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Anti-Unwinding Sliding Mode Attitude Maneuver
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Abstract—In this paper, anti-unwinding attitude maneuver con-
trol for rigid spacecraft is considered. First, in order to avoid the
unwinding phenomenon when the system states are restricted to
the switching surface, a novel switching function is constructed by
hyperbolic sine functions such that the switching surface contains
two equilibriums. Then, a sliding mode attitude maneuver con-
troller is designed based on the constructed switching function to
ensure the robustness of the closed-loop attitude maneuver control
system to disturbance. Another important feature of the developed
attitude control law is that a dynamic parameter is introduced to
guarantee the anti-unwinding performance before the system states
reach the switching surface. The simulation results demonstrate
that the unwinding problem is settled during attitude maneuver
for rigid spacecraft by adopting the newly constructed switching
function and proposed attitude control scheme.

Index Terms—Unwinding phenomenon, sliding mode control,
attitude maneuver, rigid spacecraft

I. INTRODUCTION

Due to the increasingly challenging requirements of the

aerospace control tasks such as high pointing accuracy, fast

response and strong robustness, the attitude controller design for

a spacecraft has been a hot topic. Then, various control schemes

have been proposed to deal with the attitude control issue,

such as Proportional-Integral-Differential (PID) control law [1],

Linear Parameter Varying (LPV) gain-scheduled controller [2],

fuzzy control method [3], velocity-free approach [4], robust H∞
control technique [5], and so on. Despite all of these efforts, the

attitude maneuver control of rigid spacecraft is still challenging.

Sliding mode control (SMC) is a nonlinear control technique

that alters the dynamics of a nonlinear system by application of a

discontinuous control law (or more rigorously, a set-valued con-

trol signal) that forces the system to "slide" along a cross-section

of the system’s normal behavior. Such a control technique was

first proposed in [6] for variable structure systems. Subsequently,

it has attracted much attention in handling spacecraft attitude

control design because of its strong robustness [7], [8], [8], [9].

In [7], an SMC scheme was developed for a three-axis attitude

control of rigid spacecraft with unknown dynamic parameters.

Then, the SMC control strategy for the pure rigid spacecraft

was extended to a flexible spacecraft, and an SMC strategy for

the flexible spacecraft attitude maneuver was proposed in [8].

In [9], an SMC output feedback control law was presented to

solve the attitude stabilization problem for the flexible spacecraft
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with uncertainty, disturbances, and control input nonlinearities.

In [10], an SMC controller was derived for the attitude maneuver

problem of a flexible spacecraft under control input nonlinear-

ities, and only the attitude and angular rate information were

used. Due to the existence of the sign function, the traditional

SMC controllers suffer from the chattering problem. In order to

alleviate such undesirable performance, the sign function was

approximated by a saturation function [11], [12]. In [13], a

higher-order integral SMC method was presented for the attitude

control of rigid spacecraft, which was free of chattering because

the nonlinear term was introduced into the first derivative of the

control input. It should be pointed out that the aforementioned

control methods were developed based on a linear sliding

surface, and thus the system states reach their equilibrium

point in infinite time rather than finite time [14]. Recently, a

terminal sliding mode control methodology has been proposed,

in which a nonlinear sliding surface was synthesized to achieve

the finite-time control performance [15], [16]. In [15], the

developed finite-time SMC law can guarantee the convergence

of attitude tracking errors in finite time. In [16], by constructing

a nonlinear sliding surface, adaptive finite-time SMC algorithms

were presented to stabilize the flexible spacecraft attitude. In

addition, the SMC technique was also combined with other

control methods to obtain enhanced control performance for

spacecraft attitude control, such as backstepping method [17],

adaptive control [18].

A typical feature in most of the control approaches mentioned

above for spacecraft is that the unwinding issue was ignored

when the spacecraft attitude is described by quaternions. The

quaternion has a double value property, and thus there are

two mathematical representations for a given physical attitude

of a rigid body [19]. Accordingly, there are two equilibriums

[1, 0, 0, 0]
T

and [−1, 0, 0, 0]
T

. However, in conventional

control law design, only one equilibrium is considered. In

this case, the system states have to move to the considered

equilibrium, even if they are very close to another equilibrium.

This is called the unwinding phenomenon, which may cause

a spacecraft to perform an unnecessary large-angle maneuver

when a small-angle maneuver is sufficient to achieve the control

objective. To the best knowledge of the author, there are little re-

search about the unwinding issue for spacecraft. In [20], the term

sign (q0(0)) was introduced into the sliding surface to avoid

unwinding phenomenon. In [21], a new attitude error function

(1− |q0|) was constructed to design attitude controller, which

considers two equilibrium [1, 0, 0, 0]
T

and [−1, 0, 0, 0]
T

.

