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Predictor-feedback prescribed-time stabilization of

LTI systems with input delay
Nicolás Espitia and Wilfrid Perruquetti

Abstract—This paper deals first with the problem of
prescribed-time stability of linear systems without delay. The
analysis and design involve the Bell polynomials, the generalized
Laguerre polynomials, the Lah numbers and a suitable polynomial-
based Vandermonde matrix. The results can be used to design
a new controller -with time-varying gains- ensuring prescribed-
time stabilization of controllable LTI systems. The approach leads
to similar results compared to Holloway et al. 2019 but offers an
alternative and compact control design (specially for the choice
of the time-varying gains). Based on the preliminary results for
the delay-free case, we then study controllable LTI systems with
single input and subject to a constant input delay. We design
a predictor feedback with time-varying gains. To achieve this,
we model the input delay as a transport PDE and build on the
cascade PDE-ODE setting (inspired by Krstic. 2009) so as the
design of the prescribed-time predictor feedback is carried out
based on the backstepping approach which makes use of time-
varying kernels. We guarantee the bounded invertibility of the
backstepping transformation and we prove that the closed-loop
solution converges to the equilibrium in a prescribed-time. A
simulation example illustrates the results.

Index Terms—Infinite dimensional systems, delay systems,
prescribed-time convergence, backstepping control design.

I. INTRODUCTION

F
Inite and fixed-time stabilization and estimation have been

extensively considered in the framework of linear and

nonlinear ordinary differential equations (ODEs) (see e.g. [18],

[6], [35], [29], [21] and references therein). The need to

meet some performance, time constraints and precision has

highly motivated the stabilization and estimation in finite-

time/fixed-time. More recently, prescribed-time concepts have

arisen to achieve a more demanding type of convergence:

the time of convergence can be prescribed in the design

independently of initial conditions [37], [20], [26], [40], [42].

This type of convergence has emerged for tactical and strategic

missile guidance problems but it is not limited to them. Many

numerous applications (e.g. rendezvous, spacecraft docking,

trajectory tracking for nonholonomic mobile robots, finite-time

deployment and formation control for multi-agent systems,

weather forecasting) require the transient process must occur

within a given time.

For infinite dimensional systems, namely partial differential

equations (PDEs), finite, fixed and prescribed-time concepts

have also become an attractive research area as PDEs may in-

deed describe many complex systems (e.g. hydraulic networks,

tubular chemical reactors, etc). Meeting time constraints or just
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realizing the well-known separation principle are central issues

that can be achieved by means of finite-/fixed- and prescribed-

time issues. On one hand, for hyperbolic PDE systems, some

contributions on stabilization in finite-time can be highlighted:

see e.g. [33], [11], [2], [11], [13]. On the other hand, for linear

parabolic PDEs, some works have addressed some relevant

issues on null controllability and finite-time stabilization (e.g.

[12]) and prescribed-time stabilization [16], [38] which make

uses of the backstepping approach with time-varying kernels.

In the context of infinite dimensional systems in abstract

formulation, one can refer [34] which exploits homogeneity

arguments.

In the framework of time-delay systems, it is known that

most of the results on stabilization and estimation are based

on asymptotic or exponential guarantees. In particular, expo-

nential stabilization of LTI systems with input delay can be

performed based on the predictor feedback. In [28], [27], under

a PDE-ODE cascade setting, the classical predictor is brought

back by making use of the backstepping approach. One of

the advantages of this approach is that one can perform an

easier Lyapunov-based stability analysis on the so-called target

system which is chosen with the desired stability properties.

The backstepping PDE framework for time-delay systems has

been extended to deal with delay adaptive control, nonlinear

systems with input delay, time-varying delay and distributed

input delay [8], [7], [3] to mention a few. Other techniques

relying on model reduction for linear time-varying systems

with delays can be found in e.g. [30]. However, finite-/fixed-

/prescribed-time concepts for time-delay systems have not

achieved a sufficient level of maturity and still constitute a

challenging topic. One may refer to some of the pioneering

contributions for time-delay systems e.g. [25] and [31], the

latter having pointed out some key obstructions for the design

of static finite-time controllers (see also [14]) and which

came up with a controller based on Artstein’s transformation

[1] to stabilize in finite-time with a settling time depending

on initial conditions of the system. Besides, by building

upon such a transformation, and using some homogeneous

controllers, fixed-time stabilization is achieved for general LTI

systems with input delay as in [44]. Although, to the best

of our knowledge, prescribed-time stabilization for time-delay

systems and for LTI systems with input delays has not been

studied yet in the literature.

In this work, we address the problem of prescribed-time

stabilization of controllable LTI systems with input delay. We

rely on a PDE-ODE cascade setting and on the use of an

invertible Volterra backstepping transformation whose kernels

are time-varying. By combining the ideas of [20] and [16],
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we propose a target system which is prescribed-time stable.

Then, we relate back such a property to the original system

through a suitable characterization of the bounded invert-

ibility of the backstepping transformation. For the stability

analysis and control design, compact formulations using Bell

polynomials, generalized Laguerre polynomials, elementary

symmetric polynomials and polynomial-based Vandermonde

matrix are studied. The resulting boundary controller resem-

bles very much to the classical predictor. In this framework,

it contains time-varying functions as the kernel turns out to

be time varying. We call it prescribed-time predictor control.

A conference paper [15] contains some preliminary results on

prescribed-time predictor control for a scalar linear equation

with input delay and includes also a brief overview of some

results for the n-dimensional case that are fully covered in

this paper. Indeed, in contrast to the conference version, this

paper deals with n-dimensional linear systems with single

delayed input and provides the complete results and details

for all proofs as well as a detailed analysis and discussions on

the novel prescribed-time predictor control and the bounded

invertibility of the the backstepping transformation with time-

varying kernels.

This paper is organized as follows. In Section II, we

introduce some preliminaries on prescribed-time stability of

linear systems without delay. In Section III, we consider

controllable LTI systems with input delay. We use a PDE-

ODE setting under a backstepping approach, we discuss the

bounded invertibility of the transformation and we derive the

prescribed-time predictor control. In Section V we consider

a numerical example to illustrate the main results. Finally,

conclusions and perspectives are given in Section VI. Some

technical proofs are given in the Appendix.

Notations: R+ denotes the set of nonnegative real num-

bers. For non zero integers m and n, let 0m×n be the

(m,n)−matrix with zero entries, Im be the identity matrix

of dimension m, Jn = ((0(n−1)×1, In−1)
⊤, 0n×1)

⊤ (Jordan

matrix) and Ln(s) = (0(n)×(n−1), s)
⊤, where s ∈ R

n. Let

1 ≤ p ≤ ∞, then the induced norm of a (n, n)−matrix M is

defined as ‖M‖p = sup{‖Mx‖p : x ∈ R
n with ‖x‖p = 1}

where ‖x‖p is the p−vector norm of x. Thus, when p = 1
(respectively p = ∞), ‖M‖p corresponds respectively to the

maximum absolute row (resp. column) sum norm. We recall

that ‖M‖2 ≤
√

‖M‖1‖M‖∞. L
(α)
m (·) denotes the generalized

Laguerre polynomial.
(

n
k

)

:= n!
k!(n−k)! , k = 1, 2, .., n denotes

the binomial coefficients. Bn(·) denotes the complete expo-

nential Bell polynomials and σn(·) denotes the elementary

symmetric polynomials. The set of all functions g : [0, h] →
R

n such that
∫ h

0 g(x)2dx < ∞ is denoted by L2((0, h),Rn).
A continuous function α : [0, a) ⊂ R+ → R+, r 7→ α(r), is

said to be a class-K function if it is strictly increasing with

α(0) = 0. α is a class-K∞ function if it is a class-K function

with a = ∞ and α(r) → ∞ as r → ∞. A continuous function

β : [0, a) ⊂ R+ × R → R+,, (r, t) 7→ β(r, t), belongs to

class-KL if for each fixed t, the mapping r 7→ β(r, t) belongs

to class K∞ with respect to r; and, for each fixed r ∈ R+,

the mapping t 7→ β(r, t) is decreasing with respect to t and

limt→+∞ β(t, r) = 0.

II. PRELIMINARIES ON FIXED-TIME STABILITY IN

PRESCRIBED-TIME

Before considering the control design for linear systems

with input delay (whose problem formulation is stated in

Section III), we are going to deal first with some relevant

preliminary results on fixed-time stability in prescribed-time

for linear systems without delay. These preliminaries will

allow us to prepare the field and have compact formulations

that will simplify the control design analysis for delayed case

which is studied in Section III.

Let us first recall the following definition of "fixed-time

globally uniformly asymptotically stable" (in short FT-GUAS)

adopted from [20]:

Definition 1: The origin of the system ż = f(t, z) is said

to be FT-GUAS if there exist a class KL function β and a

function µ : [t0, t0 + T ) → R+ such that µ tends to infinity

as t goes to t0 + T and, ∀t ∈ [t0, t0 + T )

‖z(t)‖ ≤ β (‖z(t0)‖, µ(t− t0)) ,

where T is a time that can be prescribed in the design.

A. Scalar Time-varying linear autonomous system

Let us briefly study the previous stability property on a

scalar time-varying linear autonomous system without delay.

The analysis will be then extended to a general case.

The next lemma gives a sufficient condition for FT-GUAS

of the following scalar system:

ż(t) = −c(t)z(t), z(t0) = z0. (1)

Lemma 1: Let c ∈ L1
loc[t0, t0 + T ) with c(t) > 0 (a.e on

R), then (1) is FT-GUAS with a prescribed time T > 0 if

limt→t0+T ĉ(t) = +∞ where ĉ(t) =
∫ t

t0
c(τ)dτ .

Proof: Without loss of generality, we set t0 = 0 (the

proof remains the same otherwise). Let us note that as long

as c is integrable, a direct integration of (1) gives z(t) =
exp(−ĉ(t))z(0) thus |z(t)| = |z0| exp(−ĉ(t)). As c(t) > 0,

a.e, then ĉ is increasing on [0, T ], thus its inverse function ĉ−1

exists. Let τ(s) = T
ĉ−1(s) −1, then τ(ĉ(t)) = T

t
−1 which is a

L∞ function on (0, T ). Now defining β(r, t) = r exp(−α(t−
1)) where α(s) =

(

1
τ(s)

)−1

(the inverse function of 1
τ(s)

clearly exists). Since we have α(0) = 0, then α ∈ K∞. Note

that, ĉ(t) = α( t
T−t

), thus it yields: |z(t)| = β(|z(0)|, µ(t))
and β being of class−KL.

