfilled. Note that if (8) is met, Zi is

also bl-homogeneous with approximations Zi, 0 (zi, zi+1), given by the first term in (9)

November 5, 2020 DRAFT



12

with ξ = 1
θi
⌈zi+1⌋

r
∞, i

r
∞, i+1 ; and Zi,∞ (zi, zi+1), given by the second term in (9) with

ξ = 1
κi
⌈zi+1⌋

r0, i

r0, i+1 . Moreover, functions Zi (zi, zi+1) are nonnegative.

Lemma 6. Zi (zi, zi+1) ≥ 0 for every i = 1, · · · , n and Zi (zi, zi+1) = 0 if and only if

ϕi (zi) = zi+1.

Proof: From Young’s inequality it follows that

zi ⌈ξ⌋
p0−r0, i

r0, i ≤ r0, i
p0

|zi|
p0

r0, i +

(

1− r0, i
p0

)

|ξ|
p0
r0, i .

From this and (9) it follows that Zi (zi, zi+1) ≥ 0.

The partial derivatives of Zi (zi, zi+1), for which we introduce the symbols σi and si,

are given by

σi (zi, zi+1) ,
∂Zi (zi, zi+1)

∂zi
= (14)

∑

j={0,∞}

βj,i

(

⌈zi⌋
pj−rj,i

rj,i −
⌈

ϕ−1
i (zi+1)

⌋

pj−rj, i

rj, i

)

si (zi, zi+1) ,
∂Zi (zi, zi+1)

∂zi+1
= (15)

∑

j={0,∞}

−βj,i

pj − rj,i
rj,i

(zi − ξi) |ξi|
pj−2rj,i

rj,i
∂ξi
∂zi+1

where ξi = ϕ−1
i (zi+1). Note that sn (zn, zn+1) ≡ 0, and that functions σi (zi, zi+1)

and si (zi, zi+1) are C on R, bl-homogeneous of degrees p0 − r0, i, p0 − r0, i+1 for the

0-approximation and p∞ − r∞, i, p∞ − r∞, i+1 for the ∞-approximation, respectively.

Futhermore, for i = 1, · · · , n − 1, {σi = 0} = {si = 0}, i.e. σi, si are zero where Zi

achieves its minimum Zi = 0.

V is bl-homogeneous of degrees p0 and p∞ and C1 on R. It is also non negative, since

it is a positive combination of non negative terms. Moreover, V is positive definite since

V (z) = 0 only if all Zi = 0, what only happens at z = 0. Due to bl-homogeneity it is

radially unbounded [28].
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For calculation of the time derivative of V along the trajectories of (6), we consider

first the nominal situation in which δ (t) ≡ 0 if d0 6= −1 and |δ (t)| ≤ ∆ when d0 = −1.

In that case

V̇ (z) ∈ W (z) , (16)

where

W (z) = −k̃1σ1 (φ1 (z1)− z2)

−
n−1
∑

j=2

k̃j [sj−1 + σj ] (φj (z1)− zj+1) (17)

− k̃n [sn−1 + σn]

(

φn (z1)−
∆

kn
[−1, 1]

)

where [−1, 1] ∈ R is an interval and we omit the variable dependence of σi and si. Since

the set-valued vector field F (z) on the right-hand side of (6) with δ̄ (t) ≡ 0 is upper

semi-continuous and the gradient ∇V (z) of V (z) is continuous, by [30, Lemma 6] the

set-valued function W (z) = ∇V (z)F (z) is also upper semi-continuous, and the single-

valued function W ∗ (z) = max {W (z)} is upper semi-continuous and bl-homogeneous

of degrees p0 + d0 and p∞ + d∞, respectively. Moreover, W (0) = 0 since ∇V (0) = 0.

