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Abstract—Set-Membership Filter (SMF) has been extensively
studied for state estimation in the presence of bounded noises
with unknown statistics. Since it was first introduced in the
1960s, the studies on SMF have used the set-based description
as its mathematical framework. One important issue that has
been overlooked is the optimality of SMF. In this work, we
put forward a new mathematical framework for SMF using
concepts of uncertain variables. We first establish two basic
properties of uncertain variables, namely, the law of total range
(a non-stochastic version of the law of total probability) and the
equivalent Bayes’ rule. This enables us to put forward a general
SMFing framework with established optimality. Furthermore,
we obtain the optimal SMF under a non-stochastic Markov
condition, which is shown to be fundamentally equivalent to
the Bayes filter. Note that the classical SMF in the literature is
only equivalent to the optimal SMF we obtained under the non-
stochastic Markov condition. When this condition is violated, we
show that the classical SMF is not optimal and it only gives an
outer bound on the optimal estimation.

Index Terms—Set-membership filtering, optimality, uncertain
variables, law of total range, Bayes’ rule for uncertain variables.

I. INTRODUCTION

A. Motivation and Related Work

The filtering problems in the state-space description are
concerned with estimating the state information in the presence
of noises, and thus are widely considered in control systems,
telecommunications, navigation, and many other important
fields [1], [2]. When the statistics of the noises are known,
the corresponding solution method is called stochastic filter.
A famous optimal filtering framework for Hidden Markov
Models (HMMs) is the Bayes filter [1]–[3] which provides
the complete solution to the filtering problem. As a special
case, if the noises are white Gaussian in linear systems, the
corresponding Bayes filter is known as the Kalman filter [4].
Note that in the Bayes filter, the white noise assumption plays
an important role in supporting the optimality, since otherwise
the HMM condition can hardly be guaranteed.

When the noises have unknown statistics but known ranges,
the corresponding solution method is called non-stochastic
filter. In the 1960s, Witsenhausen proposed a famous filtering
framework for linear systems [5], [6], which is also suitable
for nonlinear systems, known as the Set-Membership Filter
(SMF). Similarly to the Bayes filter, the SMF also has the
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prediction step (using the set image under system function,
which becomes the Minkowski sum for linear systems) and the
update step (using the set intersection). Under this classical
SMFing framework, the follow-up/existing studies focused on
how to derive the exact or approximate solution for different
scenarios. More specifically, there are mainly two types of
SMFs in the literature1:

• Ellipsoidal SMF. This type of SMFs approximates the
Minkowski sum and set intersection using ellipsoidal
outer bounds. In [10], a continuous-discrete ellipsoidal
SMF was proposed to outer bound the estimate of the
linear systems with two specific types of noises, which
has a similar structure to the Kalman filter. With a
similar system setting, both SMFing and smoothing prob-
lems were investigated in [11] by solving corresponding
Riccati equations. In [12] and [13], algorithms were
provided for minimizing the volume of the outer bounds
on the Minkowski sum and intersection of ellipsoids.
Nevertheless, minimizing the volume can result in a very
narrow ellipsoid with an unacceptably large diameter.
Thus, the semi-axes of ellipsoids were constrained, e.g.,
via the trace of the matrix in the quadratic form. In [14],
a volume-minimizing and a trace-minimizing ellipsoidal
outer bounds (each described by two ellipsoids) were de-
rived for the linear discrete-time SMF, and the description
of outer bounds were generalized to multiple ellipsoids
in [15]. Note that the ellipsoidal SMF is computationally
cheaper but usually less accurate than the polytopic SMF
discussed below.

• Polytopic SMF. This type of SMFs describes or outer
bounds the prediction and the update using convex poly-
topes. Different from the ellipsoidal SMF, the polytopic
SMF can derive the exact solution for linear filtering
problems, because polytopes are closed under Minkowski
sum and set intersection. Nevertheless, the complexity
is unacceptable for deriving exact solutions. Noticing
this fact, researchers used different subclasses of convex
polytopes to give the outer bounds. In [16], the recursive
optimal bounding parallelotope algorithm was proposed
to give an outer bound of the exact solution. In [17],
a zonotopic SMF was designed for linear discrete-time
systems by using singular-value-decomposition-based ap-
proximation. In [18], a zonotopic SMF was proposed
for nonlinear discrete-time systems, where the zonotopic

1Interval observers [7]–[9] are not included in the SMF, since the basic
idea in the update step is based on designing an observer, which is different
from that of the SMFing framework discussed in this paper.
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outer bound is derived by using convex optimization,
which was improved in [19] by using the DC (Difference
of two Convex functions) programming. In [20] and [21],
the zonotopic SMFs were given for linear systems under
P-radius-based and weighted-Frobenius-norm criteria, re-
spectively, which efficiently balanced the complexity and
the accuracy of the zonotopic outer bounds. In [22], the
constrained zonotope was proposed and applied to the lin-
ear polytope-SMF, which can balance the complexity and
the accuracy, and is closed under linear transformations,
Minkowski sums, and set intersections. In [23], an SMF
was proposed for nonlinear systems by combining the
interval arithmetic and constrained zonotopes. In [24], a
zonotopic SMF was studied for nonlinear systems which
has advantages in handling high dimensionality.