Remark 1: There exist many functions meeting the sufficient

condition for FT-GUAS in Lemma 1. As a matter of example,

one can consider blow-up functions having the form c(t) =
T ǫ

(T+t0−t)ǫ where ǫ > 1 as in [37], [20].

In this paper, we will use the following blow-up function

(borrowed from [16]) that will be useful for having a more

compact formulation for the stability analysis. We consider

c(t) =
c̄20T

2

(T + t0 − t)2
, c(t0) = c̄20, (2)

with c̄0, T > 0. Thus, (1) is FT-GUAS in light of Lemma 1.
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B. Linear time-varying systems in companion canonical form

Without loss of generality, we consider a time-varying

system given in a companion canonical form.

ż(t) = C(t)z(t), z ∈ R
n, (3)

where C(t) = Jn + Ln(−p(t)), i.e.,

C(t) =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−p0(t) −p1(t) −p2(t) · · · −pn−1(t)















,

(4)

with p(t) = (p0(t), . . . , pn−1(t)), that will be characterized

later on. It is worth recalling that the unique solution to (3)

is given by z(t) = ΦC(t, t0)z(t0) where ΦC is the state-

transition matrix satisfying ∂
∂t
ΦC(t, t0) = C(t)ΦC(t, t0) and

ΦC(t, t) = In. Moreover, there exists a coordinate transfor-

mation [23],

z̄(t) = V −1(t)z(t), (5)

which converts (3) into the following system:

˙̄z(t) = D(t)z̄(t), (6)

where D is diagonal matrix such that V satisfies the following

relation from [24], [43]:

V (t)D(t) = C(t)V (t)− V̇ (t). (7)

Indeed, consider

V (t) =











1 · · · 1
(δ0(−r1c))(t) · · · (δ0(−rnc))(t)

...
. . .

...

(δn−2(−r1c))(t) · · · (δn−2(−rnc))(t)











, (8)

which is a Generalized Vandermonde matrix where the oper-

ator δ is defined recursively by:

(δ0(−ric))(t) =− ric(t),

(δn(−ric))(t) =(δ(δn−1(−ric)))(t)

=(−ric)(t)(δ
n−1(−ric))(t)

+
d

dt
(δn−1(−ric))(t).

(9)

where the function c(t) is defined in (2), and where the

coefficients ri, i = 1, . . . , n are different positive real numbers

(ri > 0, ri 6= rj for i 6= j in the range 1, . . . n). Hence,

D(t) = diag
(

− r1c(t),−r2c(t), · · · ,−rnc(t)
)

.

We can further provide characterizations of such a transfor-

mation that will be instrumental for the prescribed-time stabil-

ity property of (3); and more importantly, when dealing with

input delayed case. Those characterizations are given in terms

of special functions such as Bell polynomials, generalized

Laguerre polynomials1, the elementary symmetric polynomials

and the Lah numbers (see Appendix A for more details about

the special functions used herein).

1see [17], [16] for related studies but in the context of reaction-diffusion
PDEs.

Proposition 1: Let V (t) be given by (8) with operator δ

defined by (9). Then, the following holds true:

(δn(−ric))(t) = Bn+1

(

− ric(t), ...,−ric
(n)(t)

)

. (10)

where Bn+1(·) denotes the complete exponential Bell polyno-

mials.

Proof: It is an immediate consequence of the application

of the Faà di Bruno formula in terms of Bell polynomials.

Proposition 2: Let V (t) be given by (8) with operator

(δn(−ric))(t) satisfying (10) and let D(t) and C(t) satisfy

(7). Then, we have the relation

(δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n n!L(1)
n

(

ric̄0T
√

c(t)
)

. (11)

Proof: See Appendix B.

The above formula (11) suggests to introduce the following

powered "square" function for some r ∈ R, υ ∈ Z:

sυr (t) = rc(t)

(√
c(t)

c̄0T

)υ

, (12)

which will simplify the notation. For example (11) succinctly

reads as (δn(−ric))(t) = n!sn−ri
(t)L

(1)
n (s−1

ri
(t)).

Notice that V (t) (8) is made up of terms involving the gen-

eralized Laguerre polynomials, yielding a special polynomial-

based Vandermonde matrix, thanks to which we have the

following result.

Proposition 3: Under the assumptions of Proposition 2, the

components p0(t), pj(t) (j = 1, . . . n − 1) of C(t) (4) are

explicitly given by the following formulas:

p0(t) = σn(r1, .., rn)c
n(t), (13)

and for j = 1, . . . , n− 1,

pj(t) =
(
√

c(t))n−j

(c̄0T )n−j

n
∑

k=j

(−1)k−jσn−k(r1, ..., rn)

× Lah(k, j)
(

c̄0T
√

c(t)
)n−k

,

(14)

where σn−k(·) are the elementary symmetric polynomials

given by (102)-(104) (see Appendix A) and Lah(k, j) are the

Lah numbers given by Property 2 in Appendix A .

Proof: See Appendix C.

C. FT-GUAS characterization for (3)

Let us introduce the following "exponential"-like function

er(t) = exp
(

s−1
r (t)

)

= exp
(

rc̄0T
√

c(t)
)

, (15)

for some r ∈ R, where c̄0, T and c(t) are given in (2). In

addition, we introduce the “Diagonal" matrix

D(t) = diag
(

e−r1(t), . . . ,e−rn(t)
)

. (16)

We state next the FT-GUAS property for (3).

Lemma 2: Let C(t) = Jn + Ln(−p(t)) given by (4) with

p satisfying (13)-(14) and the function c(t) is defined by (2).

Let D(t) = diag(−r1c(t),−r2c(t), · · · ,−rnc(t)) satisfying

(7) where V (t) is defined by (8) with (δn(−ric))(t) given by
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(11) as in Proposition 2. Then, for any z0 ∈ R
n, the solution

to system (3) is FT-GUAS , i.e. there exists ηz > 0 and a

positive polynomial P in
√

c(t) such that

‖z(t)‖2 ≤ ηzP
(

√

c(t)
)

e−rmin(t)‖z(t0)‖2, (17)

for all t ∈ [t0, t0 + T ), where rmin = mini=1,...,n{ri}. In

particular, it holds

‖z(t)‖ → 0, t → t0 + T.

Proof: For t ∈ [t0, t0 + T ), matrices C(t), V (t),
V −1(t), D(t) exist and are well defined. Thus, by using

(5), system (3) is transformed into ˙̄z(t) = D(t)z̄(t), where

D(t) = diag (−r1c(t), · · · ,−rnc(t)) such that (7) is satisfied.

Therefore, the solution is given as follows:

z̄(t) = Φ̄D(t, t0)z̄(t0), for all t ∈ [t0, t0 + T ), (18)

where Φ̄D(t, t0) = exp
(

∫ t

t0
D(s)ds

)

is the state transition

matrix of the underlying linear (diagonal-form) time-varying

system (z̄-dynamics). Moreover, it follows that Φ̄D(t, t0) =
D(t)D−1(t0). Then, from (5), (18), the solution to (3) is given,

for all t ∈ [t0, t0 + T ), as follows:

z(t) = ΦC(t, t0)z(t0), (19)

where ΦC(t, t0), the state transition matrix of the linear time-

varying system (z-dynamics), is

ΦC(t, t0) = V(t)V−1(t0), (20)

V(t) = V (t)D(t), (21)

where V(t) is a Vandermonde-like matrix. We are interested

in the time-evolution of ‖ΦC(t, t0)‖2, for all t ∈ [t0, t0 + T ).
Using (11), (15) and (16), the entries of V(t) are V1j(t) =
e−rj (t) and for i > 1:

Vij(t) = (i− 2)!e−rj (t)s
i−2
−rj

(t)L
(1)
i−2(s

−1
rj

(t)). (22)

Using a well-established upper bound of the generalized

Laguerre polynomials |L(α)
n (s)| ≤

(

n+α
n

)

exp( s2 ) [39], we get

for i > 1:

|Vij(t)| ≤ (i− 1)!e−rj

2

(t)si−2
rj

(t). (23)

On one hand, using ‖V(t)‖2 ≤
√

‖V(t)‖1‖V(t)‖∞, the

following estimate holds, for all t ∈ [t0, t0 + T ):

‖V(t)‖22 ≤ ‖V(t)‖1‖V(t)‖∞ (24)

≤ P
(

√

c(t)
)

e−rmin(t), (25)

where P
(

√

c(t)
)

is a polynomial function of
√

c(t)

which can be obtained by computing ‖V(t)‖1 and

‖V(t)‖∞ using (23). On the other hand, ‖V−1(t0)‖22 ≤
‖V−1(t0)‖1‖V−1(t0)‖∞,≤ ηz where ηz is some positive

constant. Therefore, we obtain, for all t ∈ [t0, t0 + T )

‖ΦC(t, t0)‖2 ≤ ηzP
(

√

c(t)
)

e−rmin(t),

thus,

‖z(t)‖2 ≤ ηzP
(

√

c(t)
)

e−rmin(t)‖z(t0)‖2. (26)

Notice that P
(

√

c(t)
)

blows up as t goes to t0+T ; neverthe-

less, the exponential term e−rmin(t) = exp
(

−rminc̄0T
√

c(t)
)

decreases faster than the growth-in-time of P
(

√

c(t)
)

. There-

fore, we can conclude that ‖z(t)‖2 → 0, as t → t0 + T

with exponential soft landing2. This concludes the proof.

A direct consequence of Lemma 2 in conjunction with

Proposition 3 is the following corollary.

Corollary 1: The following chain of integrators

ẋ1(t) = x2(t); . . . ; ẋn(t) = u(t), (27)

is FT-GUAS with the following feedback u(t) =
−∑n

i=1 pi−1(t)xi(t) where p(t) = (p0(t), . . . , pn−1(t)) and

p0,pj (1 ≤ j ≤ n − 1) satisfy (13)-(14) with ri > 0, ri 6= rj
for i 6= j and c(t) given by (2).

