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Structured preconditioning of conjugate gradients

for path-graph network optimal control problems
Armaghan Zafar, Michael Cantoni, and Farhad Farokhi

Abstract—A structured preconditioned conjugate gradient
(PCG) solver is developed for the Newton steps in second-order
methods for a class of constrained network optimal control
problems. Of specific interest are problems with discrete-time
dynamics arising from the path-graph interconnection of N

heterogeneous sub-systems. The computational complexity of
each PGC step is shown to be O(NT ), where T is the length of
the time horizon. The proposed preconditioning involves a fixed
number of block Jacobi iterations per PCG step. A decreasing
analytic bound on the effective conditioning is given in terms
of this number. The computations are decomposable across the
spatial and temporal dimensions of the optimal control problem,
into sub-problems of size independent of N and T . Numerical
results are provided for a mass-spring-damper chain.

Index Terms—Optimal control of networks; Structured second-
order solver; System chains.

I. INTRODUCTION

C
ONSIDER the path-graph interconnection of N hetero-

geneous sub-systems with dynamics given by

xj,t+1 = Aj,txj,t +Bj,tuj,t + Ej,txj−1,t + Fj,txj+1,t, (1)

where xj,t ∈ R
nj and uj,t ∈ R

mj are the state and input

of sub-system j ∈ N = {1, 2, ..., N} at time t ∈ T =
{0, 1, ..., T }, respectively. The initial conditions are given by

xj,0 = ξj ∈ R
nj for j ∈ N and the spatial boundary condi-

tions are given by x0,t = χt ∈ R
n0 and xN+1,t = ζt ∈ R

nN+1

for t ∈ T . The constrained finite-horizon linear-quadratic (LQ)

optimal control problem of interest is the following:

min
(xj,t)(j,t)∈({0,N+1}∪N)×T

(uj,t)(j,t)∈N×T

1

2

∑

j∈N

∑

t∈T

ℓj,t(xj,t, uj,t) (2a)

subject to

(1) for (j, t) ∈ N × (T \{T }), (2b)

x0,t = χt, xN+1,t = ζt for t ∈ T , (2c)

xj,0 = ξj for j ∈ N , (2d)

Cj,txj,t +Dj,tuj,t ≤ κj,t for (j, t) ∈ N × T , (2e)

where ℓj,t(x, u) = x′Qj,tx + 2x′Sj,tu + u′Rj,tu, Cj,t ∈
R

νj×nj , Dj,t ∈ R
νj×mj and κj,t ∈ R

νj . For j ∈ N
and t ∈ T \{T }, it is assumed that Qj,t = Q′

j,t � 0,

Rj,t = R′
j,t ≻ 0, and Qj,t − S′

j,tR
−1
j,t Sj,t � 0. Moreover,

for every j ∈ N , Qj,T � 0, but Sj,T = 0, Rj,T = 0, and

Dj,T = 0, so that uj,T plays no role (i.e., it can be removed as
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a decision variable.) Under these assumptions the problem (2)

is a convex quadratic program with O(NT ) decision variables

and O(NT ) constraints.

While the cost (2a) and inequality constraints (2e) are

separable across the sub-systems and time horizon, there is

coupling in the equality constraint (2b). Specifically, there is

spatial coupling between states of adjacent sub-systems, and

inter-temporal coupling. Path-graph network dynamics of this

kind are relevant in the operation of irrigation channels [1],

vehicle platoons [2], supply chains [3], and radial power

networks [4]. The structure also arises from the discretization

of one-dimensional partial differential equations [5].

This note is about the computation of second-order search

directions for solving the quadratic program (2). Specifically, a

preconditioned conjugate gradient (PCG) solver (e.g., see [6])

is developed for the Newton steps in second-order methods,

such as the interior point method [7]. The main innovation

pertains to the O(NT ) computational complexity of each

PCG iteration, and decomposability of the preconditioning

computations across both the temporal and spatial dimensions,

into sub-problems of sizes that are independent of N and T .

The computations are amenable to implementation as ⌈N/2⌉
parallel threads each comprising a sequence of 2T (possibly

dense but small) sub-problems.

Structure in second-order methods for optimal control prob-

lems was studied in [8], [9], where the so-called Riccati-

factorization approach was originally developed, and more

recently in [10]–[14]. These papers all focus on the structure

associated with localized coupling in the temporal dimen-

sion of optimal control problems. Following the underlying

approach for problem (2) results in solvers with O(TN3)
computational complexity for each of the moderate number of

Newton steps needed for second-order methods to converge

(typically 10− 20 steps). The computations are decomposable

across the temporal dimension, but not the spatial dimension.

The resulting sub-problems, of size O(N), are amenable to

distribution across parallel processors in a tree type communi-

cation network, leading to O(log(T )N3) time complexity [14].

