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On the Lyapunov Foster criterion and Poincaré inequality

for Reversible Markov Chains

Amirhossein Taghvaei and Prashant G. Mehta

Abstract—This paper presents an elementary proof of stochas-
tic stability of a discrete-time reversible Markov chain starting
from a Foster-Lyapunov drift condition. Besides its relative
simplicity, there are two salient features of the proof: (i) it relies
entirely on functional-analytic non-probabilistic arguments; and
(ii) it makes explicit the connection between a Foster-Lyapunov
function and Poincaré inequality. The proof is used to derive an
explicit bound for the spectral gap. An extension to the non-
reversible case is also presented.

I. INTRODUCTION

This paper presents an elementary functional-analytic proof

of stochastic stability of a discrete-time reversible Markov

chain. The main hypothesis is the existence of a Foster

Lyapunov function, drift condition (v4) in [11, Ch. 15, Ch. 16].

The main result is to establish Poincaré inequality and relate

it to a spectral gap under additional hypothesis. The spectral

gap yields geometric convergence as an easy consequence.

The use of Lyapunov drift condition (v4) to establish

geometric convergence rate is standard in the theory of Markov

chains; cf., [11] and references therein. It is known that the

geometric ergodicity is equivalent to a spectral gap for the

corresponding Markov operator in a certain normed vector

space LV
∞ [10]. The spectral gap in LV

∞ implies a spectral

gap in L2 for reversible Markov chains [13]. Explicit bounds

on the convergence rate are obtained in [12], [14]. However,

in a general setting, the existing bounds can be difficult to

compute.

The techniques and tools used in [11] and the related

literature are probabilistic in nature. In contrast, the short proof

in this paper is entirely analytical and relies on elementary

arguments. The key is to use the Lyapunov Foster condition

(v4) to derive a Poincaré inequality. This is then related to

existence of the spectral gap from which the convergence

result follows. The approach of this paper is inspired by [3],

[1] [2, Ch. 4] where Lyapunov function is related to Poincaré

inequality for a continuous-time Markov processes. To the best

of our knowledge, the extension of this connection, between

Poincaré inequality and Lyapunov function, in discrete-time

setting is not known. Given the elementary nature of the proof

and the explicit bound on spectral gap, the results of this paper

are expected to be broadly useful to the practitioners who use
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the discrete-time reversible Markov chain for Markov chain

Monte-Carlo (MCMC) and simulation purposes.

Analysis of geometric ergodicity based on Lyapunov drift

condition appears in [7]. Their main result [7, Thm. 1.3]

is based on introducing a family weighted normed spaces

LβV
∞ and establishing the spectral gap in this space, for a

particular weight β. This is different compared to this paper

where a direct connection between Lyapunov condition and

Poincaré inequality is established, and explicit bounds on the

L2 spectral gap are derived.

The outline of the remainder of this paper is as follows:

The preliminaries and problem statement appears in Sec. II.

The main result for the reversible Markov chain appears in

Sec. III. Some extensions to reversible and to non-reversible

cases are discussed in Sec. IV. The main result is illustrated

with examples in Sec. V. Some concluding remarks appear in

Sec. VI.

II. PRELIMINARIES

A. Model and definitions

Consider a time-homogeneous discrete-time Markov pro-

cess {Xn}n≥0 taking values in Polish state space X , equipped

with the Borel σ-field B. Let P denote the corresponding

Markov operator defined such that

Pf(x) = E[f(X1)|X0 = x],

for all bounded measurable functions f : X → R. Let p :
X ×B → [0, 1] be the probability transition kernel associated

with P . In terms of this kernel, the action of P on bounded

measurable functions as follows:

Pf(·) =
∫

X

f(y)p(·, dy).

The action of P on probability measure µ on (X ,B) is as

follows:

µP (·) =
∫

X

p(x, ·) dµ(x).

A probability measure π is invariant for P if πP = π.

