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Distributed Aggregative Optimization over Multi-Agent

Networks
Xiuxian Li, Lihua Xie, and Yiguang Hong

Abstract—This paper proposes a new framework for distributed

optimization, called distributed aggregative optimization, which allows
local objective functions to be dependent not only on their own decision

variables, but also on the average of summable functions of decision

variables of all other agents. To handle this problem, a distributed

algorithm, called distributed gradient tracking (DGT), is proposed and
analyzed, where the global objective function is strongly convex, and the

communication graph is balanced and strongly connected. It is shown

that the algorithm can converge to the optimal variable at a linear rate.
A numerical example is provided to corroborate the theoretical result.

Index Terms—Distributed algorithm, aggregative optimization, multi-

agent networks, strongly convex function, linear convergence rate.

I. INTRODUCTION

Distributed optimization has received immense attention in the past

decade, mostly inspired by advanced and inexpensive sensors, big

data, and large-scale networks, and so on. In distributed optimization,

a network consisting of a family of agents is usually introduced to

capture the communication pattern among all agents, where each

agent is only accessible to partial (and maybe private) information

on the global optimization problem. In this case, the agents in the

network aim to cooperatively, by local information exchange, solve

the global optimization problem.

To date, a large volume of algorithms have been devised for

distributed optimization problems. Generally speaking, the existing

algorithms can be roughly summarized as two classes: consensus-

based algorithms and dual-decomposition-based algorithms. Wherein,

consensus-based algorithms employ the consensus idea to align the

estimated variables of all agents, for which existing algorithms

include distributed subgradient [1], diffusion adaptation strategy

[2], fast distributed gradient [3], asynchronous distributed gradient

[4], stochastic mirror descent [5], and distributed quasi-monotone

subgradient algorithm [6], etc. With regard to dual-decomposed-

based algorithms, dual variables are usually introduced by viewing

the synchronization of all local variables as equality constraints,

including alternating direction method of multipliers (ADMM) [7],

EXTRA [8], augmented Lagrangian method [9], distributed dual

proximal gradient [10], and distributed forward-backward Bregman

splitting [11].

From another viewpoint, a variety of scenarios have so far been

considered for distributed optimization. The simplest case is to

minimize an objective/cost function without any constraints [1],

[8], [12], including feasible set constraints, equality and inequality

constraints, where the objective function is separable and composed

of local objective functions. A little more complex case is to address

distributed optimization with global/local feasible set constraints

[13]–[15], that is, the decision variable must stay within some pre-

specified nonempty set that is often assumed to be closed and convex.
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Moreover, the scenario with local (affine) equality constraints are

addressed, for example, in [16], while local inequality constraints are

investigated such as in [17], and global inequality constraints that can

be realized by all agents are taken into account in the literature, see

[18] for an example. Furthermore, the case with globally coupled

inequality constraints, where individual agent is only capable of

accessing partial information on the global inequality constraints, is

studied such as in [19]–[24], and meanwhile, time-varying objective

functions and/or constraint functions are also considered in recent

years [25]–[28].