III. PRESCRIBED TIME PREDICTOR CONTROL: PDE

BACKSTEPPING APPROACH

We consider the following LTI system with single input

delay:

ż(t) = Az(t) +Bu(t− h), z ∈ R
n, u ∈ R, (28)

where h > 0 is a known constant delay. (A,B) are matrices of

appropriate dimensions and satisfy the Kalman rank controlla-

bility condition for LTI systems. Thus (A,B) can be assumed

to be in the canonical controllability form without loss of

generality: this is A = Jn+Ln(a), a = (a0, . . . , an−1)
⊤, B =

(0, . . . , 0, 1)⊤. We assume u(t) = 0, ∀t ∈ [t0 − h, t0).
Our aim is to design a control (predictor-type) for the system

(28) which achieves FT-GUAS within a prescribed-time t0 +
h+T where T is a positive real number that is fixed a priori,

h is the known input delay and t0 is the initialization time.

To that end, the methodology developed in this paper relies

on representing the input delay as a linear transport PDE, and

builds on the cascade PDE-ODE setting (i.e. cascade linear

hyperbolic PDE with an LTI system) introduced in [28], [27]

along with the backstepping approach which makes uses of

an invertible Volterra transformation (whose kernels are time-

varying). As we will see, the key idea is to transform the

original system into suitable target system that is FT-GUAS

and that meets the requirements for a convergence in a time

T + h+ t0.

We henceforth represent (28) as cascade PDE-ODE system,

ż(t) = Az(t) +Bω(t, 0),

ωt(t, x) = ωx(t, x),

ω(t, h) = u(t), (29)

t ≥ t0, x ∈ [0, h], w(t, ·) is the transport PDE state at time

t whose solution is given by ω(t, x) = u(t + x − h) and, in

particular, ω(t, 0) = u(t− h).
We aim at stabilizing (29) (in turn (28)) in a prescribed time

t0+T+h which is not shorter than the delay. For our analysis

and design, we consider the following assumption:

2exp(−rminc̄0T
√

c(t)) is a monotonically decreasing smooth “bump-like

" function having the property exp(−rminc̄0T
√

c(t0 + T )) ≡ 0 (see e.g.
[37]and [38] for details about the exponential soft landing concept).
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Assumption 1: For a known delay h, the prescribed-time T

is fixed such that T ≥ h.

This assumption may constitute a limitation in the control

design of our prescribed-time predictor feedback via back-

stepping. It comes into play in the theoretical proof for the

bounded invertibility of the backstepping transformation. For

the case T < h, one might not guarantee the bounded

invertibility of the backstepping transformation and thus the

control might not turn out to be bounded either. This issue is

further discussed in Section IV.

A. Backstepping control design and time-varying kernels

We build on the backsteeping approach inspired by [27].

Although here, the invertible Volterra integral transformation

is chosen to depend on time. It is given as follows:

ζ(t, x) = ω(t, x)−
∫ x

0

q(t− h, x, y)ω(t, y)dy

− γ⊤(t− h, x)z(t)

(30)

such that
∑n

i=1 γi(t−h, x)zi(t) = γ⊤(t−h, x)z(t). The kernel

function q and the function γ are time-varying. Under (30),

we want to transform (29) into the following target system:

ż(t) = C(t− h)z(t) +Bζ(t, 0),

ζt(t, x) = ζx(t, x),

ζ(t, h) = 0, (31)

with initial condition

ζ0(x) = ζ(t0, x)

= ω(t0, x)−
∫ x

0

q(t0 − h, x, y)ω(t0, y)dy

− γ⊤(t0 − h, x)z(t0).

(32)

The time-varying matrix C(t − h) is given by C(t − h) =
Jn + Ln(−p(t− h)), i.e.,

C(t− h) =








0 1 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · 1

−p0(t− h) −p1(t− h) · · · −pn−1(t− h)









(33)

and p0(·), pj(·), j = 1...n − 1 are given by (13), (14),

respectively in Proposition 3. By using the results of Lemma 2

along with other issues that we are going to discuss in Section

IV, we expect the target system to converge to zero when t

tends to t0 + h+ T .

Following the standard methodology to find the kernel

equations and taking into account their time-dependence, it

can be shown that the kernels of transformation (30) satisfy

the following PDE system:

qx(t− h, x, y) + qy(t− h, x, y) =qt(t− h, x, y),

q(t− h, x, 0) =γ⊤(t− h, x)B,

γx(t− h, x)− Inγt(t− h, x) =A⊤γ(t− h, x),

(34)

where q and γ are defined on the domains, respectively

Tq : {(t, x, y) : 0 ≤ y ≤ x ≤ h, t0 ≤ t < t0 + T + h− x}, (35)

Tγ : {(t, x) : 0 ≤ x ≤ h, t0 ≤ t < t0 + T + h− x}. (36)

Proposition 4: The system (34) has well-posed C∞ solutions

on Tq and Tγ , given by

q(t− h, x, y) = Γ⊤(t− h+ x) exp (A(x − y))B, (37)

γ(t− h, x) = exp
(

A⊤x
)

Γ(t− h+ x), (38)

where

Γi(t− h+ x) = −(ai−1 + pi−1(t− h+ x)), i = 1, . . . , n,
(39)

and functions pi−1 are defined by (13), (14).

Proof: By the method of characteristics, the solution of

the linear hyperbolic system γ in (34) is as follows:

γ(t− h, x) = exp
(

A⊤x
)

Γ(t− h+ x), (40)

where Γ is going to be characterized in the sequel. In (30)

letting x = 0 we get ζ(t, 0) = ω(t, 0) − γ⊤(t − h, 0)z(t),
which combined with ż = Az(t)+Bω(t, 0) = C(t−h)z(t)+
Bζ(t, 0), gives

Az(t)+Bω(t, 0) = C(t−h)z(t)+B
(

ω(t, 0)− γ⊤(t− h, 0)z(t)
)

leading to

Bγ⊤(t− h, 0) = −(A− C(t− h)).

Now using A = Jn + Ln(a), a = (a0, . . . , an−1)
⊤, B =

(0, . . . , 0, 1)⊤, C(t−h) = Jn+Ln(−p(t−h)) given explicitly

by (33), we further deduce that

γi(t− h, 0) = −ai−1 − pi−1(t− h), i = 1, .., n, (41)

with pi−1 computed according to (13), (14). Moreover, it

holds, for i = 1, ..., n

Γi(t−h+x) = γi(t−h+x, 0) = −(ai−1+pi−1(t−h+x)).

Hence, one can realize the solution (38) along with (39). This

yields

q(t− h, x, 0) = Γ⊤(t− h+ x) exp (Ax)B.

Consequently,

q(t− h, x, y) = Γ⊤(t− h+ x) exp (A(x − y))B, (42)

B. Inverse transformation and time-varying kernels

The analysis of prescribed-time stability of the closed-loop

system requires the study of the inverse transformation which

is given by

ω(t, x) = ζ(t, x) +

∫ x

0

m(t− h, x, y)ζ(t, y)dy

+ γ̄⊤(t− h, x)z(t),

(43)

whose kernels can be shown to satisfy the following PDE

system:

mx(t− h, x, y) +my(t− h, x, y) = mt(t− h, x, y),

m(t− h, x, 0) = γ̄⊤(t− h, x)B,

γ̄x(t− h, x)− Inγ̄t(t− h, x) = C⊤(t− h)γ̄(t− h, x),
(44)
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defined on the domains Tm : {(t, x, y) : 0 ≤ y ≤ x ≤ h, t0 ≤
t < t0 + T + h − x} and Tγ̄ : {(t, x) : 0 ≤ x ≤ h, t0 ≤ t <

t0 + T + h− x}.
Proposition 5: The system (44) has well-posed solutions

C∞ on Tm and Tγ̄ given by

m(t− h, x, y)=Γ⊤(t− h+ x)V(t− h+ x)V−1(t− h+ y)B,(45)

γ̄(t− h, x)=V
−⊤(t− h)V⊤(t− h+ x)Γ(t− h+ x), (46)

where

Γi(t− h+ x) = −(ai−1 + pi−1(t− h+ x)),

with pi−1 defined by (13), (14), and V is given by (21).

Proof: Following the same reasoning as in the proof of

Proposition 4, we will seek first for a solution of γ̄. To that

end, we perform the following change of coordinates:

γ̄∗(t− h, x) = V ⊤(t− h)γ̄(t− h, x), (47)

where V is the Vandermonde matrix that has been defined

in (8) along with (11). Therefore (7) holds at t − h that is

V (t− h)D(t− h) = C(t− h)V (t− h)− V̇ (t− h) leading to

V ⊤(t−h)C⊤(t−h)− V̇ ⊤(t−h) = D(t−h)V ⊤(t−h) (48)

Then, γ̄∗(t − h, x) satisfies the following linear hyperbolic

system:

γ̄∗
x(t− h, x)− Inγ̄

∗
t (t− h, x) = D(t− h)γ̄∗(t− h, x), (49)

where D(t− h) = diag(−r1c(t− h), . . . ,−rnc(t− h)). Note

that we can see (49) as a system of decoupled transport

equations whose explicit solutions can be found by the method

of characteristics. Indeed, for i = 1, . . . n:

γ̄∗
i (t−h, x) = exp

(

−ri

∫ x

0

c(t− h+ x− s)ds

)

Γ̄∗
i (t−h+x).

(50)

Since
∫ x−y

0
D(t− h+ x− s)ds =

∫ t−h+x

t−h+y
D(s)ds and

exp

(

∫ t−h+x

t−h+y

D(s)ds

)

= D(t− h+ x)D−1(t− h+ y) (51)

= D
−1(t− h+ y)D(t− h+ x), (52)

(see (16) to recall the notation of D) then, setting y = 0,

we have in compact form

γ̄∗(t− h, x) = D
−1(t− h)D(t− h+ x)Γ̄∗(t− h+ x), (53)

where Γ̄∗ is yet to be characterized.

