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Abstract—This paper considers the robust cooperative output regula-

tion for a network of parabolic PDE systems. The solution of this problem
is obtained by extending the cooperative internal model principle from

finite to infinite dimensions. For a time-invariant digraph describing the

communication topology, a two-step backstepping approach is presented

to systematically design cooperative state feedback regulators. They allow
to solve both the leader-follower and the leaderless output synchronization

problem in the presence of disturbances and model uncertainty for a

finite-dimensional leader. Solvability conditions of the robust cooperative
output regulation problem are presented in terms of the communication

graph and the agent transfer behaviour. The results of the paper

are demonstrated for a MAS consisting of four uncertain parabolic

agents with and without a finite-dimensional leader in the presence of
disturbances.

Index Terms—Distributed-parameter systems, parabolic systems, multi-

agent systems, robust cooperative output regulation, backstepping.

I. INTRODUCTION

The networked control of multi-agent systems (MAS) has been a

very active research topic for about two decades with a still increasing

research effort in the control community. The interest in networked

control arises from the fact that advances in communication tech-

nology by means of digital networks allow an efficient information

exchange between different spatially separated systems. With this,

cooperative control tasks can be systematically solved. An overview

of the state of the art as well as corresponding applications can be

found in the recent monographs [3], [20], [5].

Starting with simple integrators describing the agents increasingly

complex system dynamics were taken into account in networked

control. Currently, systematic design methods are available for linear

systems, which can be found in [3], [20], [5]. Further advances

include the extension to nonlinear systems (see, e. g., [28]) and to

fractional systems (see, e. g., [25, Ch. 7]). In many applications it

is required to take both the temporal and spatial system dynamics

into account. Therefore, it is also of interest to design networked

controllers for MAS with distributed-parameter agents. Applications

include industrial furnaces consisting of a network of heaters (see [4]),

networks of HVAC systems in building climate control (see [26]),

networks of Lithium-Ion cells in battery management (see [24]) or

consensus control in environmental applications (see [33]). Different

from other system classes the networked control of distributed-

parameter MAS is still an emerging research topic. Recent contribu-

tions consider parabolic agents in [8], [23] and parabolic PDEs with

a diffusive coupling in [36], [37], while networks of wave equations

are investigated in [1], [6]. General classes of distributed-parameter

agents were dealt with in [9] by making use of an abstract setting.

Common to all previous contributions for distributed-parameter

MAS is the fact that the considered network is homogeneous, i. e., all

agents are identical. This, of course, requires some approximations,

because parameter variations result from different agent environments

or variations in the production process. Therefore, it is of interest

to design synchronizing networked controllers, which are able to
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tolerate at least sufficiently small parameter perturbations. A general

approach to deal with the corresponding synchronization problem

is cooperative output regulation (see, e. g., [16], [38], [19]), which

generalizes the classical output regulation problem (see, e. g., [15] for

lumped-parameter systems). In particular, the leader-follower output

synchronization can be seen as an extension of the output regulation

theory, in which the reference model plays the role of the leader and

several plants are the agents. Therein, not all agents have access to the

reference input due to the communication constraints. Consequently,

synchronization can only be achieved cooperatively by an information

exchange between the agents through the communication network.

Different from the usual leader-follower synchronization problem,

however, also disturbances are taken into account and the leader may

differ from the followers. Furthermore, by omitting the reference

model, i. e., the leader, also the leaderless output synchronization

problem is contained as a special case. This was soon recognized

for finite-dimensional systems in the works [35], [31], [32] and

led to the development of a distributed or cooperative observer,

which allows to solve the cooperative output regulation problem by

feedforward control. For the latter the so-called regulator equations

have to be solved. Since they depend on system parameters, this

approach is not robust. In contrast, by assuming that the outputs

to be synchronized are available for measurement, the distributed

or cooperative internal model principle can be applied to achieve

cooperative output regulation in the presence of non-destabilizing

parameter perturbations (see [34], [30]). For this, it is not required

to solve the regulator equations. The recent monographs [19], [38]

demonstrate that cooperative output regulation is still a very active

research area for linear finite-dimensional MAS, where also a more

detailed literature overview can be found. Recent advances in the

backstepping-based solution of the output regulation problem for

distributed-parameter systems (see, e. g., [13], [12] for parabolic

systems and [2], [10], [11] for hyperbolic systems as well as the

references in these works) suggest to generalize these results to

networks of parabolic PDEs, in order to solve the cooperative robust

output regulation problem also for distributed-parameter MAS.

This paper considers the robust cooperative output regulation

problem for MAS with boundary controlled agents subject to spatially

varying coefficients. The outputs of the agents can be defined in-

domain pointwise and distributed as well as at the boundaries. The

reference input coinciding with the output of the leader (reference

model) and the local disturbances affecting each agent in-domain, at

the boundaries and at the output are generated by a finite-dimensional

signal model. In order to provide a systematic solution for parabolic

agents by making use of the cooperative internal model principle, the

results from [34], [30] for the robust cooperative output regulation

problem in finite dimensions are combined with the results in [13]

for the robust output regulation in infinite dimensions. This requires

to add a cooperative internal model to the plant and to stabilize the

resulting augmented system. For this, the communication topology

has to be taken into account, which is described by a time-invariant

digraph. It is shown that this stabilization problem is solvable for

a nominal homogeneous MAS with parabolic agents if the digraph

is connected and the parabolic agents satisfy the conditions for the

http://arxiv.org/abs/2010.11103v1
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usual output regulation (see [13]). Different from the latter result,

however, the solution of the synchronization problem requires to

solve a simultaneous stabilization problem, which is very challenging

for distributed-parameter systems. Furthermore, the state feedback

regulator for each agent can only use information of the agent

and its neighbors resulting in constraints for the state feedback

design. In order to provide a systematic design procedure for this

stabilization problem, a two step backstepping approach is presented

to map the closed-loop system into an exponentially stable ODE-

PDE cascade with a prescribed decay rate. This is achieved by a

local backstepping transformation for each agent and a cooperative

decoupling transformation, which takes the communication between

the agents into account. As a result, the simultaneous stabilization

problem required for the output synchronization of the agents has only

to be solved for the ODE subsystems. Hence, systematic methods

from the literature become available for their stabilization. In the

presence of model uncertainty, an uncertain heterogeneous MAS

results, for which cooperative output regulation is verified provided

that the nominal networked controller also stabilizes the uncertain

MAS. The latter is guaranteed by the structural stabilizing property

of the networked controller in the sense that the uncertain networked

controlled MAS remains stable for sufficiently small parameter pertur-

bations. These results are subsequently used to solve the robust output

synchronization problem without a leader (i. e., without a reference

model).