All the above-mentioned studies on SMFs used the set-based
description as its mathematical framework (see Remark 2 for
a detailed discussion). We argue that this classical framework
has the optimality issue: for stochastic filters, we know that
even with the same marginal distributions, the white noises
and correlated noises in linear systems lead to different
Kalman filters [3]; for the SMFs, however, the noises with
different non-stochastic correlations2 (which should result in
different optimal estimations) were not distinguished; thus,
the prior studies overlooked the condition (as shown later
in Assumption 1) under which the SMFs are optimal, and
the optimal SMFing framework has not been rigorously es-
tablished. Departing from the classical/suboptimal set-based
SMFing description, in this article, we aim to establish the
optimal SMFing framework in a completely different way.

B. Our Contributions

In this work, we put forward a new mathematical framework
for SMFing, based on the concepts of uncertain variables
proposed by Nair in the 2010s [25]. Similarly to the Bayesian
filtering, our filtering framework recursively derives the non-
stochastic prior and posterior. The main contributions are:
• We first establish two new and fundamental properties of

uncertain variables: the first one is called the law of total
range, which is a non-stochastic version of the law of
total probability; the second one is the equivalent Bayes’
rule for uncertain variables. These properties enable us
to define a new SMFing framework using the notion of
uncertain variables.

• Most importantly, we establish an optimal SMFing frame-
work that is more general than the well-known classical
SMFing framework in the literature. With this new frame-
work, we obtain the optimal SMF under an unrelatedness
assumption (to guarantee a non-stochastic Markov condi-
tion), which is shown to be fundamentally equivalent to
the Bayes filter. We also show that the classical SMFing
framework in the literature is only optimal under this
Markov condition, since it cannot capture the relatedness
between the noises and the initial prior.

2Unfortunately, such non-stochastic correlations can be neither captured by
the set-based description nor characterized by the statistical dependence.

• Furthermore, we prove that when this Markoveness con-
dition is violated, the classical SMFing gives an outer
bound on the optimal estimation. We also use two ex-
amples to illustrate the performance gap between the
classical SMFing framework in the literature and the
optimal SMFing framework proposed in this work.

C. Notation

Throughout this paper, R, N0, and Z+ denote the sets
of real numbers, non-negative integers, and positive integers,
respectively. Rn stands for the n-dimensional Euclidean space.

II. UNCERTAIN VARIABLES: PRELIMINARIES AND NEW
RESULTS

In this work, the uncertainties are with known ranges but
unknown probability distributions. To model the uncertain-
ties rigorously, we introduce the uncertain variable proposed
in [25] and derive two important properties which will consti-
tute the foundation of the optimal SMFing framework.

A. Preliminaries of Uncertain Variables

Consider a sample space Ω. A measurable function x : Ω→
X from the sample space Ω to a measurable set X is called an
uncertain variable [25]. We define a realization of x as x(ω) =:
x, and sometimes we write it as x = x for conciseness.

Different from random variables which can be described by
probability distributions, an uncertain variable (say x) does not
have any information on the probability, but it can be described
by its range JxK:

JxK := {x(ω) : ω ∈ Ω} . (1)

Similar to the probability distribution for multiple random
variables, the range can also be defined w.r.t. multiple uncer-
tain variables.

Definition 1 (Joint Range, Conditional Range, Marginal
Range [25]). Let x and y be two uncertain variables. The
joint range of x and y is

Jx,yK := {(x(ω),y(ω)) : ω ∈ Ω} . (2)

The conditional range of x given y = y is

Jx|yK := {x(ω) : y(ω) = y, ω ∈ Ω} = {x(ω) : ω ∈ Ωy=y} ,
(3)

where Ωy=y := y−1({y}) = {ω : y(ω) = y, ω ∈ Ω} is the
preimage of {y(ω) = y : ω ∈ Ω}, and Jy|xK is defined in a
similar way. The marginal range of x is JxK expressed by (1).

In analogy with the joint probability distribution, the joint
range can be fully determined by the conditional and marginal
ranges [25], i.e.,

Jx,yK =
⋃

y∈JyK

(
Jx|yK× {y}

)
=
⋃

x∈JxK

(
{x} × Jy|xK

)
, (4)

where × is the Cartesian product.
Next, we introduce the definition of unrelatedness [25],

which is a non-stochastic analogue of statistical independence.
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Definition 2 (Unrelatedness and Conditional Unrelated-
ness [25]). Uncertain variables u1, . . . ,ur are unrelated if

Ju1, . . . ,urK = Ju1K× · · · × JurK. (5)

They are conditionally unrelated given v if

Ju1, . . . ,ur|vK = Ju1|vK× · · · × Jur|vK, ∀v ∈ JvK. (6)

If the uncertain variables are not unrelated, we say they are
related. Based on Definition 2, we have the following proper-
ties for unrelatedness and conditional unrelatedness [25]:

i) u1 and u2 are unrelated if and only if (iff)

Ju1|u2K = Ju1K, ∀u2 ∈ Ju2K. (7)

ii) u1 and u2 are conditionally unrelated given v iff

Ju1|u2, vK = Ju1|vK, ∀(u2, v) ∈ Ju2,vK. (8)

B. Law of Total Range and New Bayes’ Rule

In this subsection, we establish two properties, namely, the
law of total range and Bayes’ rule for uncertain variables, as
the non-stochastic counterparts of the law of total probability
and Bayes’ rule. They establish a mathematical foundation of
the optimal SMF which will be introduced in Section III.

