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Converse Barrier Functions via Lyapunov Functions
Jun Liu, Senior Member, IEEE

Abstract—We prove a robust converse barrier function the-
orem via the converse Lyapunov theory. While the use of a
Lyapunov function as a barrier function is straightforward, the
existence of a converse Lyapunov function as a barrier function
for a given safety set is not. We establish this link by a robustness
argument. We show that the closure of the forward reachable

set of a robustly safe set must be robustly asymptotically stable
under mild technical assumptions. As a result, all robustly safe
dynamical systems must admit a robust barrier function in the
form of a Lyapunov function for set stability. We present the
results in both continuous-time and discrete-time settings and
remark on connections with various barrier function conditions.

Index Terms—Safety verification and control; barrier func-
tions; stability; Lyapunov functions; robustness.

I. INTRODUCTION

The use of barrier functions to ensure set invariance and

safety in control of dynamical systems has gained popularity

in recent years in safety-critical control applications [1]–[12].

The readers are referred to [9] for a nice introduction on the

background of barrier functions.

From the earlier work [1], [2] to recent results [13], [14],

converse theorems for barrier functions played an important

role in understanding how safety properties can indeed be

characterized by barrier functions. The more stringent condi-

tions in [1], [2] for the existence of converse barrier functions

are relaxed in [13] to a class of structurally table dynamical

systems (more precisely, Morse-Smale vector fields) and in

[14] to a robust safety requirement.

In this paper, inspired by the recent work [14] and the con-

nections made in [10] (see also [9]) between a barrier function

and a Lyapunov function, we prove that, for all robustly safe

dynamical systems, barrier functions can be constructed from

Lyapunov functions. The use of Lyapunov functions to ensure

set invariance is standard [15] (see also [1]). The authors of [9],

[10] also highlighted that if the barrier function conditions are

satisfied in a neighborhood of the safety set, then the barrier

function can indeed be regarded as a Lyapunov function. What

is missing, however, are conditions under which such barrier

functions exist assuming safety of the system. We establish

this link by proving that the closure of the robust reachable

set of a robustly safe set must be robustly asymptotically

stable under mild technical assumptions (Theorem 18). The

results of this paper could help provide a potentially more

unified view of the Lyapunov function and barrier function

theories, because how to simultaneously satisfy Lyapunov and

barrier function conditions are important in practice and but

technically challenging [9], [12].
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Notation: For x ∈ R
n and r ≥ 0, we denote the ball of

radius r centered at x by Br(x) = {y ∈ R
n : ‖y − x‖ ≤ r},

where ‖·‖ is the Euclidean norm. For a closed set A ⊆
R

n and x ∈ R
n, we denote the distance from x to A

by ‖x‖A = infy∈A ‖x− y‖ and r-neighborhood of A by

Br(A) = ∪x∈ABr(x) = {x ∈ R
n : ‖x‖A ≤ r}. For conve-

nience, we also write B = B1(0) and rB = Br(0).
The remainder the paper is organized as follows. We present

some preliminaries on barrier and Lyapunov functions for

continuous-time systems in Section II. We prove a converse

barrier function theorem by a converse Lyapunov function

theorem in Section III. The results of Section III are extended

to discrete-time systems in Section IV. The paper is concluded

in Section V.

II. PRELIMINARIES

Consider a continuous-time dynamical system

x′ = f(x), (1)

where x ∈ R
n and f : R

n → R
n is assumed to be locally

Lipschitz. For each x0 ∈ R
n, we denote the unique solution

starting from x(0) = x0 and defined on the maximal interval

of existence by x(t;x0) or simply x(t) if x0 is not emphasized.

Given a scalar δ ≥ 0, a δ-perturbation of the dynamical

system (1) is described by the differential inclusion

x′ ∈ Fδ(x), (2)

where Fδ(x) = Bδ(f(x)). An equivalent description of the

δ-perturbation of system (1) can be given by

x′(t) = f(x(t)) + d(t), (3)

where d : R → δB is any measurable signal. We denote

system (1) by S and its δ-perturbation by Sδ . Note that Sδ

reduces to S when δ = 0. A solution of Sδ starting from

x(0) = x0 can be denoted by x(t;x0, d) or simply x(t), where

d is a given disturbance signal. The set of all solutions for Sδ

starting from x0 is denoted by Sδ(x0). We are only interested

in forward solutions (i.e., solutions defined in positive time)

in this paper. Set invariance, defined below and used in this

paper, also only concerns forward invariance.

Definition 1 (Invariant set): A set Ω ⊆ R
n is said to be an

invariant set of Sδ if all solutions of Sδ starting in Ω remain

in Ω in positive time.