This paper demonstrates for the first time that output regulation

theory provides a systematic framework to extend methods for net-

worked controlled MAS with lumped-parameter agents to distributed-

parameter agents. Furthermore, it shows that the backstepping ap-

proach (see, e. g., [18]) is also an useful tool to systematically design

networked controller for distributed-parameter MAS by combining it

with graph-theoretic methods.

After the problem formulation in the next section, the design of

the cooperative state feedback regulator is presented in Section III.

Robust cooperative output regulation of the resulting networked con-

troller is verified in Section IV. These results are extended in Section

V for the solution of the robust leaderless output synchronization

problem. A MAS of four unstable parabolic agents demonstrates the

results of the paper with and without an ODE-leader in the presence

of disturbances and model uncertainty.

A. Elements from Graph Theory

The communication topology between the agents is described by a

time invariant (weighted) digraph G. This is a triple G = {V, E , AG},

in which V is a set of N nodes V = {ν1, . . . , νN}, one for each agent

and E ⊂ V×V is a set of edges that models the information flow from

the node νj to νi with (νi, νj) ∈ E . This flow is weighted by aij ≥ 0,

which are the element of the adjacency matrix AG = [aij ] ∈ R
N×N

with aii = 0, i = 1, . . . , N . From this, the Laplacian matrix LG ∈
R

N×N of the graph G can be derived by LG = DG − AG , where

DG = diag(d1, . . . , dN) with di =
∑N

k=1 aik, i = 1, . . . , N , is the

degree matrix of G. Hence, the elements lij of LG are lii =
∑N

k=1 aik

and lij = −aij , i 6= j. A path from the node νj to the node νi is

a sequence of r ≥ 2 distinct nodes {νl1 , . . . , νlr} with νl1 = νj
and νlr = νi such that (νk, νk+1) ∈ E . A graph G is said to be

connected if there is a node ν, called the root, such that, for any node

νi ∈ V\{ν}, there is a path from ν to νi. For further details on graph

theory see, e. g., [21, Ch. 2]. In the paper the Kronecker product

A ⊗ B = [aijB] ∈ C
n1n2×m1m2 of two matrices A = [aij ] ∈

C
n1×m1 and B ∈ C

n2×m2 is utilized (see, e. g., [29]). In what

follows the multiplication property (A⊗ B)(C ⊗D) = AC ⊗BD

with A ∈ R
n1×m1 , B ∈ R

n2×m2 , C ∈ R
m1×m3 and D ∈ R

m2×m4

of the Kronecker product is needed (see [29, Ch 1.3]).

II. PROBLEM FORMULATION

Consider a multi-agent system (MAS) consisting of the N > 1
heterogeneous parabolic agents

ẋi(z, t) = λ̄i(z)x
′′
i (z, t) + āi(z)xi(z, t) + g

⊤
1,i(z)di(t) (1a)

x
′
i(0, t) = q̄0,ixi(0, t) + g

⊤
2,idi(t), t > 0 (1b)

x
′
i(1, t) = q̄1,ixi(1, t) + ui(t) + g

⊤
3,idi(t), t > 0 (1c)

yi(t) = C̄i[xi(t)] + g
⊤
4,idi(t), t ≥ 0 (1d)

for i = 1, . . . , N . The state xi(z, t) ∈ R of (1) is defined on (z, t) ∈
(0, 1) × R

+, λ̄i = 1 +∆λi ∈ C2[0, 1] and āi = a+∆ai ∈ C[0, 1]
are assumed. The input locations of the disturbance di(t) ∈ R

mi

are characterized by a vector function g1,i with piecewise continuous

elements and gk,i ∈ R
mi , k = 2, 3, 4, which have not to be available

for the controller design. In (1b) and (1c) the coefficients q̄k,i =
qk + ∆qk,i ∈ R, k = 0, 1, specify Robin or Neumann BCs, the

input is ui(t) ∈ R and the initial condition (IC) of the system reads

xi(z, 0) = x0,i(z) ∈ R.

Remark 1: Note that the assumption λ̄i = 1+∆λi and a missing

advection term in (1a) mean no loss of generality, since this can

always be ensured by applying the transformations in [18, Ch. 2.1 &

4.8]. ⊳

The output yi(t) ∈ R to be controlled can be defined distributed

in-domain, point-wise in-domain at l locations, at the boundaries and

combinations thereof. This leads to the formal output operator

C̄i[h] =

∫ 1

0

c̄i(ζ)h(ζ)dζ + c̄b0,ih(0) + c̄b1,ih(1) (2)

for h(z) ∈ R with c̄bk,i = cbk +∆cbk,i ∈ R, k = 0, 1, and c̄i(z) =
c̄0,i(z)+

∑l
k=1 c̄k,iδ(z−zk), in which c̄0,i(z) = c0(z)+∆c0,i(z) ∈

R with c̄0,i(z) piecewise continuous functions, c̄k,i = ck+∆ck,i ∈ R

and zk ∈ (0, 1), k = 1, . . . , l. The known nominal parameters are a,

qk, c0, cbk, k = 0, 1 and ck, zk, k = 1, . . . , l, whereas

∆λi(z),∆ai(z),∆qk,i,∆cbk,i(z),∆c0,i(z) and ∆ck,i (3)

represent unknown model uncertainties. With this, the nominal agents

give rise to a homogeneous MAS.

For all agents a common reference input r(t) ∈ R is specified by

the solution of the global reference model

ẇr(t) = Srwr(t), t > 0, wr(0) = wr,0 ∈ R
nr (4a)

r(t) = p
⊤
r wr(t), t ≥ 0 (4b)

with pr ∈ R
nr and the pair (p⊤r , Sr) observable. It is assumed that

the spectrum σ(Sr) of Sr ∈ R
nr×nr has only eigenvalues on the

imaginary axis, i. e., σ(Sr) ⊂ jR, and that Sr is diagonalizable.

