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Multipliers for nonlinearities with monotone bounds
William P. Heath, Member, IEEE, Joaquin Carrasco, Member, IEEE, and Dmitry A. Altshuller,

Abstract—We consider Lurye (sometimes written Lur’e) sys-
tems whose nonlinear operator is characterised by a possibly
multivalued nonlinearity that is bounded above and below by
monotone functions. Stability can be established using a sub-
class of the Zames-Falb multipliers. The result generalises similar
approaches in the literature. Appropriate multipliers can be
found using convex searches. Because the multipliers can be
used for multivalued nonlinearities they can be applied after loop
transformation. We illustrate the power of the new mutlipliers
with two examples, one in continuous time and one in discrete
time: in the first the approach is shown to outperform available
stability tests in the literature; in the second we focus on the spe-
cial case for asymmetric saturation with important consequences
for systems with non-zero steady state exogenous signals.

Index Terms—Lure systems, quasi-monotone, quasi-odd, asym-
metry, Zames-Falb multiplier.

I. INTRODUCTION

WE are concerned with the input-output stability of the
Lurye system given by

y1 = Gu1, y2 = φu2, u1 = r1− y2 and u2 = y1 + r2. (1)

Let L2 be the space of finite energy Lebesgue integrable
signals and let L2e be the corresponding extended space (see
for example [1]). The Lurye system is said to be stable if
r1,r2 ∈L2⇒ u1,u2,y1,y2 ∈L2.

Assumption 1. The Lurye system (1) is assumed to be well-
posed with G : L2e→L2e linear time invariant (LTI) causal
and stable and with φ : L2e→L2e some nonlinear operator.

A function α : R→ R is said to be monotone if α(x1) ≥
α(x2) for all x1 ≥ x2. It is said to be bounded if there exists
C ≥ 0 such that |α(x)| ≤C|x| for all x ∈ R1. It is said to be
odd if α(−x) = −α(x) for all x ∈ R. It is said to be slope-
restricted on [0,s] if 0≤ (α(x1)−α(x2))/(x1−x2)≤ s for all
x1 6= x2. If the nonlinear operator φ can be characterised by
the monotone and bounded function α : R→ R in the sense
that y(t), (φu)(t) = α(u(t)), then the Zames-Falb multipliers
may be used to determine stability [4], [5], [1], [6]. We call
α the nonlinearity that characterises the nonlinear operator φ .
Further results may be obtained if the nonlinearity is odd, if it
is slope-restricted or if it is both odd and slope-restricted [5],
[1].

In this note we consider a more general class of nonlinear
operators where the nonlinearity need be neither monotone nor
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1Here the term “bounded” is not used in the standard sense it is used for
functions (e.g. [2]); rather it is used in a sense consistent with the notion of
bounded operators (e.g.[3]). We use the terms “bounded below” and “bounded
above” in a further sense below.
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Fig. 1. The nonlinearity (i.e. the map from u(t) to y(t) = (φu)(t)) is
bounded below and above by the monotone and bounded functions α and
α respectively. In addition the nonlinearity is bounded below and above by
the monotone, bounded and odd functions β and β respectively. For the
specific case illustrated the functions β and β are constructed as follows:
when u(t)< 0 set β (u(t)) =α(u(t)) and β (u(t)) =−α(−u(t)); when u(t)≥ 0
set β (u(t)) =−α(−u(t)) and β (u(t)) = α(u(t)).

a single-valued function. Instead, we say the nonlinear operator
is characterised by a nonlinearity that is bounded below and
above in the following sense.

Assumption 2 (Fig 1). Let y(t) = (φu)(t). If u(t) = 0 then
y(t) = 0. There are assumed to exist monotone and bounded
functions α : R→ R and α : R→ R such that

0≤ α(u(t))
u(t)

≤ y(t)
u(t)
≤ α(u(t))

u(t)
for all u(t) 6= 0. (2)

We say the nonlinearity is bounded below by α and above
by α . There are also assumed to exist monotone, bounded
and odd functions β : R→ R and β : R→ R such that the
nonlinearity is bounded below by β and above by β .

Remark 1. For a given u ∈ L2e the values of y(t) remain
uniquely determined even though the characterising nonlin-
earity may be multivalued. The Lurye problem is sometimes
restricted to memoryless, but possibly time-varying, nonlin-
earities [7]. Our class includes both dynamic and time-
varying operators; nevertheless the conditions of Assumption 2
exclude many common nonlinearities. In the terminology of [8]
condition (2) is an instantaneous condition.

We will often make the following further assumption.

