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Diagonal Stability of Discrete-time k-Positive linear

Systems with Applications to Nonlinear Systems
Chengshuai Wu and Michael Margaliot

Abstract—A linear dynamical system is called k-positive if its
dynamics maps the set of vectors with up to k−1 sign variations
to itself. For k = 1, this reduces to the important class of positive
linear systems. Since stable positive linear time-invariant (LTI)
systems always admit a diagonal quadratic Lyapunov function,
i.e. they are diagonally stable, we may expect that this holds also
for stable k-positive systems. We show that, in general, this is not
the case both in the continuous-time (CT) and discrete-time (DT)
case. We then focus on DT k-positive linear systems and introduce
the new notion of DT k-diagonal stability. It is shown that this
is a necessary condition for standard DT diagonal stability. We
demonstrate an application of this new notion to the analysis of
a class of DT nonlinear systems.

Keywords: Sign variation, compound matrix, stability, diago-

nal Lyapunov function, wedge product, cyclic systems.

I. INTRODUCTION

Lyapunov functions are a powerful tool for stability analysis

and control synthesis. For linear time-invariant (LTI) systems,

stability is equivalent to the existence of a quadratic Lyapunov

function, i.e. V (x) = xTQx, with Q positive-definite, that

can be obtained constructively based on the eigenvectors

of an associated Hamiltonian matrix [1]. An LTI is called

diagonally stable if it is possible to find a diagonal Lyapunov

function (DLF), i.e. V (x) = xTDx, with D positive-definite

and diagonal.

Diagonal stability of LTIs has attracted considerable at-

tention in the systems and control community (see e.g. the

monograph [2]). Due to its simplicity, diagonal stability

can facilitate control synthesis, and it plays an important

role in many fields including mathematical economics [3],

ecology [4], numerical analysis [5], biochemistry [6], and

networked systems [7].

The existence of a DLF has important implications to certain

nonlinear systems associated with the LTI [8], [9]. This is true

for both continuous-time (CT) and discrete-time (DT) nonlin-

ear systems. We now briefly explain this. For P ∈ R
n×n,

we write P ≻ 0 [P ≺ 0] to denote that P is symmetric and

positive-definite [negative-definite]. Consider the CT nonlinear

system:

ẋ(t) =Af(x(t)), (1)

where A ∈ R
n×n, f(x) =

[

f1(x1) · · · fn(xn)
]T

, fi is

continuous and fi(z)z > 0 for all z 6= 0 (so fi(0) = 0). Such a
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dynamics is called a Persidskii system (see, e.g. [10], [11] and

the references therein). Suppose that A satisfies the Lyapunov

inequality DA + ATD ≺ 0 with a diagonal matrix D ≻ 0.

Let

V (z) := 2

n
∑

i=1

di

∫ zi

0

fi(τ) dτ,

where di is the ith diagonal entry of D. Then the derivative

of V (x(t)) along solutions of (1) is

V̇ (x(t)) = fT (x(t))(DA +ATD)f(x(t)),

so V̇ (x(t)) < 0 whenever x(t) 6= 0. If
∫ xi

0
fi(τ) dτ → ∞

as |xi| → ∞, i = 1, . . . , n, then we can conclude that the

nonlinear system (1) is globally asymptotically stable (GAS).

Note that (1) can also be interpreted as a networked system.

Indeed, assume that A is nonsingular and let y := A−1x.

Then (1) becomes

ẏi(t) = fi





n
∑

j=1

aijyj(t)



 , i = 1, . . . , n, (2)

where aij is the (i, j)-th entry of A. This can be viewed as

a networked system with the weighted adjacency matrix A.

In this case, diagonal stability of the LTI implies GAS of an

associated nonlinear networked system. This idea was used

in [6] to show that diagonal stability of a cyclic LTI implies

the stability of a cyclically interconnected network of output

strictly passive systems [12].

A similar construction holds for the DT nonlinear system:

x(j + 1) =Aφ(x(j)), (3)

where φ(x) :=
[

φ1(x1) · · · φn(xn)
]T

, with φi(z) contin-

uous and 0 < |φi(z)| ≤ |z| for all z 6= 0 (so φ(0) = 0).