We want to show that there exist values of k̃i > 0 such that W (z) < 0, i.e. W is

negative definite. This is equivalent to showing that W ∗ (z) < 0. We note that when

−1 < d0 function W is indeed single-valued and continuous, and thus W ∗ (z) = W (z)

(recall that in this case ∆ = 0). When d0 = −1, W is set-valued because the term

φn (z1) − ∆
kn

[−1, 1] = κn ⌈z1⌋0 + θn ⌈φn−1 (z1)⌋
r
∞, n+1

r∞, n − ∆
kn

[−1, 1] is set-valued. To

simplify the development in what follows, we will write simply φn (z1) but it is meant

φn (z1)− ∆
kn

[−1, 1].

For the proof we will use the following property of upper semi-continuous, bl-

homogeneous single-valued functions, proven in [30].
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Lemma 7. Let η : Rn → R and γ : Rn → R≤0 be two upper semicontinuous (u.s.c.)

single-valued bl-homogeneous functions, with the same weights r0 and r∞, degrees m0

and m∞, and approximating functions η0, η∞ and γ0, γ∞, which are u.s.c. Suppose that

∀x ∈ R
n, γ (x) ≤ 0, γ0 (x) ≤ 0, γ∞ (x) ≤ 0. If γ (x) = 0 ∧ x 6= 0 ⇒ η (x) < 0,

γ0 (x) = 0 ∧ x 6= 0 ⇒ η0 (x) < 0, γ∞ (x) = 0 ∧ x 6= 0 ⇒ η∞ (x) < 0 then there are

constants λ∗ ∈ R, c0 > 0, and c∞ > 0 such that for all λ ≥ max{λ0, λ∞}, λ0 ≥ λ∗,

λ∞ ≥ λ∗ and for all x ∈ R
n \ {0},

η (x) + λγ (x) ≤ −c0 ‖x‖m0

r0, p
− c∞ ‖x‖m∞

r∞, p ,

η0 (x) + λγ0 (x) ≤ −c0 ‖x‖m0

r0, p
,

η∞ (x) + λγ∞ (x) ≤ −c∞ ‖x‖m∞

r∞, p .

To show that W (z) < 0 we exploit its structure. So consider the values of W restricted

to some hypersurfaces: for i = 1, · · · , n− 1

Z1 = {ϕ1 (z1) = z2} · · · Zi = Zi−1 ∩ {ϕi (zi) = zi+1} .

These sets are clearly related as Zn−1 ⊂ · · · ⊂ Zi ⊂ · · · ⊂ Z1 ⊂ R
n. Note that on Zi

functions σi and si vanish, i.e. σi = si = 0, and therefore they also vanish on Zj , for

every j > i. Let Wi = WZi
represent the value of W (z) restricted to the the manifold Zi.

We can obtain the value of W1 by replacing in W (z) the variable z1 by z1 = ϕ−1
1 (z2),

so that W1 becomes a function of (z2, · · · , zn). In general, we obtain the value of Wi

, for i = 1, . . . , n− 1, by replacing in W (z) the variables (z1, · · · , zi) by its values in

terms of zi+1, so that Wi becomes a function of z̄i+1 , (zi+1, · · · , zn).
The first term in W (z) (17) is non positive, i.e., σ1 (z1, z2) (φ1 (z1)− z2) ≤ 0, and

it vanishes on Z1. Evaluating W (z) on Z1 we obtain (recall that s1 = 0, φi (z1) =
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ϕi ◦ · · ·ϕ2 ◦ ϕ1 (z1) and zn+1 ≡ 0)

W1 (z̄2) = −k̃2σ2 (z2, z3) (ϕ2 (z2)− z3)

−
n

∑

j=3

k̃j [sj−1 + σj ] (ϕj ◦ · · · ◦ ϕ2 (z2)− zj+1) .