Assumption 3. Given Assumption 2, there is assumed to be
some finite A ≥ 1 such that α is bounded above by Aα .
Similarly, there is assumed to be some (possibly infinite) B≥A
such that β is bounded above by Bβ .
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If A = 1 then the nonlinearity is single-valued and mono-
tone. If A = B = 1 then the nonlinearity is odd. If A = 1 and
1 < B < ∞ we say the nonlinearity is quasi-odd.

If 1 < A < ∞ we say the nonlinearity is quasi-monotone. If
1 < A = B < ∞ we say the nonolinearity is quasi-monotone
with odd bounds. If 1 < A < B < ∞ we say the nonolinearity
is quasi-monotone with quasi-odd bounds.

Remark 2. In the literature [9], [10] “quasimonotone” has
a wider and more general definition than that for quasi-
monotone adopted here. In [11] “quasi-monotone-and-odd” is
used for the case where, in our terminology, the nonlinearity is
quasi-monotone with odd bounds. Our terminology is slightly
different to that in [12].

Our main result, Theorem 1, is to derive a subclass of the
Zames-Falb multipliers that preserves the positivity of such
nonlinearities. The original results of Zames and Falb [5] for
nonlinearities characterisd by either monotone and bounded
or monotone, bounded and odd functions can be recovered
as special cases with A = 1 and respectively where either B is
ignored or B= 1. A generalisation for quasi-odd nonlinearities
follows immediately (Corollary 1).

A similar approach is taken by [13] and [11] for quasi-
monotone nonlinearities with odd bounds. In [13] a specific
stiction model is considered. Corollary 2 generalises the results
of [13] in two senses: firstly it allows more general bounds
on the nonlinearity; secondly it allows the nonlinearity to be
multivalued. For the specific application of [13] our results are
the same. Corollary 2 provides a less conservative result than
that of [11]; a similar improvement is noted by [9] without
proof, where the result is generalised to time-periodic, but not
more general, nonlinearities.

We extend our results to the case where the bounds on the
nonlinearity are also slope-restricted (Theorem 2) by applying
loop transformation techniques. A single-valued function need
not be single-valued after loop transformation (see [1]) so
our relaxation of the standard assumption that the nonlinearity
be single-valued [5], [13], [11] is necessary. Once again the
original results of [5] can be derived as special cases and we
state the counterpart of Corollary 1 under loop transformation
as Corollary 3.

Our development is for continuous time multipliers. Cor-
responding results for discrete-time systems can be derived
similarly and are briefly stated in Appendix A. In Appendix B
we show how the convex search for Zames-Falb multipliers
[14] and for their discrete-time counterparts [15] can be
modified to search for the multipliers of this paper.

We illustrate the stability results with two examples. The
first, in continuous time, is similar (though not identical) to
an example in [11]. It illustrates some of the subtleties that
arise with loop transformations and how the new stability
criteria can provide better results than those in the literature.
The second example, in discrete time, illustrates how the
new results can be applied to Lurye systems with asymmetric
saturation. This offers insight to the behaviour of (for example)
anti-windup systems with exogenous signals with non-zero
steady state values. This example was discussed in [12] where
some technical results were also presented without proof.

II. MULTIPLIERS

In our development we will exploit the Jordan decompo-
sition [16] of a signal. If x ∈ L2e its Jordan decomposition
is x = x+− x− where x+(t) = max(x(t),0) for all t ∈ R. We
begin by establishing the following inequalities.

Lemma 1. Under the conditions of Assumptions 2 and 3, if
φ : L2e→L2e then for all u ∈L2 and for all τ ∈ R,

−B
∫

∞

−∞

u(t)y(t)dt ≤
∫

∞

−∞

u(t + τ)y(t)dt ≤ A
∫

∞

−∞

u(t)y(t)dt,

(3)
where y = φu.

Proof. Since α is monotone and bounded, and since β is
monotone, bounded and odd, it follows (e.g. [1], p205) that
for any u ∈L2,∫

∞

−∞

u(t + τ)α(u(t))dt ≤
∫

∞

−∞

u(t)α(u(t))dt, (4)

and ∣∣∣∣∫ ∞

−∞

u(t + τ)β (u(t))dt
∣∣∣∣≤ ∫ ∞

−∞

u(t)β (u(t))dt. (5)

Let u = u+− u− and y = y+− y− be the Jordon measure
decompositions of u and y respectively. Then for any t,τ ∈R,

u(t + τ)y(t) = [u+(t + τ)−u−(t + τ)] [y+(t)− y−(t)] ,

≤ u+(t + τ)y+(t)+u−(t + τ)y−(t),
≤ u+(t + τ)α(u+(t))+u−(t + τ)α(u−(t)),

by Assumption 2,
≤ Au+(t + τ)α(u+(t))+Au−(t + τ)α(u−(t)),

by Assumption 3. (6)