On the other hand, we use the inverse transformation at

x = 0 such that ω(t, 0) = ζ(t, 0)+ γ̄⊤(t−h, 0)z(t) combined

with ż(t) = Az(t)+Bω(t, 0) = C(t−h)z(t)+Bζ(t, 0) which

gives

Bγ̄⊤(t− h, 0) = −(A− C(t− h)), (54)

and using again A = Jn + Ln(a), a = (a0, . . . , an−1)
⊤, B =

(0, . . . , 0, 1)⊤, C(t− h) given by (33), we deduce that:

γ̄i(t− h, 0) = −ai−1 − pi−1(t− h), i = 1, .., n. (55)

Under (47) and using the structure of the Vandermonde matrix

(8), we have

γ̄∗
i (t− h, 0) = (−a0 − p0(t− h))

+

n
∑

k=2

(−ak−1 − pk−1(t− h))(δk−2(−ric))(t− h).
(56)

Therefore from (56), it holds

Γ̄∗
i (t− h+ x) = γ̄∗

i (t− h+ x, 0). (57)

Note that Γ̄∗ = V ⊤Γ with Γ obtained in (39). Hence, (53) in

conjunction with (57) give the solution to the linear hyperbolic

system (49). Therefore, by virtue of (47) together with V(s) =
V (s)D(s), we obtain

γ̄(t− h, x) = V
−⊤(t− h)V⊤(t− h+ x)Γ(t− h+ x). (58)

It yields

m(t− h, x, 0) = Γ⊤(t− h+ x)V(t− h+ x)V−1(t− h)B,

from which, we can obtain

m(t−h, x, y) = Γ⊤(t−h+x)V(t−h+x)V−1(t−h+y)B. (59)

This concludes the proof.

C. Prescribed-time predictor control

From (30), and using (37)-(38) at x = h, the boundary

control is then

u(t) =Γ⊤(t) exp (Ah) z(t)

+

∫ h

0

Γ⊤(t) exp (A(h− y))Bu(t− h+ y)dy,
(60)

where u(t−h+y) = w(t, y). Using the inverse transformation,

from (43), and using (45)-(46) at x = h, the boundary control

can equivalently be written as follows:

u(t) =Γ⊤(t)V(t)V−1(t− h)z(t)

+

∫ h

0

Γ⊤(t)V(t)V−1(t− h+ y)Bζ(t, y)dy.
(61)

This equivalent form is instrumental for our analysis. Indeed,

under this form we are able to establish the boundedness of

the controller and its convergence to zero. As we will see, we

take advantage of the transport PDE ζ which vanishes after h

units of time, thus greatly simplifying the analysis.

IV. STABILITY ANALYSIS

We perform the stability analysis on the target system and

then we establish the bounded invertibility of the transforma-

tions under a suitable norm equivalence.

Lemma 3: Let C(t − h) = Jn + Ln(−p(t − h)) be given

as in (33) with pi−1 (i = 1, ..., n) defined by (13), (14), and

c defined by (2). Then, for any z0 ∈ R
n, there exist ηz > 0

and positive polynomials P and Q in
√

c(t− h) such that the

solution z-dynamics of (31) satisfies, for all t ∈ [t0, t0+h+T )

‖z(t)‖2 ≤ e−rmin(t− h)

×
(

ā(t− h)‖z(t0)‖2 + b̄(t− h, t0)‖ζ0‖2[t0,t]
)

,
(62)
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where

ā(t− h) = 2ηzP
(

√

c(t− h)
)

,

b̄(t− h, t0) = Q(
√

c(t− h))

∫ t

t0

e2rmax(τ − h)

c(τ − h)2n−2
dτ,

(63)

where ‖ζ0‖[t0,t] = supt0≤τ≤t |ζ0(τ)|. In particular, it holds

‖z(t)‖ → 0, t → t0 + h+ T.

Proof: Consider the following change of variables as in

(5):

z̄(t) = V −1(t− h)z(t), (64)

with V (·) given by (8), (11) (in light of Proposition 2).

Therefore, the target system (31) is transformed into the

following system:

˙̄z(t) =D(t− h)z̄(t) + V −1(t− h)Bζ(t, 0),

ζt(t, x) = ζx(t, x),

ζ(t, h) = 0,

(65)

where D(t − h) = V −1(t − h)C(t − h)V (t − h) −
V −1(t − h)V̇ (t − h) which gives specifically D(t − h) =
diag (−r1c(t− h), . . . ,−rnc(t− h)) (see Section II-B). The

solution of the z̄- dynamics of (65) is given as follows:

z̄(t) = Φ̄D(t− h, t0 − h)z̄(t0)

+

∫ t

t0

Φ̄D(t− h, τ − h)V −1(τ − h)Bζ(τ, 0)dτ
(66)

where Φ̄D(t − h, t0 − h) = exp
(

∫ t

t0
D(s− h)ds

)

=

exp
(

∫ t−h

t0−h
D(s)ds

)

is the state transition matrix of the

underlying linear (diagonal-form) time-varying system (z̄-

dynamics). Using Φ̄D(t− h, t0 − h) = D(t− h)D−1(t0 − h)
(as in (18) with D given by (16)), we get

z̄(t) =D(t− h)D−1(t0 − h)z̄(t0)

+

∫ t

t0

D(t− h)D−1(τ − h)V −1(τ − h)Bζ(τ, 0)dτ
(67)

Then, from (64), along with (20) and (21), the solution of the

the z- dynamics of (31) is given, for all t ∈ [t0, t0 + h+ T ),
as follows:

z(t) =ΦC(t− h, t0 − h)z(t0)

+

∫ t

t0

ΦC(t− h, τ − h)Bζ(τ, 0)dτ,
(68)

where ΦC(t− h, t0 − h) = V(t− h)V−1(t0 − h). We denote

ΦB
C (t− h, τ − h) = ΦC(t− h, τ − h)B, (69)

which corresponds to the n-th column vector of the matrix

ΦC(t−h, τ −h). Using the structure of V and V −1 (see (11)

along with (120)- (124) in Appendix C for more information

about the characterization), we assert that each component of

the vector ΦB
C(t− h, τ − h) has the following form:

ΦB
C1(t− h, τ − h) = 1

(c(τ−h))n−1

n
∑

l=1

(−1)lRl(rl)

× e−rl(t− h)erl(τ − h),

(70)

and for all k = 2, . . . , n

ΦB
Ck(t− h, τ − h) = 1

(c(τ−h))n−1

n
∑

l=1

(−1)k+lRl(rl)

× δk−2(−rlc))(t− h)e−rl(t− h)erl(τ − h),

(71)

where Rl(rl) is some rational function of r1, . . . , rn
whose specific characterization is not important for the

current analysis. Recall (δk−2(−rlc))(t − h) = (k −
2)!sk−2

−rl
(t)L

(1)
k−2(s

−1
rl

(t−h)) in light of formulas (11), (12) and

also that
∣

∣L
(1)
k−2

(

s−1
rl

(t− h)
) ∣

∣ ≤
(

k−1
k−2

)

e rl
2
(t−h). Therefore,

from (68) and inspired by (17) in Lemma 2, the following

estimate holds, for all t ∈ [t0, t0 + h+ T ):

‖z(t)‖2 ≤e−rmin(t− h)ā(t− h)‖z(t0)‖2

+ b̃(t− h, t0)‖ζ(τ, 0)‖2[t0,t],
(72)

with

b̃(t− h, t0) =2n max
1≤k≤n

{

∫ t

t0

∣

∣ΦB
Ck(t− h, τ − h)

∣

∣dτ
}2

,

(73)

and ā(t − h) is given in (63). Let us find a more tractable

estimate of b̃(t− h, t0).
By virtue of the characterizations (70) and (71), it holds

∫ t

t0

|ΦB
C1(t− h, τ − h)dτ | ≤ e−rmin

2
(t− h)

∫ t

t0

ermax(τ−h)
c(τ−h)n−1 dτ,

(74)

and for k = 2, . . . , n,
∫ t

t0

|ΦB
Ck(t− h, τ − h)dτ | ≤ P̄k(

√

c(t− h))

× e−rmin
2

(t− h)

∫ t

t0

ermax(τ − h)

c(τ − h)n−1
dτ,

(75)

where P̄k

(

√

c(t− h)
)

= n(k − 1)!R̄sk−2
−rmax

(t− h) and R̄ =

max1≤l≤n{|Rl(rl)|} (whose specific characterization is not

needed in the analysis). This leads to b̃(t − h, t0) ≤ b̄(t −
h, t0) = e−rmin(t−h)Q

(

√

c(t− h)
)

∫ t

t0

e2rmax (τ−h)
c(τ−h)2n−2 dτ with

Q
(

√

c(t− h)
)

= 4n2 max
1≤k≤n

{

1, P̄ 2
k (
√

c(t− h))
}

. (76)

Thus (62) holds for t ∈ [t0, t0+h+T ). We exploit the cascade

nature of the chosen target system (31) along with the fact that

the transport PDE ζ is fixed-time stable. Indeed, by virtue of

the method of characteristics, ζ(t, x) = ζ0(x + t) for t ≤
t0 + h− x and ζ(t, x) = 0 for t ≥ t0 + h− x. Thus, we have

an analytical expression for ζ(t, 0); that is ζ(t, 0) = ζ0(t) for

t ≤ t0 + h. In addition, after t = t0 + h, one has ζ(t, 0) = 0.

Let us then refine the analysis by subdividing [t0, t0 + h+T )
into two sub-intervals. First, we consider t ∈ [t0, t0+h]. From

(72) and analyzing (74) and (75), one can infer that the last

term of (72) remains bounded. This is still valid irrespective

of T < h or T ≥ h because finite-time escape of the last term

in (72) may occur only after t = t0 + h. Notice, in addition,

that it holds that ‖ζ0(τ)‖[t0,t] ≤ ‖ζ0(τ)‖[t0,t0+h] < ∞. Hence,

we can conclude that, for all t ∈ [t0, t0 + h], ‖z(t)‖2 < ∞,

thus ‖z(t0 + h)‖ < ∞. Then, we consider the case when
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t ∈ [t0+h, t0+h+T ). Using the fact that ζ ≡ 0 for t ≥ t0+h,

we get

‖z(t)‖2 ≤ e−rmin(t− h)ā(t− h)‖z(t0 + h)‖2. (77)

Finally, by following the same arguments as in the proof of

Lemma 2, we can conclude that ‖z(t)‖2 → 0 as t → t0+h+T .