Consider the space of square integrable functions with

respect to π denoted as L2(π) equipped with the inner product

〈f, g〉π :=

∫

f(x)g(x) dπ(x),

and the norm ‖f‖22,π := 〈f, f〉π. It follows from Jensen’s

inequality that P is a bounded linear operator on L2(π), when

π is the invariant measure [2, pp. 10]. The invariant measure

π is said to be reversible for the Markov operator P if P is

self-adjoint on L2(π), i.e.,

〈f, Pg〉π = 〈Pf, g〉π, ∀f, g ∈ L2(π).

http://arxiv.org/abs/2005.08145v1
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In this paper, we consider Markov chains P with a unique

reversible invariant measure π, formalized below as an as-

sumption:

Assumption 1: P admits a unique reversible invariant mea-

sure π.

The main question is to establish a spectral gap (in L2(π))
for P . Since P has an eigenvalue λ = 1 with eigenfunction

f(x) ≡ 1, we consider the orthogonal subspace L2
0(π) = {f ∈

L2(π);
∫

f(x) dπ(x) = 0}. P is said to admit a spectral gap

β > 0 in L2
0(π) if

‖P‖L2
0(π)

= sup
f∈L2

0(π)

‖Pf‖2,π
‖f‖2,π

≤ 1− β. (1)

Two immediate consequences of the spectral gap are as

follows:

1) Geometric convergence of the moments in L2(π)

‖Pnf − π(f)‖2,π ≤ (1− β)n‖f − π(f)‖2,π,
where π(f) :=

∫

f(x) dπ(x) is the mean of f with

respect to the invariant measure π.

2) Geometric convergence of the probability distribution in

the total-variation distance [4, Thm. 2.1],

‖µPn − π‖TV ≤ (1 − β)n‖h− 1‖2,π,
for any initial distribution dµ = h dπ.

For reversible Markov chains, the spectral gap is related to

the Poincaré inequality as explained in the following section.

B. Spectral gap and Poincaré inequality

Define the Dirichlet forms

E(f, f) := 〈f, (I − P )f〉π, Ẽ(f, f) := 〈f, (I + P )f〉π.
Then P is said to satisfy the Poincaré inequality, if there are

positive constants β+ and β− such that

‖f‖22,π ≤ 1

β+
E(f, f), ∀f ∈ L2

0(π), (2)

‖f‖22,π ≤ 1

β−
Ẽ(f, f), ∀f ∈ L2

0(π). (3)

Lemma 1: Under Assumption 1,

(i) If P satisfies the Poincaré inequality (2) with constant

β+ > 0, then the spectrum of P on L2
0(π) is bounded

above by 1− β+.

(ii) If P satisfies the Poincaré inequality (3) with constant

β− > 0, then the spectrum of P on L2
0(π) is bounded

below by −1 + β−.

(iii) If P satisfies the Poincaré inequalities (2)-(3), then it

admits spectral gap β = min(β+, β−).

Proof: Omitted. See [15, Sec. 5.2.1, pp. 115]

Remark 1: For a continuous-time reversible Markov pro-

cess with the infinitesimal generator L and the semigroup

Pt = etL, the Dirichlet form is defined as E(f, f) :=
−〈f, Lf〉π. Therefore, the Poincaré inequality (2) is expressed

as 〈f, Lf〉π ≤ −β+‖f‖22,π, from which the spectral gap

for the semigroup, ‖Pt‖L2(π) = ‖etL‖L2(π) ≤ e−β+t < 1,

readily follows. In discrete-time settings, the second Poincaré

inequality (3) is also required. This is to rule out periodicity,

eigenvalue at −1 for the reversible case [15, Ch. 5].

III. MAIN RESULT

The main hypothesis of the paper is the Foster Lyapunov

condition (v4):

Assumption 2: Suppose P satisfies

PV ≤ (1 − λ)V + b1K , (4)

P1A(x) ≥ αν(A)1K (x), ∀A ∈ B, (5)

for a positive function V : Rd → [1,∞), numbers b < ∞,

α, λ > 0, a set K ⊆ X , and a probability measure ν.

The condition (4) is known as the drift condition and con-

dition (5) is known as the minorization condition. The main

result of this paper is as follows:

Theorem 1: Under Assumptions 1-2, P admits a Poincaré

inequality (2) with constant β+ = λ

1+ 2b
α

.

For continuous-time processes, the analogous result appears

in [2, Thm. 4.6.2 pp. 202]. Unlike the continuous-time case,

the conclusion of the Theorem 1 is not sufficient to establish a

spectral gap without also establishing (3), except for the case

when P is positive semi-definite.