Hence, (4) describes a wide class of reference inputs including

constant and trigonometric functions of time as well as linear combi-

nations thereof. The extension to non-diagonalizable global reference

models is also possible by making use of the results in [13]. The

disturbances di, i = 1, . . . , N , acting on the individual agents are

described by the local disturbance models

ẇdi(t) = Sdiwdi(t), t > 0, wdi(0) = wdi,0 ∈ R
ndi (5a)

di(t) = Pdiwdi(t), t ≥ 0, (5b)

in which Pdi ∈ R
mi×ndi , the pair (Pdi , Sdi) is observable and the

matrix Sdi ∈ R
ndi

×ndi has the same properties as Sr in (4a). The

global reference model (4) and the local disturbance models (5) are

merged into the signal model

ẇ(t) = Sw(t), t > 0, w(0) = w0 ∈ R
nw (6a)

r(t) = p
⊤
w(t), t ≥ 0 (6b)

di(t) = Piw(t), t ≥ 0 (6c)
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so that all signal forms described in (4) and (5) can be generated

by (6). This directly determines the vector p ∈ R
nw and the matrix

Pi ∈ R
mi×nw , i = 1, . . . , N . In the sequel, it is assumed that only

S in (6a) is known for the controller design. Note that S inherits the

properties from Sr and Sdi , i. e., S is diagonalizable with eigenvalues

on the imaginary axis.

The agents consist of two groups. The first group is composed

of the agents i, i = 1, . . . , n, n ≥ 1, which have access to

the reference input r and are therefore called the informed agents.

In contrast, the information about the reference input can only be

broadcast to the remaining agents i, i = n + 1, . . . , N , through

a communication network. More precisely, these agents have only

access to the reference information of their neighbours due to the

communication constraints. Hence, they are the so-called uninformed

agents. As a consequence, a cooperative regulator is required, in order

to achieve output regulation.

In this paper, the robust cooperative output regulation problem is

solved by utilizing the cooperative state feedback regulator

v̇i(t) = Svi(t)+by
(

N
∑

j=1

aij(yi(t)−yj(t))+ai0(yi(t)−r(t))
)

(7a)

ui(t) = u
l
i(t) + u

c
i (t) = Ki[vi(t), x(t)], t ≥ 0 (7b)

for i = 1, . . . , N with (7a) defined on t > 0, the IC vi(0) = vi,0 ∈
R

nw and by ∈ R
nw such that the pair (S, by) is controllable as well

as x = col(x1, . . . , xN ) ∈ R
N in (7b). Furthermore, Ki is a formal

feedback operator, which is determined by the local state feedback

u
l
i(t) = k

⊤
v vi(t)− k1xi(1, t)−

∫ 1

0

kx(ζ)xi(ζ, t)dζ (8)

with the common feedback gains kv ∈ R
nw , k1 ∈ R, kx(z) ∈ R and

the cooperative state feedback

u
c
i (t) =

∫ 1

0

rx(ζ)
(

N
∑

j=1

aij(xi(ζ, t)−xj(ζ, t))+ai0xi(ζ, t)
)

dζ, (9)

where rx(z) ∈ R is the common feedback gain.

Remark 2: In order to implement (9) with a low communication

load, introduce ξi(t) =
∫ 1

0
rx(ζ)xi(ζ, t)dζ so that (9) can be

rewritten as

u
c
i (t) =

N
∑

j=1

aij(ξi(t)− ξj(t)) + ai0ξi(t). (10)

Since all agents know the common feedback gain rx(z), they are

able to transmit only the lumped quantities ξi(t). ⊳

In (7a) and (9) the constants aij , i, j = 1, . . . , N , are the elements

of the adjacency matrix AG corresponding to the digraph G. By

regarding (4) as agent 0, the constants ai0, i = 1, . . . , N , describe

the communication between the reference model (4) and the agents

(1). More specifically, ai0 > 0 holds for the informed agents i,

i = 1, . . . , n, while ai0 = 0 is valid for the uninformed agents i,

i = n+ 1, . . . , N . In the following it is assumed that agent 0 is the

root of the digraph Ḡ describing the communication network with

node set V̄ = {0, 1, . . . , N} and edge set Ē . Then, by removing

all edges of Ē , that are incident to the root, the subgraph G with

node set V = {1, . . . , N} and the edge set E is obtained. Note

that the cooperative state feedback controller (9) has to respect

the communication topology and thus leads to structural constraints,

when designing the regulator (7). The latter has to ensure stability of

the networked controlled MAS and the reference tracking

lim
t→∞

eyi(t) = lim
t→∞

(yi(t)− r(t)) = 0, (11)

i = 1, . . . , N , for all ICs of the plant (1), of the signal model (6)

and of the controller (7). Furthermore, the property (11) should be

robust in the sense that it holds despite of all model uncertainties (3),

for which the nominal networked controller stabilizes the networked

controlled MAS. This output regulation problem can also be seen

as a leader-follower robust output synchronization problem in the

presence of disturbances, where the reference model (4) is the leader

and the agents (1) are the followers.

An interesting specialization of the robust cooperative output regu-

lation problem is obtained by omitting the global reference model (4),

i. e., by not specifying the reference input. This results in a leaderless

robust output synchronization problem subject to disturbances, where

(11) is replaced by

lim
t→∞

(yi(t)− yj(t)) = 0, i, j = 1, . . . , N. (12)

Here, the information exchange through the network is utilized so

that the agents can negotiate a common synchronization trajectory

for their outputs yi. Different from the leader-follower output syn-

chronization problem, the corresponding synchronization trajectory

is not specified a priori, but depends on the network topology and

on the ICs of the agents.

III. COOPERATIVE STATE FEEDBACK REGULATOR DESIGN

The regulator (7) has a similar structure as the classical regulator

resulting from the internal model principle (see [22], [13]). In

particular, it also contains a copy of the signal model (6), but different

from the usual approach it is driven by a diffusive coupling of

neighbouring outputs, which takes the communication topology into

account. This allows a solution of the considered output regulation

problem by a suitable cooperation of the internal models for each

agent. Therefore, (7a) is called the cooperative internal model in the

sequel.