But the strict proof of how the designed control laws avoid

unwinding phenomenon was not given.

In this paper, the unwinding phenomenon is taken into ac-

count, and an anti-unwinding sliding mode attitude maneuver

control law for rigid spacecraft is presented. The main con-

tribution of this work can be summarized as follows. First of

all, a novel switching function that contains two equilibrium
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points is developed. Moreover, the anti-unwinding performance

is proven when the system states are on the switching surface

by constructing a Lyapunov function. This Lyapunov function is

constructed by a hyperbolic cosine function. Secondly, a sliding

mode control law is designed to guarantee that all the system

trajectories are attracted by the switching surface. Further, the

anti-unwinding performance is proven by designing a dynamic

parameter for the sliding mode control law.

This paper proceeds as follows. In Section II, an attitude

maneuver control problem of rigid spacecraft is stated. In

Section III, a novel switching function is first constructed, and

the property of the switching surface is analyzed. Furthermore,

an anti-unwinding sliding mode controller is presented, and its

anti-unwinding performance is proven. In Section V, comparing

simulations are conducted to demonstrate the efficiency of the

proposed attitude maneuver controller.

Throughout this paper, we use the italic-font notation for a

scalar variable (as α), the bold-font notation for a vector (as

v), and the capital-letter notation for a matrix (as M ). The

set of n-dimensional real vectors and the set of m-by-n real

matrices are denoted by R
n and R

m×n, respectively. We use

‖·‖ to represent the 2-norm of a vector, λmin (·) and λmax (·) to

represent the minimum and maximum eigenvalues of a matrix,

respectively. In addition, the following two hyperbolic functions

are used, sinhx = ex−e−x

2 , coshx = ex+e−x

2 . Moreover, the

following derivatives are used,
d(sinh x)

dx = coshx, d(cosh x)
dx =

sinhx, d(arccosx)
dt = − x√

1−x2
, x ∈ R, respectively.

II. ATTITUDE MANEUVER CONTROL PROBLEM

FORMULATION FOR A RIGID SPACECRAFT

In this paper, we aim to design an attitude maneuver controller

to rotate the rigid spacecraft from the body frame Fb to the

desired frame Fd. For this end, the attitude dynamics of the

body frame Fb is given in the subsequent section.

A. Rigid Spacecraft Attitude Kinematics and Dynamics

The quaternion based kinematic and dynamic equations of a

rigid spacecraft can be given by [11]







q̇ =
1

2

[

−qT
v

q0I3 + q×
v

]

ω,

Jω̇ = −ω×Jω + u+ d,

(1)

where unit quaternion q =
[

q0 qT
v

]T ∈ R × R
3 represents the

attitude of body frame Fb with respect to inertia frame FI, ω ∈
R

3 denotes the angular velocity of body frame Fb with respect

to inertia frame FI; J ∈ R
3×3 is the inertia matrix (symmetric)

of the whole rigid spacecraft, u is the external torque acting on

the main body, and d is the external disturbance. In addition,

for any vector x ∈ R
3, x× represents a skew-symmetric matrix

which can be given by

x× :=





0 −x3 x2
x3 0 −x1
−x2 x1 0



 .

Based on the attitude dynamics of the body frame Fb, the

error kinematics and dynamics between the body frame Fb and

the desired frame Fd are given in the next section.

B. Relative Attitude Error Kinematics and Dynamics

1) Attitude Error Kinematics: Let unit quaternion qd :=
[

qd0 qT
dv

]T ∈ R × R
3 represents the rigid spacecraft attitude

of desired frame Fd with respect to inertia frame FI. Let

ωd ∈ R
3 denotes the rigid spacecraft angular velocity of Fb

with respect to FI and is expressed in Fb. The attitude error

qe :=
[

qe0 qT
ev

]T ∈ R× R
3 can be given by

qe = q∗

d ⊗ q, (2)

where q∗

d :=
[

qd0 − qT
dv

]T
, and ⊗ is the quaternion multipli-

cation operator. Then, the components of the error quaternion

qe can be obtained from (2),

qe0 =qT
dvqv + qd0q0, (3)

qev =qd0qv − q×
dvqv − q0qdv.

Moreover, it can be derived from (3) that

q2e0 + qT
evqev = 1. (4)

By taking derivative for (3), the following attitude error kine-

matics can be obtained as

q̇e =
1

2

[

−qT
ev

qe0I3 + q×
ev

]

ωe, (5)

where ωe ∈ R
3 represents the angular velocity error, and is

defined as

ωe := ω −Rωd, (6)

with R being the relative rotation matrix from Fb to Fd, which

is given by

R :=
(

q2e0 − qT
evqev

)

I3 + 2qevq
T
ev − 2qe0q

×
ev.