In [15], the aforementioned approach is pursued in the spe-

cial case of (2) with directed spatial coupling, by interchanging

the role of the time and space indexes to develop a Newton

step solver with computational complexity O(NT 3). The

computations are decomposable across the spatial dimension

of the problem, but not the temporal dimension. Again, parallel

processing can lead to O(log(N)T 3) time complexity.

All of the approaches described above constitute direct

methods for solving the Newton steps. In particular, all are

related, in some way, to structured block-LU factorization

http://arxiv.org/abs/2010.05616v1
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for a permutation of variables that yields a block tri-diagonal

structure in the linear system of equations to be solved. With

direct methods, it appears to be difficult to leverage both the

spatial and the temporal structure in (2).

The proposed PCG method is an iterative solver, of the kind

used for large sparse problems [6]. For (2), the size of the

linear equation to solve at each Newton step is O(NT ). Thus,

in the worst case, it may take O(NT ) iterations to terminate. It

is well-known that preconditioning can significantly reduce the

number of PCG iterations needed. In this note, it is proposed to

use a fixed number of block Jacobi iterations for precondition-

ing. In principle, this fixed number can be selected to achieve

preconditioning specifications, in that a decreasing analytic

bound on the conditioning of the outcome is provided. For the

numerical example presented, it is observed that as few as two

Jacobi iterations can result in a much smaller number of PCG

steps than the worst-case bound described above. Importantly,

the preconditioning steps are decomposable across both the

spatial and temporal dimension of (2). The size of the resulting

O(NT ) parallelizable sub-problems is independent of N and

T . As such, the computational complexity of PCG steps is

O(NT ). In the worst-case of O(NT ) iterations, the computa-

tional complexity of a Newton step becomes O(N2T 2). So for

T ≈ N , as perhaps required for the optimal control problem to

be meaningful, the proposed approach is (at the least) no worse

than the structured direct methods discussed, and potentially

much better for large problems.

First-order methods can also lead to structured solvers for

separable-in-cost quadratic programs like (2). For example,

methods based on dual decomposition [16], and operator

splitting methods such as ADMM [17] and FAMA [18] can

lead to simple parallelizable computations. For the structure

in (2), the dual decomposition technique of [19] leads to local

computations for each sub-system. Similarly, the ADMM ap-

proach presented in [20], and projected sub-gradient algorithm

of [21], also yield decomposable computations. However, these

first-order methods typically require a huge number of itera-

tions to converge. The issue is exacerbated within the path-

graph context of this note, since the algebraic connectivity

of the underlying sparsity pattern, which influences the rate

of convergence [22], [23], tends to zero as N grows. This

motivates the consideration of second-order methods. The

challenge is to maintain structure in the computations.

The note is organized as follows. An equivalent re-

formulation of problem (2) is presented in Section II, including

the structure of corresponding Newton steps in Section II-A.

PCG methods are overviewed in Section III, and the struc-

tured preconditioner based on fixed block Jacobi iterations

is developed in Section IV. The proposed PCG algorithm is

explored numerically for mass-spring-damper chain example

in Section V. Concluding remarks are provided in Section VI.

NOTATION

Identity matrices are denoted by I . blkdiag(·) denotes the

matrix with block diagonal elements given by the arguments,

which are the only non-zero elements, and col(·) denotes the

concatenation of the input arguments into a column vector.

Every block tri-diagonal matrix is parameterized by sequences

Φ = (Φk)
m
k=1 ∈

∏m
k=1 R

lk×lk and Ω = (Ωk)
m
k=2 ∈

∏m
k=2 R

lk−1×lk for appropriate (lk)
m
k=1 ⊂ N

m and m ∈ N.

Given such sequences Φ and Ω, the corresponding block tri-

diagonal matrix is denoted by

blktrid(Φ,Ω) =













Φ1 Ω′
2

Ω2 Φ2
. . .

. . .
. . . Ω′

m

Ωm Φm













∈ R
l̄×l̄,

where l̄ =
∑m

k=1 lk.

II. PROBLEM RE-FORMULATION

Defining uj = col(uj,0, . . . , uj,T−1) ∈ R
mjT , xj =

col(xj,0, . . . , xj,T ) ∈ R
nj(T+1), and slack variables θj =

col(θj,0, . . . , θj,T ) ∈ R
νj(T+1), problem (2) can be reformu-

lated as the following quadratic program:

min
(xj)j∈{0,N+1}∪N

(uj)j∈N

1

2

∑

j∈N

[

xj

uj

]′ [
Qj S′

j

Sj Rj

] [

xj

uj

]

, (3a)

subject to x0 = χ, xN+1 = ζ, and

0 = Ajxj +Bjuj + Ejxj−1 + Fjxj+1 +Hjξj , j ∈ N ,
(3b)

0 = Cjxj +Djuj + θj − κj , j ∈ N , (3c)

