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A Scalable Strategy for the Identification of
Latent-variable Graphical Models

Daniele Alpago, Mattia Zorzi, Augusto Ferrante

Abstract—In this paper we propose an identification method
for latent-variable graphical models associated to autoregressive
(AR) Gaussian stationary processes. The identification procedure
exploits the approximation of AR processes through stationary
reciprocal processes thus benefiting of the numerical advantages
of dealing with block-circulant matrices. These advantages be-
come more and more significant as the order of the process
gets large. We show how the identification can be cast in a
regularized convex program and we present numerical examples
that compares the performances of the proposed method with
the existing ones.

Index Terms—Latent-variable graphical models, Reciprocal
processes, Maximum likelihood, Maximum entropy, Regulariza-
tion, System identification.

I. INTRODUCTION

THE ideas behind graphical models have their origins in
several scientific areas, such as statistical physics and

genetics back at the beginning of the last century. However,
only recent developments of such ideas allowed to employ
graphical models in identification problems involving high
dimensional data [1], [2], [3], [4], [5], [6], [7], [8]. In this
direction, particularly useful are sparse graphical models, i.e.
graphs with few edges that describe the interactions between
a large number of variables. Such models have become very
popular in the literature in the recent years because, beside giv-
ing a concise representation of the phenomenon under scruting,
sparsity implies a limited number of model’s parameters thus
avoiding overfitting in the identification procedure.
Although the latter is a desirable property, enforcing sparsity
in the identification procedure is not always the best choice, as
it may prevent a sufficiently rich description of the underlying
phenomenon. Indeed, in many practical situations, the pres-
ence of a few common, hidden behaviors between the variables
of interest explaining the most part of the interactions between
the observed variables can be crucial. The fact that a sparse
graphical model is not able to describe the essential features of
this kind of phenomena motivates the introduction of the so-
called latent-variable graphical models. The latter consist in
a two-layer graph where the conditional dependence relations
between the observed variables are mainly due to the latent
variables (i.e. variables not accessible to observations): each
latent-variable (on the top-layer) is connected to the majority
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of the observed variables (on the bottom-layer), making the
latter a sparse subgraph. Since the number of latent-variables is
small, the overall graph has a reduced number of edges. In the
simplest possible setting, one can associate this kind of models
to a Gaussian random vector [8]. The particular graphical
structure translates in a sparse plus low-rank decomposition of
its concentration matrix. In [8] the identification of the sparse
and the low-rank part of the concentration matrix has been cast
in a regularized maximum-likelihood optimization problem.
A dynamic version of this problem, i.e. the identification of
latent-variable graphical models for AR Gaussian processes,
has been considered in [9] where the problem has been shown
to be strictly connected to a maximum-entropy problem. As
showed in [10], this identification problem can be effectively
solved by an ADMM-type algorithm. The optimization pro-
cedure, however, involves the inversion and the eigenvalue
decomposition of matrices whose dimension is proportional
to the product of the order of the process by the dimension of
the process, making the procedure numerically critical when
the order of the AR process is high, as it happens, for example,
when the AR process is an approximation of an ARMA one.
In this paper we consider the problem of identifying latent-
variable graphical models for stationary Gaussian reciprocal
processes. The latter are periodic stationary processes [11],
[12], [13], [14], [15], [16], [17] and they have been proven
to be a worthy approximation of Gaussian AR processes,
provided that the period N is sufficiently large [18], [16].
We will show that the proposed identification procedure is in
fact an approximation of the maximum entropy and maximum
likelihood identification paradigms proposed for the classical
AR processes. The fact that stationary reciprocal process can
be modeled by means of block-circulant matrices represents a
big numerical advantage as the inversion and the eigenvalue
decomposition of such matrices can be performed robustly
[19] making the proposed procedure attractive also for the
identification AR processes of high order and hence for
ARMA processes.
The paper is organized as follows: In Section II we fix the
notation and we recall the fundamental results used in the
rest of the paper. In Section III we introduce reciprocal pro-
cesses and we explain how they are related to AR processes.
In Section IV we characterize graphical models associated
to reciprocal processes while, in Section V, we propose a
convex optimization problem for the identification of such
models. Section VI is devoted to the ADMM formulation of
the optimization problem and Section VII reports numerical
experiments concerning the implementation of the proposed
procedure. Finally, in Section VIII we draw the conclusions.
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II. NOTATION AND BACKGROUND

In this paper we will deal both with real matrices and with
matrix-valued functions defined on the unit-circle T := {eiθ :
θ ∈ [−π,π]}. For such functions we will omit the dependence
on θ when it is clear from the context, i.e. we will write F in
place of F(eiθ ). The rank of a matrix G is denoted by rank(G)
while the (normal) rank of any Cp×p-valued analytic function
F defined on T, is defined as

rank(F) := max
θ∈[−π,π]

rank(F(eiθ )). (1)

In the same fashion, the following notations will be used
indifferently in the case that G is a Cp×p-valued function
defined on T or a square constant matrix: G> denotes the
transpose of G, G∗ its transpose-conjugate and diag(G) ∈ Cp

denotes the vector whose entries are the diagonal elements
of G. ker(G) indicates the kernel of G. G > 0 and G ≥ 0
denote that G is a positive definite and, respectively, positive
semidefinite. tr(G), det(G) and G−1 denote the trace of G, the
determinant of G and its inverse, respectively. Ip denotes the
identity matrix of order p.

We define the cone

Sp := {F ∈Hp : Φ−α Ip ≥ 0 a.e. on T, for some α > 0},
where Hp is the space of square integrable coercive functions
defined on the unit circle and taking values in the space of p×
p Hermitian matrices. For any F ∈Hp we will use equivalently
the notations ∫ π

−π
F(eiθ )

dθ
2π

,
∫

F

for the integral of F over [−π,π] with respect to the normal-
ized Lebesgue measure on T. We define also the family of
matrix pseudo-polynomials

Qp,n :=

{
n

∑
k=−n

Qk eiθk, Q−k = Q>k ∈ Rp×p

}
.

For any sub-interval (x1,x2) := {x : x1 < x < x2} of an interval
(a,b) ⊂ R, we denote with (x1,x2)

c the complement set of
(x1,x2) in (a,b). E[·] denotes the expectation operator.

In this paper we will always consider AR processes of
order n and reciprocal processes of period N, i.e. completely
specified in a finite interval of length N. All such processes
are understood with zero mean throughout the paper. It will
be always assumed that N > 2n and that N is an even number.
The case with N odd can be dealt in a similar way. We define
the vector space C⊂ RmN×mN of the (real) symmetric, block-
circulant matrices

C = circ{C0,C1, . . . ,CN
2 −1,CN

2
,C>N

2 −1, . . . ,C
>
1 },

whose first block-column is composed by the m×m blocks
C0,C1, . . . ,CN

2 −1,CN
2
,C>N

2 −1
, . . . ,C>1 . The space C is endowed

with the inner product 〈C,D〉C := tr(C>D). The symbol of the
block-circulant matrix C ∈ C is defined as the m×m pseudo-
polynomial

Φ(ζ ) :=
N−1

∑
k=0

Ck ζ−k, with Ck =C>N−k for k >
N
2
, (2)

where ζ := ei 2π
N is the N-th root of unity.

Proposition 1: Let C be a block-circulant matrix with
symbol Φ(ζ ) defined by (2). Then

C = F∗diag
{

Φ(ζ 0), Φ(ζ 1), · · · , Φ(ζ N−1)
}

F, (3)

where F is the (Fourier) unitary block-matrix

F =
1√
N


ζ−0·0I ζ−0·1 · · · ζ−0·(N−1)I
ζ−1·0I ζ−1·1I · · · ζ−1·(N−1)I

...
...

. . .
...

ζ−(N−1)·0I ζ−(N−1)·1I · · · ζ−(N−1)·(N−1)I

 .
This is a classical result in the scalar case; technical details for
the block-circulant case can be found, for instance, in [20, page
6]. We define the subspace B⊆C of symmetric, banded block-
circulant mN ×mN matrices of bandwidth n, with N > 2n,
containing the matrices of the form

B = circ{B0,B1, · · · ,Bn,0, · · · ,0,B>n , · · · ,B>1 }, (4)

that inherits the inner product defined on C. Note that, accord-
ing to definition (2), the symbol of a banded matrix B ∈B is

Ψ(ζ ) =
n

∑
k=−n

Bk ζ−k, B−k = B>k .