With careful observation, it can be found that distributed optimiza-

tion studied in the aforementioned works focus on the case where

a global objective function is a sum of local objective functions,

which are dependent only on their own decision variables. To be

specific, the problem is in the form
∑N

i=1 fi(xi) such that xi = xj

for all i 6= j, maybe subject to inequality constraints, from which

it is easy to see that each fi is a function with respect to only xi,

independent of any other variables xj , j 6= i. However, in a multitude

of practical applications, local objective functions are also determined

by other agents’ variables. For example, in multi-agent formation

control, each objective function often relies on variables (such as

positions or velocities) of all its neighbors, and this scenario has

been considered such as in [29] and [30] (cf. Remark 4). As another

example, the average of all variables, i.e.,
∑N

i=1 xi/N , is a vital

parameter for all agents in a network, which can be discovered from

a large number of applications, such as optimal placement problem,

transportation network, and formation control, etc. For instance, in

formation control, a group of networked agents desire to achieve

a geometric pattern, and simultaneously, they may plan to encircle

an important target, which can be cast as a target tracking problem

for the center of all agents. Therefore, it is significant to deal with

the scenario where the average of all variables is involved in local

objective functions. From the theoretical perspective, when each

local function fi also depends on variables of other agents (such

as the average
∑N

i=1 xi/N ), the problem will be more challenging

since other variables (such as the average
∑N

i=1 xi/N ) and related

gradients are unavailable to agent i.
Motivated by the above facts, this paper aims to formulate and

study a new framework for distributed optimization, called distributed

aggregative optimization, for which a distributed algorithm, called

distributed gradient tracking (DGT), is developed and analyzed. It is

shown that the proposed algorithm has a linear convergence speed

under mild assumptions, such as strong convexity of the global

objective function and a directed balanced communication graph.

The contributions of this paper are as follows: (1) a new distributed

aggregative optimization is formulated for the first time; (2) a linearly

convergent distributed algorithm is proposed and analyzed rigorously;

and (3) a numerical example is provided to support the theoretical

result.

The rest of this paper is structured as follows. Some preliminaries

and the problem formulation are provided in Section II, followed by

the main result in Section III. In Section IV, a numerical example is

presented to corroborate the theoretical result, and the conclusion is

drawn in Section V.
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Notations: Let R
n and C be the set of vectors with dimension

n > 0 and the set of complex numbers, respectively. Define [k] =
{1, 2, . . . , k} for an integer k > 0. Denote by col(z1, . . . , zk) the

column vector by stacking up z1, . . . , zk. Let ‖ ·‖, x⊤, and 〈x, y〉 be

the standard Euclidean norm, the transpose of x ∈ R
n, and standard

inner product of x, y ∈ R
n. Let 1 and 0 be column vectors of

compatible dimension with all entries being 1 and 0, respectively, and

I be the compatible identity matrix. Let ρ(M) be the spectral radius

of a square matrix M . ⊗ is the Kronecker product. Let J := 1
N
11

⊤

and J := J ⊗ I with compatible dimension.

II. PRELIMINARIES

A. Graph Theory

The communication pattern among all agents is captured by a

simple graph in this paper, denoted by G = (V, E) with the node

set V = {1, . . . , N} and the edge set E ⊂ V×V . An edge (j, i) ∈ E
means that node j can send information to node i, where j is called

an in-neighbor of i. Denote by Ni = {j : (j, i) ∈ E} the in-neighbor

set of node i. The graph G is called undirected if (i, j) ∈ E is

equivalent to (j, i) ∈ E , and directed otherwise. The communication

matrix A = (aij) ∈ R
N×N is defined by: aij > 0 if (j, i) ∈ E , and

aij = 0 otherwise.

The following standard assumptions on the communication graph

are postulated.

Assumption 1. The following hold for the interaction graph:

1) The graph G is strongly connected;

2) The matrix A is doubly stochastic, i.e.,
∑N

j=1 aij = 1 and
∑N

i=1 aij = 1 for all i, j ∈ [N ].

It should be noted that some approaches have been brought forward

in the literature in order to hold the double stochasticity condition,

for example, the uniform weights [31] and the least-mean-square

consensus weight rules [32]. In addition, some distributed strategies

have been proposed in [33] for strongly connected directed graphs to

compute a doubly stochastic assignment in finite time.