If A in (3) satisfies the Stein inequality ATDA ≺ D, with a

diagonal matrix D ≻ 0, then V (z) := zTDz is a Lyapunov

function for the nonlinear system (3). Similar to the CT case,

the DT nonlinear system (3) can also be interpreted as a

networked system using a suitable change of coordinates.

Stable LTIs always admit a quadratic Lyapunov function,

but not necessarily a DLF [3]. It is well-known however that

stable positive LTIs do admit a DLF (see, e.g., [7]).

Recently, the notion of positive linear systems was gen-

eralized to k-positive linear systems. For the theory and

applications of such systems, see [13], [14] and also [15], [16],

[17], [18]. For k = 1, this reduces to positive linear systems.

This naturally raises the question of whether stable k-positive

LTIs also admit a DLF. Here, we show that the answer is in

general no.

http://arxiv.org/abs/2102.02144v1
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We then focus on the DT case. We show that k-positive

DT LTI always satisfy a property that we call DT k-diagonal

stability. It is showed that DT k-diagonal stability is a nec-

essary condition for DT diagonal stability. We then describe

an application to a class of DT nonlinear systems in a form

similar to (3). By using wedge products and their geometric

interpretation, we show that the asymptotic behavior of these

systems can be analyzed using k-positivity and DT k-diagonal

stability. These result generalize the construction described

above when k = 1.

The remainder of this note is organized as follows. The

next section briefly reviews some basic definitions and known

results from the theory of diagonal stability, positive LTIs,

compound matrices, and k-positive systems. Section III shows

that in general stable k-positive systems, with k > 1, are not

diagonally stable. Section IV introduces the notion of DT k-

diagonal stability, and explains its relation to the standard DT

diagonal stability. An application to DT nonlinear systems is

described in Section V.

We use standard notation. A matrix X ∈ R
n×m is called

non-negative [positive], denoted X ≥ 0 [X ≫ 0], if all its

entries are non-negative [positive]. The determinant of A ∈
R

n×n is denoted by det(A). The eigenvalues of A are denoted

by λi(A), i = 1, . . . , n, ordered such that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|. (4)

The spectral radius of A is ρ(A) := |λ1(A)|. For two inte-

gers i ≤ j, we let [i, j] := {i, i+ 1, . . . , j}. The non-negative

orthant in R
n is R

n
+ := {x ∈ R

n |xi ≥ 0, i = 1, . . . , n}.

II. PRELIMINARIES

In this section, we review several known topics that are

needed later on.

A. Diagonal stability of positive DT LTIs

If A ∈ R
n×n is non-negative, then x(j + 1) = Ax(j)

is called a positive DT LTI. The dynamics of positive DT

LTIs leaves the proper cone R
n
+ invariant [19]. The following

result shows that stable positive DT LTIs are diagonally stable.

Let Dn×n denote the set of n× n positive diagonal matrices.

Lemma 1 (see e.g. [7, Prop. 2]). If A ∈ R
n×n with A ≥ 0

then the following statements are equivalent:

(a) The matrix A is Schur, i.e., ρ(A) < 1;

(b) There exists ξ ∈ R
n with ξ ≫ 0 such that Aξ ≪ ξ;

(c) There exists z ∈ R
n with z ≫ 0 such that AT z ≪ z;

(d) There exists D ∈ D
n×n such that ATDA ≺ D;

(e) The matrix (I −A) is nonsingular and (I −A)−1 ≥ 0.

Remark 1 (see e.g. [7]). Let A ∈ R
n×n be non-negative and

Schur. Pick x, y ∈ R
n with x, y ≫ 0. Then ξ := (I −A)−1x,

z := (I −AT )−1y, and D := diag( z1
ξ1
, . . . , zn

ξn
) satisfy condi-

tions (b), (c), and (d) in Lemma 1, respectively. This provides a

constructive procedure to obtain a DLF for positive DT LTIs.

Note that if A ∈ R
n×n is Schur and A ≤ 0, then (−A) is

Schur and non-negative. In this case, Lemma 1 also guarantees

the existence of a D ∈ D
n×n such that ATDA ≺ D.