The rotation matrix R satisfies Ṙ = −ω×
e R. Furthermore, it

can be obtained from (6) that

ω̇e = ω̇ + ω×
e Rωd −Rω̇d. (7)

2) Attitude Error Dynamics: For a rest-to-rest attitude ma-

neuver control problem, the desired attitude velocity satisfies

ωd = 0, ω̇d = 0. Thus, it can be obtained from (6) that ωe = ω

holds. With this in mind, by substituting (6) and (7) into the

second equation of (1), the following attitude error dynamic

equation can be obtained,

Jω̇e = −ω×
e Jωe + u+ d. (8)

Then, by (5) and (8), the attitude error dynamics for the rigid

spacecraft can be obtained as [11]






q̇e =
1

2

[

−qT
ev

qe0I3 + q×
ev

]

ωe,

Jω̇e = −ω×
e Jωe + u+ d.

(9)

In addition, the error quaternion can also be written as [22],

qe =

[

qe0
qev

]

=

[

cos θ(t)
2

e sin θ(t)
2

]

, (10)

where θ (t) ∈ [0, 2π] is the rotation angle and e ∈ R
3 is the

fixed Euler axis. Then, the following relation can be obtained

by the first relation of (10),

θ (t) = 2 arccos qe0. (11)
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It follows from the first relation of (9) and (4) that

θ̇ (t) = − 2q̇e0
√

1− q2e0

=
qT
evωe

√

1− q2e0

=
qT
ev

‖qev‖
ωe. (12)

According to (3), qe0 (0) and qev (0) can be obtained as long

as the initial attitude q (0) of q and the desired attitude qd are

given. Further, the initial value θ (0) of θ (t) can be obtained

by (11). By designing an attitude maneuver controller, the rigid

spacecraft is driven to rotate about the fixed Euler axis e, such

that the rotation angle θ (t) converges from the initial value θ (0)
to the equilibrium point.

C. Unwinding Phenomenon

It can be obtained from (10) that qe0|θ(t)=0 = 1 and

qe0|θ(t)=2π = −1, while θ (t) = 0 and θ (t) = 2π represent

the same position. Thus, qe0 = 1 and qe0 = −1 are both

the equilibrium point of the attitude error dynamics (9) for a

rigid spacecraft. However, in most existing controller design

approaches, only qe0 = 1 is considered as equilibrium point. In

this case, when the initial value of qe0 is less than 0, the designed

controller drives qe0 to 0, and finally to 1. This means that the

rigid spacecraft needs to rotate a Euler angle θ (t) larger than

π. This is the "unwinding phenomenon". However, the rigid

spacecraft can reach the desired attitude by rotating an angle

smaller than π.

D. Control Objective

The control task in this work is to design an anti-unwinding

attitude controller to accomplish a rest-to-rest attitude maneuver

for the rigid spacecraft system (1). By adopting the designed

control law for the closed-loop attitude maneuver error dynam-

ics (9) of a rigid spacecraft, the following relations are achieved,

limt→∞qe0 = 1 or− 1, limt→∞ωe = 0. (13)

Moreover, the unwinding phenomenon is avoided during the

rigid spacecraft maneuver.

III. CONTROLLER DESIGN

In this section, we aim to design an anti-unwinding sliding

mode control law to accomplish the control objective stated in

Section II-D. First, a new switching surface is constructed in

Section III-A, which considers both qe0 = 1 and qe0 = −1
to be equilibrium points. Then, the anti-unwinding performance

when the system states are on the switching surface is proven.

In section III-B, an anti-unwinding sliding mode attitude control

law is derived based on the constructed switching function. In

addition, a dynamic parameter is introduced to guarantee the

anti-unwinding performance when the system states are outside

the switching surface.

Before preceding, we first give the following lemmas.

Lemma 1: [23] Suppose V (x) is a C1 smooth positive-definite

function (defined on U ⊂ R
n) and V̇ (x)+λV α(x) is a negative

semi-definite function on U ⊂ R
n for α ∈ (0, 1) and λ ∈

R
+, then there exists an area U0 ⊂ R

n such that any V (x)

which starts from U0 ⊂ R
n can reach V (x) ≡ 0 in finite time.

Moreover, if Ts is the time needed to reach V (x) ≡ 0, then

Ts ≤
V 1−α(x0)

λ (1− α)
,

where V (x0) is the initial value of V (x).
Lemma 2: For any unit vector x ∈ R

n, the matrix A = xxT

is a n× n idempotent matrix.

Proof. Note that A = xxT and x is a unit vector, thus

AA = xxTxxT

= xxT

= A.