Lemma 1 (Law of Total Range).

JxK =
⋃

y∈JyK

Jx|yK, JyK =
⋃

x∈JxK

Jy|xK. (9)

Proof: See Appendix A.
The law of total range links the marginal range and the

conditional range. An illustrative example is given in Fig. 1.
With (9), we know that Jx|yK ⊆ JxK which implies observa-
tions can reduce uncertainty.

Lemma 2 (Bayes’ Rule for Uncertain Variables).

Jx|yK =
{
x : Jy|xK

⋂
{y} 6= ∅, x ∈ JxK

}
. (10)

Proof: See Appendix B.
Bayes’ rule for uncertain variables reflects the fundamental

relationship among the prior range JxK, the likelihood range
Jy|xK, and the posterior range Jx|yK. An illustrative example
is given in Fig. 1.

III. THE OPTIMAL FILTERING FRAMEWORK

Now, we model the SMFing problem in the framework of
uncertain variables. Consider the following nonlinear system:

xk+1 = fk(xk,wk), (11)
yk = gk(xk,vk), (12)

for time k ∈ N0, where (11) and (12) are called the state
equation and the measurement equation, respectively. The
state equation describes how the system state xk (with its
realization xk ∈ JxkK ⊆ Rn) changes over time, where wk

is the process/dynamical noise (with its realization wk ∈
JwkK ⊆ Rp), and fk : JxkK × JwkK → Jxk+1K stands for
the system transition function. The measurement equation
gives how the system state is measured, where yk represents

Fig. 1. An illustrative example of the law of total range and Bayes’ rule for
uncertain variables. The prior range is JxK = [1, 3], and the likelihood range
is Jy|xK = {x} + [0, 2] = [x, x + 2]. The law of total range (9) implies
JyK =

⋃
x∈JxKJy|xK = [1, 5] which can be verified easily in this figure.

To illustrate how Bayes’ rule works, we take Jx|yK with y = 2 (the purple
dash-dotted line) for an example. When x = 1.5 (the green dashed line), the
likelihood range marked by the green solid line segment is [1.5, 3.5] which has
a intersection with y = 2, i.e., Jy|xK

⋂
{y = 2} 6= ∅. Thus, x = 1.5 ∈ Jx|yK

for y = 2. When x = 2.5 (the red dashed line), the likelihood range marked
by the red solid line segment is [2.5, 4.5] which has no intersections with
y = 2, i.e., Jy|xK

⋂
{y = 2} = ∅. Hence, x = 2.5 /∈ Jx|yK for y = 2.

By applying Bayes’ rule to all x ∈ JxK, the posterior range Jx|yK = [1, 2]
marked by the purple solid line segment is obtained.

the measurement (with its realization, called observed mea-
surement, yk ∈ JykK ⊆ Rm) and vk (with its realization
vk ∈ JvkK ⊆ Rq) stands for the measurement noise, and
gk : JxkK× JvkK→ JykK is the measurement function.

Now, we define the optimality criterion for SMF and then
provide the optimal SMFing framework as follows.

Definition 3 (Optimal SMF). An SMF is a process that ∀k ∈
N0, it gives an estimator Xk(y0:k) that includes all possible
xk given the measurements up to k, i.e., y0:k := y0, . . . , yk.
An SMF is optimal if X∗k(y0:k) returns the smallest set such
that X∗k(y0:k) ⊆ X ′k(y0:k) holds for any X ′k and y0:k.

Theorem 1 (Optimal Set-Membership Filtering Framework).
For the system described by (11) and (12), the optimal SMF
is obtained by the following steps:

• Initialization. Set the initial prior range Jx0K.
• Prediction. For k ∈ Z+, given the posterior range

Jxk−1|y0:k−1K in the previous time step, the prior range
Jxk|y0:k−1K is predicted by the law of total range that⋃

xk−1∈Jxk−1|y0:k−1K

fk−1(xk−1, Jwk−1|xk−1, y0:k−1K). (13)

• Update. For k ∈ N0, given the observed measurement
yk and the prior range Jxk|y0:k−1K, the posterior range
Jxk|y0:kK is updated by Bayes’ rule for uncertain vari-
ables that{
xk∈Jxk|y0:k−1K : gk(xk, Jvk|xk, y0:k−1K)

⋂
{yk} 6= ∅

}
(14)
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where we define Jx0K := Jx0|y0:−1K and Jv0|x0K =
Jv0|x0, y0:−1K for consistency.

Note that the posterior range obtained in (14) is the optimal
estimator, i.e., X∗k(y0:k) = Jxk|y0:kK.

Proof: See Appendix C.
In general, it is not easy to obtain Jwk−1|xk−1, y0:k−1K

and Jvk|xk, y0:k−1K in Theorem 1. They depend on how the
process noises, the measurement noises, and the initial prior
w0:k,v0:k,x0 are related. However, if the noises and the initial
state are unrelated (see Assumption 1), the optimal filter is
easy to derive (see Theorem 2).