B. k-positive systems

We recall two definitions for the number of sign variations

in a vector. Define s−, s+ : R
n → {0, 1 . . . , n − 1} as

follows. First, s−(0) = 0. Second, for x 6= 0, s−(x) is

the number of sign variations in x after deleting all its zero

entries. Let s+(x) denote the maximal possible number of sign

variations in x after each zero entry is replaced by either 1

or −1. For example, for n = 4 and x =
[

1.3 0 0 −π
]T

,

we have s−(x) = 1 and s+(x) = 3. Obviously,

0 ≤ s−(x) ≤ s+(x) ≤ n− 1 for all x ∈ R
n.

For any k ∈ [1, n] := {1, . . . , n}, define the sets:

P k
−
:= {x ∈ R

n : s−(x) ≤ k − 1},

P k
+ := {x ∈ R

n : s+(x) ≤ k − 1}.
(5)

For example, P 1
−
= R

n
+ ∪ (−R

n
+).

A linear dynamical system is called k-positive if its flow

maps P k
−

to P k
−

, and strongly k-positive if its flow maps P k
−
\

{0} to P k
+ [13], [14]. For example, the dynamics of positive

LTIs maps the non-negative orthant R
n
+ to itself (and also

−R
n
+ to itself), so they are 1-positive systems.

Multiplying a vector by a non-zero scalar does not change

the number of sign variations in the vector. This implies

that P k
−
, P k

+ are cones. However, they are not convex cones.

For example, the vectors x :=
[

4 2 4
]T

and y :=
[

−2 −4 −2
]T

satisfy x, y ∈ P 1
−

and x, y ∈ P 1
+, but z :=

(x+ y)/2 =
[

1 −1 1
]T

satisfies z 6∈ P 1
−

and z 6∈ P 1
+.

The analysis of k-positive systems is based on compound

matrices.

C. Multiplicative compound matrices

For an integer n ≥ 1 and k ∈ [1, n], let Qk,n denote the

ordered set of all strictly increasing sequences of k integers

chosen from [1, n]. We denote the r :=
(

n
k

)

elements of Qk,n

by κ1, . . . , κr, with the κis ordered lexicographically. For

example, Q2,3 = {κ1, κ2, κ3}, with κ1 = {1, 2}, κ2 = {1, 3},

and κ3 = {2, 3}.

Given A ∈ R
n×n and κi, κj ∈ Qk,n, let A[κi|κj ] ∈ R

k×k

denote the submatrix of A consisting of the rows [columns]

indexed by κi [κj]. Let A(κi|κj) := det(A[κi|κj ]), i.e., the

k-minor of A determined by the rows [columns] in κi [κj].

The kth multiplicative compound (MC) of A is the ma-

trix A(k) ∈ R
r×r, whose entries, written in lexicographic

order, are A(κi|κj), see e.g. [20], [13] for more detailed ex-

planations and examples. Note that this implies that A(1) = A
and A(n) = det(A). The MC satisfies the following properties

(see, e.g., [21]).

Lemma 2. Let A,B ∈ R
n×n and pick k ∈ [1, n]. Then

(a) (AB)(k) = A(k)B(k);

(b) if A is nonsingular then (A−1)(k) = (A(k))−1;

(c) (AT )(k) = (A(k))T ;

(d) if A
1

2 exists then (A
1

2 )(k) = (A(k))
1

2 ;

(e) the product of every k eigenvalues of A is an eigenvalue

of A(k);

(f) if A is Schur, then A(k) is Schur;



3

(g) if A is a diagonal matrix, then A(k) is a diagonal matrix.

(h) if A ≻ 0, then A(k) ≻ 0.

Note that Property (a) justifies the term multiplicative

compound. For k = n, this property becomes the familiar

formula det(AB) = det(A) det(B).

D. Necessary and sufficient conditions for k-positivity

A matrix A ∈ R
n×m is called sign-regular of order k, de-

noted SRk, if either A(k) ≤ 0 or A(k) ≥ 0. It is called strictly

sign-regular of order k, denoted SSRk, if either A(k) ≪ 0
or A(k) ≫ 0. In other words, all minors of order k of A
have the same [strict] sign.1 To refer to the common sign of

the entries of A(k), we use the signature ǫk ∈ {−1, 1}. That

is, if A(k) is SSRk [SRk] with signature ǫk = 1, then all

the k-minors of A are positive [non-negative].