Hence∫
∞

−∞

u(t + τ)y(t)dt

≤ A
∫

∞

−∞

[u+(t)α(u+(t))+u−(t)α(u−(t))] dt by (4),

= A
∫

∞

−∞

u(t)α(u(t))dt,

≤ A
∫

∞

−∞

u(t)y(t)dt by Assumption 2. (7)

Furthermore, for any t,τ ∈ R,

|u(t + τ)y(t)| = |u(t + τ)| |y(t)|,
≤ |u(t + τ)| |β (u(t))| by Assumption 2,
≤ B|u(t + τ)| |β (u(t))| by Assumption 3,
= B|u(t + τ)|β (|u(t)|) since β is odd. (8)

Hence ∣∣∣∣∫ ∞

−∞

u(t + τ)y(t)dt
∣∣∣∣≤ ∫ ∞

−∞

|u(t + τ)y(t)| dt,

≤ B
∫

∞

−∞

|u(t + τ)| β (|u(t)|) by (8),

≤ B
∫

∞

−∞

|u(t)| β (|u(t)|)dt by (5),

= B
∫

∞

−∞

u(t)β (u(t))dt since β is odd,

≤ B
∫

∞

−∞

u(t)y(t)dt by Assumption 2. (9)
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Fig. 2. The proof of Theorem 1 establishes positivity from x to y where
x(t) = (m ∗ u)(t). Note that M−1 exists because M belongs to a subclass of
the Zames-Falb multipliers.

Define H as the set of generalized functions h(·) of the form

h(t) = ∑
i

hiδ (t− ti)+ha(t), (10)

with ti 6= 0, ha(0) = 0, hi ∈ R for all i and ha(t) ∈ R for all
t ∈ R. In addition, define the norm (c.f. [1], [7]2):

‖h‖H , ∑
i
|hi|+

∫
∞

−∞

|ha(t)|dt < ∞. (11)

Define Hp as the subset of H where hi≥ 0 for all i and ha(t)≥
0 for all t ∈ R. We establish the following generalization of
the Zames-Falb theorem.

Theorem 1 (quasi-monotone or quasi-odd nonlinearity). Un-
der the conditions of Assumptions 1, 2, and 3, let H+ and H−
be noncausal convolution operators whose respective impulse
responses are h+ ∈Hp and h− ∈Hp satisfying

A‖h+‖H +B‖h−‖H < 1. (12)

Let M = 1−H++H−. Then for any u ∈L2,∫
∞

−∞

(Mu)(t)(φu)(t)dt ≥ 0. (13)

Furthermore the continuous-time Lurye system (1) is stable
provided there exists ε > 0 such that

Re [M( jω)G( jω)]≥ ε for all ω ∈ R. (14)

Proof. Let y = φu and let m be the impulse response3 of M.
Then ∫

∞

−∞

(Mu)(t)(φu)(t)dt =
∫

∞

−∞

(m∗u)(t)y(t)dt

=
∫

∞

−∞

u(t)y(t)dt−
∫

∞

−∞

(h+ ∗u)(t)y(t)dt

+
∫

∞

−∞

(h− ∗u)(t)y(t)dt

≥ (1−A‖h+‖H −B‖h−‖H)
∫

∞

−∞

u(t)y(t)dt

by Lemma 1,
≥ 0 provided (12) holds. (15)

Since M belongs to a subclass of the Zames-Falb multipliers,
M−1 exists. This establishes the positivity of the map from
x to y where u = M−1x (see Fig 2). Similarly an appropriate
factorization of M is guaranteed (see also [17]). Stability then
follows from standard multiplier theory (see e.g. [1]).

Remark 3. The positivity result of Theorem 1 is sufficient
to establish stability using classical theory [1]. Nevertheless

2 The notations ‖ · ‖A and ‖ · ‖A are used in [1] and [7] respectively.
3There is a typo in [1] that we repeat throughout [12]. The impulse response

of M is m(t) = δ (t)−h+(t)+h−(t).

it is straightforward to establish stability via the integral
quadratic constraint (IQC) theory of [18]. Specifically it
follows immediately from Lemma 1 that

τ
∫

∞

−∞

(Mu)(t)(φu)(t)dt ≥ 0 for any τ ≥ 0. (16)

Thus the homotopy argument of [18] can be used to establish
stability.

Similarly the stability result of Theorem 1 can be established
via the theory of delay-integral-quadratic constraints [19],
[20], [21], [9]. Specifically Lemma 1 establishes the time-
domain quadratic forms used to give the frequency domain
stability criterion of Theorem 1. The relation between the
IQC theory of [18] and delay-integral-quadratic constraints
is discussed in [22].

Remark 4. We can write M = 1−H where H is a noncausal
convolution operator whose impulse response is h ∈ H. The
Jordan decomposition of h is h = h+−h−.