Definition 2 (Robustly invariant set): A set Ω ⊆ R
n is said

to be a δ-robustly invariant set of S if it is an invariant set of

Sδ for some δ ≥ 0. It is said to be a robustly invariant set of

S if it is a δ-robustly invariant set for some δ > 0.

Definition 3 (Robustly safe set): Given an unsafe set U ⊆
R

n, a set W ⊆ R
n is said to be δ-robustly safe w.r.t. to U if

all solutions of Sδ starting from W will not enter U .

http://arxiv.org/abs/2007.11086v2
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An immediate connection between robustly safe and invari-

ant sets is the following.

Proposition 4: If there exists a δ-robustly invariant set Ω
such that W ⊆ Ω and Ω ∩ U = ∅, then W is δ-robustly safe

w.r.t. to U .

Definition 5 (Robust barrier function): Given sets W,U ⊆
R

n, a continuously differentiable function B : R
n → R is

said to be a δ-robust barrier function for W and U if the

following conditions are satisfied:

(1) B(x) ≥ 0 for all x ∈ W ;

(2) B(x) < 0 for all U ; and

(3) ∇B(x) · (f(x)+ d) > 0 for all x such that B(x) = 0 and

all d ∈ δB.

Remark 6: The choice of sign for B to indicate a safe set

is rather arbitrary because we can always negate it. Here we

use the condition B(x) ≥ 0 to describe the safe set (the same

as [9] and [14]) instead of B(x) ≤ 0 (as in the original work

[3]).

A δ-robust barrier function for (W,U) provides a certificate

for δ-robust safety of W w.r.t. U , as summarized in the

following result.

Proposition 7 (Sufficiency of barrier functions [2], [3]): If

there exists a δ-robust barrier function for (W,U), then W is

δ-robustly safe w.r.t. U .

A proof that leads to a slightly different conclusion can be

found in [2]. We provide a short proof below for completeness.

Proof: We show that the set C = {x ∈ R
n : B(x) ≥ 0}

is an invariant set for Sδ . Robust safety of W follows im-

mediately in view of Proposition 4 and conditions (1)–(2) of

Definition 5. Suppose that C is not invariant for Sδ . Then there

exists a solution x(·) for Sδ such that x(0) ∈ C and x(t) 6∈ C

for some t > 0. Define

t = sup{t ≥ 0 : x(t) ∈ C}.

Then t is well defined and finite. By continuity of B(x(t)),
we have B(x(t)) = 0. This implies that

dB(x(t))

dt
= ∇B(x(t)) · (f(x(t)) + d(t)) > 0

at t = t. Hence, for ε > 0 sufficiently small, we have

B(x(t)) > B(x(t)) = 0 for t ∈ (t, t + ε]. This contradicts

the definition of t.

Remark 8: Note that the strict inequality ∇B(x) · (f(x) +
d) > 0 is needed to guarantee the set {x ∈ R

n : B(x) ≥ 0}
is forward invariant. The original paper [3] used the non-

strict inequality condition: ∇B(x) · (f(x) + d) ≥ 0 for all

x such that B(x) = 0. This condition has been known to

be unsound (see, e.g., [16, Example 2]; see also [17, Remark

after Theorem 3]). Safety properties of dynamical systems are

intimately related to set invariance, on which there is a rich

history of investigation (interested readers can refer to [18] for

more information; see also [17, Section 3]).

Several converse theorems for barrier functions have been

proved in the literature [1], [2], [13], [14]. We quote a most

recent result by Ratschan as follows.

Theorem 9 (Necessity of barrier functions [14]): Suppose

that the closure of W and U are disjoint and the complement

of U is bounded. If W is δ-robustly safe w.r.t. U , then there

exists a continuously differentiable function B : R
n → R

satisfying the following conditions:

(1) B(x) ≥ 0 for all x ∈ W ;

(2) B(x) < 0 for all U ; and

(3) ∇B(x) · f(x) > 0 for all x such that B(x) = 0.

While condition (3) appears to be slightly different from

item (3) in Definition 5, we will remark on the connections

between them, as well as with other variants of barrier function

conditions, in Section III (see Remark 21).

We say a continuous function α : [0, a) → R belongs to

class K and write α ∈ K if α is strictly increasing and α(0) =
0.

Definition 10 (Set stability): A closed set A ⊆ R
n is said

to be δ-robustly uniformly asymptotically stable (δ-RUAS) for

S if the following two conditions are met:

(1) For every ε > 0, there exists a δε > 0 such that ‖x(0)‖A <

δε implies ‖x(t)‖A < ε for any solution x(t) of Sδ; and

(2) There exists some ρ > 0 such that, for every ε > 0, there

exists some T > 0 such that ‖x(t)‖A < ε for any solution

x(t) of Sδ whenever ‖x(0)‖A < ρ and t ≥ T .