In order to achieve robust cooperative output regulation, the state

feedback controller (7b) must stabilize the nominal MAS. The latter

results from setting the model uncertainties in (3) to zero. In addition,

the cooperative internal model (7a) is rewritten in the form

v̇i(t) = Svi(t) + (e⊤i H ⊗ by)y(t), i = 1, . . . , N, (13)

which results from a simple calculation by taking the leader-follower

matrix

H = LG + L0 ∈ R
N×N

(14)

with L0 = diag(a10, . . . , aN0) into account as well as denoting the i-

th unit vector by ei ∈ R
N and the Laplacian matrix w.r.t. the digraph

G by LG . Furthermore, the reference input r is not considered in

(13), because this exogenous input does not influence the closed-loop

stability (see (7a)). With this, the definition of v = col(v1, . . . , vN ) ∈
R

Nnw directly leads to the aggregated cooperative internal model

v̇(t) = (IN ⊗ S)v(t) + (H ⊗ by)y(t). (15)

Hence, the nominal networked controlled MAS takes the form

v̇(t) = (IN ⊗ S)v(t) + (H ⊗ by)C[x(t)] (16a)

ẋ(z, t) = x
′′(z, t) + a(z)x(z, t) (16b)

x
′(0, t) = q0x(0, t) (16c)

x
′(1, t) = q1x(1, t) +K[v(t), x(t)], (16d)

in which the nominal output operator C results from (2) by setting

the model uncertainties (3) to zero. Furthermore, the definition K =
col(K1, . . . ,KN ) was utilized in (16d). The stabilizing controller (7b)
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is obtained, by mapping (16) into the stable ODE-PDE cascade

ėv(t) = Fevev(t) (17a)

˙̃x(z, t) = x̃
′′(z, t)− µcx̃(z, t) (17b)

x̃
′(0, t) = 0 (17c)

x̃
′(1, t) = (IN ⊗ k

⊤
v )ev(t) (17d)

with

Fev = IN ⊗ S −H ⊗ q̃(1)k⊤
v . (18)

This requires to determine a local backstepping transformation

x̃(z, t) = x(z, t)−

∫ z

0

k(z, ζ)x(ζ, t)dζ = Tc[x(t)](z) (19)

with the common kernel k(z, ζ) ∈ R, which is applied to the

individual agents (1) without taking the communication into account.

The latter is needed for the design of the cooperative decoupling

transformation

evi(t) = vi(t)−

∫ 1

0

q̃(ζ)
(

N
∑

j=1

aij(x̃i(ζ, t)−x̃j(ζ, t))+ai0x̃i(ζ, t)
)

dζ

(20)

for i = 1, . . . , N , which needs the state of several agents and

describes the deviation evi of the ODE state vi(t) from the PDE

states xi(z, t). Therein, the common vector q̃(z) ∈ R
nw has to be

determined. By introducing ev = col(ev1 , . . . , evN ) ∈ R
Nnw the

aggregated decoupling transformation reads

ev(t) = v(t)−

∫ 1

0

(H ⊗ q̃(ζ))x̃(ζ, t)dζ, (21)

which follows from the same reasoning as for (15).

A. Local Backstepping Transformation of the MAS

In the first step, the backstepping transformation (19) is determined

to map (16) into the intermediate target system

v̇(t) = (IN ⊗ S)v(t) + (H ⊗ by)CT
−1
c [x̃(t)] (22a)

˙̃x(z, t) = x̃
′′(z, t)− µcx̃(z, t) (22b)

x̃
′(0, t) = 0 (22c)

x̃
′(1, t) = u(t)+

(

q1−k(1, 1)
)

x(1, t)−

∫ 1

0

kz(1, ζ)x(ζ, t)dζ. (22d)

Therein, the agents are stabilized by choosing µc ∈ R such that the

PDE subsystem (17b)–(17d) is exponentially stable. Differentiating

(19) w. r. t. time and inserting (16) and (22), the same calculations as

in [27] verify that k(z, ζ) has to solve the kernel equations

kzz(z, ζ)− kζζ(z, ζ) = (µc + a(ζ))k(z, ζ), 0 < ζ < z < 1 (23a)

kζ(z, 0) = q0k(z, 0) (23b)

k(z, z) = q0 −
1

2

∫ z

0

(µc + a(ζ))dζ. (23c)

It is shown in [27] that (23) has a unique C2-solution. Furthermore,

the inverse transformation exists and is given by

x(z, t) = x̃(z, t) +

∫ z

0

kI(z, ζ)x̃(ζ, t)dζ = T −1
c [x̃(t)](z). (24)

Therein, the kernel kI(z, ζ) ∈ R follows from similar kernel

equations. In order to determine the operator CT −1
c in (22a), insert

(24) in (2) for the nominal case and change the order of integration.

This yields

CT −1
c [x̃(t)] =

∫ 1

0

c̃(ζ)x̃(ζ, t)dζ + cb0x̃(0, t) + cb1x̃(1, t) (25)

with c̃(ζ) = cb1kI(1, ζ)+ c(ζ)+
∫ 1

ζ
c(ζ̄)kI(ζ̄, ζ)dζ̄ after straightfor-

ward computations.

B. Decoupling of the Cooperative Internal Model

In the second step, the transformation (21) is utilized to map

(22) into the final target system (17). For this, the ODE subsystem

(22a) is decoupled from the PDE subsystem (22b)–(22d). In order

to determine the state feedback (7b) in the original coordinates, the

decoupling transformation (21) has to be represented in terms of x.

Inserting (19) in (21) and changing the order of integration results in

ev(t) = v(t)−

∫ 1

0

(H ⊗ q(ζ))x(ζ, t)dζ (26)

where q(ζ) = q̃(ζ)−
∫ 1

ζ
q̃(ζ̄)k(ζ̄, ζ)dζ̄. With this, the state feedback

(7b) is obtained from (22d) and by inserting (26) in (17d). Particularly,

the latter yields

x̃
′(1, t) = (IN ⊗ k

⊤
v )v(t)−

∫ 1

0

(H ⊗ k
⊤
v q(ζ))x(ζ, t)dζ (27)

when taking the multiplication property of the Kronecker product into

account (see Section I). Consequently, the BC (22d) and (27) yield

the state feedback

u(t) = (IN ⊗ k
⊤
v )v(t)−

(

q1 − k(1, 1)
)

x(1, t)

+

∫ 1

0

kz(1, ζ)x(ζ, t)dζ −

∫ 1

0

(H ⊗ k
⊤
v q(ζ))x(ζ, t)dζ. (28)

Considering the aggregation of (8) and (9) and comparing the result

with (28) directly leads to the common feedback gains

k1 = q1−k(1, 1), kx(ζ) = −kz(1, ζ) and rx(ζ) = −k
⊤
v q(ζ). (29)

In order to determine (21), differentiate it w. r. t. time, insert

(22) with (25) in the result and use the BC (17d). After applying

integrations by parts this results in

ėv(t) = v̇(t)−

∫ 1

0

(H ⊗ q̃(ζ)) ˙̃x(ζ, t)dζ

= (IN ⊗ S −H ⊗ q̃(1)k⊤
v )ev(t) (30)

+
(

H ⊗ (bycb0 − q̃
′(0))

)

x̃(0, t)

+
(

H ⊗ (q̃′(1) + bycb1)
)

x̃(1, t)

+

∫ 1

0

(

H ⊗ (by c̃(ζ)− q̃
′′(ζ) + Sq̃(ζ) + µcq̃(ζ))

)

x̃(ζ, t)dζ.