The next result provides a necessary and sufficient condition

for a nonsingular matrix to map P k
−

to itself.

Proposition 1 ([22]). Let T ∈ R
n×n be a nonsingular matrix

and pick k ∈ [1, n]. Then

(a) TP k
−
⊆ P k

−
if and only if T is SRk;

(b) T (P k
−
\ {0}) ⊆ P k

+ if and only if T is SSRk.

For example, for k = 1 this implies that T (Rn
+∪(−R

n
+)) ⊆

(Rn
+ ∪ (−R

n
+)) if and only if (iff) the entries of T are all

non-negative or all non-positive, and that T (Rn
+ ∪ (−R

n
+)) ⊆

int(Rn
+ ∪ (−R

n
+)) iff the entries of T are all positive or all

negative.

Remark 2. The assumption that T is nonsingular is not

restrictive in our setting. Indeed, if x(j + 1) = Ax(j),
with A singular, then the dynamics can be reduced to a lower-

dimensional DT LTI with a nonsingular matrix.

The next result gives a necessary and sufficient condition

for a DT LTI to be k-positive.

Proposition 2 ([14, Thm. 1]). Let A ∈ R
n×n be nonsingular

and pick k ∈ [1, n]. The DT LTI

x(j + 1) = Ax(j) (6)

is k-positive iff A is SRk, and strongly k-positive iff A
is SSRk.

E. Wedge products

Fix an integer n ≥ 1 and k ∈ [1, n]. The wedge product of

the k vectors a1, . . . , ak ∈ R
n is defined as

a1 ∧ · · · ∧ ak :=
[

a1 . . . ak
](k)

. (7)

We also use the notation ∧k
i=1a

i := a1∧· · ·∧ak. Note that the

right-hand side of (7) has dimensions
(

n
k

)

×
(

k
k

)

, that is, it is

a column vector of dimension
(

n

k

)

. In the special case k = n,

Eq. (7) yields

∧n
i=1a

i =
[

a1 . . . an
](n)

= det(
[

a1 . . . an
]

).

1We note that the terminology in this field is not uniform and some authors
refer to such matrices as sign-consistent of order k.

The wedge product has an important geometric meaning.

The value | ∧k
i=1 a

i| is the k-content [21] of the parallelotope

whose edges are the given vectors. For k = 2 and k = 3, the k-

content reduces to the standard notion of area and volume. For

example, consider the case n = 3 and k = 2. Pick a, b ∈ R
3.

Then

a ∧ b =





a1 b1
a2 b2
a3 b3





(2)

=
[

a1b2 − b1a2 a1b3 − b1a3 a2b3 − b2a3
]T

.

The entries here are the same as those in the cross product a×
b, up to a minus sign. Thus, |a ∧ b| = |a × b|, and when | · |
is the Euclidean norm this is the area of the parallelogram

having a and b as sides.

F. Necessary conditions for diagonal stability

Recall that A(κi|κj) is a principal minor of A if κi = κj .

We briefly review necessary conditions for diagonal stability

of a matrix A in terms of its principal minors.

Proposition 3 ([3, Thm. 2]). Let A ∈ R
n×n. If there exists

a D ∈ D
n×n such that DA+ATD ≺ 0, then every principal

minor of (−A) is positive.

Combining this with the Cayley transform [23, Thm. 3]

yields the following result.

Proposition 4 (see e.g. [2]). Let A ∈ R
n×n. If there exists

a D ∈ D
n×n such that ATDA ≺ D, then every principal

minor of −(A+ I)(A − I)−1 is positive.

The next three sections describe our main results.

III. k-POSITIVITY DOES NOT IMPLY DIAGONAL STABILITY

Since stable 1-positive systems (i.e. positive systems) are

diagonally stable, a natural question is: are stable k-positive

systems diagonally stable? This section shows that in general

the answer is no, both in the DT and CT case.