Note that W1 (z̄2) has the same structure as W (z). Its first term is non positive, i.e.,

σ2 (z2, z3) (ϕ2 (z2)− z3) ≤ 0, and it vanishes on Z2. Evaluating W1 (z̄2) on Z2 we obtain

W2 (z̄3). Applying this procedure recursively, and using the facts that si = 0 on Zi and

φi (z1) = ϕi ◦ · · ·ϕ2 ◦ ϕ1 (z1), we find that, for i = 1, . . . , n− 1,

Wi (z̄i+1) = −k̃i+1σi+1 (ϕi+1 (zi+1)− zi+2)

−
n

∑

j=i+2

k̃j [sj−1 + σj ] (ϕj ◦ · · · ◦ ϕi+1 (zi+1)− zj+1) .

Note that the first term of Wi (z̄i+1) is non positive, i.e., σi+1 (zi+1, zi+2) (ϕi+1 (zi+1)− zi+2) ≤
0, and it vanishes on Zi+1. For i = n− 1 the value of Wn−1 (z̄n) is given by (recall that

zn+1 ≡ 0)

Wn−1 (z̄n) = −k̃n
(

β0,n ⌈zn⌋p0−1 + β∞,n ⌈zn⌋p∞−1)

×
(

κn ⌈zn⌋1+d0 + θn ⌈zn⌋1+d∞ − ∆

kn
[−1, 1]

)

,

where we have used (14) and (3). Here we distinguish two cases: (i) −1 < d0 and (ii)

d0 = −1.

When −1 < d0, ∆ = 0, W is single-valued and continuous, Wn−1 (z̄n) is bl-

homogeneous and it is negative for any k̃n > 0.

In case d0 = −1, if ∆̃ , ∆
κnkn

< 1 the following equality is satisfied for the set-valued

map

κn

(

⌈zn⌋0 − ∆̃ [−1, 1]
)

= κn ⌈zn⌋0
[

1− ∆̃, 1 + ∆̃
]

,
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so that it is clear that for any ν > 0, κn

(

⌈zn⌋0 − ∆̃ [−1, 1]
)

⌈zn⌋ν > 0 for zn 6=
0 and κn

(

⌈zn⌋0 − ∆̃ [−1, 1]
)

⌈zn⌋ν = 0 for zn = 0. Therefore, with W ∗
n−1 (z̄n) =

max {Wn−1 (z̄n)},

W ∗
n−1 (z̄n) = −k̃n

(

β0,n |zn|p0−1 + β∞,n |zn|p∞−1)

×
(

κn

(

1− ∆

κnkn

)

+ θn |zn|1+d∞

)

.

Function W ∗
n−1 is single-valued, upper semi-continuous, bl-homogeneous and negative

definite for any k̃n > 0.

In all cases, the same is true for its homogeneous approximations (as shown in

[9], [10]). Wn−2 (z̄n−1) is also bl-homogeneous. According to Lemma 7 we conclude

that Wn−2 (z̄n−1) can be rendered negative definite (in Zn−2) by selecting k̃n−1 > 0

sufficiently large. Since Wi (z̄i+1) is bl-homogeneous and the conditions of Lemma

7 are satisfied for Wi (z̄i+1) and its homogeneous approximations (as shown in [9],

[10]), we conclude that Wi−1 (z̄i) can be rendered negative definite (in Zi−1) selecting

k̃i > 0 sufficiently large. Applying the argument recursively, we conclude that there exist

positive values of
(

k̃1, · · · , k̃n
)

such that W (z) < 0.

Moreover, using [12, Corollary 2.15] (see also [30, Lemma 10]) the inequality (11)

follows. Using inequality (11) satisfied by the Lyapunov function we obtain, as a direct

consequence of [30, Lemma 3], the estimation of the convergence time given by (12).

A. Gain calculation

The gains k̃i are calculated backwards from i = n, n−1, · · · , 2, 1 such that Wi (z̄i+1) >

0. This will be the case if they are chosen as given in Proposition 4, where functions
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ωi are defined as (recall that ϕn (s) should be replaced by ϕn (s)− ∆
kn

[−1, 1]) :

ωi

(

k̃i+1, · · · , k̃n
)

, max
(zi,··· , zn)∈Rn−i+1

{ (18)

∑n

j=i+1 k̃j [sj−1 + σj ] (zj+1 − ϕj ◦ · · · ◦ ϕi (zi))

σi (zi, zi+1) (ϕi (zi)− zi+1)

}

.