B. Convex Optimization

For a convex function g : Rn → R, the subdifferential, denoted as

∂g(x), of g at x is defined by

∂g(x) = {s ∈ R
n : g(y)− g(x) ≥ s⊤(y − x), ∀y ∈ R

n},

and each element in ∂g(x) is called a subgradient. When g is

differentiable at x, the subdifferential ∂g(x) only contains one

element, which is usually called gradient, denoted as ∇g(x).
The differentiable function g is called µ-strongly convex if for all

x, y ∈ R
n,

g(x) ≥ g(y) +∇g(y)⊤(x− y) +
µ

2
‖x− y‖2. (1)

C. Problem Formulation

This paper proposes a new framework for distributed optimization

in a network composed of N agents, called distributed aggregative

optimization, given as follows:

min
x∈Rn

f(x) :=

N
∑

i=1

fi(xi, σ(x)), (2)

σ(x) :=

∑N

i=1 φi(xi)

N
, (3)

where x = col(x1, . . . , xN) is the global decision variable with

xi ∈ R
ni , n :=

∑N

i=1 ni, and fi : Rn → R is the local objective

function. In problem (2), the global function f is not known to any

agent, and each agent can only privately access the information on fi.
Moreover, each agent i ∈ [N ] is only aware of the decision variable

xi without any knowledge of xj’s for all j 6= i. Moreover, the term

σ(x) is an aggregative information of all agents’ variables, and the

function φi : Rni → R
d is only accessible to agent i. The goal is

to design distributed algorithms to seek an optimal decision variable

for problem (2).

Remark 1. It should be noted that distributed aggregative optimiza-

tion is proposed here for the first time, to our best knowledge, which

is different from aggregative games [34], [35]. The substantial differ-

ence lies in that all agents in problem (2) aim to cooperatively find

an optimal variable for the sum of all local objective functions, while

the objective of aggregative games is to find the Nash equilibrium in

a noncooperative manner since each agent desires to minimize only

its own objective function. This can be seen from the following simple

example.

Example 1. As a simple example, let us consider two agents in a

network in the scalar space R without feasible set constraints. Let

f1(x) = (x1 − 1)2 + σ2(x) = (x1 − 1)2 + (x1 + x2)
2/4 and

f2(x) = (x2 − 2)2 + σ2(x) = (x2 − 2)2 + (x1 + x2)
2/4. As a

result, for distributed aggregative optimization, the optimal variable

of f(x) = f1(x)+ f2(x) can be easily calculated, by ∇x1
f(x) = 0

and ∇x2
f(x) = 0, as x1 = 1/4, x2 = 5/4. On the other hand, as

for aggregative games, the Nash equilibrium can be computed, by

∇x1
f1(x) = 0 and ∇x2

f2(x) = 0, as x1 = 1/2, x2 = 3/2. It is

apparent to see that the Nash equilibrium x1 = 1/2, x2 = 3/2 is not

the same as the global optimizer of f(x), i.e., x1 = 1/4, x2 = 5/4.

In other words, the Nash equilibrium is generally not the optimal

decision variable due to the noncooperative nature of all agents in

aggregative games.

To move forward, for brevity, let ∇1fi(xi, σ(x)) and

∇2fi(xi, σ(x)) denote ∇xi
fi(xi, σ(x)) and ∇σfi(xi, σ(x)),

respectively, for all i ∈ [N ]. And for x ∈ R
n and

y = col(y1, . . . , yN) ∈ R
Nd, define f(x, y) :=

∑N

i=1 fi(xi, yi),
∇1f(x, y) := col(∇1f1(x1, y1), . . . ,∇1fN (xN , yN)) and

∇2f(x, y) := col(∇2f1(x1, y1), . . . ,∇2fN (xN , yN )).
It is now necessary to list some assumptions.

Assumption 2. The following hold for problem (2):

1) The global objective function f(x) is differentiable, µ-strongly

convex, and L1-smooth on R
n, that is, ‖∇f(x)−∇f(x′)‖ ≤

L1‖x−x′‖ for all x, x′ ∈ R
n. Also, ∇1f(x, y)+∇φ(x)1N⊗

1
N

∑N

i=1 ∇2fi(xi, yi) is L1-Lipschitz;

2) ∇2f(x, y) is L2-Lipschitz continuous, that is, ‖∇2f(x, y) −
∇2f(x

′, y′)‖ ≤ L2(‖x − x′‖ + ‖y − y′‖) for all x, x′ ∈ R
n

and y, y′ ∈ R
Nd;

3) All φi’s are differentiable, and there exists a constant L3 > 0
such that ‖∇φi(xi)‖ ≤ L3 for all xi ∈ R

ni and i ∈ [N ].