Proposition 6: For the backstepping transformations (30)

and (43) along with (37)-(38) and (45)-(46), the following

estimates hold:

‖ζ(t, ·)‖2L2 ≤Mq(t− h)‖ω(t, ·)‖2L2 +Mγ(t− h)‖z(t)‖2, (78)

‖ω(t, ·)‖2L2 ≤Nm(t− h)‖ζ(t, ·)‖2L2 +Nγ̄(t− h)‖z(t)‖2, (79)

Mq(t− h) = 4
(

1 +
∫ h

0

(∫ x

0
|q(t− h, x, y)|2dy

)

dx
)

, (80)

Mγ(t− h) = 2
∫ h

0
γ⊤(t− h, x)γ(t− h, x)dx, (81)

Nm(t− h) = 4
(

1 +
∫ h

0

(∫ x

0 |m(t− h, x, y)|2dy
)

dx
)

,(82)

Nγ̄(t− h) = 2
∫ h

0
γ̄⊤(t− h, x)γ̄(t− h, x)dx. (83)

Proof: It follows by virtue of the triangle, Young’s and

Cauchy-Schwarz inequalities applied to (30) and (43).

Lemma 4: Let Nγ̄(t − h) be given by (83) with γ̄ given

by (46) and let P
(

√

c(t− h)
)

as in Lemma 3. Then, the

following holds true:

lim
t→t0+h+T

Nγ̄(t−h)P
(

√

c(t− h)
)

e−rmin(t−h) = 0. (84)

Proof: See Appendix D.

Theorem 1: Let h > 0 be a known delay and T > 0 a fixed

time such that T ≥ h (under Assumption 1). Let c(t−h) given

by (2). Let ηz and P
(

√

c(t− h)
)

be as in Lemma 3 and

Nγ̄(t− h) be given by (83). Then, the solution of the closed-

loop system (29) with the prescribed-time predictor feedback

control (60) (or (61)) is such that, for any z0 ∈ R
n, for all

t ∈ [t0, t0+h], ‖z(t)‖2+‖ω(t, ·)‖2L2 remains bounded and for

all t ∈ [t0 + h, t0 + h+ T ),

‖z(t)‖2+‖ω(t, ·)‖2L2 ≤ ηz (1 +Nγ̄(t− h))

× P
(

√

c(t− h)
)

e−rmin(t− h)‖z0‖2.
(85)

In particular,

‖z(t)‖2 + ‖ω(t, ·)‖2L2 → 0, as t → t0 + h+ T,

and |u(t)| → 0 as t → t0 + T .

Proof: Using the norm equivalences in Proposition 6, it

holds, for t ∈ [t0, t0 + h+ T ) that

‖z(t)‖2+‖ω(t, ·)‖2L2 ≤ Nm(t− h)‖ζ(t, ·)‖2L2

+ (1 +Nγ̄(t− h)) ‖z(t)‖2.
(86)

Let us focus first on Nm(t−h) which is given by (82). Notice

that m(t− h, x, y) given by (45) can be written as follows:

m(t− h, x, y) = −
n
∑

i=1

(ai−1 + pi−1(t− h+ x))

× ΦB
Ci(t− h+ x, t− h+ y),

(87)

where we make use again of expressions (69)-(71) which allow

to get the following estimate:

|m(t− h, x, y)|2 ≤ Q̄(
√

c(t− h+ x))

× e−rmin(t− h+ x)
e2rmax(t− h+ y)

c(t− h+ y)2n−2
,

(88)

with Q̄(
√

c(t− h+ x)) being a positive polynomial function

(whose specific characterization is not needed in this analysis).

Then, from (82) and under Assumption 1 (i.e. T ≥ h), we have

that the integral term,
∫ h

0

(

Q̄(
√

c(t− h+ x))e−rmin(t− h+ x)

×
∫ x

0

e2rmax (t−h+y)
c(t−h+y)2n−2 dy

)

dx < ∞,

(89)

for all t ∈ [t0, t0 + h]. From which, we deduce that for all

t ∈ [t0, t0+h], ‖z(t)‖2+‖ω(t, ·)‖2
L2 remains bounded. Finite-

time escape for the above integral term may occur only at t =
t0 + h+ T . Nevertheless, we use the fact that ‖ζ(t, ·)‖L2 ≡ 0
for all t ≥ t0 + h. Hence, the term Nm(t − h)‖ζ(t, ·)‖2L2

remains bounded for all t ∈ [t0, t0 + h+ T ).
Now, by virtue of Lemma 3, it holds for all t ∈ [t0, t0 +

h+ T )

‖z(t)‖2 + ‖ω(t, ·)‖2L2 ≤ Nm(t− h)‖ζ(t, ·)‖2L2

+ ηz (1 +Nγ̄(t− h))P
(

√

c(t− h)
)

× e−rmin(t− h)‖z(t0)‖2

+ (1 +Nγ̄(t− h))Q(
√

c(t− h))e−rmin(t− h)

×
∫ t

t0

e2rmax(τ − h)

c(τ − h)2n−2
dτ sup

t0≤τ≤t

|ζ(τ, 0)|2.

so that, in conjunction with Lemma 4, we finally obtain that

‖z(t)‖2 + ‖ω(t, ·)‖2L2 → 0, as t → t0 + h+ T .

It remains to prove that the control remains bounded.

Indeed, from (61), the following estimate holds, for all t ∈
[t0, t0 + h+ T ):

|u(t)|2 ≤ ‖Γ⊤(t)‖2‖ΦC(t, t− h)‖2‖z(t)‖2

+ ‖m(t− h, h, ·)‖2L2‖ζ(t, ·)‖2L2 .
(90)

By Lemma 3, we have that ‖Γ⊤(t)‖2‖ΦC(t, t−h)‖2‖z(t)‖2 <
∞ for all t ∈ [t0, t0 + h + T ). In fact, by following similar

arguments as in the proof of Lemma 3, it can be further shown

that ‖Γ⊤(t)‖2‖ΦC(t, t− h)‖2‖z(t)‖2 → 0 as t → t0 + T .

On the other hand, under Assumption 1 (i.e. T ≥ h), we

can guarantee that the term ‖m(t − h, h, ·)‖2
L2 < ∞ for all

t ∈ [t0, t0 + h) . Indeed, notice that due to (87)- (88), the

following estimate holds:

‖m(t− h, h, ·)‖2L2 ≤ Q̄(
√

c(t))

× e−rmin(t)

∫ h

0

e2rmax(t− h+ y)

c(t− h+ y)2n−2
dy.

(91)

Finite-time escape for the term in the right-hand side of (91)

may occur when t → t0 + T . Nevertheless, we use again the

fact that ‖ζ(t, ·)‖L2 ≡ 0 for all t ≥ t0+h and the assumption

that T ≥ h. We conclude then that |u(t)|2 → 0 as t → t0+T .

This concludes the proof.
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Discussion about the Assumption 1.

We have stated that the fixed time T should be larger

than the known delay h. This constraint is related to some

issues arising when establishing the bounded invertibility of

the backstepping transformation. Indeed, note that in (91) and

for all t ∈ [t0, t0 + h], if we considered T < h, then, we

would have finite time escape at t = t0 + T and the term

‖m(t− h, h, ·)‖2
L2‖ζ(t, ·)‖2L2 in (90) may not be bounded nor

decreasing to zero. In fact, even tough ‖ζ(t, ·)‖L2 → 0 as t →
t0 + h, we cannot assess the decreasing-in-time of ‖ζ(t, ·)‖2L
(due to the lack of a Lyapunov functional from which one can

characterize fixed-time convergence property of the transport

ζ- PDE equation) in order to compare with the growth-in-

time of ‖m(t − h, h, ·)‖2
L2 . Similar arguments apply for the

evolution of Nm(t−h) (see (86) and (89)) which is essential in

the bounded invertibility of the transformation. Consequently,

we have opted for considering Assumption 1 in our approach.

Relaxing this assumption is still an open and challenging

question that might require better (less conservative) estimates

of all underlying norms of the transition matrices we have

used in the stability analysis. Perhaps, while relaxing this

assumption, one may encounter conditions relating ri, c̄0 and

T whenever a delay h is large and one chooses T << 1 very

small.

V. SIMULATIONS

Motivated by guidance, navigation and control applications,

we consider the scenario in which a quadrotor Unmanned

Aerial Vehicle (UAV) aims at tracking and landing on a

moving landing platform. Moreover, it is required that the

UAV achieves such objectives within a finite amount of time

(that can be prescribed in the design). Under the scenario that

the UAV is near the moving landing platform, as well as some

other reasonable assumptions3, we consider a planar kinematic

model that can be linearized and hence approximated by a

double integrator, i.e., ż1(t) = z2(t), ż2 = u(t− h) where z1
and z2 represent, respectively, the relative position (distance of

moving target relative to the UAV perpendicular to the Line

of Sight (LOS)) and the relative velocity. The control u is

the relative acceleration (perpendicular to the LOS) which is

subject to a small delay. The initial conditions of the relative

position and velocity, are z(0) = (−2[m],−2[m/s])⊤ where

the initialization time has been set t0 = 0. The command

acceleration is subject to a delay h = 0.9[s]. We fix T = 3[s]
so that the UAV is required to land on the moving platform

within a prescribed time T + h = 3.9[s].
For the control design, we use the blow-up function c(t)

given in (2) with c̄0 = 0.8 (dimensionless). The time-

varying gains involved in the controller (60) and its equiv-

alent form (61), are computed, respectively, from (37)-(38)

and (45)-(46), at x = h where Γ(t) = (−p0(t),−p1(t))
⊤

is computed from (39) and p0(t) = r1r2c
2(t)[s−2] with

3Assume that the moving target is nonmanuevering and has a constant
velocity. In addition, the UAV has perfect autopilot dynamics and has the
capability to track and provide real time position and velocity of the moving
target and the UAV itself. We assume that the angle of Line of Sight (LOS)

remains small relative to its initial value.

p1(t) =
(

(r1 + r2)c(t)− 2
c̄0T

√

c(t)
)

[s−1] (obtained accord-

ing to (13)-(14)) and we choose r1 = 1[s−1] and r2 = 2[s−1].
Figure 1 shows the evolution of the aforementioned gains

involved in the controller (60) and (61). Notice that γ̄(t−h, h)
converges to zero within a fixed time. This feature has also

been instrumental for the analysis of the boundedness and

convergence in a fixed-time of the controller while using

the equivalent form i.e., (61). Numerical simulations are

done by discretizing the cascade PDE-ODE systems (29)

and (31). For that purpose we have used a two-step variant

of the Lax-Friedrichs numerical method presented in [36]

and the respective solver on Matlab. The parameters of the

numerical scheme are selected so that the Courant-Friedrich-

Levy condition for the numerical stability holds.