It is not difficult to see that a δ-robustly uniformly asymp-

totically stable set A must be δ-robustly invariant.

Definition 11 (Robust Lyapunov function): Let D ⊆ R
n be

an open set containing a closed set A ⊆ R
n. A continuously

differentiable function V : D → R is said to be a δ-

robust Lyapunov function for S w.r.t. A if the following two

conditions are satisfied:

(1) there exist class K functions α1 and α2 such that

α1(‖x‖A) ≤ V (x) ≤ α2(‖x‖A)

for all x ∈ D; and

(2) there exists a class K functions α3 such that

∇V (x) · ((f(x) + d) ≤ −α3(‖x‖A)

for all x ∈ D and d ∈ δB.

There are well-known Lyapunov characterizations of set

stability.

Theorem 12 (Lyapunov characterization of set stability [19],

[20]): A closed set A ⊆ R
n is δ-RUAS for S if and only if

there exists a δ-robust Lyapunov function for S w.r.t. A.

III. ROBUST CONVERSE BARRIER FUNCTIONS VIA

LYAPUNOV FUNCTIONS

In this section, we prove a version of converse barrier

function theorem by resorting to converse Lyapunov theory.

We first introduce some notation. Let Rt
δ(x0) denote the set

reached by solutions of Sδ at time t starting from x0, i.e.,

Rt
δ(x0) = {x(t) : x(·) ∈ Sδ(x0))} .

We further define

Rδ(x0) =
⋃

t≥0

Rt
δ(x0),

and, for a set W ⊆ R
n,

Rt
δ(W ) =

⋃

x0∈W

Rt
δ(x0), Rδ(W ) =

⋃

x0∈W

Rδ(x0).
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Clearly, Rδ(W ) is a δ-robustly invariant set of S. If W is

δ-robustly safe, then Rδ(W ) ∩ U 6= ∅. If the complement

of U is bounded (as assumed in Theorem 9), then Rδ(W )
is bounded. Let Ω = Rδ(W ). Then Ω is compact. Without

further assumption, Ω may intersect with U as shown in the

following example.

Example 13: Consider S defined by x′ = −x. Let W =
[−0.1, 0.1] and δ = 0.2. Then Rδ(W ) = (−0.2, 0.2) and Ω =
[−0.2, 0.2]. If U = (−∞,−2] ∪ [2,∞), then W is δ-robustly

safe w.r.t. U because Rδ(W ) ∩ U = ∅. Yet Ω ∩ U 6= ∅.

Note that the assumptions of Theorem 9 are indeed satisfied

by the example above. While additionally assuming U to be

open will lead to Ω ∩ U = ∅, we need a slightly stronger

assumption for the purpose of this section, that is, Ω∩U = ∅.

This is summarized in the following assumption.

Assumption 14: The set W is δ-robustly safe w.r.t. U and

Ω ∩ U = ∅, where Ω = Rδ(W ). Furthermore, either Ω is

compact or f is globally Lipschitz.

With this assumption, we prove the following result on

converse barrier functions.

Theorem 15 (Robustly safe sets admit robust barrier func-

tions): Suppose that Assumption 14 holds. Then for any

δ′ ∈ (0, δ), there exists a δ′-robust barrier function for (W,U).

The conclusion of the above result is slightly stronger than

the main result in [14] (quoted as Theorem 9 in Section II

above) in two aspects: (1) we show the existence of a δ′-robust

barrier function for any δ′ ∈ (0, δ); (2) we do not assume Ω
to be compact, when f is globally Lipschitz1. Assumption 14

appears to be stronger than that of Theorem 9 in that it requires

Ω ∩ U = ∅. Nonetheless, the proof of Theorem 9 (see, e.g.,

Lemma 5 in [14]) seems to be using this fact without explicitly

mentioning or proving it. Example 13 above shows that this

does not readily follow from the assumptions of Theorem 9.

Despite these subtle technical differences, the main message

of this section, however, is that converse barrier functions can

be constructed from Lyapunov functions.

The construction relies on showing that the closure of the

reachable set of the robustly safe set, i.e., the set Ω = Rδ(W ),
is robustly asymptotically stable (Theorem 18). The following

technical lemma on reachable sets of a perturbed system plays

an important role in proving Theorem 18.

Lemma 16: Fix any δ′ ∈ (0, δ) and τ > 0. Let K ⊆ R
n be

a compact set. Then there exists some r = r(K, τ, δ′, δ) > 0
such that the following holds: if there is a solution x of Sδ′

such that x(s) ∈ K for all s ∈ [0, T ], where T ≥ τ , then

for any y0 ∈ Br(x(0)) and any y1 ∈ Br(x(T )), we have

y1 ∈ RT
δ (y0), i.e., y1 is reachable at T from y0 by a solution

of Sδ. Furthermore, if f is globally Lipschitz, r can be chosen

to be independent of K .