Consider the DT LTI (6) with

A =
1

7





−4 −2 1
1 −3 −5
7 1 −2



 . (8)

It is straightforward to verify that A is Schur, and that A(2)

is SSR2 with ǫ2 = 1. Let B := −(A+ I)(A− I)−1. Then,

B({1, 3}|{1, 3}) = det

(

1

461

[

204 140
497 323

])

= −
8

461
< 0.

Hence, Proposition 4 implies that although the DT LTI is stable

and strongly 2-positive, it does not admit a DLF.

Remark 3. We focus on DT systems, but here we also briefly

discuss the CT case. The CT LTI ẋ = Ax is called strongly k-

positive if its flow maps P k
−
\{0} to P k

+ that is, exp(At)(P k
−
\

{0}) ⊆ P k
+ for all t > 0. By using Proposition 3, we can
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also prove that k-positive CT LTIs are not diagonally stable

in general. Consider ẋ = Ax with

A =





−21 11 −14
18 −19 37
−49 21 −33



 .

This system is strongly 2-positive (see [13]), and A is Hurwitz.

Let B := −A. Then

B({2, 3}|{2, 3}) = det

([

19 −37
−21 33

])

= −150 < 0.

Thus, Proposition 3 implies that this system is not diagonally

stable.

Summarizing, stable k-positive LTIs are in general not

diagonally stable. A natural question then is what can be said

about the diagonal stability of such systems.

IV. DT k-DIAGONAL STABILITY

We begin with defining a new notion called k-diagonal

stability.

Definition 1. Given A ∈ R
n×n and k ∈ [1, n−1], let r :=

(

n
k

)

.

We say that A is DT k-diagonally stable if there exists D ∈
D

r×r such that

(A(k))TDA(k) ≺ D. (9)

Note that Definition 1 reduces to standard DT diagonal

stability for k = 1, as then A(1) = A and r =
(

n

1

)

= n.

The next result is a generalization of Lemma 1. It shows that

a k-positive DT LTI is k-diagonally stable iff A(k) is Schur.

Corollary 1. Suppose that A ∈ R
n×n is SRk for some k ∈

[1, n − 1], with ǫk = 1. Let r :=
(

n
k

)

. Then the following

statements are equivalent:

(a) The matrix A(k) is Schur;

(b) There exists ξ ∈ R
r with ξ ≫ 0 such that A(k)ξ ≪ ξ;

(c) There exists z ∈ R
r with z ≫ 0 such that (A(k))T z ≪ z;

(d) There exists D ∈ D
r×r such that (9) holds;

(e) (I −A(k)) is nonsingular and (I −A(k))−1 ≥ 0.

Remark 4. Note that when these conditions hold we can use

the idea described in Remark 1 to get an explicit matrix D ∈
D

r×r such that (9) holds.

To demonstrate an application of Corollary 1, we revisit

the class of cyclic DT LTIs, whose diagonal stability has been

analyzed in [24].

Definition 2. The matrix A ∈ R
n×n is called cyclic if

A =



















α1 β1 0 · · · 0
0 α2 β2 · · · 0
0 0 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · βn−1

(−1)ℓ+1βn 0 0 · · · αn



















, (10)

with αi, βi ≥ 0, i = 1, . . . , n, and ℓ ≥ 0 is an integer.

We say that the DT LTI x(j + 1) = Ax(j) is cyclic if A
is cyclic. Then the dynamics represents a linear chain such

that xi(j + 1) depends only on xi(j), xi+1(j), and xn(j +
1) also depends on a feedback connection from x1(j). The

feedback is negative [positive] if ℓ is even [odd]. The next

result shows that such systems are DT k-diagonally stable.

Theorem 1. Suppose that A is cyclic for some ℓ ∈ [1, n− 1].
Then A is SRℓ with signature ǫℓ = 1. Furthermore, if ℓ is

odd, then A is DT diagonally stable iff A is Schur. If ℓ is

even, then A is DT ℓ-diagonally stable iff A(ℓ) is Schur.