0 ≤ θj , j ∈ N , (3d)

where

Qj = blkdiag(Qj,0, . . . , Qj,T ) ∈ R
nj(T+1)×nj(T+1),

Rj = blkdiag(Rj,0, . . . , Rj,T−1) ∈ R
mjT×mjT ,

Sj = [blkdiag(Sj,0, . . . , Sj,T−1) 0] ∈ R
mjT×nj(T+1),

Cj = blkdiag(Cj,0, . . . , Cj,T ) ∈ R
νj(T+1)×nj(T+1),

Dj = [blkdiag(Dj,0, . . . , Dj,T−1)
′ 0]′ ∈ R

νj(T+1)×mjT ,

Hj = [I 0 · · · 0]′ ∈ R
nj(T+1)×nj ,

κj = col(κj,0, . . . ,κj,T ) ∈ R
νj(T+1),

χ = col(χ0, . . . ,χT ) ∈ R
n0(T+1),

ζ = col(ζ0, . . . , ζT ) ∈ R
nN+1(T+1),

Aj =













−I

Aj,0−I
. . .

. . .

Aj,T−1−I













, Bj =













0 · · · 0

Bj,0
. . .

...

. . . 0
Bj,T−1













,

Ej =











0
Ej,0 0

. . .
. . .

Ej,T−1 0











, and Fj =











0
Fj,0 0

. . .
. . .

Fj,T−1 0











.

Note that Aj ∈ R
nj(T+1)×nj(T+1), Bj ∈ R

nj(T+1)×mjT ,

Ej ∈ R
nj(T+1)×nj−1(T+1), and Fj ∈ R

nj(T+1)×nj+1(T+1). The

block bi-diagonal structure of the matrices Aj arises from

the temporal structure of the system dynamics in the optimal

control problem (2).
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For the quadratic program (3), the Karush-Kuhn-Tucker

(KKT) conditions for optimality are given by

Q1x1 + S′
1u1 +A′

1p1 + C′
1λ1 + E′

2p2 = 0, (4a)

Qjxj + S′
juj +A′

jpj + C′
jλj + F ′

j−1pj−1

+ E′
j+1pj+1 = 0, j∈N\{1, N}, (4b)

QNxN+S′
NuN+A′

NpN+C′
NλN + F ′

N−1pN−1=0, (4c)

Sjxj +R′
juj +B′

jpj +D′
jλj = 0, j ∈ N , (4d)

A1x1 +B1u1 + E1χ+ F1x2 +H1ξ1=0, (4e)

Ajxj +Bjuj + Ejxj−1 + Fjxj+1 +Hjξj = 0,

j∈N\{1, N}, (4f)

ANxN+BNuN+ENxN−1+FNζ +HNξN = 0, (4g)

Cjxj +Djuj−κj + θj = 0, j ∈ N , (4h)

ΛjΘj1 = 0, and [λ′
j θ′j ]

′ ≥ 0, j ∈ N , (4i)

where pj = col(pj,0, . . . , pj,T ) ∈ R
nj(T+1) and λj =

col(λj,0, . . . , λj,T ) ∈ R
νj(T+1) are Lagrange multipliers,

Λj = blkdiag(λj,0, . . . , λj,T ) ∈ R
νj(T+1)×νj(T+1), Θj =

blkdiag(θj,0, . . . , θj,T ) ∈ R
νj(T+1)×νj(T+1), and 1 denotes a

vector of all ones. Since (3) is convex, the KKT conditions

are necessary and sufficient for optimality [7].

A. Newton’s Method

Various second-order optimization algorithms can be un-

derstood in terms of Newton’s method for solving the KKT

conditions (e.g., see [7].) Typically, only a moderate number

of Newton steps is required for convergence, and this is the

main advantage over first-order optimization algorithms. The

benefit comes from the use of second-order information, which

can be constructed explicitly for quadratic programs. For the

problem (3), the Newton steps in an interior point method

(e.g., see [7]) take the form of the update

s(n+1) = s(n) + α(n) δ(n), (5)

where α(n) > 0 is a step size, s(n) = col(s
(n)
1 , . . . , s

(n)
N ),

s
(n)
j = col(x

(n)
j , u

(n)
j , p

(n)
j , λ

(n)
j , θ

(n)
j ), and the second-

order search direction δ(n) = col(δ
(n)
1 , . . . , δ

(n)
N ) is obtained

by solving the linearized KKT conditions, given by

blktrid(Φ(n),Ω) δ(n) = b(n), (6)

with Φ(n) = (Φ
(n)
j )j∈N , Ω = (Ωj)j∈N\{1}, b(n) =

col(b
(n)
1 , . . . , b

(n)
N ),

Φ
(n)
j =













Qj S′
j A′

j C′
j 0

Sj Rj B′
j D′

j 0
Aj Bj 0 0 0
Cj Dj 0 0 I

0 0 0 Θ
(n)
j Λ

(n)
j













, j ∈ N , (7a)