Corollary 1: Under the assumptions of Theorem 1, if P is

a positive semi-definite operator, then P admits a spectral gap

β = β+ = λ

1+ 2b
α

.

Later, in Sec. IV-A, additional assumption is introduced

to establish spectral gap for Markov operators that are not

necessarily positive semi-definite.

A. Proof of Theorem 1

Remark 2: If K = X then the minorization condition (5) is

the Doeblin’s condition which directly implies the spectral gap

‖P‖L2
0(π)

≤ 1− α
2 [15, Sec. 2.2, pp. 28]. However, Doeblin’s

condition is a very strong assumption for Markov-chains. In

the other extreme when K = ∅ then the drift condition (4)

implies the spectral gap ‖P‖L2
0(π)

≤ 1 − λ from the spectral

theory of positive operators [6, Thm. 13.1.6, pp. 383]. Owing

to the eigenvalue at 1, this case does not apply to Markov

operators. However, by suitably adapting the proof from the

theory of positive operators to accomodate the minorization

condition (5), one obtains an elementary proof of Theorem 1

as presented next.

Proof of the Theorem 1: From the variational characteri-

zation of the mean, we have ‖f −π(f)‖2,π ≤ ‖f −m‖2,π for

all constants m ∈ R. Therefore, in order to prove the Poincaré

inequality (2), it suffices to show that

‖f −m‖22,π ≤ 1

C
〈f, (I − P )f〉π, ∀f ∈ L2(π), (6)

for some constant m = m(f) to be chosen later.
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Consider the Lyapunov drift condition (4). Multiply both

sides by
(f−m)2

V
to obtain

(f −m)2

V
PV ≤ (1− λ)(f −m)2 + b

1

V
(f −m)21K

≤ (1− λ)(f −m)2 + b(f −m)21K ,

where the second inequality follows because V ≥ 1. Rear-

ranging the terms

λ(f −m)2 ≤ (f −m)2

V
(I − P )V + b(f −m)21K ,

and integrating both sides with respect to π,

λ‖f −m‖22,π ≤ 〈 (f −m)2

V
, (I−P )V 〉π + b‖(f −m)1K‖22,π.

It is claimed that

〈 (f −m)2

V
, (I − P )V 〉π ≤ 〈f, (I − P )f〉π, (7)

‖(f −m)1K‖22,π ≤ 2

α
〈f, (I − P )f〉π , (8)

with m = 1
π(K)

∫

K
f dπ. If the claims are true then

‖f −m‖22,π ≤ 1 + 2b
α

λ
〈f, (I − P )f〉π,

which proves (6), hence the Poincaré inequality (2) with β+ =
λ

1+ 2b
α

. It remains to prove the two claims:

1) Proof of the claim (7): Let g = f − m. Then, using

(I − P )1 = 0, (7) is equivalently expressed as

〈g, Pg〉π ≤ 〈g
2

V
, PV 〉π. (9)

Note that

0 ≤
∫ ∫

V (x)V (y)

(

g(y)

V (y)
− g(x)

V (x)

)2

p(x, dy) dπ(x)

=

∫ ∫

g(x)2

V (x)
V (y)p(x, dy) dπ(x)

+

∫ ∫

g(y)2

V (y)
V (x)p(x, dy) dπ(x)

− 2

∫ ∫

g(x)g(y)p(x, dy) dπ(x)

= 〈g
2

V
, PV 〉π + 〈V, P g2

V
〉π − 2〈g, Pg〉π.

Using the self-adjoint property of P , it follows that

〈 g2

V
, PV 〉 = 〈V, P g2

V
〉 which in turn proves (9).

2) Proof of the claim (8): Note that

〈f, (I − P )f〉π =
1

2

∫ ∫

(f(x)− f(y))2p(x, dy) dπ(x)

(1)

≥ α

2

∫

K

∫

(f(x) − f(y))2 dν(y) dπ(x)

(2)

≥ α

2

∫

K

(f(x)−
∫

f(y) dν(y))2 dπ(x)

(3)

≥ α

2

∫

K

(f(x) −m)2 dπ(x).

The first inequality follows from the use of the mi-

norization condition (5). The second inequality is the

Jensen’s inequality. The third inequality follows from

the variational characterization of the variance of the

function f because m = 1
π(K)

∫

K
f dπ is the mean.