III. SPECIAL CASES

A. Quasi-odd nonlinearities

If the nonlinearity is time-invariant, bounded and monotone
we can set α = α so A = 1. The Zames-Falb theorem for
such nonlinearities follows immediately by setting h− = 0.
The Zames-Falb theorem for monotone, bounded and odd
nonlinearities also follows immediately when A = B = 1.

The Zames-Falb theorem for odd nonlinearities allows a
much wider class of multipliers, but if the nonlinearity is quasi-
odd then it cannot be used. Yet the Zames-Falb theorem for
more general nonlinearities is independent of the value B. This
immediately suggests an intermediate result.

Corollary 1 (quasi-odd nonlinearity). Under the conditions
of Assumptions 1, 2 and 3 with A = 1, let H+ and H− be
noncausal convolution operators whose impulse responses are
respectively h+ ∈Hp and h− ∈Hp satisfying

‖h+‖H +B‖h−‖H < 1. (17)

Let M = 1−H++H−. Then the positivity condition (13) holds
and the Lurye system of Fig 1 is stable provided (14) holds.

Proof. Immediate from Theorem 1 when A = 1.

B. Quasi-monotone nonlinearities with odd bounds

Both [13] and [11] consider single-valued non-monotone
nonlinearities with odd bounds. In our terminology α = β ,
α = β and A = B > 1.

In [13] a time-invariant stiction nonlinearity is given as
α(u(t)) = ku(t)/ε when |u(t)| is small, and 1 ≤ |α(u(t))| ≤
1+ δ when |u(t)| is large. This nonlinearity can be bounded
below by β (u(t)) = sign(u(t))×min(k|u(t)|/ε,1) and above
by Bβ with B = 1+ δ . In [13] a stability condition is given
equivalent to choosing M = 1− H where H has impulse
response h ∈H and (1+δ )‖h‖H < 1.

In [11] a nonlinearity is bounded below by (1−D)β̂ and
above by (1 + D)β̂ for some monotone, bounded and odd
“skeleton” β̂ : R→ R. Hence B = (1+D)/(1−D). In [11] a
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stability condition is given equivalent to choosing M = 1−H
where H has impulse response h ∈ H and (1 + D)2/(1−
D)2‖h‖H < 1. It is observed in [9] that it is sufficient to require
(1+D)/(1−D)‖h‖H < 1. The result in [9] also extends to
time-periodic (but not more general) nonlinearities.

Both the results of [13] and [11], as well as the latter’s
refinement in [9], can be expressed as a corollary of Theorem 1
with A = B. The further generalisation that the nonlinearity
need be neither memoryless nor time-invariant.

Corollary 2 (quasi-monotone nonlinearity with odd bounds,
c.f. [13], [11], [9]). Under the conditions of Assumptions 1, 2
and 3 with A = B, let H be a noncausal convolution operator
whose impulse response is h ∈H satisfying

B‖h‖H < 1. (18)

Let M = 1−H. Then the positivity condition (13) holds and
the Lurye system of Fig 1 is stable provided (14) holds.

Proof. Setting h = h+−h− to be the Jordan decomposition of
h with h+ ∈Hp and h− ∈Hp, together with (18) are sufficient
for (12) in Theorem 1.

IV. LOOP TRANSFORMATION

In classical multiplier analysis [5], [1] it is standard to apply
loop transformations (Fig 3) when the nonlinearity is slope-
restricted. Similarly we may apply loop transformations when
a nonlinearity has slope-restricted bounds.

Lemma 2. Under the conditions of Assumption 2, suppose
α and α are both, in addition, slope-restricted on [0,s]. Let
k > s. Define αk as the map from u(t)−α(u(t))/k to α(u(t))
and define αk similarly. Then αk and αk are both monotone
and bounded. Furthermore the map from u(t)−y(t)/k to y(t)
is bounded below by αk and above by αk.

A similar statement follows if we define β
k

and β k similarly.
In addtion, β

k
and β k are both odd.

Proof. It is well-known that αk and αk are monotone and
bounded, and that β

k
and β k are monotone, bounded and odd

[5], [1].
Suppose (without loss of generality) that u(t) > 0. Then

0 ≤ α(u(t)) ≤ y(t) ≤ α(u(t)). Similarly u(t)− α(u(t))/k ≥
u(t)− y(t)/k ≥ u(t)−α(u(t))/k ≥ 0. Hence

0≤ α(u(t))
u(t)−α(u(t))/k

≤ y(t)
u(t)− y(t)/k

≤ α(u(t))
u(t)−α(u(t))/k

.

(19)
The result for β

k
and β k follows similarly.