Assumption 1 (Unrelated Noises and Initial State). ∀k ∈ N0,
w0:k,v0:k,x0 are unrelated.

Theorem 2 (Optimal SMFing Under Assumption 1). For the
system described by (11) and (12), the optimal SMF under
Assumption 1 is given by the following steps:

• Initialization. Set the initial prior range Jx0K.
• Prediction. For k ∈ Z+, given Jxk−1|y0:k−1K derived in

the previous time step k − 1, the prior range is

Jxk|y0:k−1K = fk−1(Jxk−1|y0:k−1K, Jwk−1K). (15)

• Update. For k ∈ N0, given the observed measurement yk
and the prior range Jxk|y0:k−1K, the posterior range is

Jxk|y0:kK =

 ⋃
vk∈JvkK

g−1k,vk
({yk})

⋂Jxk|y0:k−1K, (16)

where g−1k,vk
(·) is the inverse map of gk(·, vk).

Proof: See Appendix D.

Remark 1 (Fundamental Equivalence Between SMF Under
Assumption 1 and Bayes Filter). The Bayes filter [1] is based
on the stochastic Hidden Markov Model (HMM) with

p(xk|x0:k−1, y0:k−1) = p(xk|xk−1), (17)
p(yk|x0:k, y0:k−1) = p(yk|xk), (18)

where p(a|b) is the conditional distribution of the random vari-
able a given the realization b = b(ω). For the optimal SMF,
the system described by (11) and (12) under Assumption 1
satisfies the following non-stochastic HMM3:

Jxk|x0:k−1, y0:k−1K = Jxk|xk−1K, (19)
Jyk|x0:k, y0:k−1K = Jyk|xkK. (20)

These two HMMs are equivalent, since p(·) and J·K describe
the uncertainties for random variables and uncertain vari-
ables, respectively. Furthermore, (17) reflects the conditional
independence between xk and x0:k−2,y0:k−1 given xk−1;
while (19) indicates the conditional unrelatedness (8) between
them. Similar observation can be obtained between (18)
and (20).

3Equations (19) and (20) can be proved by using Lemma 4 and the same
technique in (50) of Appendix D.

In the Bayes filter, the prediction step is based on the
Chapman-Kolmogorov equation, i.e., the law of total prob-
ability combined with the Markov property (17) that

p(xk|y0:k−1) =

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1. (21)

In the optimal SMF under Assumption 1, the prediction step
is given by the law of total range (9) and the non-stochastic
Markov property (19) that4

Jxk|y0:k−1K =
⋃

xk−1∈Jxk−1|y0:k−1K

Jxk|xk−1K. (22)

For the update steps, the Bayes filter derives the posterior
distribution p(xk|y0:k) by Bayes’ rule, while the optimal SMF
gets the posterior range Jxk|y0:kK by Bayes’ rule for uncertain
variables (10).

Further, if the system is linear, the optimal SMFing under
Assumption 1 is obtained in Corollary 1.

Corollary 1. For the linear system described by

xk+1 = Axk +Bwk, (23)
yk = Cxk +Dvk, (24)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×q ,
the optimal SMF under Assumption 1 has the following steps:
• Initialization. Set the initial prior range Jx0K.
• Prediction. For k ∈ Z+, the prior range is

Jxk|y0:k−1K = AJxk−1|y0:k−1K⊕BJwk−1K, (25)

where ⊕ stands for the Minkowski sum5.
• Update. For k ∈ N0, given yk, the posterior range is

Jxk|y0:kK = Xk(C, yk, DJvkK)
⋂

Jxk|y0:k−1K, (26)

where we define Jx0K := Jx0|y0:−1K for consistency, and
Xk(C, yk, DJvkK) = {xk : yk = Cxk+Dvk, vk ∈ JvkK}.

Remark 2 (The Existing SMFing Framework). The classical
SMFing framework in the literature is under the set-based
description: e.g., [10], [16], [22] for linear filters and [24],
[26] for nonlinear filters. Specifically:
• In [10], the classical SMFing framework was applied [see

equations (9) and (11) therein] to linear systems, and an
ellipsoidal outer bound was proposed.

• In [16], the classical SMFing framework was also con-
sidered [see equations (5) and (6) therein] for linear
systems, and a paralleltopic outer bound was given.

• In [22], the classical SMFing framework was also em-
ployed [see equation (32) therein] for linear systems, and
the exact solution or outer bounds can be given by the
proposed constrained zonotopes.

• In [24], the classical SMFing framework was also used
[see equations (2) and (3) therein] for nonlinear systems,
and an efficient constrained zonotopic SMF was designed

4The RHS of (22) is fk−1(Jxk−1|y0:k−1K, Jwk−1K) as stated in The-
orem 2. But the Bayes filter does not have such an elegant expression for
general nonlinear systems.

5Given two sets S1 and S2 in Euclidean space, the Minkowski sum of S1
and S2 is S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
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based on two new methods (i.e., the mean value and first-
order Taylor extensions).