B. A counter-example

The following counter-example serves to show that it is

not possible to obtain a bound for β− using only the Foster

Lyapunov condition (v4).

Example 1: Consider the Markov transition matrix

P =

[

ǫ 1− ǫ

1− ǫ ǫ

]

,

on the state-space S = {1, 2}. The invariant measure π =
[ 12 ,

1
2 ] is reversible. The eigenvalues of P are λ = 1,−1+2ǫ.

Therefore, β+ = 1 − 2ǫ and β− = 2ǫ. In the following, we

show that the conditions (4)-(5) hold, with constants that are

independent of ǫ. As a result, it is not possible to derive a

bound on β− simply from the constants that appear in the

conditions (4)-(5).

1) Let the subset K = {1} ⊂ S. Then the condition (5)

holds with α = 1 and ν = [ν1, ν2] = [ǫ, 1− ǫ] because

P11 = ǫ = αν1, P12 = 1− ǫ = αν2.

2) For all ǫ ≤ 1
4 , the condition (4) holds with V = [1, 3]⊤,

λ = 1
2 , and b = 3 because

(i = 1) P11V1 + P12V2 = ǫ+ 3(1− ǫ)

≤ 1

2
+ 3 = (1− λ)V1 + b,

(i = 2) P21V1 + P22V2 = 1− ǫ+ 3ǫ ≤ 3

2
= (1− λ)V2,

The resulting bound for β+ is
1
2

1+ 2∗3
1

= 1
14 .

IV. EXTENSIONS

By imposing additional conditions, the analysis of this paper

is useful to obtain bounds for the spectral gap in the reversible

and also the non-reversible cases. Two sets of results are

described next.

A. Spectral gap under stronger condition

From Corollary 1, a spectral gap is obtained whenever P is

positive semi-definite. Therefore, one way to prove the spectral

gap for P is to consider P 2 which is always positive semi-

definite for reversible Markov processes. Given the counter-

example 1, it is not true that P 2 satisfies condition (v4) (if P

does), without imposing some additional condition. One such

condition, based on [7, Assumption 2], is as follows:

Assumption 3: In condition (v4) (in Assumption 2), the set

K = {x ∈ X ; V (x) ≤ R},
for some R > 2b

λ
.
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Proposition 1: Suppose P is a Markov operator that satis-

fies Assumptions 1, 2, and 3. Then P 2 satisfies

P 2V ≤ (1− λ′)V + b′1K , (10)

P 2
1A(x) ≥ α′ν(A)1K(x), ∀A ∈ B (11)

where λ′ = λ(32 − λ), b′ = (2 − λ)b, and α′ = α2ν(K).
Consequently,

‖P‖L2
0(π)

≤
(

1− β+
)

1
2 . (12)

with β+ =
λ( 3

2−λ)

1+ 2b(2−λ)

α2ν(K)

.

Proof: Proof of (10): Because P is a positive operator1,

Pf ≤ Pg whenever f ≤ g. Therefore, applying P to both

sides of the inequality (4),

P 2V ≤ (1 − λ)PV + bP1K

≤ (1 − λ)2V + (1− λ)b1K + bP1K

(3)

≤ (1− λ)2V + (1 − λ)b1K + b(1K +
V

R
)

(4)

≤ ((1− λ)2 +
λ

2
)V + (2− λ)b1K ,

where the third inequality follows from P1K ≤ P1 = 1 ≤
1K + V

R
and the fourth inequality is because R > b

2λ . This

completes the proof of (10).

Proof of (11): Letting A = K in the minorization condi-

tion (5),

P1K(x) ≥ αν(K)1K(x).

As a result, applying P to both sides of (5),

P 2
1A(x) ≥ αν(A)P1K(x) ≥ α2ν(K)ν(A)1K (x),

which proves (11).

Spectral gap (12) follows from application of Corollary 1 to

positive semi-definite operator P 2 satisfying conditions (10)-

(11).

B. Spectral gap for a non-reversible chain

Suppose P is a Markov operator with a unique invariant

measure π and suppose P † is its adjoint in L2(π). Then P †P

is a Markov operator with a reversible invariant measure π.