The projection operator PB : C→B is defined as

PB(C) := circ{C0,C1, · · · ,Cn,0, · · · ,0,C>n , · · · ,C>1 }.

Given Ω= {(i, j) : i, j = 1, . . . ,m}, the projection operator PΩ :
C→ C is defined such that PΩ(C) is a block-circulant matrix
whose blocks have support Ω.

III. RECIPROCAL PROCESSES

Let {y(k), k = 1,2, . . . ,N}, be an m-dimensional Gaussian
stationary stochastic process defined on a finite interval [1,N].
For k = 1, . . . ,N, we have y(k) := [y1(k) . . . ym(k)]

> ∈ Rm,
therefore the process is completely characterized by the
random vector y := [y1(1) . . . ym(1) . . . . . . y1(N) . . . ym(N)]> ∈
RmN . In [11] it has been shown that y is a restriction of a wide-
sense stationary periodic process of period N defined on the
whole integer line Z if and only if the mN×mN covariance
matrix Σ of y is symmetric block-circulant:

Σ = circ{Σ0,Σ1, . . . ,Σ N
2
, . . . ,Σ>1 }, (5)

where E[y(i)y( j)>] = Σi− j, i, j = 1, . . . ,N, are the covariance
lags of the process such that Σk = Σ>N−k for k > N/2. In view
of the above equivalence, we will denote with y both the wide-
sense stationary periodic process defined in the whole line Z
and its restriction, depending on the context. A particular class
of stationary periodic processes is represented by reciprocal
processes.

Definition 1: y is a reciprocal process of order n on [1,N]
if, for all t1, t2 ∈ [1,N], the random variables of the process
in the interval (t1, t2)⊂ [1,N] are conditionally independent to
the random variables in (t1, t2)c, given the 2n boundary values
y(t1−n+1), . . . ,y(t1),y(t2), . . . ,y(t2 +n−1), where the sums
t− k and t + k are to be understood modulo N.
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The following result has been proved in [11, Theorem 3.3]:
it states that a reciprocal process is completely specified by a
block-circulant matrix whose inverse has a banded structure.

Theorem 1: A non-singular mN ×mN-dimensional matrix
Σ is the covariance matrix of a periodic reciprocal process of
order n if and only if its inverse is a positive definite sym-
metric block-circulant matrix which is banded of bandwidth
n, namely Σ−1 ∈B.

Let Σ̂0, . . . , Σ̂n be given estimates of the first n+1 covariance
lags Σ0, . . . ,Σn of the underlying reciprocal process. In view
of Theorem 1, the identification of a reciprocal process can be
formulated as the following matrix completion problem.

Problem 1: Given the n+ 1 estimates Σ̂0, . . . , Σ̂n, compute
a sequence Σn+1, . . . ,Σ N

2
, in such a way to form a symmetric,

positive definite block-circulant matrix

Σ = circ{Σ̂0, . . . , Σ̂n,Σn+1, . . . ,Σ N
2
, . . . ,Σ>n+1, Σ̂

>
n , . . . , Σ̂

>
1 },

with Σ−1 ∈B.
It has been shown in [16], [11] that a particular solution to
Problem 1 is the one which solves the following maximum
entropy problem:

argmax
Σ∈C

logdetΣ

subject to Σ > 0

PB(Σ− Σ̂) = 0.

(6)

whose dual problem has been proven to be

argmin
X∈B

− logdetX+
〈
X, Σ̂

〉
C

subject to X > 0
(7)

where Σ̂ ∈B is the symmetric, banded block-circulant matrix
of bandwidth n,

Σ̂ = circ{Σ̂0, Σ̂1, . . . , Σ̂n,0, . . . ,0, Σ̂>n , . . . , Σ̂
>
1 },

containing the covariance lags estimated from the data and the
optimal value of dual variable X is indeed equal to Σ−1, i.e. the
inverse of the solution of (6). Strong duality between (6) and
(7) implies that (6) and (7) are equivalent. In what follows we
assume that Σ̂ > 0 as it is a necessary condition for Problem
(6) to be feasible. In the case that Σ̂ is not positive definite, we
can consider a positive definite banded block-circulant matrix
sufficiently close to Σ̂ which can be obtained by solving a
structured covariance estimation problem, see [21], [22].

AR approximation: Next we recall how reciprocal processes
can be seen as an approximation of autoregressive (AR)
processes. More precisely, let y := {y(t) : t ∈ Z} be an m-
dimensional, AR, full-rank, Gaussian wide-sense stationary
process of order n,

n

∑
k=0

Bk y(t− k) = e(t), e(t)∼N(0, Im), t ∈ Z, (8)

and let Rk :=E[y(t)y(t−k)>], k∈Z, be its k-th covariance lag.
The spectrum of y is the Fourier transform of the sequence
Rk with k ∈ Z, i.e.

Φ(eiθ ) =
∞

∑
k=−∞

Rk e−iθk, R−k = R>k , θ ∈ [−π,π]. (9)

Suppose now that T observations y(1), . . . ,y(T ) of the process
y are available, and let

R̂k =
1
T

T

∑
t=k

y(t)y(t− k)>, k = 0,1, . . . ,n, (10)

be estimates of the first n+1 covariance lags R0, . . . ,Rn. The
identification of such a process can be cast to a covariance
extension problem.

Problem 2: Given n + 1 estimates R̂0, . . . , R̂n, complete
them with a sequence Rn+1, Rn+2, . . . in such a way that
the Fourier transform of the extended (infinite) sequence is
a power spectral density.

A particular solution of Problem 2 is the one proposed by J.
P. Burg in [23]: choose Rn+1, Rn+2, . . . maximizing the entropy
rate of the process, i.e. that solves the following optimization
problem

argmax
Φ∈Sm

∫
logdetΦ

subject to
∫

eiθk Φ = R̂k, k = 0,1, . . . ,n.
(11)

The dual of (11) has been shown to be, see for instance [24]:

argmin
Φ−1∈Qm,n

∫
− logdetΦ−1 +

〈
Φ−1, Φ̂

〉
subject to Φ̂ > 0

(12)

where
Φ̂(eiθ ) =

n

∑
k=−n

R̂k e−iθk, R̂−k = R̂>k , (13)

is the truncated periodogram of the process y. These kind of
problems have been extensively studied and generalized in
the recent years, see for instance [25], [26], [27], [28], [29],
[30], [31].

We recall that, for N → ∞, Toeplitz matrices can be
approximated arbitrarily well by circulant matrices [32,
Lemma 4.2]; hence, for N → ∞, Problem 1 consists in
searching a completion that leads to an infinite positive
definite block-Toeplitz covariance matrix, i.e. such that
the Fourier transform of the resulting extended sequence
is a power spectral density. By Theorem 3.1 in [18], for
N→∞, Problem (6) is the classical Burg’s maximum entropy
problem whose solution is an AR process of order n. In
light of this observation, we can understand the reciprocal
process associated to the solution of (7) as an approximation
of the AR process solution of the Burg’s maximum entropy
problem (11). In the following sections we will exploit this
approximation for the identification of latent-variable AR
graphical models.

The reciprocal approximation just explained has also an
interesting interpretation in the frequency domain. Indeed, it
corresponds to sampling the spectrum (9) of the AR process
y, over the interval [−π,π], with sample period 2π/N, thus
obtaining the symbol of the covariance matrix of the corre-
sponding reciprocal process:

Φ(ζ ) =
N−1

∑
k=0

Σk ζ−k, Σk = Σ>N−k for k >
N
2
.
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Figure 1 illustrates this relation. According to Proposition
1, the covariance matrix Σ of the reciprocal process y that
approximates y writes as

Σ = F∗circ{Φ(ζ 0), Φ(ζ 1), . . . ,Φ(ζ N−1)}F, (14)

hence, its inverse

Σ−1 = F∗circ{Φ(ζ 0)−1, Φ(ζ 1)−1, . . . ,Φ(ζ N−1)−1}F, (15)

can be robustly computed by inverting the N blocks
Φ(ζ 0), Φ(ζ 1), . . . ,Φ(ζ N−1), all of size m× m. As a final
remark, we recall that eigevalues and eigenvectors of circulant
matrices can be robustly computed as well, thanks to the
availability of closed-form formulas, see for instance [32].