These maximizations are well-posed, as it is shown in the previous steps of the proof.

B. ISS and effect of noise

We prove the Proposition 5 using function V (z) (10), although it is not a Lyapunov

Function for all possible stabilizing gains ki. However, the converse Lyapunov theorem

for bl-homogeneous differential inclusions [30, Theorem 1] assure the existence of an

appropriate one. For it, the calculations are similar to those performed with (10). If we

consider the effect of noise, in the continuous case, i.e. d0 > −1, V̇ can be written as

V̇ (z) =
1

2
W (z) +R (z, ν, δ)

R (·) , 1

2
W −

n
∑

j=1

k̃j [sj−1 + σj ] (φj (z1 − ν)− φj (z1))

+k̃n [sn−1 (zn−1, zn) + σn (zn)] δ̄ (t) .

Define Q
(

ν, δ̄
)

= |ν|
p0+d0
r0, 1 +|ν|

p∞+d∞
r
∞, 1 +

∣

∣δ̄
∣

∣

p0+d0
1+d0 +

∣

∣δ̄
∣

∣

p∞+d∞
1+d∞ . W , R and Q are continuous

bl-homogeneous functions of degrees p0 + d0 and p∞ + d∞, and Q is non negative.

Furthermore, the function R
(

z, ν, δ̄
)

−γQ
(

ν, δ̄
)

is also continuous and bl-homogeneous

and R (z, 0, 0) < 0 for z 6= 0. The same is true for the homogeneous approximations.

And therefore, using [12, Corollary 2.15] (see also [30, Lemma 10]) we conclude that

there exists γ > 0 such that R
(

z, ν, δ̄
)

≤ γQ
(

ν, δ̄
)

. And thus V̇ (z) ≤ −1
2
η0V

p0+d0
p0 (z)−

1
2
η∞V

p∞+d∞
p∞ (z)+γQ

(

ν, δ̄
)

, implying ISS by standard arguments. For the discontinuous

case, d0 = −1, we can use the procedure used in [10].
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V. EXAMPLE

We perform some simulations with the bl-homogeneous second order differentiator

(n = 3), with d0 = −1 and d∞ = 1
5
. The signal to be differentiated is f0 (t) =

1
2
sin

(

1
2
t
)

+

1
2
cos (t), for which ∆ = 5

8
, the internal gains κi = θi = 1 for i = 1, 2, 3 and the gains

k1 = 3, k2 = 1.5
√
3, k3 = 1.1. Two values of the scaling parameters were selected

(α, L) = (1, 1) and (α, L) = (1, 2).

In Figures 1a and 1b the norm ‖e (t)‖ of the estimation error is presented for different

initial conditions e0 = [1, −5, 1]× 10p, for p = −1, 0, 1, · · · , 7, with L = 1 in Figure

1a and L = 2 in Figure 1b. It is apparent from these graphs, that despite of a change in

the initial conditions of 8 orders of magnitude, the convergence time does not increase

accrodingly, and it approaches an asymptote. This is illustrated in Figure 1c, where the

convergence time versus the (logaritmic) value of the initial condition is shown. The

figures also show that by doubling the scaling parameter L from L = 1 to L = 2, the

convergence time is halved. In fact, using the parameter L any arbitrary convergence

time can be attained.

VI. CONCLUSIONS

We have proposed Fixed-Time converging exact and robust differentiators. In particular,

Levant’s discontinuous differentiator is extended with higher order terms, so that its

convergence time is independent of the initial estimation error and can be arbitrarily

assigned. Moreover, a full family of continuous differentiators are also studied, in a

unified Lyapunov framework. We use the concept of homogeneity in the bi-limit, developed

in [12], and the recursive observer design, for our objective.
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