It should be noted that the Lipschitz property of ∇f(x) and

∇1f(x, y) +∇φ(x)1N ⊗ 1
N

∑N

i=1 ∇2fi(xi, yi) in Assumption 2.1

can be ensured by Assumptions 2.2 and 2.3 along with the bound-

edness of ∇2f(x, y) and the Lipschitz property of ∇1f(x, y) and

∇φi(xi), which are standard in distributed optimization and game

theory (e.g., [1], [3], [15], [19], [24], [34], [35]). Please also note

that it is only assumed the strong convexity of the global objective

function f(x), without even the convexity of local objective functions

fi’s.

To conclude this section, it is useful to display a few lemmas.

Lemma 1 ( [36]). For an irreducible nonnegative matrix M ∈ R
n×n,

it is primitive if it has at least one non-zero diagonal entry.
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Lemma 2 ( [36]). For an irreducible nonnegative matrix M ∈ R
n×n,

there hold (i) ρ(M) > 0 is an eigenvalue of M , (ii) Mx = ρ(M)x
for some positive vector x, and (iii) ρ(M) is an algebraically simple

eigenvalue.

Lemma 3. Let F : Rn → R be µ-strongly convex and L-smooth.

Then ‖x− α∇F (x)− (y − α∇F (y))‖ ≤ (1− µα)‖x − y‖ for all

x, y ∈ R
n, where α ∈ (0, 1/L].

Proof. It is known that a convex function f : Rn → R is l-smooth is

equivalent to the convexity of l
2
‖x‖2−f(x). Thus, by L-smoothness

of F , one has that L
2
‖x‖2 − F (x) is convex, and then 1

2α
‖x‖2 −

F (x) is ( 1
2α

− L
2
)-strongly convex for α ∈ (0, 1/L], which further

implies that H(x) := 1
2
‖x‖2 −αF (x) is ( 1

2
− Lα

2
)-strongly convex.

Meanwhile, it is easy to verify that 1−µα

2
‖x‖2−H(x) = α(F (x)−

µ

2
‖x‖2) is convex since F (x)− µ

2
‖x‖2 is convex due to the µ-strong

convexity of F . Therefore, H is (1− µα)-smooth, i.e., ‖∇H(x)−
∇H(y)‖ ≤ (1 − µα)‖x − y‖ for all x, y ∈ R

n, thus ending the

proof.

Lemma 4. Under Assumption 1, there hold (i) AJ = JA = J , and

(ii) ‖Ax−Jx‖ ≤ ρ‖x−Jx‖ for any x ∈ R
Nd, where A := A⊗Id

and ρ := ‖A− J‖ < 1.

Proof. The assertion (i) is trivial to verify. For the assertion (ii), it

is easy to see that ‖Ax − J x‖ = ‖(A − J )x − (A − J )Jx‖ ≤
‖A − J ‖‖x − J x‖ = ‖A − J‖‖x − Jx‖. Invoking the double-

stochasticity of A and the Perron-Frobenius theorem [36], one has

‖A− J‖ < 1. This ends the proof.

Lemma 5. [37] Let X,E ∈ R
n×n with λ being a simple eigenvalue

of X . Let w and v be the left and right eigenvectors of X associated

with the eigenvalue λ, respectively. Then,

1) for each ǫ > 0, there exists a δ > 0 such that, ∀t ∈ C with

|t| < δ, there is a unique eigenvalue λ(t) of X+ tE such that

|λ(t)− λ− tw
⊤Ev

w⊤v
| ≤ |t|ǫ,

2) λ(t) is continuous at t = 0, and limt→0 λ(t) = λ,

3) λ(t) is differentiable at t = 0, and
dλ(t)
dt

∣

∣

t=0
= w⊤Ev

w⊤v
.