Figure 2 shows the numerical solution of the double integra-

tor with constant input delay, i.e., the closed-loop system (29).

More precisely, on the left we can observe the evolution of

the states z1 and z2 of the double integrator when we stabilize

with the prescribed-time predictor control (60) (depicted in

blue line) as well as the the evolution of the delayed control

input (depicted in black line) 4. On the right we can observe

the numerical solution of the transport PDE ω(t, x) in (29)

representing the infinite dimensional actuator dynamics. Figure

3 shows Evolution of ‖z(t)‖2 + ‖ω(t, ·)‖2L2 of the closed-

loop system (29) with the prescribed-time predictor control

(60). The plot is in logarithmic scale to better illustrate that

the closed-loop system converges in a prescribed time given

by T + h = 3.9[s]. It implies that the relative position z1
and relative velocity z2 convergence to zero, thus implying

that the UAV tracks and lands on the moving target with

precision and within a prescribed-time T+h = 3.9[s]. Finally,

we run simulations for two different initial positions of the

UAV (which translates in two different initial conditions for

the double integrator). Figure 4 shows the trajectories of the

UAV (in the Cartesian inertial frame XY) when tracking and

then landing on the moving target (which is moving to its

initial position to the right with constant speed 1.5[m/s]).

We compare the cases when the actuator is delay-free (i,e.,

h = 0[s]) and when is subject to a small delay h = 0.9[s].

For the delay-free case, the landing occurs at prescribed-time

T = 3[s] whereas for the delayed input case, the landing is at

T+h = 3.9[s]. In both cases, the prescribed-time convergence

is achieved irrespective of the initial conditions of the problem.

Discussion about numerical implementation issues

Some numerical issues may arise in the implementation

that can be caused by the unbounded gains as t approaches

to T + h. Some ways to overcome the numerical problems

in the framework of prescribed-time stabilization have been

discussed in [37], [26] and [19]. We follow in particular [19,

4In Figure 2 we have included the numerical solution of the double
integrator when the input is subject to a slowly time-varying delay h(t) =
0.9 + 0.1 sin(2πt) [s]. The aim of including this, is to observe whether
the proposed approach and the resulting predictor feedback might be robust
to time-varying delays or not. Simulations show that it may be possible to
guarantee robustness and suggest that new theoretical developments, in the
framework of PDE-ODE for time-varying delays, need to be developed to
fully compensate arbitrary time-varying input delays in prescribed-time. The
theoretical development is object of a future work.
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Fig. 1. On the left: evolution of the time-varying gains γ (plotted in logaritmic scale) in (38) and γ̄ in (46) at x = h. On the right: evolution of the
time-varying kernel gains q in (37) and m in (45) at x = h, on two different time intervals.
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Fig. 2. On the left: evolution of the states of the double integrator with input delay (h = 0.9[s]) (blue lines), and slowly time-varying delay (h(t) =
0.9+0.1 sin(2πt)[s]) (red lines) when stabilizing with the prescribed-time predictor control (60) (black line). On the right: numerical solution of the transport
PDE ω(t, x) in (29).
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Fig. 3. Evolution of ‖z(t)‖2 + ‖ω(t, ·)‖2
L2 (plotted in logarithmic scale) of

the closed-loop system with the prescribed-time predictor control (60) where
h = 0.9[s] and T = 3s.

Section II A] in order to make saturation on the control gains.

The idea is to monitor the growth of the blow-up function

and saturate the control gains to some maximum value when

e.g. t = ǫ(T + h) (with ǫ → 1 chosen by the user: ǫ = 0.95
in the conducted simulations). Subsequently, we may switch

to a classical predictor feedback (whose gains are the latest

highest gains of the prescribed-time predictor control before

saturation). By doing this, of course, the convergence will not

be exactly to origin but to a neighborhood that can be made

smaller if desired. In addition, if needed, the prescribed-time

predictor control can be reset to begin from a new initial time

tnew = ǫ(T + h) and with initial conditions that are nearly

zero.

It is worth mentioning that some emerging approaches

may deal with the issues of implementation and robustness

to external disturbance or unmatched uncertainties in a very

elegant way. Indeed, one can reformulate the problem, through

a suitable time-scaling transformation (see e.g. [40]), to then

build on control designs such us homogeneity and sliding
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Fig. 4. Trajectories of the UAV when tracking and then landing on the
moving target (which is moving from its initial position to the right with
constant speed 1.5[m/s]). Two different initial positions in the frame XY are
considered; namely (0[m], 2[m]) and (10[m], 2[m]), and with initial speed
2[m/s] along the Y axis. Besides, two cases for the actuation are considered:
the control action is i) delay-free and ii) subject to a delay h = 0.9[s]. For
the delay-free case, the landing occurs at prescribed-time T = 3[s] whereas
for the input delay case, the landing is at T + h = 3.9[s].

mode feedbacks. Other approaches include switched linear

feedback with state-dependent switching laws when approach-

ing the terminal time or the use of state-dependent cut-off

functions inspired by what is done in the context of 1D

reaction-diffusion PDEs [12].

VI. CONCLUSION

In this paper we have addressed the problem of prescribed-

time stability of linear systems with input delay. Some prelim-

inaries on prescribed-time stabilization of linear systems with-

out delay are discussed. The use of a generalized Vandermonde

matrix (polynomial-based), as well as the Bell and Laguerre

polynomials were instrumental for the analysis. Then, for the

delayed case, the prescribed-time predictor feedback design

is carried out based on the backstepping approach which

makes use of time-varying kernels, for which, the bounded

invertibility of the backstepping transformation is guaranteed.

Future work also includes prescribed-time stabilization of

LTI systems with time-varying delays, distributed delays and

unknown delays. The control design may use the ideas from

delay-adaptive control combined with the methodology pre-

sented in this paper, i.e., still under backstepping approach

with suitable transformations and choices of prescribed-time

stable target systems. In addition, the problem of prescribed-

stabilization of reaction-diffusion systems with delayed bound-

ary input is currently in progress which follows the es-

sential ideas of this work. Some extensions can be done

for prescribed-time output regulation and tracking for more

general problems modeled by coupled ODE-PDEs.

APPENDIX A

BELL, GENERALIZED LAGUERRE AND ELEMENTARY

SYMMETRIC POLYNOMIALS

A. Complete and incomplete exponential Bell polynomials

The exponential (partial) Bell polynomials are defined by

the series expansion ([10]):

∞
∑

n=k

Bn,k(x1, ..., xn−k+1)
tn

n!
=

1

k!

(

∞
∑

m=1

xm

tm

m!

)k

. (92)

The exponential (complete) Bell polynomials are defined by,

B0 = 1 and for n ≥ 0,

Bn(x1, x2, ..., xn) =

n
∑

k=1

Bn,k(x1, x2, ..., xn−k+1). (93)

Let us point out some relevant properties as follows:

Property 1 (Homogeneity): The following identity holds for

n ≥ k and a, b ∈ R.

Bn,k(abx1, ab
2x2, ..., ab

n−k+1xn−k+1)

= akbnBn,k(x1, x2, ..., xn−k+1)
(94)

Property 2: Relation to the Lah numbers [10, Section 3.3]:

Bn,k(1!, ..., (n− k + 1)!) =

(

n− 1

k − 1

)

n!

k!
= Lah(n, k). (95)

Property 3: Recurrence relation for the complete Bell poly-

nomials [4, p. 270]:

Bn+1(x1, ..., xn+1) =

n
∑

k=0

(

n

k

)

xn−kBk(x1, ..., xk). (96)

B. Generalized Laguerre polynomials

Let us in addition introduce the the Kummer confluent

hypergeometric function 1F1(a; b; p).

1F1(a; b; s) =

∞
∑

k=0

(a)k
(b)k

sk

k!
(97)

The Kummer function has the following property:

Property 4:

exp(s)1F1(a; b;−s) = 1F1(b − a; b; s) (98)

A relation between the polynomials involving the Lah numbers

(see Property 2) and the Kummer function is as follows:

Property 5:

n
∑

k=1

(

n− 1

k − 1

)

n!

k!
sk = n!s exp(−s) 1F1(n+ 1; 2; s) (99)

The generalized Laguerre polynomials are defined as follows

([39, Chapter 5]):

L(α)
n (s) =

n
∑

l=0

(

n+ α

n− l

)

(−1)l

l! (s)l (100)

which can also be expressed in terms of (97):

L
(α)
k (s) =

(

k + α

k

)

1F1(−k;α+ 1; s) (101)
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C. Elementary symmetric polynomials

The elementary symmetric polynomials are defined as fol-

lows:

σ0(s1, ..., sn) = 1, (102)

σk(s1, ..., sn) =
∑

1≤i1≤i2≤...ik≤n

si1si2 . . . sik , (103)

σn(s1, ..., sn) =
n
∏

i=1

si, (104)

and σk(s1, ..., sn) = 0, for k > n.

APPENDIX B

PROOF OF PROPOSITION 2

Proof: We rewrite (10) as follows:

(δn(−ric))(t) = Bn+1(−ric(t), ...,−ric
(n)(t))

= −ri

n
∑

k=0

(

n

k

)

c(n−k)(t)Bk(−ric(t), ...,−ric
(k−1)(t)).

(105)

By the definition of the complete Bell polynomials, we have

(δn(−ric))(t) = Bn+1(−ric(t), ...,−ric
(n)(t))

= −ri

n
∑

k=0

(

n

k

)

c(n−k)(t)

k
∑

j=0

Bk,j(−ric(t), ...,−ric
(k−j)(t)).

(106)

By (2) and computing iteratively its (k−j)-th derivative, (106)

can be reformulated as follows:

(δn(−ric))(t)

= −ri

n
∑

k=0

(

n

k

)

c(n−k)(t)

×
k
∑

j=0

Bk,j(−ric(t),−riċ(t), ...,−ric
(k−j)(t))

= −ri

n
∑

k=0

(

n

k

)

(2)n−k

(c̄0T )n−k
c(t)(

√

c(t))n−k

×
k
∑

j=0

Bk,j(−ric(t), ...,−ri
(2)k−j

(c̄0T )k−j c(t)
(

√

c(t))k−j
)

.