Ωj =













0 0 F ′
j−1 0 0

0 0 0 0 0
Ej 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, j ∈ N\{1}, (7b)

b
(n)
1 = col(0, 0,−H1ξ1−E1χ,κ1, η

(n)
1 )−Φ

(n)
1 s

(n)
1 −Ω′

2s
(n)
2 ,

(7c)

b
(n)
N = col(0, 0,−HNξN−FNζ,κN , η

(n)
N )

−ΩNs
(n)
N−1−Φ

(n)
N s

(n)
N , (7d)

b
(n)
j = col(0, 0,−Hjξj ,κj , η

(n)
j )

− Ωjs
(n)
j−1−Φ

(n)
j s

(n)
j −Ω′

j+1s
(n)
j+1, j ∈ N\{1,N}, (7e)

η
(n)
j = Θ

(n)
j λj

(n)+Λ
(n)
j θj

(n)−Λ
(n)
j Θ

(n)
j 1+σ(n)µ(n)

1, j ∈ N .

(7f)

In (7f), the scalar µ(n)=
∑N

j=1((λ
(n)
j )′θ

(n)
j )/

∑N
j=1(νj(T+1))

is a measure of the duality gap and σ(n) ∈ (0, 1) is a centering

parameter. The step-size scalar α(n) > 0 in (5) is selected

(online) to ensure the components of λ
(n+1)
j and θ

(n+1)
j remain

positive for j ∈ N . The coefficient matrix blktrid(Φ(n),Ω) in

(6) is non-singular because, the matrices Aj are non-singular

for all j ∈ N (see, [15, Lemma A.1].)

B. Structure-Preserving Block Elimination

Λj , Θj and Rj in (7a) are block diagonal, with block

sizes that are independent of N and T . For j ∈ N ,

let δ
(n)
j = col(δ

(n)
xj , δ

(n)
uj , δ

(n)
pj , δ

(n)
λj

, δ
(n)
θj

) and b
(n)
j =

col(b
(n)
xj , b

(n)
uj , b

(n)
pj , b

(n)
λj

, b
(n)
θj

) be partitions aligned with the

structure of s
(n)
j noted below (5). Dropping the Newton

iteration index (n), the ordered elimination of

δθj = Λ−1
j (bθj −Θjδλj

), (8)

δλj
= −(Θ−1

j Λj)(bλj
− Cjδxj

−Djδuj
− Λ−1

j bθj), (9)

δuj
= R̂−1

j (b̂uj
− Ŝjδxj

−B′
jδpj

), (10)

from (6), for j ∈ N , yields the smaller symmetric system

blktrid(Φ̃, Ω̃) δ̃ = b̃, (11)

where Φ̃ = (Φ̃j)j∈N , Ω̃ = (Ω̃j)j∈N\{1}, δ̃ = col(δ̃1, . . . , δ̃N ),

b̃ = col(b̃1, . . . , b̃N ), and δ̃j = col(δxj
, δpj

) ∈ R
2nj(T+1),

b̃j = col(b̃xj
, b̃pj

) ∈ R
2nj(T+1),

Φ̃j =

[

Q̃j Ã′
j

Ãj R̃j

]

∈ R
2nj(T+1)×2nj(T+1), (12a)

Ω̃j =

[

0 F ′
j−1

Ej 0

]

∈ R
2nj(T+1)×2nj(T+1), (12b)

[

Q̃j Ã′
j

Ãj R̃j

]

=

[

Q̂j A′
j

Aj 0

]

−

[

Ŝ′
j

Bj

]

R̂−1
j

[

Ŝ′
j

Bj

]′

, (12c)

[

Q̂j Ŝ′
j

Ŝj R̂j

]

=

[

Qj S′
j

Sj Rj

]

+

[

C′
j

D′
j

]

(Θ−1
j Λj)

[

C′
j

D′
j

]′

, (12d)

[

b̃xj

b̃pj

]

=

[

b̂xj

b̂pj

]

−

[

Ŝ′
j

Bj

]

R̂−1
j b̂uj

, (12e)

[

b̂xj

b̂uj

]

=

[

bxj

buj

]

+

[

C′
j C′

j

D′
j D′

j

] [

(Θ−1
j Λj)bλj

Θ−1
j bθj

]

, (12f)

for j ∈ N . Note that the computations required to form

(12c)–(12f) are decomposable. Only the manipulation of block

diagonal matrices, with block sizes independent of N and

T , is required. Moreover, the structure of (6) is preserved in

(11). Further, it is of note that in (12a), Q̃j and R̃j are block

diagonal, and Ãj is block bi-diagonal.
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Next, an iterative algorithm based on the PCG method is

developed to solve (11). The number of iterations required

depends on the quality of the preconditioner used. In the

worst case, the maximum number of iterations is O(NT ),
i.e., the size of the problem. The worst case computational

complexity of the proposed approach is thus O(N2T 2), since

the computational complexity of each PCG step is shown

to be O(NT ) for the structured problem at hand. This is

(at the least) no worse than the previously discussed direct

methods when T ≈ N . However, good preconditioning can

substantially reduce the number of PCG iterations needed.