Proof: Let

y(s) = x(s)+
s

T
[y1−x1+(x0−y0)]+(y0−x0), s ∈ [0, T ].

1In fact, f being Lipschitz in a neighborhood of Ω suffices.

Then y(0) = y0 and y(T ) = y1. Furthermore,

‖y(s)− x(s)‖ ≤ ‖y1 − x1‖
s

T
+ ‖y0 − x0‖ (1 −

s

T
)

≤ r(
s

T
+ 1−

s

T
) = r,

and

‖y′(s)− x′(s)‖ ≤

∥

∥

∥

∥

1

T
[y1 − x1 + (x0 − y0)]

∥

∥

∥

∥

≤
1

T
[‖y1 − x1‖+ ‖x0 − y0‖] ≤

2r

T
,

for all s ∈ [0, T ]. Hence

‖y′(s)− f(y(s))‖

= ‖y′(s)− x′(s) + x′(s)− f(x(s)) + f(x(s)) − f(y(s))‖

≤
2r

T
+ δ′ + Lr,

where we used the triangle inequality, the fact that x is a so-

lution of Sδ′ , and Lipschitz continuity of f on the set Br(K).
By picking r sufficiently small such that 2r

τ
+ δ′ + Lr < δ,

then we have ‖y′(s)− f(y(s))‖ < δ for all s ∈ [0, T ]. Thus

y is a solution of Sδ and the conclusion follows. Note that the

choice of r only depends on K , τ , δ′, and δ. The dependence

on K is removed if f is globally Lipschitz.

Remark 17: Lemma 16 extends the statement of Lemma 1

in [14], where the proof was omitted. Lemma 16 is slightly

stronger because it says that we can steer any point in a

small neighborhood of x(0) (as opposed to only x(0)) to a

small neighborhood of x(T ). This fact is needed in the proof

of Theorem 18 below. Lemma 16 also allows T to vary as

long as it is lower bounded by τ . The proof given here is

elementary and constructive. Similar argument (of a simpler

version) appeared in the proof of Theorem 1 in [21].

Theorem 18 (Robustly invariant sets are robustly asymptoti-

cally stable): If Assumption 14 holds, then for any δ′ ∈ [0, δ),
the set Ω = Rδ(W ) is δ′-RUAS for S.

Proof: We verify conditions (1) and (2) of Definition 10.

(1) For any ε > 0, let τ > 0 be the minimal time that

is required for solutions of Sδ′ to escape from B ε

2
(Ω) to

Bε(Ω). The existence of such a τ follows from that f is locally

Lipschitz and an argument using Gronwall’s inequality. Pick

δε < min(r, ε
2
), where r is from Lemma 16, applied to the set

Bε(Ω) and scalars τ , δ′, and δ. Let x be any solution of Sδ′

such that ‖x(0)‖
Ω

< δε. We show that ‖x(t)‖
Ω

< ε for all

t ≥ 0. Suppose that this is not the case. Then ‖x(t1)‖Ω ≥ ε

for some t1 ≥ τ > 0. Since δε < r, we can always

pick y0 ∈ Rδ(W ) such that y0 ∈ Br(x(0)) by the triangle

inequality. By Lemma 16, there exists a solution of Sδ from

y0 ∈ Rδ(W ) to x(t1) 6∈ Ω. This contradicts that Rδ(W ) is

δ-robustly invariant.

(2) Fix any ε0 > 0. Following part (1), choose δε0 such that

‖x(0)‖
Ω

< δε0 implies ‖x(t)‖
Ω

< ε0 for any solution x(t)
of Sδ′ . Let r be chosen according to Lemma 16 with the set

Bε0(Ω) and scalars τ = 1, δ′, and δ. Choose ρ ∈ (0, r). Let

x be any solution of Sδ′ . We show that ‖x(0)‖
Ω
< ρ implies

that x(t) ∈ Rδ(W ) for all t ≥ 1. Suppose that this is not the

case. Then there exists some t1 ≥ 1 such that x(t1) ∈ ∂Ω or

x(t1) 6∈ Ω. In either case, we can pick y1 ∈ Br(x(t1)) such
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that y1 6∈ Ω and y0 ∈ Br(x(0)) such that y0 ∈ Rδ(W ). By

Lemma 16, there exists a solution of Sδ from y0 ∈ Rδ(W ) to

y1 6∈ Ω. This contradicts that Rδ(W ) is δ-robustly invariant.

Hence x(t) ∈ Rδ(W ) ⊆ Ω for all t ≥ 1. This clearly implies

(2).

The conclusion of Theorem 18 cannot be strengthened in

the sense that the set Ω = Rδ(W ) may not be δ-RUAS for S
as shown in the simple example below.