Hence, if q̃(z) is the solution of the decoupling equations

q̃
′′(z)− µc q̃(z)− Sq̃(z) = by c̃(z), z ∈ (0, 1) (31a)

q̃
′(0) = bycb0 (31b)

q̃
′(1) = −bycb1, (31c)

then (21) and (28) map the intermediate target system (22) into the

final target system (17). The next lemma asserts the solvability of

(31).

Lemma 1 (Solvability of the decoupling equations): Denote the

spectrum of the PDE subsystem (17b)–(17d) by σc. The decoupling

equations (31) have a unique C2-solution q̃(z) ∈ R
nw if σc∩σ(S) =

∅.

The proof of this lemma can be directly deduced from the correspond-

ing result in [13]. Obviously, the condition of Lemma 1 is fulfilled in

the design, because σ(S) ⊂ jR and the PDE subsystem (17b)–(17d)

is exponentially stable. Note that due to the constant coefficients in

(31), the solution can be obtained explicitly.

C. Stability of the Networked Controlled MAS

The resulting target system (17) shows that the constraint stabi-

lization of the nominal networked controlled MAS (16) originating

from the restricted communication topology can be traced back to the
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constrained stabilization of the finite-dimensional ODE subsystem

(17a), (18). This significantly facilitates the networked controller

design for the infinite-dimensional MAS (1). In particular, systematic

solutions exist for determining the common feedback gain k⊤
v in (18)

to solve the simultaneous stabilization problem resulting for (17a)

(see, e. g., [17, Ch. 5.4] and [3, Ch. 8.4]). For this it is required that the

global reference inputs and the local disturbances can be transmitted

from the agent input to its output. This leads to the nonblocking

conditions for the numerator of the corresponding transfer behaviour

in the next lemma.

Lemma 2 (Stabilization of the ODE subsystem): The numerator

N(s) ∈ C
N×N of the transfer matrix F (s) = N(s)D−1(s)

from u to y w. r. t. the nominal MAS (1) is given by N(s) =
cb0IN +cb1T

⊤Ψ⊤(0, 1, s)T +
∫ 1

0
c̃(ζ)T⊤Ψ⊤(0, ζ, s)Tdζ with T =

[IN 0]⊤ ∈ R
2N×N and

Ψ(z, ζ, s) = e





0 IN
(s+ µc)IN 0



(z−ζ)

(32)

(see (25)). Then, the pair (S, q̃(1)) is controllable iff the pair (S, by)
is controllable and detN(λ) 6= 0, ∀λ ∈ σ(S), holds. Assume that

(S, q̃(1)) is controllable and let the digraph Ḡ be connected with the

node 0 as its root, then there exists a common feedback gain k⊤
v such

that Fev in (18) is Hurwitz. A possible choice for this feedback is

k
⊤
v = q̃

⊤(1)Q (33)

with Q ∈ R
nw×nw the positive definite solution of the algebraic

Riccati equation

S
⊤
Q+QS − 2νQq̃(1)q̃⊤(1)Q+ aI = 0, (34)

where a > 0 and ν such that Reλ ≥ ν > 0, ∀λ ∈ σ(H).
Proof: The calculation of the numerator N(s) and the result

for the controllability of the pair (S, q̃(1)) directly follows from the

related result in [13]. If the digraph Ḡ is connected with the node 0
as its root, then Reλ > 0, ∀λ ∈ σ(H) (see [30, Rem. 2]) such that

there exists a ν satisfying the condition of the lemma. With this, and

applying a similar reasoning as in [17, Ch. 5.5] it is easily verified

that (33) ensures a Hurwitz matrix Fev . In particular, consider the

matrix Fi = S−λi(H)q̃(1)k⊤
v , i = 1, . . . , N , with λi(H) being the

eigenvalues of H in (14). This matrix is a block diagonal element

resulting from mapping Fev to an upper triangular matrix, which is

always possible (see [17, Ch. 5.5]). Consider ξH(FH
i Q+QFi)ξ ≤

ξH(S⊤Q+QS−2νQq̃(1)q̃⊤(1)Q)ξ = −a‖ξ‖2, ξ ∈ C
nw . Therein,

(33) is inserted in Fi and the condition Reλ ≥ ν > 0 as well as (34)

are used (cf. [17, Ch. 5.5]). This and the fact that the algebraic Riccati

equation (34) has a unique positive definite solution Q for (S, q̃(1))
controllable implies that Fi and thus Fev are Hurwitz matrices.

Remark 3: It should be emphasized that the design only requires

to solve the kernel equations (23), the decoupling equations (31) and

the Riccati equation (34), that are independent from the number N

of agents. This verifies the scalability of the proposed networked

controller design. ⊳

This completes the design of the networked controller (7). In the next

theorem the stability of the resulting networked controlled nominal

MAS is stated.

Theorem 1 (Nominal stability of the networked controlled MAS):

Let the feedback gains in (7b) be given by (29). Assume that µc > 0
and that Fev is a Hurwitz matrix such that α = min(αev , µc) > 0
where αev = −maxλ∈σ(Fev

) Reλ. Then, the abstract initial

value problem (IVP) corresponding to the resulting nominal

networked controlled MAS with the state xc(t) = col(v(t), x(t))
and x(t) = {x(z, t), z ∈ [0, 1]} is well-posed in the state

space X = C
Nnw ⊕ (L2(0, 1))

N with the usual inner product.

Furthermore, the system is exponentially stable in the norm

‖ · ‖ = (‖ · ‖2
CNnw

+ ‖ · ‖2L2
)1/2 where ‖h‖2L2

=
∫ 1

0
‖h(ζ)‖2

CN dζ.