The properties of a structured preconditioner are detailed in

Section IV. This is the main contributions of the work.

III. PCG SOLVERS

The conjugate gradient (CG) method is an iterative Krylov

subspace method. It is used for solving linear systems of

equations with positive-definite coefficient matrix [24]. While

non-singular, the block tri-diagonal matrix blktrid(Φ̃, Ω̃) in

(11) has both positive and negative eigenvalues. This indefi-

nite system can be solved using other Krylov methods, like

MINRES [25] or GMRES [26]. However, the computations

for these are more involved than the CG method, with reduced

scope for decomposability in the case of structured problems.

Transforming both sides of (11) by blktrid(Φ̃, Ω̃) from the

left yields the positive-definite system of equations

Ψδ̃ = b̆, (13)

where Ψ = (blktrid(Φ̃, Ω̃))2 and b̆ = blktrid(Φ̃, Ω̃) b̃. The

positive-definite matrix Ψ is now block penta-diagonal, but

(13) now is amenable to the CG method.

Let e(i) = δ̃(i) − δ̃∗ be the error between i-th iterate δ̃(i) of

the CG method and the exact solution δ̃∗ of (13). It can be

shown that e(i) satisfies the following [27, Thm. 6.29]:

‖e(i)‖Ψ ≤ 2
(

(
√

κ(Ψ)− 1)
/

(
√

κ(Ψ) + 1)
)i

‖e(0)‖Ψ, (14)

where ‖e‖Ψ = e′Ψe, κ(Ψ) = λmax(Ψ)
/

λmin(Ψ) is the con-

dition number, and λmax(Ψ) (resp. λmin(Ψ)) is the maximum

(resp. minimum) eigenvalue of Ψ. As such, the CG method

converges faster for κ(Ψ) closer to 1. To improve the condition

number, problem (13) can be transformed into

P−1/2ΨP−1/2δ̆ = P−1/2b̆, (15)

where δ̆ = P 1/2δ̃ and P = P ′ ≻ 0. The CG method is then

applied to (15). An efficient implementation of this PCG (i.e.,

preconditioned CG) method is given in Algorithm 1 [6].

The preconditioner P = Ψ would give P−1/2ΨP−1/2 =
I . But steps 3 and 12 of Algorithm 1 are then the original

problem. Incomplete sparse LU factorization of Ψ can be used

for P instead. Such preconditioners are considered in [28],

[29]. However, for the resulting preconditioner to be positive

definite and effective, it may be necessary to use incomplete

LU factors that are denser (i.e., have less structure) than Ψ.

In the next two sections, a structured approach is developed

for the preconditioning steps. Specifically, it is proposed to

use a fixed number of block Jacobi iterations (e.g., see [6]) to

approximately solve steps 3 and 12 with P = Ψ. The approach

builds on ideas borrowed from [30]–[32].

Algorithm 1 PCG for (13) with preconditioner P .

1: Initialize δ̃(0), ǫ, itermax

2: r(0) = b̆−Ψδ̃(0)

3: Solve Pd(0) = r(0)

4: β(0) = (d(0))′r(0)

5: Set i = 0
6: while i < itermax do

7: y(i) = Ψd(i)

8: γ(i) = β(i)/((y(i))′d(i))
9: δ̃(i+1) = δ̃(i) + γ(i)d(i)

10: r(i+1) = r(i) − γ(i)y(i)

11: if ‖r(i+1)‖∞ < ǫ exit

12: Solve Pq(i+1) = r(i+1)

13: β(i+1) = (q(i+1))′r(i+1)

14: d(i+1) = r(i+1) +
(

β(i+1)/β(i)
)

d(i)

15: i = i+ 1
16: end while

IV. BLOCK JACOBI PRECONDITIONING

Let K = {1, 2, . . . ,K}, with K = ⌈N/2⌉, i.e., K = N/2
when N is even, and K = (N +1)/2 otherwise. Also define

∆k =

[

Z2k−1 Y ′
2k

Y2k Z2k

]

, k ∈ K\{K}, (16a)

∆K =











[

ZN−1 Y ′
N

YN ZN

]

, N even,

ZN , N odd,

(16b)

Υk =

[

V2k−1 Y2k−1

0 V2k

]

, k ∈ K\{1,K}, (16c)

ΥK =















[

VN−1 YN−1

0 VN

]