Example 19: Consider S defined by x′ = −x + x2. Let

W = [−0.1, 0.1] and δ = 0.25. Then Rδ(W ) = (−0.25, 0.25)
and Ω = [−0.25, 0.25]. Solutions of Sδ starting from x0 =
0.25 + ε, where ε > 0, with d(t) = δ will tend to infinity.

Hence Ω cannot be δ-RUAS.

Theorem 15 can be obtained as a corollary of Theorem 18

and Theorem 12.

Proof of Theorem 15: By Theorem 18, Ω is δ′-RUAS for

any δ′ ∈ [0, δ). By Theorem 12, there exists a neighborhood

D of Ω and a smooth V : D → R such that V satisfies

conditions (1) and (2) in Definition 11.

Let

Bc(x) = c− V (x), (4)

where c > 0 is a scalar chosen sufficiently small such that

Bc(x) ≥ 0 implies x 6∈ U . For instance, one can take c be

the maximum value of V (x) in a compact neighborhood of

Ω that does not overlap with U . Then Bc(x) also verifies all

the conditions of a δ′-robust barrier function. In particular, we

have

∇Bc(x) · (f(x) + d) = −∇V (x) · (f(x) + d)

≥ α3(α
−1
2 (V (x)))

= α3(α
−1
2 (c−Bc(x)))

= α3(α
−1
2 (c)) > 0 (5)

for all x such that Bc(x) = 0 and all d ∈ δB.

Remark 20: The construction of a Barrier function via a

Lyapunov function is inspired by the work [10] (see also [9])

and [14]. In [10], the authors showed that if there exists of a

barrier function B : Rn → R satisfying the condition

∇B(x) · (f(x)) ≥ −α(B(x)), ∀x ∈ D, (6)

for some open set D containing C = {x ∈ R
n : B(x) ≥ 0}

and extended class K function2 α, then C is asymptotically

stable. This is straightforward to see because one can construct

a Lyapunov function based on B by V (x) = 0 if x ∈ C

and V (x) = −B(x) if x ∈ D\C. The authors of [10] also

discussed robustness implied by condition (6). The results of

this section can be seen as a converse fact. We start with the

assumption that a set W is robustly safe and show that the

closure of the robustly invariant reachable set Ω = Rδ(W ) is

robustly asymptotically stable. Our proof of the latter fact is

inspired by the work in [14]. A converse Lyapunov function

is then used to construct a robust barrier function.

2A function α : (−b, a) → R, a, b > 0, is said to belong to extended class
K if α is strictly increasing and α(0) = 0.

Remark 21: Condition (3) in Definition 5 for a barrier

function has different variants. The original work [3] had a

condition like (3) and the following variant

∇B(x) · f(x, d) ≥ 0, ∀(x, d) ∈ X ×W , (7)

where X ×W is the set on which f is defined and W is an

arbitrary disturbance set. According to [3], this variant makes

the set of functions satisfying the barrier function conditions

convex and amenable to computation by convex optimization.

Condition (7) appears to be restrictive (from a computational

perspective) because it needs to be satisfied for all (x, d) ∈
X×W . The authors of [9] proposed (6) as a variant. Following

the construction B(x) = −V (x) in the proof of Theorem 15,

we have

∇B(x) · (f(x) + d) = −∇V (x) · (f(x) + d)

≥ α3(‖x‖A)

≥ α3(α
−1
2 (V (x)))

= α3(α
−1
2 (−B(x))), (8)

for all x ∈ D and d ∈ δB. Defining α0(s) = −α3(α
−1
2 (−s)),

we obtain

∇B(x) · (f(x)+d) ≥ −α0(B(x)), ∀(x, d) ∈ D×δ′B. (9)

While in the absence of disturbance (9) appears in the same

form as (6), it has a subtle difference because α0(s) in (9)

is not defined for s > 0. Note that, since B(x) = −V (x),
B(x) is never positive by this construction. Nonetheless, (9)

does match (6) when B(x) ≤ 0 in the absence of disturbance.

With the barrier function Bc(x) defined in (5) in the proof of

Theorem 15, we have

∇Bc(x) · (f(x) + d) ≥ −α0(Bc(x)) (10)

with α0(s) = −α3(α
−1
2 (c − s)). Note that, compared with

(9), Bc(x) now can take positive value and α0(s) is defined

for s ∈ (0, c] as well. Nonetheless, while (10) agrees with

(6) for Bc(x) ≤ 0 in the absence of disturbance, it is in fact

stronger than (6) when Bc(x) > 0 because α0(s) < 0 for

s ∈ (0, c). This is not surprising because Bc(x) is constructed

using a Lyapunov function. Furthermore, in the absence of

disturbance d, the strictly inequality (5) established in the

proof of Theorem 15 recovers condition (3) for the barrier

function in Theorem 9. The author of [14] seems to be using

this strict positiveness, as well as strict positiveness of B on

W , to indicate a robust barrier certificate. Here we formally

define a robust barrier function by requiring condition (3) in

Definition 5 to hold with under disturbance. We also remark

that, when the set B(x) = 0 is compact, condition (3) in

Theorem 9 also holds under sufficiently small disturbance.