In particular, ‖xc(t)‖ ≤ Me−αt‖xc(0)‖, t ≥ 0, holds for all

xc(0) ∈ C
Nnw ⊕ (H2(0, 1))N ⊂ X satisfying the BCs of the

closed-loop system and an M ≥ 1.

Proof: Consider the transformation x̄(z, t) = x̃(z, t) −
0.5z2(IN ⊗ k⊤

v )ev(t), which maps (17) into

ėv(t) = Fevev(t) (35a)

˙̄x(z, t) = x̄
′′(z, t)− µcx̄(z, t) + b

⊤(z)ev(t) (35b)

x̄
′(0, t) = 0 (35c)

x̄
′(1, t) = 0 (35d)

for some b(z) ∈ R
Nnw . Define the operators Ah = h′′ − µch,

h ∈ D(A) = {h ∈ (H2(0, 1))N |h′(0) = h′(1) = 0}, Bh =
b⊤h, h ∈ C

Nnw and Ãh = col(Fevh1,Bh1 + Ah2) with h ∈
D(Ã) = C

Nnw ⊕ D(A) as well as introduce the states x̄(t) =
{x̄(z, t), z ∈ [0, 1]} and ξ(t) = col(ev(t), x̄(t)). Then, (35) can

be represented by the abstract IVP ξ̇(t) = Ãξ(t), t > 0, ξ(0) ∈
D(Ã) ⊂ X . Since −A is a Sturm-Liouville operator, the operator A
is the infinitesimal generator of a C0-semigroup (see [7], [13]). Then,

the composite operator Ã is also an infinitesimal generator so that the

abstract IVP in question is well-posed with the decay rate α in view

of [14, Lem. A-3.3]. In particular, the PDE subsystem (35b)–(35d)

has decay rate −µc, because its spectrum σ̃ satisfies maxλ∈σ̃ λ ≤ 0
for µc = 0 due to the Neumann BCs. By going through the chain of

boundedly invertible transformations the stability result in the original

coordinates can be verified.

IV. ROBUST COOPERATIVE OUTPUT REGULATION

The networked controller (7) should be able to ensure reference

tracking (11) in the presence of model uncertainties (3) and the

modelled disturbances in (6). In order to investigate this property

for the uncertain MAS (1), consider (7a) in the form

v̇i(t) = Svi(t) + bye
⊤
i (Hy(t)−L01N r(t)

)

, i = 1, . . . , N. (36)

This result follows from a simple calculation using the properties

of LG and by defining 1N = col(1, . . . , 1) ∈ R
N . Observe that

H1N = (LG + L0)1N = L01N holds (see (14)), since LG1N = 0.

With this and (36), the aggregated cooperative internal model (15)

becomes

v̇(t) = (IN ⊗ S)v(t) + (IN ⊗ by)ẽy(t), (37)

in which

ẽy(t) = Hey(t) (38)

and ey = y − 1Nr. The internal model (37) has the same form as

in [13] and thus fulfills the N-copy internal model principle, which

amounts to include N copies of the signal model into the internal

model. Hence, the corresponding results can be applied to verify

robust cooperative output regulation. The next theorem makes this

more precise.

Theorem 2 (Robust cooperative output regulation): Assume that

the model uncertainties (3) are such that the resulting networked con-

trolled MAS is strongly asymptotically stable and the output operator

C̄ = col(C̄1, . . . , C̄N) resulting from (2) is relatively bounded. Fur-

thermore, let the digraph Ḡ be connected with the node 0 as its root.

Then, the networked controller (7) achieves robust cooperative output

regulation, i. e., limt→∞ eyi(t) = 0, i = 1, . . . , N , independently of

the disturbance input locations characterized by gj,i, j = 1, 2, 3, 4,

i = 1, . . . , N , as well as the generation of the disturbance and the

reference signals by p⊤, Pi in (6).

Proof: The result in [13] ensures limt→∞ ẽy(t) = 0 in the

presence of the assumed model uncertainties (3) and exogenous



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, AUGUST 2020 6

signals generated by (6). If the digraph Ḡ is connected with the node

0 as its root, then detH 6= 0 in view of [30, Rem. 2]. This and

(38) imply limt→∞ ey(t) = 0 verifying robust cooperative output

regulation.

V. LEADERLESS ROBUST OUTPUT SYNCHRONIZATION

In what follows, the results of the previous sections are applied to

solve the leaderless robust output synchronization problem introduced

in Section II. For this setup, the networked controller is given by (7)

with ai0 = 0, i = 1, . . . , N . Hence, the aggregated cooperative

internal model takes the form

v̇(t) = (IN ⊗ S)v(t) + (LG ⊗ by)y(t) (39)

in view of (14) and (15), because L0 = 0. In this setup, the matrix Sr

in S influences the form of the synchronization trajectory negotiated

by the agents.

A. Backstepping Transformation into an ODE-PDE Cascade

Similar to Sections III-A and III-B, the transformations

x̃(z, t) = x(z, t)−

∫ z

0

k(z, ζ)x(ζ, t)dζ (40a)

ev(t) = v(t)−

∫ 1

0

(LG ⊗ q̃(ζ))x̃(ζ, t)dζ (40b)

are utilized to map the nominal MAS (1) into the ODE-PDE cascade

(17) with

Fev = IN ⊗ S − LG ⊗ q̃(1)k⊤
v . (41)

For this, the kernel k(z, ζ) in (40a) is the solution of (23) and q̃(ζ)
in (40b) has to result from solving (31).