, N even,

[

VN YN

]

, N odd,

(16d)

where referring to (12),

Zj = Φ̃2
j + Ω̃jΩ̃

′
j + Ω̃′

j+1Ω̃j+1, (17a)

Yj = Ω̃jΦ̃j−1 + Φ̃jΩ̃j , (17b)

Vj = Ω̃jΩ̃j−1, (17c)

for j ∈ N , with Ω̃N+1 = 0. Given this, Ψ = blktrid(∆,Υ),
where ∆ = (∆k)k∈K and Υ = (Υk)k∈K\{1}. Moreover, the

preconditioning steps 3 and 12 with P = Ψ, can be re-written

in the form

blktrid(∆,Υ) ζ = τ. (18)

Let ∆ = blkdiag(∆1, . . . , ∆K) and Σ = ∆−Ψ.

The block Jacobi method for solving (18) involves the

following iterations:

∆ζ(l+1) = τ +Σζ(l). (19)

Since Ψ = blktrid(∆,Υ) ≻ 0 is block tri-diagonal, it is

known that these iterations converge [6]. The proposal is

to apply just a fixed number of Jacobi iterations for the

preconditioning steps of Algorithm 1. Characteristics of this

approach are discussed in the next three sub-sections.
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A. Positive definiteness of the preconditioner

Executing a fixed number of block Jacobi steps from zero

is equivalent to the use of a positive-definite preconditioner.

Theorem IV.1: Given L ∈ N and ζ(0) = 0, the L-th iterate

of (19) satisfies PLζ
(L) = τ with PL = W−1

L , where WL =
∑L−1

l=0 (∆−1Σ)l∆−1 ≻ 0.

Proof: Noting that ∆ ≻ 0 is invertible, it follows from

(19) that ζ(L) = WLτ + (∆−1Σ)Lζ(0) = WLτ . It is

established below that WL is positive definite, and thus,

invertible. As such, PLζ
(L) = W−1

L ζ(L) = τ .

Positive definiteness of WL is a consequence of the

known property Ψ = blktrid(∆,Υ) ≻ 0. With U =
blkdiag(UK , ..., U1), and Uk = (−I)k for k = 1, . . . ,K ,

first note that 2∆ − Ψ = U ′ΨU ≻ 0. Then note that

W1 = ∆−1 ≻ 0, and using (∆−1Σ)l∆−1 = ∆−1(Σ∆−1)l,
that

W2M =

M−1
∑

l=0

(∆−1Σ)l∆−1(∆ + Σ)∆−1(Σ∆−1)l

=
M−1
∑

l=1

(∆−1Σ)l∆−1(2∆−Ψ)∆−1(Σ∆−1)l

+∆−1(2∆−Ψ)∆−1 ≻ 0,

and

W2M+1 =
2M−1
∑

l=0

(∆−1Σ)l∆−1 + (∆−1Σ)2M∆−1

=
M−1
∑

l=0

(∆−1Σ)l∆−1(∆ + Σ)∆−1(Σ∆−1)i

+ (∆−1Σ)M∆−1((∆−1Σ)M )′ ≻ 0,

for M ∈ N. Therefore, WL ≻ 0, as claimed.

B. An analytic bound on achieved conditioning

The iterations (19) converge to the solution of (18) if and

only if

̺(∆−1Σ) < 1, (20)

where ̺(·) denotes spectral radius [6, Thm 2.16]. For Ψ =
blktrid(∆,Υ) ≻ 0, and the split Ψ = ∆ − Σ, condition (20)

holds [6, Lem 4.7, Thm. 4.18].

Theorem IV.2: With PL = (
∑L−1

l=0 (∆−1Σ)l∆−1)−1 for

given L ∈ N,

κ(P
−1/2
L ΨP

−1/2
L ) ≤

1 + (̺(∆−1Σ))L

1− (̺(∆−1Σ))L
. (21)

Proof: By Theorem IV.1, PL ≻ 0. Using Ψ = ∆− Σ,

P−1
L Ψ =

L−1
∑

l=0

(∆−1Σ)l(I −∆−1Σ) = I − (∆−1Σ)L. (22)

Furthermore, P−1
L Ψ = P

−1/2
L (P

−1/2
L ΨP

−1/2
L )P

1/2
L , whereby

spec(P
−1/2
L ΨP

−1/2
L ) = spec(P−1

L Ψ). So the result holds

as λmax(I − (∆−1Σ)L) ≤ 1 + (̺(∆−1Σ))L and λmin(I −
(∆−1Σ)L) ≥ 1− (̺(∆−1Σ))L > 0.

By Theorem IV.2, the number L of block Jacobi iterations

can be selected to achieve desired conditioning.