θ−π = 0 N −1 π2π
N

Φ(eiθ )
Φ(ζ )

Fig. 1: Spectrum Φ(eiθ ) and its sampled version Φ(ζ ) with
N = 12 samples.

As highlighted by the frequency-domain interpretation, the
goodness of the approximation depends on the regularity of the
spectrum: the larger is the rate of variation of the spectrum, the
larger N has to be chosen in order to get a good approximation
of the AR process. The frequency-domain interpretation makes
even more explicit the relationship between Burg’s maximum
entropy problem (11) and Problem (6): provided that the
number of samples N is sufficiently large, by sampling the
spectrum solution of (11) we obtain an approximation of
the matrix Σ solution of (6); viceversa, the symbol of Σ
can be extended over the whole interval [−π,π] in order to
approximate the solution of (11). Figure 2 summarizes this
bi-directional relationships.

Φ(eiθ )> 0
solution of (11)

Φ(ζ ) symbol of Σ > 0,
Σ ∈ C solution of (6)

Φ−1 ∈ Qm,n
AR process y

Σ−1 ∈B

reciprocal process y

sampling

extension over
[−π,π]

sampling

extension over
[−π,π]

Fig. 2: Schematic representation of the reciprocal approxima-
tion of the AR process in terms of solutions of problems (11)
and (6).

IV. GRAPHICAL MODELS

Consider a Gaussian random vector x ∼ N(0,Σ) taking
values in Rm, where Σ = Σ> > 0 so that the concentration
matrix K = [ki j] := Σ−1 is well-defined. If we denote the
components of x as x1, . . . ,xm, for any i 6= j, we have that

xi is conditionally independent from x j given the remaining
random variables xk, k 6= i, j, i.e.

xi ⊥⊥ x j |{xk}k 6=i, j, (16)

if and only if the element ki j in position (i, j) of the concen-
tration matrix K is equal to zero. Formally,

xi ⊥⊥ x j |{xk}k 6=i, j ⇐⇒ ki j = 0. (17)

The previous relation allows to construct an undirected graph
G = (V,E), with V = {1, . . . ,m} and E ⊂ V ×V , associated
to the random vector x by taking the components x1, . . . ,xm
of x as nodes and such that the edges reflect the conditional
dependence relations between the random variables, i.e.

(i, j) /∈ E ⇐⇒ xi ⊥⊥ x j |{xk}k 6=i, j. (18)

The graph G is called the graphical model associated to
x and it gives a visual representation of the conditional
dependence relations between the components of x. Observe
that G is completely characterized by the sparsity pattern of
the concentration matrix of the random vector.

A characterization of conditional independence can be given
also in the dynamic setting. In particular, we consider an m-
dimensional, Gaussian, wide-sense stationary AR process x
described by a model like (8). For any index set I ⊂V , define

XI := span{x j(t) : j ∈ I, t ∈ Z},
as the closure of the set containing all the finite linear
combinations of the variables x j(t). For any i 6= j, the notation

X{i} ⊥⊥ X{ j} |XV\{i, j}

generalizes (16) and it means that for all t1, t2, xi(t1) and
x j(t2) are conditionally independent given the space linearly
generated by {xk(t), k ∈V \{i, j}, t ∈ Z}. One can prove that

X{i} ⊥⊥ X{ j} |XV\{i, j} ⇐⇒ [Φ(eiθ )−1]i j = 0, (19)

for any θ ∈ [−π,π], see [2], [3], which is the natural general-
ization of (17). Accordingly, we can construct the undirected
graph G = (V,E) representing the conditional dependence
relations between the components of the process x by defining
the set of edges as follows:

(i, j) /∈ E ⇐⇒ X{i} ⊥⊥ X{ j} |XV\{i, j}. (20)

In this framework, the graph G is completely characterized by
the sparsity pattern of the inverse power spectral density of the
process. Identification of sparse graphical models of reciprocal
processes have been studied in [33].
In many practical situations there is the presence of a few
common, latent, behaviors between the variables of interest
that are responsible of the most part of the interactions
between the observed variables and that cannot be captured
by considering only a sparse model structure. This leads to
a particular type of graphical models called latent-variable
graphical models or sparse plus low-rank graphical models,
[8]. Such models admit a two-layer graphical structure in
which the nodes in the upper layer stand for the (few) latent-
variables, while the nodes in the bottom layer represent the
observed variables.
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Latent-variable graphical models associated to Gaussian ran-
dom vectors have been considered in [8] and then generalized
in [9] to AR stochastic processes. The latter, say z := {z(t), t ∈
Z}, is assumed to be of the form z= [y> x>]> where y is the
Rm-valued process containing the observed variables while x
is the process containing l latent variables. Let Φy denotes the
spectral density of y. Under the assumptions that l�m and the
dependence relations among the observed variables are mostly
through the latent variables, we have the decomposition

Φ−1
y = Γ−Λ, (21)

where Γ > 0 is sparse and its support reflects the conditional
dependencies among the observed variables, while Λ ≥ 0 is
low-rank and its rank equals the number l of latent-variables.

We are now ready to extend the previous results for Gaus-
sian reciprocal processes. Let z := [y> x>]> be a Gaussian,
periodic, reciprocal process of order n defined on the interval
[1,N], where y plays the role of the m-dimensional observed
process and x is the l-dimensional latent process, respectively.
The covariance matrix Σz of z and its inverse can be partitioned
as

Σz =

[
Σy Σyx

Σ>yx Σx

]
, Σ−1

z =

[
S A

A> R

]
, (22)

where Σy ∈ C and Σx ∈ Cl are the covariance matrices of y
and x, respectively. Here, Cl denotes the vector space of block-
circulant, symmetric matrices as C, except that the blocks have
dimension l× l. Applying the Schur complement, we obtain
the relation

Σ−1
y = S−L, (23)

where S > 0 is the concentration matrix of process y condi-
tioned on x, and L≥ 0 is defined as L :=AR−1 A>. In order to
ensure that, according to Theorem 1, Σ−1

y ∈B we assume both
S and L to be symmetric, block-circulant, banded of bandwidth
n, i.e.

S = circ{S0,S1, . . . ,Sn,0, . . . ,0,S>n , . . . ,S
>
1 },

L = circ{L0,L1, . . . ,Ln,0, . . . ,0,L>n , . . . ,L
>
1 }.

(24)

By construction, the matrix L has rank equal to the number of
latent variables l, therefore under the assumption that l�m, it
is a low-rank matrix. If S is a sparse matrix, then we will refer
to (23) as sparse plus low-rank decomposition of Σ−1

y which
is the analogue of (21) for reciprocal processes. It remains
to show that an appropriate sparsity pattern of S reflects
that the dependence relations among observed variables are
mostly through the few latent variables. For this purpose, let
yi := [yi(1) . . .yi(N)]>, i = 1, . . . ,m, be the i-th component of
the process y and let x j := [x j(1) . . .x j(N)]>, j = 1, . . . , l, be
the j-th component of the process x. Although the components
of the reciprocal processes are defined for any k ∈ Z, by
periodicity it is sufficient to impose conditional independence
only for k ∈ [1,N]. We assume that the blocks S0,S1, . . . ,Sn of
S have common support Ω⊆ {(i, j) : i, j = 1, . . . , m} namely,

(Sk)i j = (Sk) ji = 0, k = 0, . . . ,n, ∀(i, j) ∈Ωc, (25)

where Ω is the set of pairs that contains all the (i, i), i =
1, . . . ,m. By property (17), equation (25) is equivalent to

yi(t1)⊥⊥ y j(t2) |{yh(s), h 6= i, j, s = 1, . . . ,N,

yi(s1), s1 6= t1, y j(s2), s2 6= t2, x}, (26)

for any t1, t2 ∈ [1,N] and for any pair (i, j) ∈Ωc.
Proposition 2: Condition (26) is equivalent to

yi(t1)⊥⊥ y j(t2) | {yh(s), h 6= i, j, s = 1, . . . ,N, x} (27)

for any t1, t2 ∈ [1,N] and for any (i, j) ∈Ωc.
Proof: The proof exploits basic results of the theory

of Hilbert spaces of second-order random variables, see for
instance [34, Chapter 2]. First of all, let