• In [26], the classical SMFing framework was also
taken into account [see Lemma 1 therein] for nonlinear
systems, and an approximate solution was derived by
proposing a novel particle filter.

Note that all these prior works require Assumption 1 to hold.
However, when Assumption 1 is violated, the property of
non-stochastic HMM described by (19) and (20) can hardly
be guaranteed. Without this property, the classical SMFing
framework is not optimal any more, i.e., it cannot give the
exact set of all possible states determined by the optimal
SMFing framework in Theorem 1.

Although the classical SMFing framework does not give
the optimal solution for state estimation when Assumption 1
is violated, the following theorem tells that it is still useful in
giving a more conservative estimate.

Theorem 3 (Outer Bound). Let Jx∗k|y0:kK and Jxk|y0:kK be
the posterior ranges derived by Theorem 1 and Theorem 2,
respectively. Then, Jx∗k|y0:kK ⊆ Jxk|y0:kK holds.

Proof: See Appendix E.
Furthermore, a class of systems with state-and-process-noise

relatedness can be converted to non-stochastic HMMs with the
following model-modification method.

Remark 3 (Relatedness Cancellation). For related states x0:k

and process noises w0:k, let zk = [xT
k ,w

T
k ]T (k ∈ N0) be

the new state, if the system described by (11) and (12) can be
rewritten as[

xk+1

wk+1

]
= zk+1 = f̄k(zk) =

[
f̄
(x)
k (zk)

f̄
(w)
k (zk)

]
, (27)

yk = ḡk(zk,vk) = gk(xk,vk), (28)

for ∀k ∈ N0, where v̄0:k and z0 are unrelated (i.e., Assump-
tion 1 holds). Then, the optimal SMF can be obtained by
directly applying Theorem 2 to the modified system described
by (27) and (28).

Nevertheless, the relatedness cancellation method in Re-
mark 3 cannot deal with all kinds of relatedness, such as
inequality-type relatedness (e.g., wk + wk−1 ≤ 1) and the
related noises in Section IV-A.

IV. NUMERICAL EXAMPLES

In this section, we illustrate the performance gap between
the optimal SMFing framwork (in Theorem 1) and the classical
framework (equivalent to Theorem 2) through two examples.

A. System with Related Process and Measurement Noises

Consider the nonlinear system described by

xk+1 = sin(xk) + xk + wk, (29)
yk = vkxk, (30)

where Jx0K = [0, 1], JwkK = [0, 1], and JvkK = [1, 2]. ∀k ∈
N0, w0:k,v0:k,x0 are unrelated, except that the process noise

wk−1 and the multiplicative measurement noise vk satisfy
Jvk|wk−1K = [max{1, 1.8− wk−1}, 2− wk−1] (k ∈ Z+).

If we ignore this relatedness, Algorithm 1 will give the exact
solution for classical SMFing (in Theorem 2), where Line 4
gives the prediction step and Line 6 provides the update step.

Algorithm 1 Optimal Algorithm Under Classical Framework
1: Initialization: Jx0K = [a−0 , b−0 ] = [0, 1]; {Comments: Jxk|y0:kK =

[ak, bk] (k ∈ Z+), Jxk|y0:k−1K = [a−k , b−k ] (k ∈ N0).}
2: loop
3: if k > 0 then
4: a−k = sin(ak−1) + ak−1, b−k = sin(bk−1) + bk−1 + 1;
5: end if
6: [ak, bk] = [min{0.5yk, yk},max{0.5yk, yk}]

⋂
[a−k , b−k ];

7: k = k + 1;
8: end loop

Algorithm 2 Approximation of the Optimal SMF
1: Initialization: Jx0K = [0, 1], N = 10000; {Comments: N is the

number of random samples for Jx∗k|y0:kK = [a∗k, b
∗
k] (k ∈ Z+).}

2: loop
3: if k = 0 then
4: [a∗0, b

∗
0] = Jx∗0|y0K← Jx0|y0K in Algorithm 1;

5: else if k > 0 then
6: i = 1;
7: while i ≤ N do
8: xk−1 ← U(a∗k−1, b

∗
k−1) and wk−1 ← U(0, 1); {Comments:

x ← U(a, b) means x is a realization of a random variable
uniformly distributed in [a, b].}

9: xk = sin(xk−1) + xk−1 + wk−1;
10: if (xk 6= 0 && yk

xk
∈ Jvk|wk−1K) || (xk = yk = 0) then

11: x
(i)
k ← xk , i = i+ 1;

12: end if
13: end while
14: a∗k = mini{x

(i)
k }, b

∗
k = maxi{x

(i)
k };

15: end if
16: k = k + 1;
17: end loop

Now, we design the optimal SMF from Theorem 1, and its
state range is denoted by Jx∗|·K to be distinguished from the
ranges in Algorithm 1. For k = 0, the posterior range Jx∗0|y0K
is identical to that derived in Algorithm 1, as Jx∗0K = Jx0K.
For k > 1, assume Jx∗k−1|y0:k−1K := [a∗k−1, b