The construction given by Theorem 15, however, allows any

disturbance of size δ′ ∈ [0, δ).
Remark 22: Another commonly used class of barrier func-

tions is called reciprocal barrier functions [9], inspired by

barrier methods from optimization [22]. Given a set C defined

by

C = {x ∈ R
n : h(x) ≥ 0} ,
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where h : R
n → R is a continuously differentiable func-

tion, a reciprocal barrier function B : C◦ → R, where

C◦ = {x ∈ R
n : h(x) > 0} is the interior of C, such that

1

α1(h(x))
≤ B(x) ≤

1

α2(h(x))
, (11)

∇B(x) · f(x) ≤ α3(h(x)), (12)

for all x ∈ C◦, where αi (i = 1, 2, 3) are class K functions.

The reciprocal of the construction of barrier functions based on

Lyapunov function directly gives a reciprocal barrier function.

Let h(x) = c − V (x) as in (4) and B(x) = 1

h
. Then it

is straightforward to verify that (11) is satisfied and (12) is

robustly satisfied.

IV. DISCRETE-TIME CONVERSE BARRIER FUNCTIONS

Having built a link between Lyapunov functions and barrier

functions, we extend the results in the previous section to

the discrete-time setting and provide a converse theorem for

discrete-time barrier function. The presentation parallels that

of Section III, but formulated for discrete-time systems. We

first present the preliminaries for discrete-time systems.

A. Preliminaries on discrete-time systems

Consider a discrete-time dynamical system

x(t+ 1) = f(x(t)), (13)

where x(t) ∈ R
n for t ∈ Z

+ {0, 1, 2, · · · } and f : Rn → R
n

is assumed to be locally Lipschitz.

Given a scalar δ ≥ 0, a δ-perturbation of the dynamical

system (13) is described by the difference inclusion

x(t+ 1) ∈ Fδ(x(t)), (14)

where Fδ(x) = Br(f(x)), or equivalently

x(t+ 1) = f(x(t)) + d(t), (15)

where d(t) ∈ δB for each t. We denote system (13) by DT S
and its δ-perturbation by DT Sδ. Note that DT Sδ reduces

to DT S when δ = 0. A solution of DT Sδ is a sequence

denoted by x(t;x0, d) or x(t), where t = 0, 1, 2, · · · and d(t)
is a disturbance sequence.

Since robustly safe sets, robustly invariant sets, and robust

stability w.r.t. a closed set for DT S can be defined almost

verbatim as for continuous-time systems, by replacing solu-

tions of Sδ with that of DT Sδ , they are omitted. We define

discrete-time barrier and Lyapunov functions as follows.

Definition 23 (Discrete-time robust barrier function): Given

sets W,U ⊆ R
n, a continuously differentiable function B :

R
n → R is said to be a δ-robust barrier function for W and

U if the following conditions are satisfied:

(1) B(x) ≥ 0 for all x ∈ W ;

(2) B(x) < 0 for all U ; and

(3) B(f(x) + d) ≥ 0 for all x such that B(x) ≥ 0 and all

d ∈ δB.

Proposition 24 (Sufficiency of discrete-time barrier func-

tions): If there exists a δ-robust barrier function for (W,U),
then W is δ-robustly safe w.r.t. U .

Proof: The conclusion follows from the fact that the set

C = {x ∈ R
n : B(x) ≥ 0} is δ-robustly invariant and C ∩

U 6= ∅.

Remark 25: Condition (3) in Definition 23 for a discrete-

time barrier function appears to be weaker than the ones used

in practice. For instance, the following condition was proposed

in [8]:

B(f(x)) −B(x) ≥ −α(B(x)), x ∈ D, (16)

where D ⊇ C = {x ∈ R
n : B(x) ≥ 0} and α is class K

function satisfying α(r) < r when r > 0. Note that one needs

to extend the definition of α to (−b, 0) for some b > 0 if the

set D contains x such that B(x) < 0. A special case of (16) is

given by α(r) = ηr for η ∈ (0, 1). When η = 1 and D = C,

we obtain condition (3) of Definition 23. When η = 0, we

obtain a condition that is stronger than (16) on C:

B(f(x))−B(x) ≥ 0, x ∈ C, (17)

which clearly implies (16) for any α ∈ K and D = C

because α(B(x)) ≥ 0 for B(x) ≥ 0. Similar to Remark 21 on

continuous-time barrier functions, the construction of discrete-

time converse barrier functions by Lyapunov functions below

in fact satisfy an even stronger form

B(f(x)) −B(x) ≥ −α0(B(x)), x ∈ D, (18)

where D is an open neighborhood of C and α0(s) ≤ 0 for all

s in its domain. Clearly, (18) implies both (17) and (16).