ε :=
[

ε i
ε j

]
=

[
yi
y j

]
−E

[[
yi
y j

] ∣∣∣∣ yh(s), h 6= i, j, s = 1, . . . ,N,x
]

denotes the error affecting the projection of [y>i y>j ]> onto the
subspace generated by {yh(s), h 6= i, j, s = 1, . . . ,N,x}, for any
t1, t2 ∈ [1,N] and for any (i, j) ∈Ωc. It can be shown that ε is
a zero-mean, Gaussian, random vector. Accordingly, proving
(27) is equivalent to prove that

E
[
ε i ε>j

]
= 0 ⇐⇒ ε i(t1) ⊥⊥ ε j(t2) (28)

for any t1, t2 ∈ [1,N] and for any (i, j) ∈Ωc, [34]. Let now Π
be a permutation matrix that permutes the rows of z= [y> x>]>
in order to obtain

z̄ := Πz =


yi
y j

yh6=i, j
x

=

[
z̄1
z̄2

]
,

where yh6=i, j is the vector containing the random variables
yh(s), h 6= i, j, s = 1, . . . ,N. We partition the covariance matrix
Σz̄ of z̄ as

Σz̄ =

[
Σz̄1 Σz̄1 z̄2

Σz̄2 z̄1 Σz̄2

]
,

where Σz̄1 and Σz̄2 are the covariance matrices of z̄1 and z̄2,
respectively. It is well known that its inverse can be partitioned
conformably as

Σ−1
z̄ = ΠΣ−1

z Π> =

[
S̄ ∗
∗ ∗

]
,

where
S̄ :=

(
Σz̄1 −Σz̄1 z̄2Σ−1

z̄2
Σz̄2 z̄1

)−1
(29)

is a permuted version of matrix S, according to the permutation
matrix Π. By construction, the Schur complement formula
applied on Σz̄ gives

Σε = Σz̄1 −Σz̄1 z̄2Σ−1
z̄2

Σz̄2 z̄1 = S̄−1, (30)

that relates the covariance matrix Σε of the projection error ε to
the covariance matrix Σz̄ of z̄. Condition (25) is equivalent to
say that S̄, and therefore S̄−1, is block-diagonal. Accordingly,
by (30), Σε is block-diagonal, i.e. ε i and ε j are independent,
which is equivalent to (28) as we wanted to prove.

The above result reflects the fact that the random variables
{yi(s1),y j(s2), s1 6= t1, s2 6= t2} do not play any role in the
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conditioning (26). Moreover, the group-sparsity condition (25)
translates in the fact that the conditional dependence relations
between the observed variables are mainly due to the few latent
variables. Accordingly, condition (27) represents the reciprocal
counterpart of condition (17). We conclude that Σ−1

z in (22)
together with (25) define an undirected graph for the Gaussian
random vector z which admits a two-layer structure where

- The nodes in the upper-layer represent the l variables of
the latent-process x1, . . . ,xl while the nodes in the bottom-
layer represent the m variables of the observed process
y1, . . . ,ym.

- The edges are given by the entries of the concentration
matrix Σ−1

z . In particular, the edge (i, j), between two
vectors yi and y j, i 6= j, is described by

[(S0)i j (S1)i j . . . (Sn)i j 0 . . . 0 (Sn) ji . . . (S1) ji] .

Example 1: Consider the case in which N = 2, m = 7, l = 2,
and suppose that the graphical model associated to the vector
z is the one depicted in Figure 3.

y1 y2 y3 y4 y5 y6 y7

x1 x2

Fig. 3: Example of a latent-variable graphical model: x1, x2
are the latent-variables and y1,y2, . . . ,y7 are the manifest
variables.

In this case, the concentration matrix of vector z will have the
structure (22) with

S =

[
S0 S>1
S1 S0

]
, S0, S1 ∈ R7×7,

and R is a 2×2 matrix. The presence of an edge between y2
and y4 implies that at least one of the two elements (S0)24
and (S1)24 is different from zero. Similar arguments holds for
the edge between y5 and y6. Thus, Ω = {(i, i) : i = 1, . . . ,7}∪
{(2,4), (5,6)}.

V. IDENTIFICATION OF LATENT-VARIABLE
RECIPROCAL GRAPHICAL MODELS

The problem of identifying a latent-variable graphical model
associated to a Gaussian random vector has been firstly
considered in [8] where the solution is obtained by solving a
regularized maximum likelihood problem. In [9] the problem
has been extended to a dynamic setting, by considering an
AR Gaussian process. More precisely, in [9] a regularized
version of Problem (12) that relies on the sparse plus low-

rank decomposition of the inverse of the observed spectrum
in (21), has been considered:

argmin
Γ,Λ∈Qm,n

∫
− logdet(Γ−Λ)+ 〈Γ−Λ, Φ̂y〉

+ γS φ1(Γ)+ γL φ∗(Λ)
subject to Γ−Λ > 0

Λ≥ 0.

(31)

Here, γS, γL > 0 are the regularization parameters that balance
the effects of the two regularizers φ1 and φ∗ inducing sparsity
and low-rank on Γ and Λ, respectively, while Φ̂y is the trun-
cated periodogram of the observed process y. In this section
we propose a procedure for the identification of a latent-
variable graphical model associated to an AR Gaussian process
that exploits the approximation of an AR process through
a reciprocal process in the sense explained in Section III.
Recalling that a latent-variable graphical model of a reciprocal
process is characterized by (23), the system identification
problem can be stated as follows.

Problem 3: Consider an m-dimensional AR process y and
let R̂0, . . . , R̂n be the estimates of the first n+1 covariance lags
of y computed as in (10). Set Σ0 := R̂0, . . . ,Σn := R̂n. Compute
the blocks Σn+1, . . . ,Σ N

2
of the block-circulant covariance ma-

trix Σy = circ{Σ0,Σ1, . . . ,Σ N
2 −1,Σ N

2
,Σ>N

2 −1
, . . . ,Σ>1 } such that

Σ−1
y = S−L, where S > 0 and L ≥ 0 are as in (24) with

S0, . . . ,Sn having the smallest possible common support Ω, as
in (25), and the rank of L is as small as possible.

We stress the fact that only samples of the observed pro-
cesses are available. Clearly, the matrix Σy solving Problem 3
is the covariance of the reciprocal process y approximating the
observed process y. Since we are going to identify a model
for a reciprocal process, we can exploit the maximum entropy
dual problem (7) recalled in Section III. It is worth noting
that the support Ω is not known in advance, thus it has to be
estimated from the data. In order to do that, inspired by [4],
we consider the following regularizer

h∞(S)= ∑
k>h

max
{
|(S0)hk|,2 max

j=1,...,n
|(S j)hk|,2 max

j=1,...,n
|(S j)kh|

}
.

The latter is a generalization of the `∞-norm used to induce
group-sparsity on vectors, and it is used to enforce on S the
group sparsity in (25). The trace (as a tractable proxy of the
nuclear norm) is used instead for inducing low-rankness in L.
Therefore, the paradigm for the estimation of the sparse plus
low-rank decomposition of the concentration matrix Σ−1

y now
directly follows from (7) by setting X = S−L, with L ≥ 0,
and by adding the regularizers just introduced:

argmin
S,L∈B

− logdet(S−L)+
〈
Σ̂y, S−L

〉
C

+λS h∞(S)+λL tr(L)
subject to S−L > 0, L≥ 0

(32)

where λL, λS > 0 are the two regularization parameters and

Σ̂y = circ{R̂0, R̂1, . . . , R̂n,0, . . . ,0, R̂>n , . . . , R̂
>
1 }

is the symmetric, banded block-circulant matrix of band-
width n, containing the covariance lags estimated from the
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observations. As a further motivation, observe that Problem
(32) is precisely the reciprocal counterpart of Problem (31)
considered in [9]. By replacing S with X := S−L, it becomes

argmin
X,L∈B

− logdet(X)+ tr(Σ̂y X)+λS h∞(X+L)+λL tr(L)

subject to X > 0, L≥ 0.
(33)

We address the previous constrained optimization problem
using the Lagrange multipliers theory. In doing that we add a
new dummy variable Y

argmin
X∈C

Y,L∈B

− logdet(X)+ tr(Σ̂y X)+λS h∞(Y)+λL tr(L)

subject to X > 0, L≥ 0
Y = X+L.