Remark 5. Even when the mapping from u(t) to y(t) is single-
valued, the mapping from u(t)− y(t)/k to y(t) need not be
[1]. In particular the slope of the mapping from u(t) to y(t)
may exceed k. The results of [13], [11] cannot be applied
with loop transformations without either further restrictions
or the generalisation in Theorem 1 to possibly multivalued
nonlinearities.

We require a counterpart to Assumption 3.

Assumption 4. Given Assumption 2, suppose in addition α
and α are both slope-restricted on [0,s]. Let αk and αk be

� � �φ

1/k

ũuy m
-

6

Fig. 3. Loop transformation. The map from ũ(t) = u(t)−y(t)/k to y(t) may
be multivalued, even if the map from u(t) to y(t) is single-valued. Similarly
the ratios of bounds on the nonlinearity (i.e. A and B for the map from u(t) to
y(t) and Ak and Bk for the map from u(t)−y(t)/k to y(t)) are not necessarily
preserved under loop transformation.

defined as in Lemma 2 with k > s. Then there is assumed to
be some finite Ak ≥ 1 such that αk is bounded above by Akαk.

Similarly suppose in addition β and β are also both slope
restricted on [0,s]. Let β

k
and β k also be defined as in

Lemma 2 with k > s. Then there is assumed to be some
(possibly infinite) Bk ≥ Ak such that β k is bounded above by
Bkβ

k
.

Lemma 3. Under the conditions of Assumptions 1, 2 and 4,
if φ : L2e→L2e then for all u ∈L2 and for all τ ∈R,

−Bk

∫
∞

−∞

(u(t)− y(t)/k)y(t)dt ≤∫
∞

−∞

(u(t + τ)− y(t + τ)/k)y(t)dt ≤

Ak

∫
∞

−∞

(u(t)− y(t)/k)y(t)dt, (20)

where y = φu.

Proof. Immediate from Lemmas 1 and 2 and Assumption 4.

Theorem 2 (quasi-monotone or quasi-odd nonlinearity with
slope-restricted bounds). Under the conditions of Assump-
tions 1, 2 and 4, let H+ and H− be noncausal convolution
operators whose respective impulse responses are h+ ∈ Hp
and h− ∈Hp satisfying

Ak‖h+‖H +Bk‖h−‖H < 1. (21)

Let M = 1−H++H−. Then for any u ∈L2∫
∞

−∞

M(u−φu/k)(t)(φu)(t)dt ≥ 0, (22)

and the Lurye system of Fig 1 is stable provided there exists
ε > 0 such that

Re [M( jω)(1+ kG( jω))]≥ ε for all ω ∈ R. (23)

Proof. Similar to that of Theorem 1.

There is no guarantee that Ak (or Bk) is small, even when
A (or B) is. In fact it is straightforward to construct examples
where Ak (or Bk) can be arbitrarily large. By the same token,
there are cases where Ak = A (and where Bk = B). Here
we consider such a case for Ak where the nonlinearity is
monotone.

Lemma 4. Suppose the nonlinearity is monotone. Then Ak =
A = 1.
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Proof. We may set y(t) = αu(t) for some monotone α and
α = α = α . Hence αk = αk.

Corollary 3 (quasi-odd nonlinearity with slope-restricted
bounds). Under the conditions of Theorem 2, suppose the
nonlinearity is in addition monotone. Then (21) may be
replaced by the condition

‖h+‖H +Bk‖h−‖H < 1. (24)

Proof. Immediate from Theorem 2 and Lemma 4.

V. EXAMPLE WITH DEADZONE AND MONOTONE
SLOPE-RESTRICTED BOUNDS

In this section and the next we illustrate the practical
applicability of the multipliers. The example in this section
is continuous-time while the example in the next is discrete-
time. In both cases we exploit loop transformation.

In this section we give an example of a class of nonlinearity
with deadzone where Theorem 2 gives better results than the
circle criterion. It is similar in spirit to an example in [11]
but differs in that the deadzone need not be symmetric, the
bounds need not be symmetric, the nonlinearity itself need
be neitehr memoryless nor time-invariant and we apply loop
transformation. The example illustrates how the values Ak and
Bk may differ from A and B and hence the set of multipliers
available if we apply Theorem 2 may be smaller than the set
available if we apply Theorem 1.