Definition 26: Let D ⊆ R
n be an open set containing a

closed set A ⊆ R
n. A continuously differentiable function

V : D → R is said to be a δ-robust Lyapunov function for

DT S w.r.t. A if the following two conditions are satisfied:

(1) there exist class K functions α1 and α2 such that

α1(‖x‖A) ≤ V (x) ≤ α2(‖x‖A)

for all x ∈ D; and

(2) there exists a class K functions α3 such that

V (f(x) + d)− V (x) ≤ −α3(‖x‖A)

for all x ∈ D and d ∈ δB.

There are also Lyapunov characterizations of set stability

for discrete-time systems.

Theorem 27 (Lyapunov characterization of set stability for

DT S [23]): A closed set A ⊆ R
n is δ-RUAS for DT S if and

only if there exists a δ-robust Lyapunov function for DT S
w.r.t. A.

B. Converse barrier functions via Lyapunov functions for

discrete-time systems

The notation and definitions for reachable sets remain the

same, with continuous-time solutions replaced with discrete-

time ones. We define Rt
δ(x0), Rδ(x0), Rδ(W ) and Ω =

Rδ(W ) as in Section III, replacing continuous-time solutions

with discrete-time ones. The following is a discrete-time

version of Lemma 16.

Lemma 28: Fix any δ′ ∈ (0, δ). Let K ⊆ R
n be a compact

set. Then there exists some r = r(K, δ′, δ) > 0 such that
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the following holds: if there is a solution x of Sδ′ such that

x(s) ∈ K for all s ∈ [0, T ], where T ≥ 1, then for any y0 ∈
Br(x(0)) and any y1 ∈ Br(x(T )), we have y1 ∈ RT

δ (y0), i.e.,

y1 is reachable at T from y0 by a solution of Sδ . Furthermore,

if f is globally Lipschitz, r can be chosen to be independent

of K .

Proof: Let

y(s) = x(s) +
s

T
[y1 − x1 + (x0 − y0)] + (y0 − x0),

for s ∈ {0, 1, · · · , T } . Then y(0) = y0 and y(T ) = y1.

Furthermore,

‖y(s)− x(s)‖ ≤ ‖y1 − x1‖
s

T
+ ‖y0 − x0‖ (1−

s

T
)

≤ r(
s

T
+ 1−

s

T
) = r,

for all s ∈ {0, 1, · · · , T } . Hence

‖y(s+ 1)− f(y(s))‖

= ‖y(s+ 1)− x(s+ 1)‖+ ‖x(s+ 1)− f(x(s))‖

+ ‖f(x(s)) − f(y(s))‖

≤
r

T
+ δ′ + Lr, s ∈ {0, 1, · · · , T − 1} ,

where we used the triangle inequality, the fact that x is a solu-

tion of Sδ′ , and Lipschitz continuity of f on the set Br(K). By

picking r sufficiently small such that r+δ′+Lr < δ, then we

have ‖y(s+ 1)− f(y(s))‖ < δ for all s ∈ {0, 1, · · · , T − 1}.

Thus y is a solution of DT Sδ and the conclusion follows.

Note that the choice of r only depends on K , δ′, and δ. If f

is globally Lipschitz, the dependence on K can be removed.

The following is a discrete-time version of Theorem 18.

Theorem 29 (Robustly invariant sets are robustly asymptot-

ically stable): If Assumption 14 holds, then Ω is δ′-RUAS for

DT S for any δ′ ∈ [0, δ).

Proof: (1) For any ε > 0, let r be from Lemma 28,

applied to the set Bε(Ω) and scalars δ′ and δ. Pick δε = r. Let

x be any solution of DT Sδ′ such that ‖x(0)‖
Ω
< δε. We show

that ‖x(t)‖
Ω
< ε for all t ≥ 0. Suppose that this is not the

case. Then ‖x(k)‖
Ω
≥ ε for some k ≥ 1. Since ‖x(0)‖

Ω
< r,

we can always pick y0 ∈ Rδ(W ) such that y0 ∈ Br(x(0)) by

the triangle inequality. By Lemma 28, there exists a solution

of DT Sδ from y0 ∈ Rδ(W ) to x(k) 6∈ Ω. This contradicts

that Rδ(W ) is δ-robustly invariant.