(34)
The Lagrangian function for this problem is

L(X,Y,L,V,Z) =− logdet(X)+
〈
Σ̂y, X

〉
C
+λS h∞(Y)

+λL tr(L)−〈V, L〉C+ 〈Z,X+L−Y〉C
(35)

where, V ∈B, because L ∈B, and V≥ 0, while Z ∈ C. After
simple computations we have

L(X,Y,L,V,Z) =− logdet(X)+
〈
Σ̂y+Z, X

〉
C

+ 〈λLImN−V+Z, L〉C
+λS h∞(Y)−〈Z, Y〉C .

The dual objective function is the infimum over X, Y and L
of the Lagrangian. The unique term on L that depends on Y is
λS h∞(Y)−〈Z, Y〉C. The latter is bounded below if and only
if

diag(Z j) = 0, j = 0, . . . , n, (36)

2|(Z0)kh|+
n

∑
j=1
|(Z j)kh|+ |(Z j)hk| ≤

λS

N
, k > h, (37)

in which case the infimum is zero. Accordingly,

inf
Y

L=


− logdet(X)+

〈
Σ̂y+Z, X

〉
C
+ 〈λLImN −V+Z, L〉C

if (36), (37) hold,

−∞ otherwise.

The only term that depends on L is 〈λLImN−V+Z, L〉C.
Recalling that L,V∈B, by using the linearity of the projection
operator PB, we have that

〈λLImN −V+Z, L〉C = 〈λLImN−V+PB(Z), L〉C (38)

which is linear in L, and therefore it is bounded below if and
only if

λLImN−V+PB(Z) = 0. (39)

In this case, the minimum of (38) is zero. Accordingly,

inf
Y,L

L=


− logdet(X)+

〈
Σ̂y+Z, X

〉
C

if (36), (37), (39) hold,

−∞ otherwise.

If (36), (37), (39) hold, it remains to minimize the strictly
convex function

L̄(X) := inf
Y,L

L=− logdet(X)+
〈
Σ̂y+Z, X

〉
C

over the cone of the symmetric, positive definite, banded
block-circulant matrices. Observe that, for any Z ∈ C, any
Σ̂y ∈B, and for any sequence Xk > 0 converging to a singular
matrix,

lim
k→∞

L̄(Xk) = ∞.

Accordingly, we can assume that the solution lies in the
interior of the cone so that a necessary and sufficient condition
for Xo to be a minimum point for L̄ is that its first Gateaux
derivative computed at X = Xo is equal to zero in every
direction δX, namely

δ L̄(Xo;δX) = tr
[(
−X−1

o + Σ̂y+Z
)

δX
]
= 0, ∀δX ∈ C.

(40)
Notice that L̄ is bounded below if and only if

Σ̂y+Z > 0, (41)

therefore condition (40) is satisfied if and only if Xo = (Σ̂y+
Z)−1. Hence,

inf
Y,L,X

L=


logdet(Σ̂y+Z)+mN,

if (36), (37), (39), (41) hold,

−∞ otherwise.

Therefore, the dual problem of (32) is

argmin
V∈B,Z∈C

− logdet(Σ̂y+Z)−mN

subject to V ≥ 0, (36), (37), (39), (41).
(42)

Notice that we can remove the variable V. Indeed, recalling
that V≥ 0, the constraint (39) becomes λLImN +PB(Z) =V≥
0. Accordingly, the dual problem takes the form

argmin
Z∈C

− logdet(Σ̂y+Z)−mN

subject to (36), (37), (41)
λLImN +PB(Z)≥ 0.

(43)

Proposition 3: Under the assumption that Σ̂y ∈B and Σ̂y > 0,
Problem (43) admits a unique solution.

Proof: Define f (Z) := logdet(Σ̂y+Z). Let

Q := {Z ∈ C | (36), (37), (41) and λLImN +PB(Z)≥ 0 hold}

be the set of constraints of Problem (43). First of all, notice
that constraints (36) and (37) ensure that Q is a bounded subset
of C. Indeed, the entries of any Z∈Q are bounded by λS/N so
that ‖Z‖C < ∞ for any Z ∈ Q. Let now (Z(k))k∈N be a generic
sequence of elements of Q converging to some Z̄ ∈ C, such
that Σ̂y+ Z̄≥ 0 is singular. Then

lim
k→∞
− logdet(Σ̂y+Z(k)) = +∞,
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and therefore Z(k) is not an infimizing sequence. Hence, we
can restrict the research of the minimum to the closed subset
of Q defined by

Q̄ := {Z ∈ C | Σ̂y+Z≥ εImN , (36), (37)
and λLImN +PB(Z)≥ 0 hold}

with ε > 0 small enough. By what we have shown till now, the
function f is continuous on the compact set Q̄ and therefore it
admits at least one minimum point. Since f is strictly convex,
the minimum is also unique.

Proposition 4: Under the assumption that Σ̂y ∈B and Σ̂y > 0,
Problem (33) admits a solution (Xo,Lo) and Xo is unique.

Proof: Notice that Problem (33) is a strictly feasible
convex optimization problem (for instance, pick X = ImN and
L = 0). Accordingly, Slater’s condition holds, hence strong
duality holds between (33) and its dual. The strong duality
between problems (33) and (43) and the existence of a unique
optimum Zo for the dual problem (43), imply that there exists
a unique Xo ∈ B so that Xo =

(
Σ̂y+Zo

)−1 which solves the
primal problem (33).
It remains to show that there exists an Lo ∈B that solves the
optimization problem

argmin
L∈B

λS h∞(Xo +L)+λL tr(L)

subject to L≥ 0.
(44)

Notice that, the objective function in (44) is continuous. Since
L = 0 is a feasible point, the problem is equivalent to find
L ∈B that minimizes λS h∞(Xo +L)+λL tr(L) over the set

K :=
{

L ∈B

∣∣∣∣L≥ 0, λS h∞(Xo +L)+λL tr(L)≤ λS h∞(Xo)

}
.

It is easy to see that K is a closed and bounded (and thus
compact) subset of B. Hence, by Weierstrass’ Theorem, Prob-
lem (44) admits a solution Lo. At this point we can conclude
that the primal problem (33) admits a solution (Xo, Lo).

A. Interpretations

In the remaining of this section we will show how Problem
(32) can be interpreted either as a regularized maximum-
likelihood problem or as a dual of a maximum entropy
problem.

Maximum likelihood interpretation: The reciprocal approx-
imation of AR processes illustrated in Section III allows to
interpret Problem (32) as a regularized (conditional) maximum
likelihood problem. Indeed, in the following we will show that
the fitting function in (32), i.e.

− logdet(S−L)+ tr
(
Σ̂y (S−L)

)
, (45)

is the approximation of the (conditional) negative log-
likelihood of the AR process (8) that should be understood
in the sense explained in Section III. Following [35], consider
the observed AR process y whose spectrum is denoted by
Φy, and suppose that T observations y(1), . . . ,y(T ) of the
process are available. The conditional likelihood of the process
y is defined as the likelihood function associated to the

conditional distribution of y(n+1),y(n+2), . . . ,y(n+T ) given
y(1), . . . ,y(n). Let

Tn := Toepl{R̂0, R̂1 , · · · , R̂n}

be the block-Toeplitz matrix having in the first rows the
estimates of the first n + 1 covariance lags of the process
R̂0, R̂1, . . . , R̂n computed as in (10). For T large enough, the
conditional negative log-likelihood function of the AR process
can be well approximated by

`(B) :=−(T −n) logdetB0 +
T −n

2
tr(BTn B>)

where B := [B0 B1 · · · Bn] is the (n+1)m-dimensional vector
containing the coefficients of the process. Applying Jensen’s
formula, it turns out that

logdetB0 =
1
2

∫
logdetΦy(eiθ ),

moreover, if Φ̂y(eiθ ) is the truncated periodogram of the AR
process in (13), it is easy to see that∫

Φ̂y(eiθ )eiθk = R̂−k = R̂>k .