III. MAIN RESULT

This section presents the algorithm design and analysis. In doing

so, a distributed algorithm, called distributed gradient tracking (DGT

for short), for solving (2) is proposed for each agent i ∈ [N ] as in

Algorithm 1.

Algorithm 1 Distributed Gradient Tracking (DGT)

1: Initialization: Stepsize α > 0, and initial conditions xi,0 ∈ R
ni ,

σi,0 = φi(xi,0), and yi,0 = ∇2fi(xi,0, σi,0) for all i ∈ [N ].
2: Iterations: Step k ≥ 0: update for each i ∈ [N ]:

xi,k+1 = xi,k − α[∇1fi(xi,k, σi,k) +∇φi(xi,k)yi,k], (4a)

σi,k+1 =
N
∑

j=1

aijσj,k + φi(xi,k+1)− φi(xi,k), (4b)

yi,k+1 =

N
∑

j=1

aijyj,k +∇2fi(xi,k+1, σi,k+1)

−∇2fi(xi,k, σi,k), (4c)

In algorithm (4), σi,k is leveraged for agent i to track the average

(3) since σ(x) is global information, which cannot be accessed

directly for all agents, and meanwhile, yi,k is introduced for agent

i to track the gradient sum 1
N

∑N

i=1 ∇2fi(xi, σ(x)), which is also

unavailable to all agents. The initial variable xi,0 is arbitrary for all

i ∈ [N ], and choosing σi,0 = φi(xi,0) and yi,0 = ∇2fi(xi,0, σi,0)
for all i ∈ [N ].

The name “distributed gradient tracking” is attributed to the

fact that algorithm (4) has combined the classical gradient descent

algorithm with the variable tracking techniques.

To proceed, for a vector x = col(x1, . . . , xN) ∈ R
n, it is helpful to

define φ(x) := col(φ1(x1), . . . , φN (xN)). Also, for a differentiable

function g(x) = col(g1(x), . . . , gm(x)), where gi’s are real-valued

functions, let us denote by ∇g(x) = (∇g1(x), . . . ,∇gm(x)).

With the above notations and those after Example 1, DGT (4) can

be written in a compact form

xk+1 = xk − α[∇1f(xk, σk) +∇φ(xk)yk], (5)

σk+1 = Aσk + φ(xk+1)− φ(xk), (6)

yk+1 = Ayk +∇2f(xk+1, σk+1)−∇2f(xk, σk), (7)

with A = A⊗Id as defined in Lemma 4, xk := col(xi,k, . . . , xN,k),
and similar notations for σk and yk.

Before presenting the main result, it is necessary to first introduce

a preliminary result.

Lemma 6. Under Assumption 1, there hold:

σ̄k :=
1

N

N
∑

i=1

σi,k =
1

N

N
∑

i=1

φi(xi,k),

ȳk :=
1

N

N
∑

i=1

yi,k =
1

N

N
∑

i=1

∇2fi(xi,k, σi,k).

Proof. In view of (6) and double-stochasticity in Assumption 1,

multiplying 1
⊤/N on both sides of (6) can lead to that

σ̄k+1 = σ̄k +
1

N

N
∑

i=1

φi(xi,k+1)−
1

N

N
∑

i=1

φi(xi,k),

which further implies that

σ̄k −
1

N

N
∑

i=1

φi(xi,k) = σ̄0 −
1

N

N
∑

i=1

φi(xi,0).

Combining the above equality and σi,0 = φi(xi,0) yields the first

assertion of this lemma. Similar arguments can obtain the second

one, which completes the proof.

It is now ready to present the main result of this paper.