This implies that the matrix A is an idempotent matrix.

Lemma 3: For any idempotent matrix A ∈ R
n×n, its eigen-

values are 1 or 0.

Proof. Suppose that the non-zero vector y ∈ R
n is an

eigenvector corresponding to a non-zero eigenvalue λ of the

matrix A. Then, we have

Ay = λy. (14)

Multiplying A of both sides of the above relation, gives

AAy = λAy. (15)

Because A is an idempotent matrix, thus the left side of (15)

can be rewritten as Ay. In addition, by (14), the right side of

(15) can be rewritten as λ2y. Then, there holds

Ay = λ2y. (16)

Combining (14) with (16), yields

λy = λ2y.

Because the vector y is a non-zero vector, then there holds

λ = 1 or 0. Thus, the proof is completed.

A. Switching Surface

For the attitude error dynamics (9) of a rigid spacecraft, we

design the following switching function,

s = ωe + λσ, (17)

where λ is a positive constant, and

σ := sinh (qe0) qev. (18)

Next, the fact that the switching surface s = 0 containing

two equilibriums qe0 = 1 and −1 is proven. In addition,

the convergence performance of the attitude error variables

ωe and qev on the switching surface s = 0 is analyzed.

In addition, the anti-unwinding performance of the designed

switching function (17) in the sliding phase is demonstrated.

Before given the theorem, we should give some properties of

the functions cosh qe0 and sinh cos θ(t)
2 . The maximum value of

the function cosh qe0 can be obtained when qe0 = 1 and qe0 =
−1. For θ (t) ∈ (0, π], sinh cos θ(t)

2 ≥ 0, and for θ (t) ∈ (π, 2π),

sinh cos θ(t)
2 ≤ 0.

Theorem 4: If the system states of the attitude error dy-

namics (9) are restricted to the switching surface s = 0, the

following conclusions are achieved:

(i) The switching surface s = 0 contains two equilibriums

qe0 = 1 and −1, and the control goal in (13) is guaranteed.

(ii) The unwinding phenomenon is avoided in the sliding

phase.
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Proof. First, we choose the following Lyapunov function,

V1 (t) := 2 (κ− cosh qe0) , (19)

where κ = max (cosh qe0) for qe0 ∈ [−1, 1] . By taking

time derivative of (19), and using the first equation of (9), the

condition s = 0, and (18), we have

V̇1 (t) = −2 sinh (qe0) q̇e0

= sinh (qe0) q
T
evωe

= σTωe

= −λσTσ. (20)

Thus, V̇1 (t) ≤ 0. Further, it can be derived from (20) that if

V̇1 (t) = 0, there holds σ = 0. Then, it follows from (18) that

qe0 = 0 or qev = 0. According to (4), there holds qe0 = 1 or

−1 when qev = 0. Moreover, it can be obtained from (19)

that min (V1 (t)) = V1 (t) |qe0=1 = V1 (t) |qe0=−1 = 0, and

V1 (t) |qe0=0 6= 0. This means that the switching surface s = 0
contains two equilibriums qe0 = 1 and qe0 = −1. In addition,

substituting qev = 0 into (17) gives ωe = 0.

Thus, the conclusion (i) is proven.

Next, the anti-unwinding performance of the attitude error

dynamics (9) with system states being on the switching surface

s = 0 is proven. According to (11), the Lyapunov function (19)

can be rewritten as

V1 (t) := 2

(

κ− cosh cos
θ (t)

2

)

.

Consequently,

V̇1 (t) = sin
θ (t)

2
sinh cos

θ (t)

2
θ̇ (t) . (21)

In addition, there hold sin θ(t)
2 > 0 for θ (t) ∈ (0, 2π),

sinh cos θ(t)
2 ≥ 0 for θ (t) ∈ (0, π], and sinh cos θ(t)

2 ≤ 0 for

θ (t) ∈ (π, 2π). Note that V̇1 (t) ≤ 0, it can be derived from (21)

that there hold θ̇ (t) ≤ 0 for θ (t) ∈ (0, π] and θ̇ (t) ≥ 0
for θ (t) ∈ (π, 2π). Suppose that the system states reach the

switching surface s = 0 when t = ts0. Then, if θ (ts0) ∈ (0, π],
there holds limt→∞ θ (t) = 0, and if θ (ts0) ∈ (π, 2π), there

holds limt→∞ θ (t) = 2π. This implies that the unwinding

phenomenon is avoided when the system states are restricted

to the switching surface s = 0.

B. Anti-Unwinding Sliding Mode Attitude Maneuver Control

Law

In this section, we need to construct a control law such that

the condition sTṡ < 0 is satisfied. This condition assures us

that the switching surface s = 0 will attract all the system

trajectories.