C. Decomposable computations

Note that explicit construction of the preconditioner PL is

not needed. At each PCG iteration, L iterations of (19) are

performed from ζ(0) = 0. Since ∆ is block diagonal, the

computations required to implement each Jacobi iteration can

be decomposed into K = ⌈N/2⌉ smaller problems

∆kζ
(l+1)
k = ωk, (23)

where ωk = τk + Υkζ
(l)
k−1 + Υ′

k+1ζ
(l)
k+1 for k ∈ K, with

ΥK+1 = 0. Each ∆k is a block 2 × 2 matrix, with inner

blocks that are structured. To see this structure, consider

∆k =

[

Z2k−1 Y ′
2k

Y2k Z2k

]

. (24)

Note that

Zj = Φ̃2
j + Ω̃jΩ̃

′
j + Ω̃′

j+1Ω̃j+1

=

[

Q̃2
j+Ã

′
jÃj+Fj−1F

′
j−1+E

′
jEj Q̃jÃ

′
j+Ã

′
jR̃j

ÃjQ̃j+R̃jÃj ÃjÃ
′
j+R̃

2
j+FjF

′
j+E

′
j+1Ej+1

]

, (25a)

Yj = Ω̃jΦ̃j−1+Φ̃jΩ̃j=

[

F ′
j−1Ãj−1+Ã

′
jEj F ′

j−1R̃j−1+Q̃jF
′
j−1

EjQ̃j−1+R̃j−1Ej EjÃ
′
j−1+ÃjF

′
j−1

]

.

(25b)

All blocks components of (25) are block diagonal, except for

the block bi-diagonal Ãj for j ∈ N . The sub-block sizes

are all independent of both N and T . The diagonal blocks

of Zj are block tri-diagonal, while off-diagonal blocks are

block bi-diagonal for j ∈ N . Similarly, the diagonal blocks

of Yj are block tri-diagonal, and the off-diagonal blocks are

block diagonal for j ∈ N\{1}. To summarize, the matrices

∆k have block-banded structure. In particular, there exists a

permutation of variables such that (23) takes the form

blktrid(Ξk, Πk) ζ̂
(l+1)
k = ω̂k, (26)

where ω̂k = τ̂k + Υ̂kζ̂
(i)
k−1 + Υ̂′

k+1ζ̂
(i)
k+1, Ξk = (Ξk,t)t∈T ,

Πk = (Πk,t)t∈T \{T},

Ξk,t =









Q̌2k−1,t Ω2k−1,t Ě′
2k,t 0

Ω2k−1,t Ř2k−1,t−1 0 F̌ ′
2k,t−1

Ě2k,t 0 Q̌2k,t Ω2k,t

0 F̌2k,t−1 Ω2k,t Ř2k,t−1









, (27a)

with

Q̌j,t=Q̃2
j,t+I+Ã′

j,tÃj,t+E′
j,tEj,t+F ′

j−1,tFj−1,t, (27b)

Řj,t= R̃2
j,t+I+Ãj,tÃ

′
j,t+Ej,tE

′
j,t+Fj,tF

′
j,t, (27c)

Ωj,t=−Q̃j,t−R̃j,t−1, (27d)

Ěj,t= Ã′
j,tEj,t+F ′

j−1,tÃj−1,t, (27e)

F̌j,t= Ãj,tF
′
j−1,t+Ej,tÃ

′
j−1,t, (27f)

for j ∈ N , and

Πk,t =









−Ã2k−1,t 0 −F ′
2k−1,t 0

Ǎ2k−1,t −Ã2k−1,t G2k−1,t −F ′
2k−1,t

−E2k,t 0 −Ã2k,t 0

X2k,t −E2k,t Ǎ2k,t −Ã2k,t









(28a)

with

Ǎj,t = Ãj,tQ̃j,t + R̃j,tÃj,t, j ∈ N (28b)
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Single Thread N/2 Parallel Threads

PCG Steps Computations
Computations

per thread

Data xchg.

per thread

Step 7: O(NTn̄2) O(T n̄2) O(T n̄)

Step 8: O(NTn̄) O(T n̄) O(1)

Step 9: O(NTn̄) O(T n̄) 0

Step 10: O(NTn̄) O(T n̄) 0

Step 11: O(NTn̄) O(T n̄) O(1)

Step 12: O(LT n̄3) O(LT n̄3) O(LT n̄)

Step 13: O(NTn̄) O(T n̄) O(1)

Step 14: O(NTn̄) O(T n̄) 0

TABLE I
COMPLEXITY ANALYSIS OF PROPOSED PCG ALGORITHM 1:

n̄ = maxj(nj), WHERE nj IS THE SIZE OF xj,t ; AND L IS THE FIXED

NUMBER OF JACOBI ITERATIONS.