B. Stabilization of the ODE Subsystem

A somewhat different approach is needed to stabilize the ODE

subsystem (17a) and (41), because H in Fev is replaced by the

Laplacian matrix LG , which different from H has an eigenvalue at

the origin. As a consequence, the ODE subsystem has to be mapped

into a cascade of two ODEs, in order to determine the feedback gain

kT
v . To this end, introduce the new coordinates

col(ev1(t), εv2(t), . . . , εvN (t)) = (Θ⊗ Inv
)ev(t) (42)

(see, e. g., [17, Ch. 5.4]) with εvi = evi − ev1 , i = 2, . . . , N , εv =
col(εv2 , . . . , εvN ) and

Θ =

[

1 01×N−1

−1N−1 IN−1

]

. (43)

For the following, observe that

L̃G = ΘLGΘ
−1 =

[

0 l̃⊤12
0N−1 L̃22

]

(44)

holds, in which 0N−1 = col(0, . . . , 0) ∈ R
N−1 and the inverse Θ−1

always exists. Then, applying the transformation (42) to (17) and (41)

yields

˙̃x(z, t) = x̃
′′(z, t)− µcx̃(z, t) (45a)

x̃
′(0, t) = 0 (45b)

x̃
′(1, t) = 1Nk

⊤
v ev1(t) +Bεv(t) (45c)

ėv1(t) = Sev1(t)−
(

l̃
⊤
12 ⊗ q̃(1)k⊤

v

)

εv(t) (45d)

ε̇v(t) = Fεvεv(t), (45e)

where

B =

[

0

IN−1 ⊗ k⊤
v

]

(46a)

Fεv = IN−1 ⊗ S − L̃22 ⊗ q̃(1)k⊤
v (46b)

after a simple calculation. In the following, k⊤
v is determined to solve

the simultaneous stabilization problem arising for (45e) (cf. (17a)).

The next lemma is a direct consequence of the similarity between

(18) and the matrix in (45e) so that the result of Lemma 2 becomes

applicable.

Lemma 3 (Stabilization of the ODE subsystem): Assume

that (S, q̃(1)) is controllable (see Lemma 2 for a condition) and let

the digraph G associated with the Laplacian matrix LG be connected,

then there exists a common feedback gain k⊤
v such that the matrix

Fεv in (46b) is Hurwitz. A possible choice for this feedback is given

by (33) after solving (34) with a > 0 and ν such that

Reλ ≥ ν > 0, ∀λ ∈ σ(L̃22). (47)

Proof: It remains to verify the existence of ν such that (47)

is satisfied. Since the digraph G is assumed to be connected, the

Laplacian matrix LG has only one eigenvalue at the origin and all

other eigenvalues have a positive real part (see, e. g., [17, Th. 5.1]).

Then, by (44) the matrix L̃22 has only eigenvalues with positive real

parts, which proves the lemma.

In order to investigate the stability properties of (45), introduce the

transformations

ẽv1(t) = ev1(t)− Πεv(t) (48a)

x̄(z, t) = x̃(z, t)− Σ1(z)ẽv1(t)−Σ2(z)εv(t) (48b)

with Π ∈ R
nw×(N−1)nw , Σ1(z) ∈ R

N×nw and Σ2(z) ∈
R

N×(N−1)nw . They map (45) into

˙̄x(z, t) = x̄
′′(z, t)− µcx̄(z, t) (49a)

x̄
′(0, t) = 0 (49b)

x̄
′(1, t) = 0 (49c)

˙̃ev1(t) = Sẽv1(t) (49d)

ε̇v(t) = Fεvεv(t) (49e)

if Π, Σ1(z) and Σ2(z) are the solution of

ΠFεv − SΠ = −
(

l̃
⊤
12 ⊗ q̃(1)k⊤

v

)

(50a)

Σ′′
1 (z)− µcΣ1(z)−Σ1(z)S = 0, z ∈ (0, 1) (50b)

Σ′
1(0) = 0 (50c)

Σ′
1(1) = 1Nk

⊤
v (50d)

Σ′′
2 (z)− µcΣ2(z)−Σ2(z)Fεv = 0, z ∈ (0, 1) (50e)

Σ′
2(0) = 0 (50f)

Σ′
2(1) = 1Nk

⊤
v Π+B. (50g)

The next lemma clarifies the solvability of (50).

Lemma 4: Assume that σ(Fεv ) ∩ σ(S) = ∅, σc ∩ σ(S) = ∅
and σc ∩ σ(Fεv ) = ∅, in which σc is the eigenvalue spectrum of

the PDE subsystem (45a)–(45c). Then, there exist unique matrices

Π ∈ R
nw×(N−1)nw , Σ1(z) ∈ R

N×nw and Σ2(z) ∈ R
N×(N−1)nw

solving (50), where the elements of Σi, i = 1, 2, are C2-functions.

The proof of this lemma directly follows from the related results in

[13]. Note that the conditions of Lemma 4 can always be ensured by

a suitable choice of µc (cf. Theorem 1) and the design of the gain

k⊤
v (cf. Lemma 3). The next theorem clarifies the stability properties

of (45).

Theorem 3 (Nominal stability for output synchronization):

Assume that the conditions of Lemma 4 are fulfilled and that the
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PDE subsystem (49a)–(49c) is exponentially stable as well as let

Fεv be a Hurwitz matrix. Then, the solution of (45) is bounded in

the L2-norm.

Proof: The assumptions of Theorem 3 imply

limt→∞ ‖x̄(t)‖L2
= 0 and limt→∞ εv(t) = 0. Then, in view

of x̄(z, t) = x̃(z, t) − Σ1(z)ẽv1(t) − Σ2(z)εv(t) (see (48b)), the

solution x̃(z, t) converges to

x̃∞(z, t) = Σ1(z)ẽv1(t). (51)

Hence, the solution of (45) is bounded in the L2-norm, because (49d)

has a bounded solution by assumption (see Section II).

By inserting (51) in (25), the steady state response

y∞(t) = CT −1[x̃∞(t)] = CT −1[Σ1]ẽv1(t) (52)

is obtained. Therein, the evaluation of x̃∞(z, t) is well-defined due to

the smoothness of Σ1 (see Lemma 4). In what follows, it is verified

that the elements of y∞ coincide in the presence of disturbances and

model uncertainty, i. e., robust output synchronization is achieved.

This highlights the fact that S determines the form of the synchro-

nization trajectory (see (49d)) and (52).

C. Robust Output Synchronization

In order to verify robust output synchronization, the N -copy

internal model principle has to hold for the cooperative internal model

(39). From (37) and (38) the result

v̇(t) = (IN ⊗ S)v(t) + (IN ⊗ by)LGy(t) (53)

is readily deduced in view of (14), L0 = 0 and ai0 = 0, i = 1, . . . , N .