A. Nonlinearity with deadzone and monotone slope-restricted
bounds

Suppose the nonlinearity is bounded by

α(u(t)) =

 sn1(u(t)+dn) for u(t)<−dn
0 for −dn ≤ u(t)≤ dp
sp1(u(t)−dp) for u(t)> dp

(25)

and

α(u(t)) =

 sn2(u(t)+dn) for u(t)<−dn
0 for −dn ≤ u(t)≤ dp
sp2(u(t)−dp) for u(t)> dp

(26)

with 0 < sn1 < sn2, 0 < sp1 < sp2 and dn > 0, dp > 0 (Fig 4).
It follows that

A = max
(

sn2

sn1
,

sp2

sp1

)
, (27)

and
B =

max(sn2,sp2)

min(sn1,sp1)
when dn = dp, (28)

but there is no finite B when dn 6= dp.
Both α and α are monotone and slope-restricted on [0,s]

with s = max(sn2,sp2). If we apply a loop transformation with
k > s the new bounds αk and αk of Lemma 2 are given by

αk(u(t)) =

 s̃n1(u(t)+dn) for u(t)<−dn
0 for −dn ≤ u(t)≤ dp
s̃p1(u(t)−dp) for u(t)> dp

(29)

and

αk(u(t)) =

 s̃n2(u(t)+dn) for u(t)<−dn
0 for −dn ≤ u(t)≤ dp
s̃p2(u(t)−dp) for u(t)> dp

(30)

Fig. 4. Nonlinearity bounds for the example of Section V. The analysis of
[13], [11] and [9] cannot be used when dn 6= dp. We provide a specific example
where Theorem 2 gives better results than the circle criterion.

with
s̃n1 =

ksn1

k− sn1
, s̃n2 =

ksn2

k− sn2
,

s̃p1 =
ksp1

k− sp1
and s̃p2 =

ksp2

k− sp2
.

(31)

Hence

Ak = max
(

sn2

sn1

k− sn1

k− sn2
,

sp2

sp1

k− sp1

k− sp2

)
(32)

and Bk can be found similarly when dn = dp.

B. Stability criteria

Now consider the continuous-time Lurye system (1). The
circle criterion can be used to establish stability provided
Re[G( jω)] > −1/max(sn2,sp2) for all ω . If the nonlinearity
itself is time-varying the Popov criterion cannot be used, and
similalry if the nonlinearity is not monotone then the Zames-
Falb criterion cannot be used. If dn 6= dp then there is no finite
B so none of the criteria of [13], [11] or [9] can be used to
establish stability. However either Theorem 1 or Theorem 2
may be used. Here we illustrate the use of Theorem 2.

C. Specific example

As a specifc example, let G be the resonant system with
delay

G(s) = e−s/5 1
s2 +0.3s+1

(33)

and let sn1 = sp1 = 0.5 and sn2 = sp2 = 0.6.
For this example the circle criterion fails to establish sta-

bility since min(Re [G( jω)])≈−1.8195 <−1/0.6. Similarly
Theorem 1 fails to stablish stability directly since the phase
of G drops to −∞ as ω → ∞.

However, if we apply a loop transformation with k = 1 we
obtain s̃n1 = s̃p1 = 1, s̃n2 = s̃p2 = 3/2 and hence R̃m = 3/2.
Define the multiplier Mε(s) = 1− (2/3− ε)e−0.7s with ε ≥ 0.
We find −90o <∠M0( jω)(1+G( jω))< 90o for all ω . If fol-
lows by continuity that there is an ε > 0 such that Theorem 2
with multiplier Mε establishes stability.
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VI. EXAMPLE WITH ASYMMETRIC SATURATION

A. Asymmetric saturation

One of our motivations is to study asymmetric saturation.
This is of high practical importance as it corresponds to the
case with odd bounds but constant offset (due to non-zero
setpoint or disturbance). It is possible for a Lurye system
to be stable with symmetric saturation but unstable with
asymmetric saturation [23], [24] and the behaviour of Lurye
systems with asymmetric saturation continues to be of interest
[25]. In this example stability is guaranteed with exogenous
signals whose steady-state is small but exhibits cycling with
exogenous signals whose steady state is large.

Define the asymmetric saturation with gain s as:

sats,−m,n(u(t)) =

 −m for u(t)< −m
s ,

su(t) for −m
s ≤ u(t)≤ n

s
n for n

s < u(t)
(34)

where s > 0, m > 0 and n > 0 (Fig 5).
The nonlinearity is monotone so A = 1. Define

B = min{m,n} and B = max{m,n}. (35)

The nonlinearity is bounded below by β = sats,−B,B and above
by β = sats,−B,B. Hence it is quasi-odd with B = B/B.

Corollary 4 (asymmetric saturation). Under the conditions of
Theorem 2, suppose φ is given by the asymmtetric satura-
tion (34). Then (21) may be replaced by the condition

‖h+‖H +Bk‖h−‖H < 1 where Bk = B/B, (36)

where B and B are given by (35). Furthermore we may allow
k = s.