Gj,t = F ′
j−1,tR̃j−1,t + Q̃j,tF

′
j−1,t, j ∈ N\{1} (28c)

Xj,t = Ej,tQ̃j−1,t + R̃j−1,tEj,t, j ∈ N\{1}. (28d)

Note that Ξk,t, Πk,t ∈ R
n̂k,t×n̂k,t , where n̂k,t = 2(n2k−1 +

n2k) for all k ∈ K and t ∈ T . That is, the sizes of the sub-

blocks of blktrid(Ξk, Πk) are independent of N and T .

For each k ∈ K, the block tri-diagonal system (26) can

be solved by backward-forward recursions, with computa-

tional complexity O(2T ), that effectively implement an LDL

factorization method [33]. In this way, the preconditioning

computations decompose into a collection of ⌈N/2⌉ paral-

lel threads each comprising computations for 2T sequential

(possibly dense) problems of size that is independent of

N and T . Table I provides a complexity analysis of each

step of Algorithm 1, including the inter-thread data exchange

overhead for an implementation with parallelism.

Remark IV.1: The per PCG iteration computational com-

plexity is dominated by step 12, i.e., O(LNT n̄3). With the

number L of block Jacobi preconditioning iterations fixed, and

fixed bound n̄ on the size of sub-system states, the overall

computational complexity of PCG steps is O(NT ).
Remark IV.2: Note that steps 8, 11 and 13 require sequential

computations, to accumulate in forming dot-products and to

test the stopping condition. For the ⌈N/2⌉ parallel thread

implementation, these can be carried out using a backward-

forward sweep with path-graph data exchange. Further, the

parallel implementation of steps 7 and 12 requires the ex-

change of vectors of size less than T n̄, between the neigh-

bouring threads on this path-graph, since the partition of Ψ is

block tri-diagonal. As such, the overall inter-thread scalar data

exchange overhead is O(LNT n̄) per PCG iteration.

V. NUMERICAL RESULTS

Numerical experiments are performed for an optimal con-

trol problem involving a one-dimensional mass-spring-damper

chain of varying length of N > 0 masses, taken from [34].

Each sub-system j ∈ N has dynamics of the form (1) with

nj = 2, mj = 1, and νj = 4. The corresponding cost has

Qj,t = diag(1, 0) and Rj,t = 1 for t ∈ T . The model

parameters such as mass, spring constant, damping coefficient

are selected randomly between 0.8 to 1.5 to generate het-

erogeneous sub-systems. The experiments are performed by

taking N = T and varying this value from 10 to 1000. The

number of scalar variables in the largest problem is in the

order of 107, and there are a similar number of constraints.

The linear system of equations at each Newton-step is solved

in the following ways:

• Algorithm 1 to solve (18) with L = 2;

• The block Jacobi method to solve (18) via iterations of

the form (19);

• The direct method [15], via backward-forward recursions

(BFR) to effectively solve (11) by LDL factorization;

• Solution of (11) via MATLAB’s backslash.

In order to gauge the overall computational complexity a single

thread implementation is used for all methods. The duality-gap

based stopping criterion for the interior point method is set to

ǫIPM = 10−6. The stopping criterion for the infinity norm

of the residuals in Algorithm 1, and in the pure block Jacobi

iterations based implementation, is set to ǫ = 10−9. For all

experiments, IPM converged to specified tolerance within 15
to 20 Newton steps.

Fig. 1 shows the maximum/average number of iterations

for the pure block Jacobi method, and the PCG method with

L = 2, taken across IPM iterations. The pure block Jacobi

method consistently involves a large number of iterations,

in the order of thousands. By contrast, the proposed PCG

method consistently requires far fewer iterations, in the order

of hundreds. This demonstrates effectiveness of proposed

approach to preconditioning.

Fig. 2 shows the normalized average processor time for

a single thread implementation as proxy for the per-IPM

iteration computational complexity. Along the line N = T ,

the average time is O(N2) for the PCG method, compared to

O(N4) for the direct method [15]. While the Jacobi method

is also O(N2), the time is an order of magnitude greater than

the PCG method. The average time for MATLAB’s backslash,

based on MA-57 [35], is provided as a base line. Note, that

backslash is able to permute matrices in ways that does not

respect the spatio-temporal structure of problem (2), which is

by contrast preserved in the proposed PCG method.

Finally, the effect of increasing L is shown in Fig. 3, as

the value of N = T is varied from 10 to 50. It can be seen

that the maximum number of PCG iterations decreases as L is

increased, with considerable decrease as L is increased from

1 to 2 for this example.

VI. CONCLUSIONS

A decomposable PCG method is proposed for computing

second-order search directions for optimal control problems

with path-graph network structure. The proposed algorithm

exhibits per PCG iteration computational complexity that

scales linearly with the number of sub-systems N and the

length of time horizon T . The computations at each iteration

can be distributed across parallel processing agents in a net-

work with path-graph structured information exchange. Future

work includes extending the results for tree networks, where

structure is manifest in three dimensions.
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