Proposition 2: Suppose both P and its adjoint P † satisfy

condition (v4) (inequality (4)-(5)) with the same Foster Lya-

punov function V , set K and constants λ, b and α. Then P †P

satisfies

P †PV ≤ (1− λ′)V + b′1K , (13)

P †P1A(x) ≥ α′ν(A)1K(x), ∀A ∈ B (14)

where λ′ = λ(32 − λ), b′ = (2 − λ)b, and α′ = α2ν(K).
Consequently,

‖P‖L2
0(π)

≤
(

1− β+
)

1
2 . (15)

with β+ =
λ( 3

2−λ)

1+
2b(2−λ)

α2ν(K)

.

1An operator P is positive if Pf ≥ 0 whenever f ≥ 0.

Proof: The proof of (13)-(14) is entirely analogous to the

proof of Proposition 1. It follows from applying P † to the

inequalities (4)-(5) upon using the fact that P † also satisfies

the inequalities (4)-(5). The bound (15) then follows from

application of Corollary 1 to P †P which is reversible, positive-

definite, and satisfies the conditions (13)-(14).

V. EXAMPLES

A. Ornstein-Uhlenbeck process

Consider the discrete-time Markov chain {Xn}n≥0 taking

values in R that evolves according to

Xn+1 = (1− a)Xn + σBn,

where a ∈ (0, 1), σ > 0 and {Bn}n≥0 are independent

Gaussian random variables. The associated Markov operator

Pf(x) = E[f((1− a)x+ σB1)]

=

∫

R

(2πσ2)−
1
2 exp(− (y − (1− a)x)2

2σ2
)f(y) dy,

with a reversible Gaussian invariant measure

dπ(x) = (
2πσ2

a2
)−

1
2 exp(− x2

2σ2

a2

) dx.

The Markov operator P is an example of the Ornstein-

Uhlenbeck Diffusion semigroup [2, Sec. 2.7.1] with spectrum

λn = (1− a)n, n = 0, 1, . . .

yielding the spectral gap ‖P‖L2
0(π)

= 1− a.

Our goal in this example is to apply the results of this paper

to obtain a bound for the spectral gap of P and compare

it to the exact spectral gap. Consider the Lyapunov function

V (x) = 1 + x2. Then,

PV (x) = 1 + (1− a)2x2 + σ2

≤ (1− a)V + (σ2 + 1)1|x|≤R,

with R2 = σ2+1
a(1−a) . The minorization condition (5) also holds:

P1A(x) = P{(1− a)x+ σB1 ∈ A}
≥ αP{ σ√

2
B1 ∈ A}1|x|≤R,

where α = exp(−σ2+1
σ2

1−a
a

). Since P is a positive definite

operator on L2(π), Corollary 1 applies and one obtains

‖P‖L2
0(π)

≤ 1− a

1 + (σ2 + 1) exp(σ
2+1
σ2

1−a
a

)
.

This is a conservative bound based on the exact spectral gap.

The bound may be improved with another choice of Lyapunov

function (e.g., exp(|x|)). In general, it is known that the

Lyapunov method is only able to provide a conservative bound

for the spectral gap; cf. [2, pp. 203].
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B. Diffusion map

The diffusion map Tǫ is a Markov operator defined as

Tǫ(f)(x) :=

∫

Rd gǫ(x− y)e−U(y)f(y) dy
∫

Rd gǫ(x− y)e−U(y) dy
, (16)

where gǫ(z) = exp−
|z|2

4ǫ is the Gaussian kernel, U(x) is a

potential function of sufficient regularity, and ǫ > 0 is a

positive parameter. The diffusion map was introduced and

studied in spectral clustering literature as asymptotic limit of

graph Laplacian matrix [5], [9]. Explicit bounds on the spectral

gap of Tǫ are important for analysis of diffusion map-based

algorithms such as the gain function approximation algorithm

in the feedback particle filter. [16].

The spectral gap is obtained via an application of Corol-

lary 1. It is straightforward to check that Tǫ is a Markov

operator with reversible invariant probability density

π(x) := γe−U(x)

∫

gǫ(x− y)e−U(y) dy,

where γ is the normalization constant. Moreover, Tǫ is

positive-definite because

〈f, Tǫf〉π =

∫

Rd

gǫ(x− y)(e−Uf)(x)(e−Uf)(y) dxdy ≥ 0,

for all f ∈ L2(π). It remains to verify the Lyapunov con-

ditions (4)-(5). This requires additional assumptions on the

potential function U(x), an example of which appears in the

following Proposition.