Theorem 1. Under Assumptions 1 and 2, if

0 < α < min
{ 1

L1
, αs

}

, (8)

where

αs :=
µ(1− ρ)2

L3Lµ[(1− ρ)L0 + 2L2L3]
, (9)

Lµ := µ + L1 + L2L3 and L0 := L1 + L2 + L2L3, then xk =
col(x1,k, . . . , xN,k) generated by algorithm (4) can converge to the

optimizer of problem (2) at a linear convergence rate.

Proof. Let us bound ‖xk+1−x∗‖, ‖xk+1−xk‖, ‖σk+1−J σk+1‖,

and ‖yk+1−J yk+1‖ in the sequel, where x∗ is the optimal variable

of problem (2). Denote σ(x∗) as σ∗ for brevity in this proof.
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First, for ‖xk+1 − x∗‖, invoking (5) yields that

‖xk+1 − x∗‖

= ‖xk − x∗ − α[∇1f(xk, σk) +∇φ(xk)yk]‖

≤ ‖xk − x∗ − α[∇1f(xk,1N ⊗ σ̄k)

+∇φ(xk)1N ⊗
1

N

N
∑

i=1

∇2fi(xi,k,1N ⊗ σ̄k)] + α∇f(x∗)

+ α‖∇1f(xk, σk) +∇φ(xk)1N ⊗ ȳk −∇1f(xk,1N ⊗ σ̄k)

−∇φ(xk)1N ⊗
1

N

N
∑

i=1

∇2fi(xi,k,1N ⊗ σ̄k)‖

+ α‖∇φ(xk)yk −∇φ(xk)1N ⊗ ȳk‖

≤ (1− µα)‖xk − x∗‖+ αL1‖σk − 1N ⊗ σ̄k‖

+ α‖∇φ(xk)‖‖yk − 1N ⊗ ȳk‖

≤ (1− µα)‖xk − x∗‖+ αL1‖σk − J σk‖

+ αL3‖yk −J yk‖, (10)

where Assumption 2.1, Lemma 3, (5) and (8) have been utilized to

obtain the second inequality, and the last inequality has applied the

fact that ‖∇φ(xk)‖ ≤ maxi∈[N] ‖φi(xi,k)‖ ≤ L3 by Assumption

2.3, 1N ⊗ σ̄k = J σk, and 1N ⊗ ȳk = J yk.

Second, for ‖xk+1 − xk‖, by noting that

∇f(x∗) = ∇1f(x
∗, 1N ⊗ σ∗)

+∇φ(x∗)[1N ⊗
1

N

N
∑

i=1

∇2fi(x
∗,1N ⊗ σ∗)]

= 0,

invoking (5) yields that

‖xk+1 − xk‖

= α‖∇1f(xk, σk) +∇φ(xk)yk‖

≤ α‖∇1f(xk, σk) +∇φ(xk)J yk −∇1f(x
∗,1N ⊗ σ∗)

−∇φ(x∗)[1N ⊗
1

N

N
∑

i=1

∇2fi(x
∗,1N ⊗ σ∗)]‖

+ α‖∇φ(xk)(yk − J yk)‖

≤ αL1(‖xk − x∗‖+ ‖σk − 1N ⊗ σ∗‖) + αL3‖yk − J yk‖

≤ αL1(‖xk − x∗‖+ ‖σk − J σk‖) + αL3‖yk − J yk‖

+ αL1‖J σk − 1N ⊗ σ∗‖, (11)