Consider a class of state feedback control for the attitude error

dynamics (9) of a rigid spacecraft in the following form,

u = ueq + un, (22)

where the term ueq is the equivalent control for the nominal

system, the term un is designed to compensate the disturbance.

Thus, the equivalent control ueq can be obtained from the

nominal system part by setting ṡ to be zero. That is

ṡ = ω̇e + λσ̇ = 0. (23)

The nominal part of the attitude error dynamics (9) is

ω̇e = J−1
(

−ω×
e Jωe + ueq

)

.

Substituting this expression into (23), gives

ueq = ω×
e Jωe − λJσ̇. (24)

The control term un is designed as

un = − (γ1 + γ2 (t)) f (s) , (25)

where γ1 ≥ ‖d‖max, γ2 (t) is a positive-valued function which

will be given later, and

f (s) =

{

sgn (s) , ‖s‖ 6= 0,
0, ‖s‖ = 0,

(26)

with sgn (s) = [sgn (s1) sgn (s2) sgn (s3)]
T

, and

sgn (si) =

{

1, si > 0
−1, si ≤ 0

(i = 1, 2, 3) .

Then, the following anti-unwinding sliding mode attitude

maneuver control (briefly, AUSMAMC) law is presented,






















u = ueq + un,

ueq = ω×
e Jωe − λJσ̇,

un = − (γ1 + γ2 (t))f (s) ,
s = ωe + λσ,

σ = sinh (qe0) qev,

(27)

where λ is a positive numbers, γ1 ≥ ‖d‖max, and γ2 (t) is a

positive-valued function, which will be given in the following

section.

C. Convergence Analysis

In this section, the convergence of the closed-loop system

under the developed AUSMAMC law (27) is analyzed. In addi-

tion, the anti-unwinding performance is proven in the following

theorem.

Theorem 5: Consider a rigid spacecraft described by (9) in the

presence of disturbance. If the parameter γ2 (t) of the proposed

AUSMAMC law (27) is chosen as

γ2 (t) =
λ

λmin (J−1)
|ġ| , (28)

where

g := sinh (qe0) ‖qev‖ . (29)

Then, the following conclusions are achieved:

(i) The switching function s converges to zero in finite time.

(ii) The unwinding phenomenon is avoided before the system

states reach the switching surface s = 0.

Proof. To prove the conclusion (i), we choose the following

Lyapunov function,

V2 (t) =
1

2
sTs. (30)

With the help of (9) and (17), we obtain from (30) that

V̇2 (t) = sTṡ

= sT (ω̇e + λσ̇)

= sT
(

J−1
(

−ω×
e Jωe + u+ d

)

+ λσ̇
)

. (31)

Substituting the AUSMAMC law (27) with γ1 ≥ ‖d‖max

into (31), results in

V̇2 (t) = sT
(

J−1
(

−ω×
e Jωe + ueq + un + d

)

+ λσ̇
)

= sTJ−1 (un + d)

= −γ2 (t) sTJ−1sgn (s) + sTJ−1 (‖d‖max − γ1)

≤ −γ2 (t) sTJ−1sgn (s) . (32)
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It is obvious that there holds

sTJ−1sgn (s) ≥ λmin

(

J−1
)

‖s‖ . (33)

Thus, it can be obtained from (32) and (33) that

V̇2 (t) ≤ −γ2 (t)λmin

(

J−1
)

‖s‖ .
By combining this with (30) and (33), it is easy to obtain that

V̇2 (t) ≤ −
√
2γ2 (t)λmin

(

J−1
)

(

1

2
sTs

)
1

2

= −
√
2γ2 (t)λmin

(

J−1
)

V
1

2

2 (t) . (34)

Clearly, V̇2 (t) ≤ 0. Thus, it can be obtained from Lemma 1

that the switching function s converges to 0 in finite time. The

proof of (i) is completed.

Next, by designing the dynamic parameter γ2 (t) for the pro-

posed AUSMAMC law (27), the anti-unwinding performance

before the system states reach the switching surface s = 0 is

guaranteed.

In view of (34), we get

V̇2 (t)

V
1

2

2 (t)
≤ −

√
2γ2 (t)λmin

(

J−1
)

.

Suppose that the initial time is t0 = 0. Then, by taking integral

of both sides of the above equation, we arrive at
∫ t

0

V̇2 (τ )

V
1

2

2 (τ )
dτ ≤ −

√
2λmin

(

J−1
)

∫ t

0

γ2 (τ ) dτ .