Proof. Since β and β are slope-restricted on [0,s] we can
apply Corollary 3. Let k = s+ ε with ε > 0. The map from
u(t)− sats,−m,n(u(t))/k to sats,−m,n(u(t)) is sat1/ε,−m,n(u(t)).
Hence β k is bounded above by Bkβ

k
. A limiting argument for

ε → 0 can be made following [26].

Remark 6. It is straightforward to show that (21) may be
replaced by (36) for any saturation function sats,−µ,ν with
s > 0, B ≤ µ ≤ B and B ≤ ν ≤ B where B and B are given
by (35).

B. Set-points and disturbances

Suppose φ in the Lurye system (1) is memoryless and char-
acterised by the symmetric saturation nonlinearity sat1,−m,m
for some m > 0. It may be of interest to analyse the behaviour
when the exogenous signals r1 and/or r2 are step functions
and non-zero in steady state. In particular, suppose the system
is stable without saturation (i.e. when φ is replaced by a unit
gain) and the signal u2 tends to some us ∈ R in steady state
with |us|< m. Under what circumstances can we guarantee u2
tends to the same value when there is saturation? Our defi-
nition of input-output stability for the Lurye system requires
r1,r2 ∈L2, so it cannot be applied directly in this case.

But the question is equivalent to asking whether the system
is stable when we renormalise our variables so that r1 and r2
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Fig. 5. Asymmetric saturation. The nonlinearity is monotone so α = α and
A= 1. Where u(t)< 0 we have α(u(t)) =α(u(t)) = β (u(t)) and where u(t)>
0 we have α(u(t)) = α(u(t)) = β (u(t)). Both β and β are slope-restricted on
[0,s]. The bound β is itself bounded above by Bβ .

Fig. 6. Stability changes with size of exogenous signal. For low level, r2 =−1
giving steady state −25/171 for u2. For high level, r2 = 2.1 giving steady state
35/114 for u2. Since the saturation is ±1 the effective values of Bk are (1+
25/171)/(1− 25/171) = 98/73 ≈ 1.3425 and (1+ 35/114)/(1− 35/114) =
149/79≈ 1.886.

are both in L2 and u2 tends to zero when there is no saturation.
In this case the saturation becomes sat1,−m−us,m−us . Hence we
can apply Corollary 4 to test for stability with Bk = (m +
|us|)/(m−|us|). Observe in particular that the value of Bk is
dependent on the magnitudes of the exogenous signals.

C. Specific example

Here we illustrate the result for asymmetric saturation with
a discrete-time example (see Appendix A). Consider the Lurye
system (1) where φ is characterised by the saturation function

α(u(t)) = sat1,−1,1(u(t)). (37)

and let G be the discrete-time transfer function

G(z) =
2z+0.92
z(z−0.5)

. (38)

By classical analysis [27], [28] this is only guaranteed stable
when the exogenous signals are zero in steady state.
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TABLE I
VALUES OF Bk AND CORRESPONDING STEADY STATE VALUES FOR u2 AND

r2 IN THE EXAMPLE.

Bk |u2| |r2| Stable Comment
1 0 0 Yes By classical analysis

1.343 0.146 1 Yes Low level in simulation
1.467 0.189 1.295 Yes Corollary 3
1.586 0.227 1.55 No Three-period limit cycle [24]
1.886 0.307 2.1 No High level in simulation

We find M(1 + G) is positive with M(z) = 0.596z + 1 +
0.022z−2− 0.093z−3. Corollary 4 implies the loop is stable
provided Bk < 1.467. The multipliers were found using a
convex search as discussed in Appendix B. Corresponding
steady-state values of exogenous signal r2 and input to the
saturation u2 are given in Table I.

We know [24] there is a three-period limit cycle when
Bk = 436/275≈ 1.586. Fig 6 shows the signals r2, u2 and y1
when r2 is switched between −1 and 2.1 every 200 samples.
Corresponding values of Bk are shown in Table I. The loop
is guaranteed stable when r2 = −1, but shows a three-period
limit cycle when r2 = 2.1.

VII. CONCLUSION

We have provided a generalisation of Zames-Falb muliplier
theory for both quasi-monotone nonlinearities and quasi-odd
nonlinearities. Both the classical results [5], [1] and the
generalisations of [13], [11] can be stated as special cases.
We have also provided the counterpart results for discrete-time
systems in Appendix A. The results follow classical multiplier
analysis [1] but exploit the Jordan decomposition [16] of the
impulse response h = h+− h− of the operator H where the
multiplier is M = 1−H.

Whereas the generalisations of [13], [11] are focused on
non-monotone nonlinearities, we also consider nonlinearities
that are monotone and quasi-odd. In this case we provide a
result (Corollary 1) that we illustrate via an example with
asymmetric saturation (Section VI). Our results may be ap-
plied to time-varying and multivalued nonlinearites and hence
accommodate loop transformation. Unlike the classical results
of [5], the set of available multipliers M may be reduced
after loop transformation; this is illustrated in the example
of Section V.