∗
k−1] has already

been derived at k − 1. Since wk−1 is only related to vk, we
have Jwk−1|xk−1, y0:kK = Jwk−1K in (13) of the prediction
step. Similarly, we have Jvk|xk, y0:k−1K = Jvk|xkK in (14) of
the update step. However, we would not use (13) to obtain
Jx∗k|y0:k−1K directly, because in the update step, Jvk|xkK is
not explicit which cannot help to derive Jx∗k|y0:kK. Instead,
we can rewrite (13) and (14) as{

xk = fk−1(xk−1, wk−1) : g−1k,xk
({yk}) ∈ Jvk|wk−1K,

xk−1 ∈ Jx∗k−1|y0:k−1K, wk−1 ∈ Jwk−1K
}
, (31)

where g−1k,xk
(·) is the inverse map of gk(xk, ·). From (31), we

can derive the posterior range by the following steps: for each
xk−1 ∈ Jx∗k−1|y0:k−1K and wk−1 ∈ Jwk−1K, we calculate
xk = sin(xk−1) + xk−1 + wk−1 via (29); if g−1k,xk

({yk}) ∈
Jvk|wk−1K, then xk = fk−1(xk−1, wk−1) is a possible state
in Jx∗k|y0:kK. With all such possible xk, we get the posterior
range Jx∗k|y0:kK. The Monte Carlo technique can be employed
to approximate the posterior range (see Algorithm 2).
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Fig. 2 shows the average diameters of the estimates in Algo-
rithm 1, Algorithm 2, and the algorithm in [18], respectively.6

We can see that the optimal SMF in Algorithm 2 performs the
best, which corroborates our theoretical results.
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Fig. 2. Comparison of Algorithm 1, Algorithm 2, and the algorithm in [18].
The diameter of each algorithm is averaged over 10000 simulation runs. The
averaged execution times in each time step for Algorithm 1, Algorithm 2, and
the algorithm in [18] are 1.144×10−5s, 3.181×10−3s and 1.194×10−5s,
respectively, where the simulation is conducted by using Matlab 2019b on a
laptop with Intel Core i7-7700HQ@2.80GHz CPU.

B. Linear System with Identical Process Noise

Consider the linear system described by

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
w, (32)

yk =
[
1 0

]
xk + vk, (33)

where Jx0K = [−10, 10] × [−10, 10], JwK = [−1, 1], and
JvkK = [−1, 1]. ∀k ∈ N0, x0,w,v0:k are unrelated.

If we replace w with wk and assume Assumption 1 holds,
the classical SMFing is Corollary 1 with

A =

[
1 1
0 1

]
, B =

[
0.5
1

]
, C =

[
1 0

]
, D = 1. (34)

We employ the Projection-Based (PB) method in [27] to give
the estimate Jxk|y0:kK exactly, labeled as PB-SMF 1.

Now we design the optimal SMF using Remark 3, and the
modified system with zk = [xT

k ,wk]T = [x
(1)
k ,x

(2)
k ,wk]T is

zk+1 =

1 1 0.5
0 1 1
0 0 1

 zk, (35)

yk =
[
1 0 0

]
zk + vk, (36)

which gives the optimal filter, labeled as PB-SMF 2, when
Corollary 1 is applied. Similarly to Section IV-A, we denote
Jx∗k|y0:kK as the optimal posterior range, which can be derived
by the projection of Jzk|y0:kK to the x(1)x(2)-plane.

Fig. 3 shows the performance gap between the (optimal)
PB-SMFs under the optimal and classical frameworks. We

6The probability distributions of uncertain variables x0,w0:k,v0:k can be
arbitrary for simulations. In Section IV, these uncertain variables are set to
be uniformly distributed in their ranges/conditional ranges.
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Fig. 3. Comparisons of the PB-SMF and the CZ-SMF under the classical
and the optimal SMFing frameworks at: (a) k = 10, (b) k = 20. CZ-SMF 1
(under the classical framework) and CZ-SMF 2 (under the optimal framework)
are simulated with the help of CORA 2020 toolbox [28], where the degree-
of-freedom order and the number of constraints are 0 and 5, respectively.

can see that Jx∗10|y0:10K (based on PB-SMF2) is smaller than
Jx10|y0:10K (based on PB-SMF1) at k = 10 in Fig. 3(a),
and the area ratio is 27.1%; finally, Jx∗10|y0:20K becomes
much smaller than Jx20|y0:20K at k = 20 in Fig. 3(b), and
the area ratio is 1.04%, which means approximately 99%
of the estimated range by the classical SMFing is excluded
by the optimal SMFing. Besides, Fig. 3 also presents the
gaps between the Constrained Zonotopic SMF (CZ-SMF) [22]
under the optimal and classical frameworks. The area ratios
are 19.0% and 0.174% for k = 10 and k = 20, respectively.

V. CONCLUSION

In this work, we have studied the optimal SMFing problem
for discrete-time systems. Based on the uncertain variables,
we have put forward an optimal SMFing framework. Then, we
have obtained the optimal SMF under non-stochastic Markov
condition, and revealed the fundamental equivalence between
the SMF and the Bayes filter. We have also shown that
the classical SMF in the literature must rely on the non-
stochastic Markov condition to guarantee optimality. When the
Markovness is violated, the classical SMF is not optimal and
can only provide an outer bound on the optimal estimation.