A direct calculation gives

V
1

2

2 (t) ≤ −λmin

(

J−1
)

√
2

∫ t

0

γ2 (τ ) dτ + V
1

2

2 (0) . (35)

Let

v (t) =
qT
ev

‖qev‖
s. (36)

By (12), (17), and (29), the above relation can be rewritten as

v (t) =

(

qT
ev

‖qev‖
ωe + λ sinh (qe0)

qT
evqev

‖qev‖

)

=
(

θ̇ (t) + λg
)

. (37)

Further, it can be derived from (36) that

v2 (t) =

(

qT
ev

‖qev‖
s

)T
qT

ev

‖q
ev
‖
s

= sT
qevq

T
ev

‖qev‖2
s. (38)

Note that
q
ev

‖q
ev

‖ is a unit vector, thus it follows from (38),

Lemmas 2 and 3 that

v2 (t) ≤ λmax

(

qevq
T
ev

‖qev‖2

)

‖s‖2

≤ ‖s‖2 .
Combining this with (30) yields

1

2
v2 (t) ≤ V2 (t) . (39)

It should be noted that, the rest-to-rest attitude maneuver issue

is considered in this paper. Thus, ωe (0) = 0. Further, it can be

obtained from (12) that θ̇ (0) = 0. Then, the initial value of

v (t) in (37) can be obtained as

v (0) = λg (0) . (40)

Moreover, with the help of (29) and (40), we can get the initial

value of V2 (0) in (30) as (recall that ωe = 0)

V2 (0) =
1

2
λ2 (sinh (qe0) qev)

T
(sinh (qe0) qev)

=
1

2
λ2 sinh2 (qe0) q

T
evqev

=
1

2
v2 (0) (41)

Thus, the following relation can be obtained from (35), (39),

and (41),

(

1

2
v2 (t)

)
1

2

≤ V
1

2

2 (t) ≤− λmin

(

J−1
)

√
2

∫ t

0

γ2 (τ) dτ

+

(

1

2
v2 (0)

)
1

2

,

which can be further written as,

|v (t) | ≤ −λmin

(

J−1
)

∫ t

0

γ2 (τ ) dτ + |v (0) |. (42)

Moreover, because γ2 (t) > 0, then it can be obtained from (42)

that v (t) will decrease to 0 when v (0) > 0, and v (t) will

increase to 0 when v (0) < 0.

To prove the anti-unwinding property of the proposed control

law (27), we need to prove that θ̇ (t) ≤ 0 for θ (0) ∈ (0, π] and

θ̇ (t) ≥ 0 for θ (0) ∈ (π, 2π). For this end, the following two

cases are considered to complete the proof.

(a) When θ (0) ∈ (0, π] , by the first equation of (10), we have

qe0 (0) > 0. Then, using (40) and (29), we get

v (0) = λ sinh (qe0 (0)) ‖qev (0)‖ > 0.

Thus, v (t) will decrease to 0 due to (42). In such a case, it can

be further obtained from (42) that

θ̇ (t) + λg ≤ −λmin

(

J−1
)

∫ t

0

γ2 (τ) dτ + λg (0) .

It can be further rewritten as

θ̇ (t) ≤− λmin

(

J−1
)

∫ t

0

γ2 (τ) dτ + λ (g (0)− g)

=− λmin

(

J−1
)

∫ t

0

γ2 (τ) dτ − λ

∫ t

0

dg

dτ
dτ

=−
∫ t

0

(

λmin

(

J−1
)

γ2 (τ) + λ
dg

dτ

)

dτ . (43)

If ġ > 0, then it can be obtained from (28) that γ2 (t) =
λġ

λmin(J−1) . It is followed from (43) that

θ̇ (t) ≤ −2λ

∫ t

0

dg (τ )

dτ
dτ

≤ 0.

If ġ ≤ 0, then it can be obtained from (28) that γ2 (t) =
− λġ

λmin(J−1) . With this, it can be derived from (43) that θ̇ (t) ≤ 0.
In conclusion, it can be obtained from above two cases that

when θ (0) ∈ (0, π] , the rotation angle θ (t) will decrease to 0.

(b) When θ (0) ∈ (π, 2π) , by the first equation of (10), we

have qe0 (0) < 0. Then, using (40) and (29), we get

v (0) = λ sinh (qe0 (0)) ‖qev (0)‖ < 0.

Thus, v (t) will increase to 0 due to (42). In this case, it can be

obtained from (42) that,

−θ̇ (t)− λg ≤ −λmin

(

J−1
)

∫ t

0

γ2 (τ ) dτ − λg (0) ,
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or, equivalently,

θ̇ (t) ≥
∫ t

0

λmin

(

J−1
)

γ2 (τ ) dτ + λg (0)− λg

=

∫ t

0

λmin

(

J−1
)

γ2 (τ ) dτ − λ

∫ t

0

dg

dτ
dτ

=

∫ t

0

(

λmin

(

J−1
)

γ2 (τ ) dτ − λ
dg

dτ

)

dτ. (44)

If ġ > 0, there holds γ2 (t) = λġ
λmin(J−1) . Substitute it into

(44), we have θ̇ (t) ≥ 0.