In Appendix B we indicate how modifications of existing
search algorithms can provide convex searches for the new
class of multipliers. Such a search for discrete-time multipliers
is used in the example of Section VI where multiplier theory
can be used to test stability according to the magnitude of
exogenous signals in steady state.

APPENDIX A
DISCRETE-TIME RESULTS

The discrete-time counterparts of the Zames-Falb multipli-
ers were proposed in [27], [28]. Applications of the discrete-
time Zames–Falb multipliers range from input-constrained
model predictive control [29], [30] to first order numerical
optimization algorithms [31], [32]. Although they are defined

similarly to the continuous-time Zames-Falb multipliers, their
properties are significantly different [33], [34].

Here, for completeness, we state the discrete-time counter-
part of Theorem 1. Define hp as the set of sequences in `
where hk ≥ 0 for all k ∈ Z and h0 = 0.

Theorem 3 (discrete-time, quasi-monotone or quasi-odd non-
linearity). Under the discrete-time counterparts of the condi-
tions of Assumptions 1 and 2, let H+ and H− be noncausal
convolution operators whose respective impulse responses are
h+ ∈ hp and h− ∈ hp satisfying

A‖h+‖1 +B‖h−‖1 < 1. (39)

Let M = 1−H++H−. Then for any u ∈ `2

∞

∑
k=−∞

(Mu)k(φu)k ≥ 0. (40)

Furthermore the discrete-time Lurye system of Fig 1 is stable
provided

Re
[
M(e jω)G(e jω)

]
> 0 for all ω ∈ [0,2π]. (41)

Proof. Similar to Theorem 1.

Discrete-time counterparts to Corollaries 1 and 2 follow
straightforwardly as do counterparts to Theorem 2 and Corol-
laries 3 and 4.

APPENDIX B
CONVEX SEARCHES

Our construction relies on the Jordan decomposition of the
impulse response h = h+−h− with h+(t) ≥ 0 and h−(t) ≥ 0
for all t ∈R (continuous time) or [h+]k ≥ 0 and [h−]k ≥ 0 for
all k ∈ Z (discrete time). It follows that any search method
for Zames-Falb multipliers (or their discrete equivalents) that
exploits the characterisation of the impulse response h as the
sum of basis functions can be easily modified to search for the
multipliers of this paper. This is the case with Chen and Wen’s
LMI search [14] and the convex FIR search for discrete-time
multipliers reported in [15].

Specifically, suppose a search algorithm constructs an im-
pulse response h as

h =
N

∑
i=1

λihi, (42)

where each hi ∈Hp satisfies hi(0) = 0, hi(t)≥ 0 for all t ∈ R
and ‖hi‖H = 1 (continuous time) or where each hi ∈ hp satisfies
[hi]0 = 0, [hi]k ≥ 0 for all k ∈ Z and ‖hi‖1 = 1 (discrete time).
Then multipliers for monotone and bounded nonlinearities can
be parameterised with the convex constraints

λi ≥ 0 for i = 1, . . . ,N and
N

∑
i=1

λi < 1. (43)

Similarly multipliers for monotone, bounded and odd nonlin-
earities can be parameterised with the convex constraint

N

∑
i=1
|λi|< 1. (44)
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These can be modified to construct an impulse response as
h = h+−h− with

h+ =
N

∑
i=1

λi+hi and h− =
N

∑
i=1

λi−hi, (45)

with each hi defined as before. The appropriate convex con-
straints are then

λi+ ≥ 0 and λi− ≥ 0 for i = 1, . . . ,N, (46)

and

A
N

∑
i=1

λi++B
N

∑
i=1

λi− < 1. (47)

In particular, both the continuous-time search of [14] and
the discrete-time search of [15] may be modified in this way
to give LMI-based convex searches. We use such a modified
discrete-time search in the example of Section VI.

DEDICATION

We dedicate this paper to our late collaborator and co-author
Dmitry Altshuller. Had he lived this paper would surely have
had a different flavour. We have preserved his spelling of Lurye
throughout. But he would have prefered the development in
terms of delay integral quadratic contsraints [19], [20], [21],
[9]; although such development is straightforward, we have
not resolved some minor technical details, and prefer to retain
the classical analysis with which we are more comfortable. In
addition, Dmitry proposed the development in the more elegant
framework of Fourier analysis on locally Abelian compact
groups [35], [36]; for the time-being this will have to remain
as an exercise for the reader. We miss working with Dmitry.

WPH and JC.
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Dmitry Alexander Altshuller was born on Jan-
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