Proposition 3: Consider the diffusion map operator (16).

Suppose U is bounded from below and twice continuously

differentiable with a bounded Hessian ‖∇2U‖∞ < ∞. Also,

suppose ∃ λ0, R > 0 such that

1

2
|∇U(x)|2 ≥ λ0U(x) + ‖∇2U‖∞, ∀ |x| ≥ R (17)

Then, for all ǫ ∈ (0, 1
4‖∇2U‖∞

) the Lyapunov conditions (4)-

(5) hold and Tǫ admits a spectral gap

‖Tǫ‖L2
0(π)

≤ 1− ǫλ0

1 + 2ǫb0
α

(18)

where

b0 = ‖∇2U‖∞ + max
‖x‖≤R

{λ0U(x)− 1

2
|∇U(x)|2},

α = min
|x|≤R

1√
2
e−2ǫ|∇U(x)|2−3ǫ‖∇2U‖∞− 2

σ2 (x−σ2∇U(x))2 .

and σ2 = 2ǫ
1+2‖∇2U‖∞ǫ

.

Remark 3: The assumption (17) on U is a type of a dissi-

pative condition for a dynamical systems with drift ∇U [8].

It is satisfied by any potential function U that has a quadratic

growth as |x| → ∞. For example, U(x) = U0(x) +
1
2δ|x|2

satisfies this assumption provided U0 is Lipschitz and δ > 0.

Proof: Without loss of generality assume U(x) ≥ 1 for

all x. The Lyapunov condition (4) holds with V = U because

(TǫU)(x)
(1)

≤ log((Tǫe
U )(x)) = − log(

∫

gǫ(x − y)e−U(y) dy)

(3)

≤ − log(

∫

gǫ(x− y)e−U(x)−〈∇U(x),y−x〉−m

2 |y−x|2 dy)

= U(x)− σ2

2
|∇U(x)|2 − 1

2
log(

σ2

2ǫ
)

where the Jensen’s inequality is used in the first step, and the

inequality U(y) ≤ U(x)+〈∇U(x), y−x〉+ m
2 |y−x|2 is used

in the third step, with m = ‖∇2U‖∞ and σ2 = 2ǫ
1+2mǫ

. Then,

using (17)

(TǫU)(x) ≤ U(x)− σ2λ0U(x)− 1

2
log(

σ2

2ǫ
)− σ2m

≤ (1 − ǫλ0)U(x), if |x| ≥ R

where σ2 ≥ ǫ and log(σ
2

2ǫ ) ≥ −2ǫm are used in the second

step. This proves Lyapunov condition (4), with λ = ǫλ0, K =
{x ∈ R

d; |x| ≤ R}, and b = ǫb0.

The minorization condition (5) holds because

Tǫ1A(x) =

∫

A
gǫ(x− y)e−U(y) dy

∫

Rd gǫ(x− y)e−U(y) dy

≥ e
ǫ

2 |∇U(x)|2−mǫ

2 P(x− σ2∇U(x) + σB1 ∈ A)

e2ǫ|∇U(x)|2+2mǫ

≥ αP(
σ√
2
B1 ∈ A), if |x| ≤ R

This proves the Lyapunov conditions (4)-(5), which together

with the fact that Tǫ is reversible and positive-definite, proves

the spectral gap (18) by Corollary 1.

VI. CONCLUSION

In this paper, a straightforward analytical approach is

presented to establish stochastic stability starting from the

Lyapunov drift condition (v4) (Theorem 1). A key message

of this paper is that the Lyapunov Foster drift condition

(v4), in of itself, only implies a bound on the spectral

gap from eigenvalue at 1. This is formalized in this paper

as a relationship between condition (v4) and the Poincare

inequality for the operator I−P (Theorem 1). From this main

theorem, two sets of bounds are obtained here under certain

hypotheses (Corollary 1 and Proposition 1). An extension to

the non-reversible chain is also described in Proposition 2.

Two illustrative examples are presented. The diffusion map

example is of independent interest for analysis of gain function

approximation in the feedback particle filter.
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