Proof: Pick κi, κj ∈ Qℓ,n. By the Leibniz formula,

A(κi|κj) =det(A[κi|κj ])

=
∑

σ∈pt(κj)

(

sgn(σ)

ℓ
∏

s=1

aκis,σs

)

, (11)

where κis is the sth element of κi, σs is the sth element

of the permutation σ ∈ pt(κj), sgn(σ) ∈ {−1, 1} denotes the

signature of σ, and pt(κj) denotes the set of all ℓ! permutations

of the indexes in κj . For example, if n = 7, ℓ = 3, and

κj = {2, 5, 7}, then

pt(κj) ={{2, 5, 7}, {2, 7, 5}, {5, 2, 7},

{5, 7, 2}, {7, 5, 2}, {7, 2, 5}}.

The cyclic structure (10) implies that sgn(σ)
∏ℓ

s=1 aκis,σs

can be non-zero only in the following cases:

(i) κiℓ ≤ n − 1, and either σs = κis or σs = κis + 1, for

all s ∈ {1, . . . , ℓ};

(ii) κiℓ = n, σℓ = n, and either σs = κis or σs = κis + 1
for all s ∈ {1, . . . , ℓ− 1};

(iii) κiℓ = n, σℓ = 1, and either σs = κis or σs = κis + 1
for all s ∈ {1, . . . , ℓ− 1}.

Additionally, the elements of σ are distinct, as σ ∈ pt(κj).
Since κi is an increasing sequence, in Cases (i) and (ii) the

number of inversions in σ is zero, so sgn(σ) = 1. If Case (iii)

holds, then σℓ = 1 < σ2 < · · · < σℓ−1, so σ has ℓ − 1
inversions.

Assume that ℓ is even. Then all the entries of A are

non-negative, except perhaps for an1. In Cases (i) or (ii)

we have sgn(σ)
∏ℓ

s=1 aκis,σs
≥ 0 since sgn(σ) = 1, and

all the aijs in
∏ℓ

s=1 aκis,σs
are non-negative. If Case (iii)

holds, then the number of inversions in σ is ℓ − 1, which

is odd, so sgn(σ) = −1. Furthermore, an1 ≤ 0 ap-

pears in the term
∏ℓ

s=1 aκis,σs
. Thus, in this case we

also have sgn(σ)
∏ℓ

s=1 aκis,σs
≥ 0. Now (11) implies

that A(κi|κj) ≥ 0. Since κi, κj ∈ Qℓ,n are arbitrary, we

conclude that A is SRℓ with signature ǫℓ = 1. The proof

for ℓ odd is similar.

Furthermore, If ℓ is even, the results in [24] show that A
may be Schur yet not necessarily diagonally stable. However,

since A is SRℓ, Corollary 1 ensures that A is DT ℓ-diagonally

stable iff A(ℓ) is Schur (which is weaker than the condition A
is Schur). If ℓ is odd, then every entry of A in (10) is non-

negative, and Lemma 1 implies that it is DT diagonally stable

iff A is Schur.

Example 1. Consider the case n = 3, that is, A =
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



α1 β1 0
0 α2 β2

(−1)ℓ+1β3 0 α3



 . A calculation gives

A(2) =





α1α2 α1β2 β1β2

(−1)ℓβ1β3 α1α3 α3β1

(−1)ℓα2β3 (−1)ℓβ2β3 α2α3



 .

If ℓ = 1 then all the entries of A are non-negative, so A
is SR1 with signature ǫ1 = 1. If ℓ = 2 then all the entries

of A(2) are non-negative, so A is SR2 with signature ǫ2 = 1.

The next result shows that DT k-diagonal stability, with k >
1, is a necessary condition for DT diagonal stability. Let Is
denote the s× s identity matrix.

Theorem 2. If A ∈ R
n×n is DT diagonally stable, then A is

DT k-diagonally stable for any k ∈ [1, n− 1].

Proof: Since A is DT diagonally stable, there exists P ∈
D

n×n such that ATPA ≺ P . Hence, P−
1

2ATPAP−
1

2 ≺ In,

so P−
1

2ATPAP−
1

2 is Schur. Pick k ∈ [1, n−1], and let r :=
(

n

k

)

and D := P (k). Note that D ∈ D
r×r. Lemma 2 implies

that

(P−
1

2ATPAP−
1

2 )(k) = D−
1

2 (A(k))TDA(k)D−
1

2

is also Schur, i.e., D−
1

2 (A(k))TDA(k)D−
1

2 ≺ Ir. We con-

clude that (A(k))TDA(k) ≺ D.