Accordingly, the approximated conditional negative log-
likelihood can be rewritten as

`(B) =
T −n

2

∫
logdetΦy(eiθ )+ tr

[
Φ̂y(eiθ )Φy(eiθ )−1

]
.

(46)
A natural way to approximate (46) is to approximate the
integral with a finite sum, i.e. to discretize the interval [−π,π].
This is precisely the frequency interpretation of the reciprocal
approximation explained in Section III that consists in sam-
pling the spectrum of the process to obtain the corresponding
symbol (see Figure 1). In fact, considering as sample fre-
quency ∆θ = 2π/N, the Backward Euler approximation leads
to the discrete approximation

`(B)' T −n
2

∆θ
2π

N−1

∑
k=0

logdetΦy(eiθk)+tr
[
Φ̂y(eiθk)Φy(eiθk)−1

]
.

where θk = k ∆θ −π . The conditional log-likelihood can now
be rewritten straightforward in terms of symbols as

`(B)' T −n
2N

[
N−1

∑
k=0

logdetΦy(ζ k)+ tr
N−1

∑
k=0

Φ̂y(ζ k)Φy(ζ k)−1

]
.

Observe now that Φy(ζ ) is precisely the symbol of the block-
circulant covariance matrix Σy of the reciprocal process y
approximating the process y and Φ̂y(ζ ) is the symbol of the
block-circulant matrix Σ̂y in Problem (32). Accordingly, form
Proposition 1, it follows that

`(B)' T −n
2N

[
− logdetΣ−1

y + tr
(
Σ̂y Σ−1

y
)]
.

Since Σ−1
y = S−L, this is precisely (up to a scaling factor)

equal to (45).
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Maximum entropy interpretation: We will show that Prob-
lem (32) can be interpreted a regularized version of the dual of
a maximum entropy problem, see [36] for a general overview
of these problems. Consider the regularized solution (So, Lo)
of (32) and let Ω be the support of So, i.e. So satisfies (25).
Since Lo ∈B is so that Lo ≥ 0 and rankLo = lN�mN, there
exists

G = circ{G0,G1, . . . ,Gn,0, . . . ,0}

such that Gk ∈ Rm×l and Lo = G>G. Accordingly, we can
consider a modified version of Problem (32) where the reg-
ularizers are replaced by the corresponding hard-constraints
S ∈ VΩ and L ∈ VG, where VΩ := {S ∈ C : PΩc(S) = 0}
and VG := {G>(IN ⊗H)G : H ∈ Rl×l , H = H>} is such that
VG ⊆B. Thus, the resulting problem is

argmin
S,L∈B

− logdet(S−L)+
〈
Σ̂y, S−L

〉
C

subject to S−L > 0, L≥ 0,
S ∈ VΩ, L ∈ VG.

(47)

Proposition 5: The primal of Problem (47) is

argmax
Σy∈C

logdetΣy

subject to PΩPB(Σy− Σ̂y) = 0,

E∗G(Σy− Σ̂y)G>E≥ 0,

(48)

where E∗ := 1√
N
[Il 0 · · · 0].

Proof: We derive the dual of Problem (48). Observing that
E = F∗1 where 1 := 1√

N
[Il Il · · · Il ]

>, the Lagrangian of
Problem (48) writes as

L(Σy,W,H) = logdetΣy +
〈
PΩ∪B(Σ̂y−Σy), W

〉
C

+
〈

1>FG(Σy− Σ̂y)G>F∗1, H
〉
C
,

where W ∈ C, H ∈ Rl×l is a positive semidefinite symmet-
ric matrix, and PΩ∪B(S) = PΩPB(S). The last term of the
Lagrangian can be rewritten as

tr
[
F(Σy− Σ̂y)F∗ FG>F∗1H1> FGF∗

]
= tr

[
F(Σy− Σ̂y)F∗ FG>F∗(IN⊗H) FGF∗

]
= tr

[
(Σy− Σ̂y) G>(IN⊗H)G

]
,

where we have exploited the fact that F(Σy− Σ̂y)F∗ and FGF∗
are block-diagonal matrices and the fact that F∗(IN ⊗H)F =
IN⊗H. Accordingly,

L(Σy,W,H) = logdetΣy +
〈
Σ̂y−Σy, PΩ∪B(W)

〉
C

+
〈

Σy− Σ̂y, G>(IN⊗H)G
〉
C

= logdetΣy +
〈
Σ̂y−Σy, S−L

〉
C
,

where S := PΩ∪B(W) belongs to VΩ and L := G>(IN ⊗
H)G≥ 0 belongs to VG⊆B, i.e. they satisfy all the constraints
in (47). Similar arguments as the ones used to prove formula
(40), allow us to assert that a necessary and sufficient condition
for Σo to be a minimum point for L is that its first Gateaux

derivative computed at Σy = Σo is equal to zero in every
direction δΣ, namely

δL(Σo;δΣ) = tr
[(

Σ−1
o −S+L

)
δΣ
]
= 0, ∀δΣ ∈ C.

By assumption we have that S−L > 0 thus, the substitution
of the optimum Σo = (S−L)−1 in the Lagrangian L leads
precisely to the objective function in (47).
Some observations on the two constraints of (48) are in
order. The first constraint PΩPB(Σy− Σ̂y) = 0 fixes the entries
corresponding to the indexes in Ω of the first n+ 1 lags of
the reciprocal process. Concerning the second constraint, let
Ψ(ζ ) and Φy(ζ ) be the symbols of G and Σy, respectively.
By Proposition 1, we have that

E∗GΣy G>E =
1
N

N−1

∑
k=0

Ψ(ζ k)Φy(ζ k)Ψ(ζ k)∗, (49)

which is the covariance of the output of the m× l filter Ψ(ζ ) =
∑n

k=0 Gk ζ−k fed with the reciprocal process y. Accordingly,
the second constraint in (48) states that the covariance matrix
of the process at the output of the filter is lower-bounded by
E∗G Σ̂y G>E. We conclude that Problem (48) can be seen as
the reciprocal counterpart of the maximum entropy problem
[9],

argmax
Φy∈Sm

∫
logdetΦy

subject to
(∫

eiθk Φy− R̂k

)
pq

= 0, k=0,1,...,n
(p,q)∈Ω∫

Ψ(Φy− Φ̂y)Ψ∗ ≥ 0,

(50)

where Ψ(eiθ ) = ∑n
k=0 Gk e−iθk. Indeed, the second constraint

in (50) can be approximated with the backward Euler approx-
imation with sample frequency ∆θ = 2π/N obtaining (49).

VI. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The solution of Problem (43) requires the joint enforcement
of the constraints (36), (37) and λL ImN +PB(Z) ≥ 0, which
may be a difficult task. In this section we will use the
alternating direction methods of multipliers (ADMM) [37] to
solve Problem (43) by showing that the constraints can be
separated and each one can be enforced in an alternating way.
First of all observe that, by defining the variable P := λLImN +
PB(Z), Problem (43) rewrites as

argmin
Z,P∈C

− logdet(Σ̂y+Z)−mN

subject to (36), (37)
P = λLImN +PB(Z)
P≥ 0.