With LG = Θ−1L̃GΘ (see (44)) the result

LGy(t) = Θ−1
L̃G

[

y1(t)
ey(t)

]

= H̃ey(t) (54)

follows, where ey = col(y2 − y1, . . . , yN − y1) and

H̃ = Θ−1

[

l̃⊤12
L̃22

]

∈ R
N×N−1

. (55)

In the proof of Lemma 3 it is verified that a connected digraph

G implies det L̃22 6= 0. Hence, rank H̃ = N − 1 follows from

(55). This verifies the N -copy internal model principle (see [13]),

because H̃ey(t) = 0 holds only for ey(t) = 0. Consequently,

limt→∞ ey(t) = 0 and thus (12) is ensured for non destabilizing

model uncertainty and for the modeled disturbances. This is the result

of the next theorem.

Theorem 4 (Leaderless robust output synchronization): Assume

that the model uncertainties (3) are such that the PDE subsystem (cf.

(45a)–(45c) in the nominal case) resulting from applying the transfor-

mations (40) to the uncertain MAS (1) and the cooperative internal

model (39) is strongly asymptotically stable and the output operator

C̄ = col(C̄1, . . . , C̄N) resulting from (2) is relatively bounded.

Furthermore, let the digraph G associated with the Laplacian matrix

LG be connected. Then, the networked controller (39), (7b) achieves

robust output synchronization, i. e., limt→∞(yi(t) − yj(t)) = 0,

i, j = 1, . . . , N , independently of the disturbance input locations

characterized by gj,i, j = 1, 2, 3, 4, i = 1, . . . , N , and the generation

of the disturbance by Pi in (6).

Proof: The result (45d)–(45e) shows that the transformed coop-

erative internal model can be split into stable subsystem (45e) and the

subsystem (45d) with a bounded solution (see Section II). With this,

the result of [13] is directly applicable, since the dynamics of the latter

subsystem can be merged with the dynamics of the disturbance model

(5). Consequently, robust output synchronization can be verified with

the same reasoning as in [13].

0

1 2

3 4

Fig. 1. Communication graph Ḡ with agent 0 (reference model) as leader.

VI. EXAMPLE

In order to demonstrate the results of the paper, consider N = 4
parabolic agents with the nominal parameters a(z) = z + 1, q0 = 3
and q1 = 0. The output to be controlled is determined by c0(z) = −z,

cb0 = cb1 = 1 and no pointwise in-domain measurement. Fur-

thermore, the agents are affected by the local constant disturbances

di(t) = di0 ∈ R, i = 1, . . . , 4, with the same disturbance model

Sdi = Sd = 0 and pdi = 1. They act at the agents according to

the disturbance input locations g1,1(z) = 2z, g1,2(z) = 3z + 1,

g1,3(z) = z − 1, g1,4(z) = 2z, g2,i = g3,i = 1 and g4,i = 0,

i = 1, . . . , 4. The reference model coinciding with the leader is

denoted as agent 0 and generates a sinusoidal reference output

r(t) = Ar sin(πt+ ϕr), Ar, ϕr ∈ R. This leads in (4) to

Sr =

[

0 π

−π 0

]

, p
⊤
r =

[

1 0
]

(56)

so that S = bdiag(Sr, Sd) holds in (7a). The agents are able to

transfer information through a communication network described by

the digraph Ḡ in Figure 1 with the Laplacian matrix

LG =









1 0 −1 0
−1 2 0 −1
−1 0 1 0
0 0 −1 1









(57)

for the subgraph G with node set V = {1, 2, 3, 4} and L0 =
diag(1, 0, 0, 0). It is not difficult to verify that Ḡ and G are connected,

in which the agent 0 is the root of the former graph.

For the design of the networked controller achieving robust coop-

erative output regulation, the vector by = [1 1 1]⊤ ensuring (S, by)
controllable is chosen. Subsequently, the kernel equations (23) are

solved for µc = −5 with the method of successive approximations

(see [27]). After solving the decoupling equations (31) and verifying

detN(λ) 6= 0, λ ∈ {0,±jπ}, a solution of the algebraic Riccati

equation (34) is obtained for ν = 0.382 and a = 150.

In order to verify robust cooperative output regulation, the model

uncertainties ∆λ1 = 0.2, ∆λ2 = −0.2, ∆λ3 = −0.1, ∆λ4 = 0.1,

∆a1(z) = 0.2a(z), ∆a2(z) = −0.2a(z), ∆a3(z) = 0.1a(z),
∆a4(z) = 0.1a(z), ∆c0,i(z) = 0, ∆cb0,4 = −0.05, ∆cb1,4 = 0.1,

and all other ∆cbk,i vanishing are assumed. The resulting networked

MAS is simulated for the ICs wr(0) = [2 0]⊤, x(z, 0) =
[1 2 0.5 3]⊤, v1(0) = [1 3.5 0.5]⊤ , v2(0) = [0.1 2 0.8]⊤ ,

v3(0) = [1.7 0.8 0.3]⊤ and v4(0) = [0.5 0.7 0.9]⊤. The

upper plot in Figure 2 shows the simulation results and verifies robust

cooperative output regulation, i. e., the tracking of the leader output

in the presence of different local disturbances d(t) = [3 −3 1 1]⊤

and model uncertainty.

In order to investigate leaderless robust output synchronization, the

networked controller (39) and (7b) is applied to the same uncertain

MAS. For this, also the same design parameters are utilized but ν = 1
is chosen, in order to satisfy (47). The resulting synchronization

behaviour is depicted in the lower plot of Figure 2. Obviously,

the synchronization trajectory is particularly determined by the ICs

of the agents, which can be seen from its amplitude matching
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Fig. 2. Tracking behaviour for the agent 1 ( ), agent 2 ( ), agent
3 ( ) and agent 4 ( ) in the presence of model uncertainty and local
constant disturbances d(t) = [3 −3 1 1]⊤. Upper plot: tracking behaviour
w.r.t. the leader output r(t) = 2 cos(πt) ( ); lower plot: synchronization
behaviour without leader.

the amplitudes of the agents ICs. Note that in the upper plot all

agents outputs synchronize with the reference trajectory specified

by the leader despite of disturbances and model uncertainty. This is

different for the leaderless synchronization in the lower plot, where

the synchronization trajectory depends also on the model uncertainty

and the disturbances.

VII. CONCLUDING REMARKS

The results of the paper are directly extendible to obtain coop-

erative output feedback regulators by designing local backstepping

observers for agents with boundary measurements. From the perspec-

tive of system classes further extensions concern parabolic agents

with both temporal and spatially varying coefficients, coupled PDEs

and hyperbolic agents. As far as the communication topology is

considered, the inclusion of time-varying and random digraphs are

of interest.
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