From Property 1, we get

(δn(−ric))(t) = −ri

n
∑

k=0

(

n

k

)

(2)n−k

(c̄0T )n−k c(t)(
√

c(t))n−k

×
k
∑

j=0

(−ri)
j

(c̄0T )k−j c
j(t)(

√

c(t))k−j ×Bk,j((2)0, ..., (2)k−j),

which can be simplified as follows:

(δn(−ric))(t) = −ri

n
∑

k=0

(

n

k

)

(2)n−k

(c̄0T )n c(t)(
√

c(t))n

×
k
∑

j=0

(−ric̄0T )
j(
√

c(t))jBk,j((2)0, ..., (2)k−j).

Notice that Bk,j ((2)0, (2)1, (2)2, ..., (2)k−j) =
Bk,j (1, 2!, 3!, ..., (k − j + 1)!). Therefore, applying Property

2 we have:

(δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n

n
∑

k=0

(

n

k

)

(2)n−k

×
k
∑

j=0

(

k − 1

j − 1

)

k!
j!

(

−ric̄0T
√

c(t)
)j

.

Then, from Properties 4 and 5, it holds that

(δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n

×
(

(

n

0

)

(2)n +

n
∑

k=1

(

n

k

)

(2)n−kk!(−ric̄0T
√

c(t))

× 1F1

(

1− k; 2; (ric̄0T )
√

c(t)
)

)

.

After some simplifications and using (101), we obtain:

(δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n n!

×
(

(n+ 1) + ((−ri c̄0T
√

c(t))

×
n
∑

k=1

(n+1−k)
k

L
(1)
k−1

(

ric̄0T
√

c(t)
)

)

.

(107)

For the next developments we need the following intermediate

result:

n
∑

j=1

L
(1)
j−1

j
(ri c̄0T

√

c(t)) = 1

ric̄0T
√

c(t)
(1 − L(0)

n )(ri c̄0T
√

c(t)),

(108)

along with the following well-known recurrence relations of

the generalized Laguerre polynomials:

(ric̄0T
√

c(t))
n
∑

k=0

L
(α)
k (ri c̄0T

√

c(t)) =

(n+ α+ 1)L(α)
n (ric̄0T

√

c(t))− (n+ 1)L
(α)
n+1(ric̄0T

√

c(t)),
(109)

and

L(α)
n (ri c̄0T

√

c(t)) = L(α+1)
n (ric̄0T

√

c(t))

− L
(α+1)
n−1 (ri c̄0T

√

c(t)).
(110)

Hence, from (107) combined with (108) yields

(δn(−ric))(t) =

−ric(t)(
√

c(t))n

(c̄0T )n n!

(

(n+ 1)L(0)
n

(

ric̄0T
√

c(t)
)

− (−ric̄0T
√

c(t))
n
∑

k=1

L
(1)
k−1

(

ric̄0T
√

c(t)
)

)

.

(111)
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Shifting the index in the above sum, we have

(δn(−ric))(t) =

−ric(t)(
√

c(t))n

(c̄0T )n n!
(

(n+ 1)L(0)
n

(

ric̄0T
√

c(t)
)

− (−ric̄0T
√

c(t))
n−1
∑

l=0

L
(1)
l

(

ric̄0T
√

c(t)
))

.

Using the first recurrence relation (109), we have

(δn(−ric))(t) =

−ric(t)(
√

c(t))n

(c̄0T )n n!

(

(n+ 1)L(0)
n

(

ric̄0T
√

c(t)
)

+ (n+ 1)L
(1)
n−1

(

ric̄0T
√

c(t)
)

− nL(1)
n

(

ri c̄0T
√

c(t)
)

)

.

Applying the second recurrence relation (110), we finally

obtain (11), that is5:

(δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n n!L(1)
n

(

ric̄0T
√

c(t)
)

. (112)

This concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 3

Proof: From (4), (7)-(9), the following equation (PD-

characteristic equation [24]) holds for all i = 1.., n:

(δn−1(−ric))(t) +

n−1
∑

j=2

pj(t)(δ
j−1(−ric))(t) + p1(t)(−ric(t))

+ p0(t) = 0.
(113)

In order to recover, p0, pj ((13)-(14)), we will rewrite the

problem as a linear system and proceed to solve it via

inversion of the generalized Vandermonde matrix. From (113),

we rewrite the problem to be solved in a more compact form

V ⊤(t)p(t) = Y (t), (114)

where Y =
(

−(δn−1(−r1c))(t), . . . ,−(δn−1(−rnc))(t)
)⊤

and V is given by (8) with (δn(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n n!L
(1)
n

(

ric̄0T
√

c(t)
)

by virtue of Proposition

2. In addition, we recall the three-term recurrence relation of

the generalized Laguerre polynomials,

L
(1)
0

(

ri c̄0T
√

c(t)
)

= 1,

L
(1)
1

(

ri c̄0T
√

c(t)
)

= −ric̄0T
√

c(t) + 2,

nL(1)
n (ric̄0T

√

c(t)) =
(

−ric̄0T
√

c(t) + 2n
)

L
(1)
n−1

(

ric̄0T
√

c(t)
)

− (n)L
(1)
n−2

(

ric̄0T
√

c(t)
)

, n ≥ 2,

(115)

5Surprisingly, (11) turns out to be similar as the function G(n)(t) appearing
in [16, Section 2.3] for prescribed-time stabilization of reaction-diffusion
PDEs.

which allows to derive the following three-term-like recurrence

relation:

(δn(−ric))(t) = −
√

c(t)

c̄0T

(

ri
√

c(t)− 2n
)

(δn−1(−ric))(t)

− c(t)

(c̄0T )2
n(n− 1)(δn−2(−ric))(t).

(116)

The generalized Vandermonde matrix (8) is a polynomial-
based matrix that can be constructed using the classical
Vandermonde matrix which is given as follows:

Vc(t) =











1 · · · 1
−r1c(t) · · · −rnc(t)

...
. . .

...

(−r1c(t))
n−1 · · · (−rnc(t))

n−1











. (117)

Therefore, inspired by [5, Section 3], we observe that for
i = 1, . . . , n, each column of the Vandermonde matrix V can
be recovered as follows:

SLah(t)















1
−ric(t)

(−ric(t))
2

...

(−ric(t))
n−1















=













1
(−ric(t))

(δ(−ric))(t)
...

(δn−2(−ric))(t)













, (118)

provided that there exists a suitable lower triangular matrix

(that we call in this framework SLah(t)) which captures the

recurrence relation (116). Indeed, SLah has the following

structure:

SLah(t) =
























1 0 0 0 · · · 0
0 1 0 0 · · · 0

0 2

√
c(t)

c̄0T
1 0 · · · 0

0 6 c(t)

(c̄0T )2
6

√
c(t)

c̄0T
1

. . .
...

.

..
.
..

.

..
. . .

. . .
.
..

0 (n− 1)!
(
√

c(t))n−2

(c̄0T )n−2
(n−2)(n−1)!

2

(
√

c(t))n−3

(c̄0T )n−3 · · · 1

























.

(119)

Thus,

SLah(t)Vc(t) = V (t). (120)

It is interesting to observe that the generalized Laguerre

polynomials appearing in the Vandermonde matrix (8) have a

close connection with the Lah numbers. Indeed, when looking

at the rows of (119) yields the coefficients of the polynomial

appearing in V . Inversely, when looking at the columns of

(119) one realizes the Lah numbers. The entries of SLah then

involves the Lah numbers (suggesting the adopted name for

such a matrix). More precisely, the entries (SLah)ij of (119)

are given by the following relations:

(SLah)ij =

{

Lah (i− 1, j − 1)
(
√

c(t))i−j

(c̄0T )i−j , 1 ≤ j ≤ i ≤ n

0, otherwise,
(121)

where Lah(i − 1, j − 1) =
(

i−2
j−2

) (i−1)!
(j−1)! (recall Property (2))

along with Lah((i−1), 0) = 0, Lah((i−1), (j−1)) = 0 for all

j ≥ i. Due to the inversion formula of the Lah numbers [10],
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it turns out to be straightforward to compute the inverse of

SLah(t). More precisely, the entries of S−1
Lah(t) are as follows:

(

S−1
Lah

)

ij
=















(−1)i−jLah (i− 1, j − 1)
(
√

c(t))i−j

(c̄0T )i−j ,

1 ≤ j ≤ i ≤ n

0, otherwise.

(122)

On the other hand, for the computation of the inverse of

classical Vandermonde Vc some algorithms make use of in-

terpolation based techniques e.g. the Lagrange interpolation

method and involve the elementary symmetric polynomials.

Having said that, we follow e.g. [32], [41], [22] to compute

the entries of the inverse of Vc. We obtain,

(V −1
c )ij =

(−1)n+1σn−j(r1,...,ri−1,ri+1,...,rn)

(c(t))j−1
∏

k=n
k=1
k 6=i

(ri−rk)
, (123)

for i = 1, . . . , n; j = 1, . . . , n; where

σn−j(r1, . . . , ri−1, ri+1, . . . , rn) is the (n− j)-th elementary

symmetric polynomial (102)-(104) with ri deleted. Therefore,

having the inverse of Vc, we are in position to characterize

the inverse of the Vandermonde matrix (8). Indeed, from

(120) in conjunction with (122) and (123), we get

V −1(t) = V −1
c (t)S

−1

Lah(t). (124)

Now, in order to solve (114), we can first solve p̃ = V −⊤
c Y .

Then, by the definition of the generalized Laguerre polynomi-

als (100), and using (123), it follows that the i-th component

of the vector p̃ can be computed explicitly,

p̃i(t) = (−1)n+1(n− 1)!
c(t)(

√
c(t))n−1

(c̄0T )n−1

×
n
∑

j=1

n
∑

l=1

rjσn−i(r1,...,rj−1,rj+1,...,rn)

(c(t))i−1
∏

k=n
k=1
k 6=j

(ri−rk)

(

n

n− l

)

(−rj c̄0T
√

c(t))l−1

(l−1)! , i = 1, . . . , n.