APPENDIX A
PROOF OF LEMMA 1

We only prove JxK =
⋃

y∈JyKJx|yK, and the proof for JyK =⋃
x∈JxKJy|xK is similar. From (3), we have

⋃
y∈JyKJx|yK =
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⋃
y∈JyK {x(ω) : ω ∈ Ωy=y}

(a)
= {x(ω) : ω ∈ Ω} = JxK, where

(a) is from
⋃

y∈JyK x(Ωy=y) = x(
⋃

y∈JyK Ωy=y) = x(Ω).
Thus, (9) holds. �

APPENDIX B
PROOF OF LEMMA 2

Firstly, we define Jx, yK as {(x(ω),y(ω)) : y(ω) = y, ω ∈
Ω} = {(x(ω),y(ω)) : ω ∈ Ωy=y}. With (3), we have

Jx, yK = Jx|yK× {y}, (37)

and conversely we have

Jx|yK = Proj
(x,y)7→x

Jx, yK, (38)

where Proj(x,y) 7→x(·) is a projection from the space w.r.t.
(x, y) to the subspace w.r.t. x that Proj(x,y)7→x(Sx,Sy) = Sx
for sets Sx and Sy .

Secondly, we prove the following equation holds

Jx, yK = Jx,yK
⋂

(JxK× {y}) . (39)

With the RHS of the first equality in (4), the RHS of (39) can
be rewritten as[ ⋃

y′∈JyK

(
Jx|yK× {y′}

)]⋂
(JxK× {y})

=
⋃

y′∈JyK

[(
Jx|y′K× {y′}

)⋂
(JxK× {y})

]
(a)
=

⋃
y∈JyK

[(
Jx|y′K

⋂
JxK
)
×
(
{y′}

⋂
{y}
)]

(b)
=Jx|yK× {y} (c)

= Jx, yK,

(40)

where (a) follows (S1 × S2)
⋂

(S3 × S4) = (S1
⋂
S3) ×

(S2
⋂
S4) for sets S1, . . . ,S4. Equality (b) is established

by (9) (which implies Jx|y′K ⊆ JxK) and S × ∅ = ∅ for set S.
Then, (c) follows from (37).

Thirdly, we prove a projection-based version of Bayes’ rule

Jx|yK = Proj
(x,y) 7→x

( ⋃
x∈JxK

[
{x} ×

(
Jy|xK

⋂
{y}
)])

. (41)

With (39) and the RHS of the second equality in (4), we get

Jx, yK =

[ ⋃
x∈JxK

(
{x} × Jy|xK

)]⋂
(JxK× {y})

=
⋃

x∈JxK

[(
{x} × Jy|xK

)⋂
(JxK× {y})

]
=
⋃

x∈JxK

[(
{x}

⋂
JxK
)
×
(
Jy|xK

⋂
{y}
)]

=
⋃

x∈JxK

[
{x} ×

(
Jy|xK

⋂
{y}
)]
.

(42)

By (38) and (42), (41) is obtained.
Finally, we prove that (10) and (41) are equivalent. Let T1

and T2 denote the RHS of (41) and the RHS of (10), respec-
tively. ∀x′ ∈ T1, we have Jy|x′K

⋂
{y} 6= ∅, since otherwise

{x′} ×
(
Jy|x′K

⋂
{y}
)

= ∅ which means x′ /∈ T1. Observing

that x′ ∈ JxK, we get x′ ∈ T2, and thus T1 ⊆ T2. Conversely,
∀x′′ ∈ T2, we have x′′ ∈ JxK and Jy|x′′K

⋂
{y} 6= ∅. Hence,

{x′′}×
(
Jy|x′′K

⋂
{y}
)
6= ∅ holds with x′′ ∈ JxK which implies

x′′ ∈ T1 and therefore T2 ⊆ T1. Combining it with T1 ⊆ T2,
we get T1 = T2. �

APPENDIX C
PROOF OF THEOREM 1

We divide the proof of Theorem 1 into two parts, the
prediction step and the update step.

For the prediction step, the law of total range in (9) gives

Jxk|y0:k−1K =
⋃

xk−1∈Jxk−1|y0:k−1K

Jxk|xk−1, y0:k−1K. (43)

From (11), the following holds

Jxk|xk−1, y0:k−1K = Jf(xk−1,wk−1)|xk−1, y0:k−1K
= Jf(xk−1,wk−1)|xk−1, y0:k−1K
(a)
= f(xk−1, Jwk−1|xk−1, y0:k−1K),

(44)

where (a) follows from (3) that

Jf(xk−1,wk−1)|xk−1, y0:k−1K
={f(xk−1,wk−1(ω)) : ω ∈ Ωxk−1,y0:k−1=xk−1,y0:k−1

}
={f(xk−1, wk−1) : wk−1 ∈ Jwk−1|xk−1, y0:k−1K}
=f(xk−1, Jwk−1|xk−1, y0:k−1K).

(45)

Combining (43) with (44), we get (13).
For the update step, we prove it with Bayes’ rule for

uncertain variables. From (10), we have

Jxk|y0:kK=
{
xk∈ Jxk|y0:k−1K : Jyk|xk, y0:k−1K

⋂
{yk} 6= ∅

}
.