(51)

where we have omitted the domain of the objective function
Σ̂y+Z> 0 since it will be checked in the stepsize-choice stage
of the algorithm. The augmented Lagrangian for the problem
is

Lρ(Z,P,M) =− logdet
(
Σ̂y+Z

)
−〈M, P−λLImN−PB(Z)〉C

+
ρ
2
‖P−λLImN−PB(Z)‖2

C
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where ρ > 0 is the penalty term and M ∈ C is the Lagrange
multiplier associated to the equality constraint on P. Accord-
ingly, the ADMM updates are the following:

1) The Z-minimization step

Zk+1 =argmin
Z∈C

Lρ(Z,Pk,Mk)

subject to Z ∈ Z.
(52)

2) The P-minimization step

Pk+1 =argmin
P∈C

Lρ(Zk+1,P,Mk)

subject to P≥ 0.
(53)

3) Dual variable update

Mk+1 = Mk−ρ
(

Pk+1−λLImN−PB(Zk+1)
)
. (54)

where Z := {Z ∈ C : (36), (37)} and we have considered a
constant value of ρ in order simplify the notation. We will
discuss later how to update ρ to get a faster convergence.
Updates 1) and 2) are not in an implementable format. The
Z-update step (52) is equivalent to the minimization of

I(Z) :=− logdet(Σ̂y+Z)+
ρ
2
‖PB(Z)‖2

C

+
〈

Mk−ρ (Pk−λLImN), PB(Z)
〉
C
,

over the set Z, which has no closed-form solution, as noticed in
[4] where the solution is approximated by a projective-gradient
step. Following the same lines, the new Z-update step starts
from a known feasible point Z0 = Z̄ and continue the iterations
following the update rule

Zk+1 = PZ

(
Zk− tk ∇I(Zk)

)
(55)

where

∇I(Zk)=−(Σ̂y+Zk)−1+PB(Mk)+ρ PB

(
Zk−Pk +λLImN

)
is the gradient of the cost-function I computed in Zk, tk is
the stepsize founded by the Armijo condition, and PZ is the
projection operator onto the constraints space Z.
The optimization problem involved in the P-update step (53)
is equivalent to minimize the functional

J(P) :=
ρ
2
‖P‖2

C−
〈

P, Mk +ρ
(

λLImN +PB(Zk+1)
)〉

C

over all P ≥ 0. Since J is a quadratic functional of P the
minimization of J over the whole vector space C admits the
closed form solution

Po =
1
ρ

Mk +λLImN +PB(Zk+1)

but it is not a positive semidefinite matrix in general. Accord-
ingly, in order to find our solution, we have to find the positive
semidefinite block-circulant matrix that better approximates
Po in the norm induced by the scalar product on C (i.e. the
Frobenius norm on C). Recall the following well-known result.

Lemma 1: Let A ∈ Cn×n be an Hermitian matrix whose
eigenvalue decomposition is given by A =U∗ΛU , with

U∗U =UU∗ = I and Λ = diag{λ1, . . . ,λn}.

Then, the positive semidefinite matrix that better approximates
A in the Frobenius norm is the projection of A onto the cone
of positive semidefinite matrices P+, namely

PP+(A) := argmin
X≥0

‖X−A‖F =U∗ diag{γo
1 , . . . ,γ

o
n}U,

where

γo
i =

{
λii, if λii ≥ 0,
0, if λii < 0.

The following proposition ensures that the projection of a
symmetric, block-circulant matrix onto the cone of positive
semi-definite matrices is still block-circulant.

Proposition 6: Let C be a symmetric, block-circulant matrix

C = F∗diag
{

C(ζ 0),C(ζ 1), . . . ,C(ζ N−1)
}

F,

and let C(ζ k) =VkΛkV ∗k with

V ∗k Vk =VkV ∗k = Im and Λk = diag{λk1, . . . ,λkm},

being the eigen-decomposition of the (Hermitian) block C(ζ k),
for k = 0, . . . ,N− 1. Then the eigen-decomposition of C can
be written as

C = W∗ΛW, W = V∗F,

where V = diag{V0, . . . ,VN−1} and Λ = diag{Λ0, . . . ,ΛN−1}.
Then,

PC+(C) := argmin
X≥0

‖X−C‖C = W∗ diag{Γ0, . . . ,ΓN−1}W

where Γk = diag{γk1, . . . ,γkm} and

γki =

{
λki, if λki ≥ 0,
0, if λki < 0.

for k = 0, . . . ,N−1.
Proof: The result follows from applying Lemma 1 with

U = W. Of course,

PC+(C) = F∗diag{V0Γ0V ∗0 , . . . ,VN−1ΓN−1V ∗N−1}F

is a block-circulant matrix because it is block-diagonalized by
the Fourier-block matrix.

According to Proposition 6, the positive semidefinite block-
circulant matrix that better approximates Po in the C norm is
the projection of Po onto the cone of the symmetric, positive
semidefinite, block-circulant matrices C+, that is

Pk+1 =PC+(Po)=PC+

(
1
ρ

Mk +λLImN +PB(Zk+1)

)
. (56)

We conclude that the ADMM algorithm for the estimation
of the sparse and the low-rank component of the inverse of
the covariance matrix of the reciprocal process consists in the
following updates

Zk+1 = PZ

[
Zk− tk ∇I(Zk)

]
,

Pk+1 = PC+

[
1

ρk Mk +λLImN +PB(Zk+1)

]
,

Mk+1 = Mk−ρk
[
Pk+1−λLImN −PB(Zk+1)

]
.

(57)
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A typical update for ρ is ρk+1 = αρk, with α > 1 being a
certain growth coefficient that needs to be properly tuned.
Notice that the matrices involved in (57) are all symmetric and
block-circulant. Accordingly, as explained in Section III, the
introduction of the reciprocal approximation allows to obtain
a robust identification procedure even in the case when n is
large. Indeed, relations (14) and (15), allow to compute inverse
matrices and eigenvalues in a robust way. Moreover, it is worth
noting from (15), that the dimensions of the matrices whose
eigenvalues must be computed in the optimization procedure,
depend only on m, hence the identification algorithm we are
proposing scales with respect to n gaining robustness in the
results even if the order of the AR process is large.
Following [37], the basic stopping criterium for the algorithm
is based on the primal and dual residuals of the optimality
conditions that respectively measure the satisfaction of the
inequality constraint P ≥ 0 and the distance between two
successive iterates of the variable P. More precisely, the primal
residual at iteration k+1 is defined as

rk+1 := Pk+1−λLImN−PB(Zk+1),

while the dual residual turns out to be

sk+1 := PBc(Mk)−ρk
[
Pk+1−PB(Pk)

]
.

It is reasonable that the primal and dual residual must be small,
that is

‖rk‖C ≤ εp and ‖sk‖C ≤ εd,

where εp > 0 and εd > 0 are feasibility tolerances for the
primal and dual feasibility conditions. The latter are defined
as

εp := mN εabs + ε rel max
{

λL
√

mN, ‖Zk‖C, ‖Pk‖C
}
,

εd := mN εabs + ε rel ‖Mk‖C.
Here, εabs and ε rel are predefined absolute and relative toler-
ances for the problem. Accordingly, the algorithm converges
if all the conditions

‖rk‖C ≤ εp, ‖sk‖C ≤ εd, ρk = ρmax (58)

hold true, where ρmax > 0 is the maximum value allowed for
the penalty parameter ρk, selected by the user.

VII. NUMERICAL EXAMPLES

In this section we compare the performances of our method
to which we will refer to as approximated algorithm with the
one proposed in [10] for the solution of Problem (31), which
will be referred to as exact algorithm. In particular we will
show how the two algorithms behave considering both the case
in which the observed process has low dimension and the case
in which we have an high dimensional observed process.

Low-dimensional case: Synthetic data ere generated from
the AR latent-variable model of order n = 8,

y(t) =
n

∑
k=1

Ak y(t− k)+η(t), (59)

with m = 20 observed variables and l = 1 latent vari-
ables. Here, η(t) is white Gaussian noise with variance

E[η(t)>η(t)] = 21.14 and T = 1000 samples have been used
to compute the estimated covariance lags R̂k, k = 0, . . . ,n.
Figure 4 (center) reports the sparsity pattern of the underlying
model, randomly generated so that the non-zero elements
represents the 5% of the total elements. For the approxi-

Ω̂a, l̂a = 1 Ω, l = 1 Ω̂e, l̂e = 1

Fig. 4: Sparsity pattern estimated by the approximated algo-
rithm with α = 1.007, λS = 95, λL = 5.4 (left), true sparsity
pattern (center), sparsity pattern estimated by the exact al-
gorithm with α = 1.002, γS = 2.6, γL = 2.95 (right). The red
squares indicate the conditional dependent pairs while the
white squares indicates the conditional independent pairs. l̂a,
l and l̂e denote the number of latent variables.