If ġ ≤ 0, there holds γ2 (t) = − λġ
λmin(J−1) . Substitute it into

(44), yields

θ̇ (t) ≥ −2λ

∫ t

0

dg

dτ
dτ

≥ 0.

Thus, it can be obtained from above two cases that when

θ (0) ∈ (π, 2π) , the rotation angle θ (t) will increase to 2π.

Based on above discussion, we have proven the conclusion

that the unwinding phenomenon is successfully avoided under

the AUSMAMC law (27) with γ2 (t) =
λ|ġ|

λmin(J−1) .

In Theorem 5, the anti-unwinding performance before the

system states reach the switching surface is proven. In Theorem

4, the anti-unwinding performance when the system states

are constricted on the switching surface is also shown. The

results in these two theorems have illustrated that the proposed

AUSMAMC law (27) has the performance of anti-unwinding.

Remark 1: A drawback of the control law (25) is that it

is discontinuous about the switching surface s = 0. This

characteristic may cause an undesirable chattering phenomenon.

For practical implementations, the controller must be smoothed.

Thus, the discontinuous function sgn (s) is replaced by the

smooth continuous function l (s) := [l (s1) l (s2) l (s3)]
T

with

l (si) in the following equation,

l (si) :=

{

sgn (si) , if |si| ≥ ε,

arctansi tan(1)
ε

, if |si| < ε,
i = 1, 2, 3, (45)

where ε is a small positive value. As ε approaches zero, the

performance of this boundary layer can be made arbitrarily close

to that of original control law.

The advantage of the proposed AUSMAMC law (27) is

that the unwinding phenomenon can be avoided during the

rigid spacecraft attitude maneuver, and the disturbance can be

compensated by the designed controller. Besides, the developed

control law has only two tunable parameters.

IV. EXAMPLE

In this section, simulations are conducted to demonstrate the

performance of the presented AUSMAMC law (27) for rest-to-

rest attitude maneuvers of a rigid spacecraft. In addition, the

existing controller (11) in [24] and (23) in [20] are adopted for

comparison.

A. Simulation Settings

1) Spacecraft parameter values: The inertia matrix of the

rigid spacecraft is J = [20 0 0.9; 0 17 0; 0.9 0 15] kg ·m2.

The initial value of the attitude velocity ω and quaternion

q are given in TABLE I. The disturbance is d = 10−2 ×
[sin (0.05t) 0.5 sin (0.05t) − cos (0.05t)]

T
.

TABLE I: Initial value of the signal of the rigid spacecraft

system

Notation Unit Meaning Initial value

q (0) ∈ R
4 / Attitude of Fb with respect to FI [1 0 0 0]T

q0 (0) ∈ R / Scalar part of q 1

q
v
(0) ∈ R

3 / Vector part of q [0 0 0]T

ω (0) ∈ R
3 rad/s Attitude of Fb with respect to FI [0 0 0]T

2) Controller parameter values: The tuning parameters of

the proposed AUSMAMC law (27) are chosen by a trail-

to-trail selection. The parameters of the controller (11) [24],

and controller (23) [20] are chosen the same as in [24] and

[20], respectively. The value of the parameters of the above

controllers are shown in TABLE II. In addition, γ2 (t) can be

obtained from (28).

TABLE II: Control parameters chosen for numerical analysis

Control schemes control parameters

AUSMAMC (27) λ = 2, γ
1
= 10, ε = 0.5

Controller (11)

[24]

k = 1, τ = 15I3, σ = 0.001I3,
p0 = 1, p1 = 1, p2 = 1,

ĉ(0)=1, k̂1(0)=0.1, k̂2(0)=0.1

Controller (23)

[20]

v1 = 5I3, v2 = 7I3, ρ = 0.001I3,
k = 1.5, η = 0.14, θ = 7,

K̂1 (0) = 0, K̂2 (0) = 0

3) Control goal: The control goal is to perform two rest-

to-rest attitude maneuvers for the rigid spacecraft with system

parameters given in Section IV-A1. Two different scenarios of

desired attitude value are given in the following.

Scenario A. The initial values of the desired quaternion and

angular velocity are qd = [0.8832 0.3 − 0.2 − 0.3]
T
, and

ωd = [0 0 0]
T

rad/s, respectively.

Scenario B. The initial values of the desired quaternion and

angular velocity are qd = [−0.6403 − 0.5 − 0.3 0.5]
T
, and

ωd = [0 0 0]
T

rad/s, respectively.