where Assumption 2.1 and ‖∇φ(xk)‖ ≤ L3 have been used in the

second inequality. For the last term in (11), in view of Lemma 6, one

has that

‖J σk − 1N ⊗ σ∗‖2 = ‖1N ⊗ (σ̄k − σ∗)‖2

= N‖
1

N

N
∑

i=1

(φi(xi,k)− φi(x
∗

i ))‖
2

≤
1

N
(

N
∑

i=1

‖φi(xi,k)− φi(x
∗

i )‖)
2

≤
1

N
(

N
∑

i=1

L3‖xi,k − x∗

i ‖)
2

≤ L2
3

N
∑

i=1

‖xi,k − x∗

i ‖
2

= L2
3‖xk − x∗‖2,

where Assumption 2.3 has been employed in the second inequality,

and the last inequality has appealed to the fact that (
∑N

i=1 ai)
2 ≤

N
∑N

i=1 a
2
i for any nonnegative scalars ai’s. Therefore, combining

the above inequality and (11) follows that

‖xk+1 − xk‖ ≤ αL1(1 + L3)‖xk − x∗‖+ αL1‖σk − J σk‖

+ αL3‖yk − J yk‖. (12)

Third, regarding ‖σk+1 − J σk+1‖, by noting that JA = AJ =
J , in light of (6), one can obtain that

‖σk+1 − J σk+1‖

= ‖Aσk + φ(xk+1)− φ(xk)− JAσk

− J [φ(xk+1)− φ(xk)]‖

≤ ρ‖σk − J σk‖+ ‖I − J‖‖φ(xk+1)− φ(xk)‖

≤ ρ‖σk − J σk‖+ L3‖I − J‖‖xk+1 − xk‖, (13)

where Lemma 4 has been leveraged in the first inequality, and

Assumption 2.3 has been exploited in the last inequality. By noticing

that ‖I−J‖ = 1 and inserting (12) into (13), it can be obtained that

‖σk+1 − J σk+1‖

≤ (ρ+ αL1L3)‖σk −J σk‖+ αL1L3(1 + L3)‖xk − x∗‖

+ αL2
3‖yk − J yk‖. (14)

Fourth, for ‖yk+1 −J yk+1‖, similar to (13), invoking (7) results

in that

‖yk+1 − J yk+1‖

≤ ρ‖yk − J yk‖+ ‖∇2f(xk+1, σk+1)−∇2f(xk, σk)‖. (15)

At this step, by (6), one has that ‖σk+1−σk‖ = ‖(A−I⊗Id)(σk−
J σk)+φ(xk+1)−φ(xk)‖ ≤ ‖A−I‖‖σk−J σk‖+L3‖xk+1−xk‖,

where the fact Aσk−σk = (A−I⊗Id)(σk−Jσk) has been used in

the equality, and Assumption 2.3 has been leveraged in the inequality,

which together with Assumption 2.2 yields that

‖∇2f(xk+1, σk+1)−∇2f(xk, σk)‖

≤ L3(‖xk+1 − xk‖+ ‖σk+1 − σk‖)

≤ L2(1 + L3)‖xk+1 − xk‖+ L2‖A− I‖‖σk − J σk‖. (16)

Substituting (12) and (16) into (15) can give rise to

‖yk+1 − J yk+1‖

≤ (ρ+ αL2L3(1 + L3))‖yk − J yk‖

+ αL1L2(1 + L3)
2‖xk − x∗‖

+ (αL1L2(1 + L3) + L2‖A− I‖)‖σk − J σk‖. (17)

Finally, define θk := col(‖xk − x∗‖, ‖σk −J σk‖, ‖yk −J yk‖).
By (10), (14), (17) and ‖A − I‖ ≤ 2, it can be concluded that

θk+1 ≤ M(α)θk, (18)

where

M(α) := X + αE, (19)

and

X :=





1 0 0
0 ρ 0
0 2L2 ρ



 , (20)

E :=





−µ L1 L3

L1L2(1 + L3) L1L3 L2
3

L1L2(1 + L3)
2 L1L2(1 + L3) L2L3(1 + L3)



 . (21)

Denote by λ(α) the eigenvalues of M(α). It is easy to see that 1
is a simple eigenvalue of M(0), and its corresponding left and right
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eigenvectors are both w = col(1, 0, 0). As a result, invoking Lemma

6 leads to that

dλ(α)

dα

∣

∣

∣

α=0
=

w⊤Ew

w⊤w
= −µ < 0, (22)

which indicates that the spectral radius of M(α) will be less than 1
for sufficiently small positive α.