(46)
Similarly to dealing with Jxk|xk−1, y0:k−1K in (44), we have
Jyk|xk, y0:k−1K = gk(xk, Jvk|xk, y0:k−1K). Thus, the RHS
of (46) can be rewritten as (14).

By Definition 1, the set of all possible xk given y0:k is
exact the posterior range Jxk|y0:kK. Therefore, X∗k(y0:k) =
Jxk|y0:kK which satisfies the condition X∗k(y0:k) ⊆ X ′k(y0:k)
holds for any X ′k and y0:k in Definition 3. �

APPENDIX D
PROOF OF THEOREM 2

Before start, we need the following two lemmas.

Lemma 3 (Function of Conditional Range). Given uncertain
variables u1,u2 and map h, Jh(u1)|u2K = h(Ju1|u2K) holds.

Proof: Jh(u1)|u2K = {h(u1(ω)) : ω ∈ Ωu2=u2
} =

h({u1(ω) : ω ∈ Ωu2=u2
}) = h(Ju1|u2K).

Lemma 4 (Invariance of Unrelatedness under Maps). If u1

and u2 are unrelated, h1(u1) and h2(u2) are unrelated, i.e.,

Jh1(u1)|h2(u2)K = Jh1(u1)K, ∀u2 ∈ Ju2K. (47)

Proof: By Lemma 3, the LHS and RHS of equation (47)
can be written as h1(Ju1|h2(u2)K) and h1(Ju1K), respectively.
Since a sufficient condition to h1(Ju1|h2(u2)K) = h1(Ju1K) is

Ju1|h2(u2)K = Ju1K, (48)
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we need to prove that (48) holds for u2 ∈ Ju2K.
∀u2 ∈ Ju2K, we have Ju1|u2K = {u1(ω) : ω ∈ Ωu2=u2

}
and Ju1|h2(u2)K = {u1(ω) : ω ∈ Ωh2(u2)=h2(u2)}. As
Ωh2(u2)=h2(u2) = u−12 ◦h

−1
2 ({h2(u2)}) and h−12 ({h2(u2)}) ⊇

{u2}, we get Ωh2(u2)=h2(u2) ⊇ Ωu2=u2
which implies

Ju1|h2(u2)K ⊇ Ju1|u2K. Thus (48) is established by

Ju1K ⊇ Ju1|h2(u2)K ⊇ Ju1|u2K
(a)
= Ju1K, (49)

where (a) follows from the fact that ∀u2 ∈ Ju2K, Ju1|u2K =
Ju1K for unrelated u1 and u2 [see (7)]. Therefore, (47) holds,
and combining it with (7), we know that h1(u1) and h2(u2)
are also unrelated.

Now we prove the prediction and update steps in Theorem 2,
respectively. In the prediction step, for Jwk−1|xk−1, y0:k−1K
in (13), we know that the collection of xk−1,y0:k−1 is a func-
tion of w0:k−2,v0:k−1,x0 =: $k−1, i.e., (xk−1,y0:k−1) =:
ξ($k−1). By Assumption 1, wk−1 and $k−1 are unrelated.
Thus, applying Lemma 4, we get

Jwk−1|xk−1, y0:k−1K = Jwk−1|ξ($k−1)K = Jwk−1K, (50)

where $k−1 is the realization of $k−1. With (50), (13)
becomes (15).

In the update step, we can use a similar technique in (50)
to obtain Jvk|xk, y0:k−1K = JvkK. Then, (14) becomes{
xk ∈ Jxk|y0:k−1K : gk(xk, JvkK)

⋂
{yk} 6= ∅

}
(a)
=

⋃
vk∈JvkK

{
xk ∈ Jxk|y0:k−1K : {xk} = g−1k,vk

({yk})
}

=
⋃

vk∈JvkK

[
g−1k,vk

({yk})
⋂

Jxk|y0:k−1K
]

= RHS of (16).

(51)

where (a) is from gk(xk, JvkK) =
⋃

vk∈JvkK{gk(xk, vk)} and
the fact that {gk(xk, vk)}

⋂
{yk} 6= ∅ iff {xk} = g−1k,vk

({yk}),
in which g−1k,vk

({yk}) = {xk : gk(xk, vk) = yk}. �

APPENDIX E
PROOF OF THEOREM 3

In the initialization step, Jx∗0K = Jx0K holds. In the update
step at k = 0, since (9) implies Jx|yK ⊆ JxK, we have
Jv0|x0K ⊆ Jv0K in (14). Thus,

Jx∗0|y0K =
{
x0∈Jx∗0K : g0(x0, Jv0|x0K)

⋂
{y0} 6= ∅

}
⊆
{
x0∈Jx∗0K : g0(x0, Jv0K)

⋂
{y0} 6= ∅

}
(a)
= Jx0|y0K, (52)

where (a) follows from (16) and (51). Similarly, in the
prediction step at k = 1, we have Jw1|x0, y0K ⊆ Jw1K,
which implies Jx∗1|y0K ⊆ Jx1|y0K. Proceeding forward, we
get Jx∗k|y0:kK ⊆ Jxk|y0:kK for k ∈ N0. �
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