In Scenario A, qd0 > 0, thus qe = [1 0 0 0]
T

is the nearest

equilibrium. In addition, according to the first equation of (10),

the spacecraft needs to rotate 55.93◦ to reach the equilibrium

point. In Scenario B, qd0 (0) < 0, and the spacecraft needs to tilt

259.62◦ if only the equilibrium qe = [1 0 0 0]
T

is considered.

However, the spacecraft only need to rotate 100.38◦ if qe =
[−1 0 0 0]T is also considered as an equilibrium.

B. Simulation results

1) Simulation results for Scenario A: The controller (11) [24]

and proposed AUSMAMC law (27) are adopted to do simula-

tions for Scenario A. The simulation results are shown in Fig.

1, where the controller A represents the controller (11) [24].

The response of error quaternions qei, i = 1, 2, 3, 4 and

angular velocity error ωei, i = 1, 2, 3 are shown in Fig. 1(a)

and Fig. 1(b), respectively. It can be seen from Fig. 1(a) and

Fig. 1(b) that the attitude errors of system (9) converge to 0 in

about 4s by adopting the proposed AUSMAMC law (27), while

the Controller A needs longer time. In addition, it can be easily

obtained from these two figures that the steady attitude errors

of the developed control law AUSMAMC law (27) are smaller

than that of the Controller A. The spacecraft attitude responses

using Euler angles φ, θ, ψ (φ, θ, ψ are the roll, pitch, and yaw

angles, respectively) are shown in Fig. 1(c), which indicates

that the attitude maneuver problem can be effectively settled by

the controller AUSMAMC law (27) and Controller A. The time

evolution of control torques ui, i = 1, 2, 3 are shown in Fig.



7

1(d). The control torque of the proposed AUSMAMC law (27)

is smaller than that of Controller A.

The AUSMAMC controller is able to obtain higher pointing

accuracy and better stability in a shorter time.

2) Simulation results for Scenario B: The controller (11) [24],

controller (23) [20], and the proposed AUSMAMC law (27) are

adopted to do simulations for Scenario B. The simulation results

are summarized in Fig. 2, where the controller A is the controller

(11) [24], and controller B is the controller (23) [20].

The response of error quaternions qei, i = 1, 2, 3, 4 are shown

in Fig. 2(a), which indicates that qe converges to the nearest

equilibrium [−1 0 0 0] in about 5s by adopting the presented

controller AUSMAMC (27) and Controller B. However, qe

converges to [1 0 0 0] in about 14s by adopting the Controller

A. Thus, it can be obtained that the presented AUSMAMC law

(27) in this paper and (23) [20] avoids unwinding phenomenon

successfully, but the Controller A suffers unwinding problem.

The behaviour of angular velocity error ωei, i = 1, 2, 3 is shown

in Fig. 2(b). It can be observed from Fig. 2(b) that the attitude

velocity of the rigid spacecraft (9) converges to 0 in about 5s
by using the proposed AUSMAMC law (27) and Controller B,

while the Controller A needs longer time. In addition, it can be

easily obtained from these two figures that the steady attitude

errors of the developed control law AUSMAMC law (27) are

smaller than that of the Controller A and Controller B. The

spacecraft attitude responses using Euler angles φ, θ, ψ (φ, θ, ψ

are the roll, pitch, and yaw angles, respectively) are shown in

Fig. 2(c). The maneuver angle of the AUSMAMC law (27) and

Controller B is smaller than that of Controller A. The control

torques ui, i = 1, 2, 3 are shown in Fig. 2(d), which indicates

that the attitude maneuver is effectively settled by the controller

AUSMAMC law (27), the Controllers A and B. It can also be

observed that the control torque of the proposed control law is

less than that of the Controllers A and B.

In conclusion, the proposed AUSMAMC controller (27) sat-

isfies the control objective described in Section II-D, and it

achieves higher pointing accuracy and better stability in a shorter

time compared with the controller (11) [24], and controller (23)

[20].

V. CONCLUSION

In this paper, an anti-unwinding attitude maneuver control law

is presented for rigid spacecraft. By constructing a new switch-

ing surface, which contains two equilibriums, the unwinding

problem is settled when the system states are on the switching

surface. Moreover, by designing a sliding mode control law

with a dynamic parameter, the anti-unwinding performance is

guaranteed before the system states reach the switching surface.

Further, the switching function, the attitude velocity error, and

the vector part of error quaternion converge to zero under the

designed anti-unwinding sliding mode attitude maneuver control

law. Finally, a numerical simulation is conducted to demonstrate

the effectiveness of the developed control law. The simulation

results show that the unwinding phenomenon is avoided by

adopting the designed switching surface and controller.
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