One can also see that the graph corresponding to M(α) is strongly

connected, which together with Theorem C.3 in [38] implies that

M(α) is irreducible. By Lemma 1, M(α) is primitive, which in

combination with Lemma 2 can ensure that 1 will be a simple

eigenvalue of M(α) when α increases from 0 to some value. By

calculating det(I −M(α)) = 0, one can obtain that α = αs, where

αs is defined in (9). Therefore, all eigenvalues of M(α) have absolute

values less than 1 when α ∈ (0, αs), which can guarantee the linear

convergence rate of θk, thus ending the proof.

Remark 2. It is worth mentioning that, to our best knowledge, this

paper is the first to investigate problem (2) in the presence of the

aggregative term σ(x), for which a linearly convergent distributed

algorithm has been developed here.

IV. A NUMERICAL EXAMPLE

This section aims at presenting an optimal placement problem for

supporting the designed algorithm. In an optimal placement problem

in R
2, there are M entities that are located at fixed positions, and

meanwhile, there are N free entities, each of which are only privately

aware of some of the fixed M entities. The objective is to determine

the optimal positions of N free entities in order to minimize the sum

of all (square) distances from each free entity to its corresponding

fixed entities and the (square) distances from each agent to the center

of all free entities. For example, the entities can represent warehouses,

the links between each free entity and its associated fixed entities as

well as the center of all free entities stand for the transportation

routes, and the center of all free entities means a goods factory or a

central warehouse. In this example, free entities are called agents.

1

4

2

5

3

Fig. 1. The communication graph.

For the above problem, let M = N = 5, and each agent i is only

privately aware of the fixed entity i. In this case, the problem can be

modeled as (2) by letting

fi(xi, σ(x)) = γi‖xi − ri‖
2 + ‖xi − σ(x)‖2, i ∈ [N ] (23)

where ri’s are the fixed entities, and γi > 0 represents the weighting

between the first and second terms. For the simulation, let φi be the

identity mapping for all i ∈ [N ], α = 0.05, γi = i, r1 = col(3, 5),
r2 = col(6, 9), r3 = col(9, 8), r4 = col(6, 2), and r5 = col(9, 2),
and the communication graph is shown in Fig. 1, which is strongly

connected.

By randomly selecting the initial positions of agents, i.e., xi,0’s,

performing the developed DGT algorithm gives rise to evolutions of

all xi,k’s and σi,k’s, as shown in Figs. 2 and 3, respectively, showing

that all agents can converge to their optimal positions very fast and

the estimate σi,k of each agent can converge to the optimal σ(x∗),
where x∗ = col(x∗

1, . . . , x
∗
N) is the optimal position. Therefore, the

simulation results support the theoretical result.
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Fig. 2. Evolutions of xi,k’s, where squares and circles mean initial positions
and final optimal positions of all agents, respectively.
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Fig. 3. Evolutions of σi,k’s, where squares are the initial positions, and the

pentagram means the optimal center, i.e., σ(x∗) = 1
N

∑N
i=1 x

∗
i .

V. CONCLUSION

This paper has proposed and investigated a new framework for

distributed optimization, i.e., distributed aggregative optimization,

which allows local objective functions to be dependent not only on

their own decision variables but also on an aggregative term σ(x),
relying on decision variables of all other agents. To handle this

problem, a distributed algorithm, i.e., DGT, has been developed and

rigorously analyzed, where the global objective function is assumed

to be strongly convex and smooth along with some Lipschitz property,

and the communication graph is assumed to be fixed, balanced, and

strongly connected. It has been shown that the algorithm can converge

to the optimal variable at a linear rate. A numerical example has

been provided to support the theoretical result. Basically, this paper

opens up a new avenue to distributed optimization. Future works

can be placed on various cases, such as unbalanced graphs, feasible

constraint sets, and other interesting forms of objective functions, etc.
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