(125)

Reorganizing terms, we get from (125):

p̃i(t) = (−1)n+1(n− 1)!
c(t)(

√
c(t))n−1

(c̄0T )n−1(c(t))i−1

×
n
∑

l=1

(

n

n− l

)

(−c̄0T
√

c(t))l−1

(l−1)!

×
n
∑

j=1

rljσn−i(r1,...,rj−1,rj+1,...,rn)
∏

k=n
k=1
k 6=j

(rj−rk)
.

(126)

Applying the following recurrence relation of the elementary

symmetric polynomials into the last term of (126)

σn−i+1(r1, ..., rn)=σn−i+1(r1, ..., rj−1, rj+1, . . . , rn)

+ rjσn−i(r1, . . . , rj−1, rj+1, ..., rn),
(127)

we get

p̃i(t) = (−1)n+1(n− 1)!
c(t)(

√
c(t))n−1

(c̄0T )n−1(c(t))i−1

×
n
∑

l=1

(

n

n− l

)

(

−c̄0T
√

c(t)
)l−1

(l−1)!

×
(

σn−i+1(r1, . . . , rn)E(n, l) + (−1)i−nF(i, l)
)

,

(128)

where

E(n, l) =
n
∑

j=1

(rj)
l−1

∏

k=n
k=1
k 6=j

(rj−rk)
,

F(i, l) =

n
∑

j=1

(−1)n−i+1σn−i+1(r1,...,rj−1,rj+1,...,rn)(rj)
l−1

∏

k=n
k=1
k 6=j

(rj−rk)
.

We use then the orthogonality property related to the ele-

mentary symmetric polynomials and the invertibility of the

classical Vandermonde matrix (see [41, Section 3]). Therefore,

the following holds true:

E(n, l) = δn,l, (129)

where δn,l is the Kronecker delta function. Moreover,

F(i, l) = δi,l+1. (130)

Thus, using (129) and (130), we can greatly simplify (128)

and compute explicitly the i-th component of p̃ as follows:

p̃1(t) = σn(r1, . . . , rn)c
n(t) (131)

and for i = 2, . . . , n, we get:

p̃i(t) =cn−i+1(t)σn−i+1(r1, . . . , rn)

−
(

n

n− i+ 1

)

(n−1)!
(i−2)!

(
√

c(t))n−i+1

(c̄0T )n−i+1 .
(132)

Hence, we can finally characterize p. It suffices to directly

compute p(t) = S−⊤
Lah (t)p̃(t). Taking advantage of the upper

triangular structure of S−⊤
Lah (t) (122) and from (131)-(132) we

have that

S−⊤
Lah (t)p̃(t) =

n
∑

j=i

(−1)j−i
Lah(j − 1, i− 1)

×
(√

c(t)
)2n−i−j+2

(c̄0T )j−i σn−j+1(r1, . . . , rn)

+ (−1)n−i+1

(

n− 1

i− 2

)

n!
(i−1)!

(√
c(t)

)n−i+1

(c̄0T )n−i+1 ,

(133)

where where Lah(j−1, i−1) =
(

j−2
i−2

) (j−1)!
(i−1)! . Notice that (133)

is equivalent to the following formula:

S−⊤
Lah (t)p̃(t) =

n+1
∑

j=i

(−1)j−i
Lah(j − 1, i− 1)

×
(√

c(t)
)2n−i−j+2

(c̄0T )j−i σn−j+1(r1, . . . , rn).

(134)

Shifting the index, we get

S−⊤
Lah (t)p̃(t) =

n
∑

j=i−1

(−1)j−i+1
Lah(j, i− 1)

×
(√

c(t)
)2n−i−j+1

(c̄0T )j−i+1 σn−j(r1, . . . , rn).

Setting k = j and reorganizing terms we have

S−⊤
Lah (t)p̃(t) =

(
√

c(t))n−i+1

(c̄0T )n−i+1

n
∑

k=i−1

(

(−1)k−i+1

× Lah(k, i− 1)σn−k(r1, . . . , rn)(c̄0T
√

c(t))n−k
)

.

(135)
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Setting j = i− 1, from (135), we finally obtain

p0(t) = σn(r1, .., rn)c
n(t),

and for j = 1, . . . , n− 1,

pj(t) =
(
√

c(t))n−j

(c̄0T )n−j

n
∑

k=j

(−1)k−j
(

Lah(k, j)

× σn−k(r1, ..., rn)
(

c̄0T
√

c(t)
)n−k )

.

This concludes the proof.

APPENDIX D

PROOF OF LEMMA 4

Proof: Let us first find an upper bound for Nγ̄(t − h)
which is given by (83). It requires to exploits the structure of

the Vandermonde matrix and its inverse (see (11) along with

(120)-(124)). Therefore, an estimate for the scalar product has

the following form:

γ̄⊤(t− h, x)γ̄(t− h, x) ≤ Q(
√

c(t− h))S(t− h, x), (136)

with

S(t − h, x) =
∑

1≤i≤j≤n

(g0i,j + g1i,j(
√

c(t− h+ x)))

×e(ri+rj)(t− h)e−(ri+rj)(t− h+ x),

where Q(
√

c(t− h)) is a rational polynomial function (whose

coefficients depend on ri, ai−1, c̄0, and T ); and g1i,j are

polynomials of
√

c(t− h+ x) (whose coefficients depend on

ri, ai−1, c̄0 and T ). In addition, g0i,j are positive scalars

depending on ri, ai−1, i = 1, ..., n as well as on c̄0 and T .

Therefore, integrating (136) and rearranging terms, we

obtain,
∫ h

0

‖γ̄(t− h, x)‖2dx ≤ Q(
√

c(t− h))I(t− h), (137)

with I(t−h) =
∑

1≤i≤j≤n e(ri+rj)(t−h)(G0
i,j+G1

i,j), where

G0
i,j = g0i,j

∫ h

0

e−(ri+rj)(t− h+ x)dx, (138)

G1
i,j =

∫ h

0

g1i,j(
√

c(t− h+ x))e−(ri+rj)(t− h+ x)dx.(139)

Let us first analyze G1
i,j . Since g1i,j(

√

c(t− h+ x)) is a poly-

nomial in
√

c(t− h+ x), (139) can be explicitly computed

which in turn allows to obtain an upper bound as follows:

G1
i,j ≤ G11

i,j ,

G11
i,j(t− h) = g11i,j(

√

c(t− h))e−(ri+rj)(t− h),

with g11i,j(
√

c(t− h)) a polynomial function of
√

c(t− h). On

the other hand, G0
i,j in (138) is much more involved. In order

to get an upper bound of it, we are going to use the so-
called generalized Exponential integral function and exploit
its properties. Let us first rewrite (138) as follows:

G0
i,j(t) = g

0
i,j

ri+rj

2
(c̄0T )

2

∫ (ri+rj)c̄0T
√

c(t)

(ri+rj)c̄0T
√

c(t−h)

exp(−s)

s2
ds, (140)

where the change of variable s = (ri+rj)c̄0T
√

c(t− h+ x)
has been used. The form of (140) allows to use the following

generalized exponential integral:

En(v) = vn−1

∫ ∞

v

exp(−s)
sn

ds, v > 0, n ∈ N. (141)

Indeed, by virtue of the definition of generalized
exponential integral (141), we split the integral
∫ (ri+rj)c̄0T

√
c(t)

(ri+rj)c̄0T
√

c(t−h)

exp(−s)
s2

ds in (140) as follows:
∫∞

(ri+rj)c̄0T
√

c(t−h)
exp(−s)

s2
ds−

∫∞

(ri+rj)c̄0T
√

c(t)
exp(−s)

s2
ds so

that

∫ ∞

(ri+rj)c̄0T
√

c(t−h)

exp(−s)

s2
ds =

E2

(

(ri + rj)c̄0T
√

c(t− h)
)

(ri + rj)c̄0T
√

c(t− h)
,

∫ ∞

(ri+rj)c̄0T
√

c(t)

exp(−s)

s2
ds =

E2

(

(ri + rj)c̄0T
√

c(t)
)

(ri + rj)c̄0T
√

c(t)
.

Moreover, the following inequalities hold [9, Section 2]:

0 <
exp(−v)

2 + v
≤ E2 (v) ≤

exp(−v)

1 + v
, v > 0. (142)

Hence, by re-arranging terms and using (142), we obtain that
an upper bound for G0

i,j(t) is given as follows:

G0
i,j ≤ G01

i,j , (143)

G01
i,j(t− h) =

(ri + rj)(c̄0T )
2g0i,j

2s−1
(ri+rj)

(t− h)

e−(ri+rj)(t− h)

1 + s
−1
(ri+rj)

(t− h)
. (144)

Therefore, by combining (144) and (140) we obtain from

(137) the estimate for Nγ̄(t− h) as follows:

Nγ̄(t− h) ≤ 2Q(
√

c(t− h))
∑

1≤i≤j≤n

e(ri+rj)(t− h)

×
(

G01
i,j(t− h) + G11

ij (t− h)
)

.

(145)

Finally, by virtue of Lemma 3 in conjunction with (145), we
get the following:

Nγ̄(t− h)P (
√

c(t− h))e−rmin(t− h) ≤ 2P (
√

c(t− h))

Q(
√

c(t− h))e−rmin(t− h)
∑

1≤i≤j≤n

e(ri+rj)(t− h)

×
(

G01
i,j(t− h) + G11

ij (t− h)
)

.

(146)

Notice that

e(ri+rj)(t− h)G01
i,j(t− h) = ϑ

e(ri+rj)
(t−h)e−(ri+rj)

(t−h)

s
−1
(ri+rj)

(t−h)

(

1+s
−1
(ri+rj)

(t−h)

) ,

where ϑ is a constant whose specific characterization is

not needed in the remaining part of the analysis. Since

e−r(s)er(s) = 1, we conclude that the terms e(ri+rj)(t −
h)G01

i,j(t−h) and e(ri+rj)(t−h)G11
i,j(t−h) → 0 as t → t0+h+

T . Therefore, from (146), Nγ̄(t−h)P (
√

c(t− h))e−rmin(t−
h) → 0 as t → t0 + h+ T . This concludes the proof.
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