mated algorithm we have considered N = 30 samples of the
spectrum. In both the ADMM implementations we have set
εabs = 10−5 and ε rel = 10−4 while ρmax = 104. In order to
tune the update of the penalty term ρ in the ADMM, we
have ran both the algorithms for different values of the growth
coefficient α ∈ [1.001, 1.1]. More precisely, for each value
of α , a 5× 5 grid of candidate estimated models has been
produced, corresponding to five linearly spaced values of the
regularization parameters λS ∈ [60,130] and λL ∈ [3,7.8] for
the approximated algorithm, and five linearly spaced values of
γS ∈ [1.42,2.6] and γL ∈ [2.425,2.95] for the exact algorithm.
The values of the regularization parameters that identify the
grids have been selected so that the estimated models capture
a range of features as complete as possible: from a very sparse
model with a relatively high rank, to a quasi-full model with
the lowest rank possible. Figure 5 shows the supports and the
ranks estimated by the approximated algorithm corresponding
to the different values of λS and λL. For both methods the value
of α that gives the better performances, i.e. that guarantees the
minimum gap between εp /εd and the primal/dual residual at
the final iteration, respectively, has been selected. Accordingly,
we have chosen α = 1.007 for the approximated algorithm
while α = 1.002 has been chosen for the exact algorithm.
Let s(h) and ε(h) denote the vectors containing the dual
residual and its feasibility tolerance for the model h= 1, . . . ,25
respectively. Figure 6 displays the (logarithm of the) averages

µs =
1

25

25

∑
h=1

s(h), µε =
1

25

25

∑
h=1

ε(h),

obtained by our method with α = 1.007 (left) and by the
exact method for α = 1.002 (right). For both algorithms, the
primal residual always satisfies the condition in the stopping
criterium (58) therefore there is no need to displaying it.
We observe that the exact algorithm does not converge for
any value of α we have considered. Indeed, the plot in
Figure 6 (right) clearly shows that the mean dual-residual
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|Ω̂a|= 20, l̂a = 3 |Ω̂a|= 20, l̂a = 2 |Ω̂a|= 20, l̂a = 1 |Ω̂a|= 20, l̂a = 0 |Ω̂a|= 20, l̂a = 0

|Ω̂a|= 20, l̂a = 3 |Ω̂a|= 20, l̂a = 2 |Ω̂a|= 22, l̂a = 1 |Ω̂a|= 24, l̂a = 0 |Ω̂a|= 24, l̂a = 0

|Ω̂a|= 20, l̂a = 3 |Ω̂a|= 24, l̂a = 2 |Ω̂a|= 30, l̂a = 1 |Ω̂a|= 34, l̂a = 0 |Ω̂a|= 34, l̂a = 0

|Ω̂a|= 26, l̂a = 3 |Ω̂a|= 54, l̂a = 3 |Ω̂a|= 74, l̂a = 1 |Ω̂a|= 90, l̂a = 0 |Ω̂a|= 90, l̂a = 0

|Ω̂a|= 96, l̂a = 3 |Ω̂a|= 228, l̂a = 1 |Ω̂a|= 264, l̂a = 0 |Ω̂a|= 264, l̂a = 0 |Ω̂a|= 264, l̂a = 0

λ S

λL

60
77

.5
95

11
2.

5
13

0

3 4.2 5.4 6.6 7.8

Fig. 5: Supports and ranks estimated by the approximated
algorithm for λS ∈ [60,130] and λL ∈ [3,7.8]. The growth
coefficient is set α = 1.007.

1 660 1322

−3

−0.27

0.86

−2.22

k

µs
µε

1 2500 5000

1.83

−1.91

−3.22

k

µs
µε

Fig. 6: Logarithm of the average dual residual for the approx-
imated method (left) and for the exact method (right). The
dashed lines correspond to the logarithm of the associated
average feasibility tolerances.

µs stays significantly above the threshold µε . The optimal
values of the regularization parameters have then been selected
by cross-validation, using a test data set of 500 samples.
Figure 4 compares the optimal sparsity pattern provided by the
approximated algorithm Ω̂a (left), corresponding to λS = 95
and λL = 5.4, and the optimal sparsity pattern estimated by
the exact algorithm Ω̂e (right) corresponding to γS = 2.6 and
γL = 2.95, together with the estimates of the number of latent
variables, l̂a and l̂e, respectively. Notice that both algorithms
estimates the correct number of latent variables but only the
approximated one produces an estimate of the sparsity pattern
comparable with the true one. Let Φ̂e and Φ̂a be the estimates
of the spectra of the true observed process Φy obtained by the
solutions of problems (31) and (32), respectively. According to
Figure 2, Φ̂a is the extension over the whole interval [−π,π] of
the symbol of the estimated covariance matrix of the reciprocal

process y approximating y. The squared-estimation errors for
the two algorithms are depicted in Figure 7; the corresponding
mean values over [−π,π] are

Ea :=
‖Φy− Φ̂a‖2

F

‖Φy‖2
F

, Ēa :=
∫

Ea(eiθ ) = 0.0358,

Ee :=
‖Φy− Φ̂e‖2

F

‖Φy‖2
F

, Ēe :=
∫

Ee(eiθ ) = 0.0443.

The approximated algorithm performs better both in terms of
the mean value and in terms of the height of the peaks of the
relative error.

−π 0 π
0.02

0.04

0.06

0.11

θ

Ea(eiθ )

−π 0 π
0.02

0.11

0.05

θ

Ee(eiθ )

Ēa Ēe

Fig. 7: Relative errors in the estimated spectra: approximated
algorithm (left), exact algorithm (right).

High-dimensional case: We consider now an AR latent-
variable model as in (59) where we have m = 80 observed
variables and l = 1 latent variable, n = 24 and the variance of
the noise is E[η(t)>η(t)] = 87.1. The number of samples used
to estimate the covariance lags Rk is T = 15000. The number
of conditionally dependent pairs in the true model is 158 so
that the cardinality of the true support is |Ω| = 396. Table
8 compares the performances of our approximated algorithm
with the exact algorithm proposed in [10] for different values
of the sparsity regularization parameters λS and γS, that
have been chosen in order to have approximatively the same
variety on the results. The notation |Ω− Ω̂| indicates the error
on the sparsity pattern in terms of number of misclassified
entries. Both algorithms estimate the correct number of latent

l̂a |Ω̂a| |Ω− Ω̂a| Ea time [s]

1 80 316 0.2944 16609

1 394 10 0.3170 16953

1 1064 668 0.1902 17352

l̂e |Ω̂e| |Ω− Ω̂e| Ee time [s]

1 88 308 0.5611 34875

1 396 156 0.5168 34681

1 994 706 0.5701 35072

Fig. 8: Summary of the performances of the two algorithm
for λS = 100, 146.25, 350 and γS = 0.7, 0.826, 1.7. The values
of the low-rank regularization parameters are λL = 8.6875 for
the approximated algorithm (left) and γL = 2.3 for the exact
algorithm (right). These results have been obtained on a 2014
1.4GHz MacBook Air.

variables, but the approximated algorithm gives a result very
close to the true one (highlighted in red in Figure 8) while for
the exact algorithm, even if the cardinality of the true support
has been correctly estimated, the error in the reconstruction
of the sparsity pattern is quite high. This is due to the fact
that the higher is the order of the process n, the less accurate
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is the computation of eigenvalues and inverse matrices by
the exact algorithm. Figure 8 shows that such an issue is
avoided in the approximated version, thanks to the availability
of closed-form formulas for the computation of the eigenvalues
of block-circulant matrices. Moreover, we see that the run
time of the exact algorithm is about twice the run time of the
approximated one. This confirm the fact that the approximated
algorithm scales with the order n of the AR process we
are approximating as suggested in Section V. This kind of
scenario agrees with what we have discussed in Section
V: high-order AR process are quite challenging instances
for the exact procedure proposed in [10]; in this cases, the
reciprocal approximation leads to remarkable benefits in the
performances of the identification procedure.

VIII. CONCLUSIONS
In this paper an identification paradigm for latent-variable

graphical models associated to reciprocal processes has been
presented. It has been shown that the proposed paradigm
is theoretically strongly sustained, being an approximation
of the corresponding problem for AR processes both in a
maximum likelihood and in a maximum entropy sense. The
performances of the proposed method have been compared
with the approach proposed in [10] where no approximation is
introduced. The numerical examples have shown that for high-
order AR processes reciprocal approximation gives substantial
improvements in terms of robustness and scalability of the
identification procedure.
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