(2) Fix any ε0 > 0. Following part (1), choose δε0 such that

‖x(0)‖
Ω

< δε0 implies ‖x(t)‖
Ω

< ε0 for any solution x(t)
of DT Sδ′ . Let r be chosen according to Lemma 28 with the

set Bε0(Ω) and scalars δ′ and δ. Choose ρ ∈ (0, r). Let x be

any solution of DT Sδ′ . We show that ‖x(0)‖A < ρ implies

that x(t) ∈ Rδ(W ) for all t ≥ 1. Suppose that this is not the

case. Then there exists some k ≥ 1 such that x(k) ∈ ∂Ω or

x(k) 6∈ Ω. In either case, we can pick y1 ∈ Br(x(k)) such

that y1 6∈ Ω and y0 ∈ Br(x(0)) such that y0 ∈ Rδ(W ). By

Lemma 28, there exists a solution of DT Sδ from y0 ∈ Rδ(W )
to y1 6∈ Ω. This contradicts that Rδ(W ) is δ-robustly invariant.

Hence x(t) ∈ Rδ(W ) for all t ≥ 1. This completes part (2)

of the definition of δ′-RUAS.

Theorem 30 (Robustly safe sets admit robust discrete-time

barrier functions): Suppose that Assumption 14 holds. If either

Ω is compact or f is globally Lipschitz, then for any δ′ ∈
(0, δ), there exists a δ′-robust barrier function for (W,U).

Proof: By Theorem 29, Ω is δ′-RUAS for DT S with any

δ′ ∈ [0, δ). By Theorem 27, there exists a neighborhood D of

Ω and a smooth V : D → R such that

α1(‖x‖Ω) ≤ V (x) ≤ α2(‖x‖Ω),

and

V (f(x) + d)− V (x) ≤ −α3(‖x‖Ω),

for all x ∈ D and d ∈ δ′B, where αi (i = 1, 2, 3) are class K
functions. Define

B(x) = −V (x), x ∈ D.

It is straightforward to verify that B satisfies conditions (1)–(3)

of Definition 23 for a δ′-robust discrete-time barrier function.

Remark 31: By the construction of the barrier function

B(x) in the proof of Theorem 30, we in fact have a stronger

condition than condition (3) in Definition 23:

B(f(x) + d)−B(x) ≥ −α(B(x)), (19)

for all x ∈ D and d ∈ δ′B, where α is defined and increasing

on (−a, 0] for some a > 0 and α(0) = 0.

Remark 32: Similar to Remark 22, we can construct

discrete-time reciprocal barrier functions via Lyapunov func-

tions. A discrete-time reciprocal barrier function [6] B :
C◦ → R satisfies

1

α1(h(x))
≤ B(x) ≤

1

α2(h(x))
, (20)

B(f(x))−B(x) ≤ α3(h(x)), (21)

for all x ∈ C◦, where C◦ is the interior of the set C =
{x ∈ R

n : h(x) ≥ 0} for some continuously differentiable

function h : R
n → R. Clearly, h(x) = c − V (x) for some

sufficiently small c > 0 and B(x) = 1

h
satisfy the above

conditions robustly.

V. CONCLUSIONS

In this paper, we established a connection between Lya-

punov functions and barrier functions. We proved that for

all robustly safe dynamical systems, the closure of the ro-

bust reachable set of the robustly safe set must be robustly

asymptotically stable. The converse Lyapunov function theory

can then be brought to bear to yield a robust barrier function.

We made remarks on several variants of the barrier function

conditions and showed that they can all be satisfied by the

construction of barrier functions using Lyapunov functions.

We also formulated the results for discrete-time in a similar

fashion.

For future work, it would be interesting to investigate

how the viewpoint of robust barrier functions via Lyapunov

functions can be utilized in practice. Potentially all the com-

putational techniques for searching Lyapunov functions can

be used for searching barrier functions. The key technical
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challenge, however, seems to be that, while safety require-

ments can be specified rather arbitrarily by a designer (e.g.,

by defining the unsafe region U and safe initial region W

in this paper), the barrier function conditions are only met

at the boundary of reachable set from the safe initial region

W , if this set W can indeed be certified to be safe. While

the computing of reachable sets can be highly nontrivial,

it would be interesting to investigate whether the adaptive

refinement techniques for computing maximal controlled in-

variant sets (see, e.g., [24]), combined with computational

techniques for constructing barrier functions (see, e.g., [25]),

can be used to determine a smaller set on which (control)

barrier functions can be algorithmically constructed. A related

theoretical question is that whether such procedures can be

approximately complete in the sense that any δ-robustly safe

sets admit a computable δ′-robust barrier certifications for any

δ′ ∈ [0, δ). In view of the results of this paper, such questions

can hopefully be answered in a unified fashion in regard to

Lyapunov functions for set stability and barrier functions for

safety.
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