Corollary 1 guarantees that a stable k-positive DT LTI is

always k-diagonally stable with a matrix D ∈ D
r×r. If there

exists P ∈ D
n×n such that P (k) = D, then the proof of

Thm. 2 suggests that V (z) := zTPz is a candidate for a DLF

for the original DT LTI x(j + 1) = Ax(j). However, for

any k = [2, n − 2] and D ∈ D
r×r, the equation P (k) = D

generally does not admit a solution P ∈ D
n×n. The next result

shows that for k = n− 1 this equation is always solvable.

Theorem 3. For any D ∈ D
n×n, there exists a P ∈ D

n×n

such that P (n−1) = D.

Proof: The proof is constructive. The equation P (n−1) =
D can be written as

∏

s∈κq

ps = dq, q = 1, . . . , n (12)

where κ1, . . . , κn ∈ Qn−1,n, and pi, di denote the ith diagonal

entry of P and D, respectively. For any s ∈ [1, n], let j(s) be

the single element in the set of indexes [1, n]\κs. A lengthy but

straightforward computation shows that the solution of (12) is

ps =

∏

q∈κs
d

1

n−1

q

d
n−2

n−1

j(s)

. (13)

Since di > 0 for any i, this implies that ps > 0 for any s.

The following example shows that how the above results

can be utilized to construct a DLF for an (n− 1)-positive DT

LTI.

Example 2. Consider the DT LTI x(j + 1) = Ax(j) with

A =
1

8





−4 −2 0
0 −3 −5
7 0 −2



 . (14)

A calculation shows that A is Schur. Since the entries of A
have different signs, we cannot use Lemma 1 to conclude

that A admits a DLF. However, A is SSR2 with ǫ2 = 1.

Hence, Corollary 1 implies that there exists D ∈ D
3×3 such

that (A(2))TDA(2) ≺ D. According to Remark 4, one such D
can be obtained as D = diag

(

23
21 ,

13
8 , 7

13

)

. Using Theorem 3

to solve P (2) = D gives P = diag
(√

3887
1176 ,

√

184
507 ,

√

147
184

)

.

It is straightforward to verify that ATPA ≺ P . Thus, we were

able to build a DLF for A.

V. APPLICATIONS TO NONLINEAR DYNAMICAL SYSTEMS

As mentioned in the introduction, DT diagonal stability of A
implies that certain nonlinear DT systems are also stable. A

natural question is what are the implications of DT k-diagonal

stability for nonlinear systems? In this section, we describe a

new class of DT nonlinear system whose dynamics can be

analyzed by exploiting k-positivity and wedge products. We

first define a special kind of nonlinear mappings.

Definition 3. Let S ⊆ R with 0 ∈ intS. Define φ : Sn → R
n

by φ(x) :=
[

φ1(x1) . . . φn(xn)
]T

, where every φi : S →
R is a continuous scalar function such that φi(s) = 0 holds

only for s = 0. Pick k ∈ [1, n− 1] and let r :=
(

n

k

)

. We say

that φ is k-content preserving if for any a1, . . . , ak ∈ S
n we

have that
{

qi = 0, if pi = 0,

|qi| ∈ (0, |pi|] if pi 6= 0,
(15)

for all i = 1, . . . , r, where q := ∧k
j=1φ(a

j) and p := ∧n
j=1a

j .

Example 3. For k = 1 we have p = a, q = φ(a),
so (15) reduces to φi(0) = 0, and 0 < |φi(ai)| ≤ |ai| for

s 6= 0. For k = 2, pick a, b ∈ R
n, and let p := a ∧ b,

q := φ(a) ∧ φ(b). Then p1 = a1b2 − a2b1 and q1 =
φ1(a1)φ2(b2)− φ2(a2)φ1(b1). Thus, for i = 1, (15) yields

|φ1(a1)φ2(b2)− φ2(a2)φ1(b1)| ≤ |a1b2 − a2b1|. (16)

(The equations for other values of i are similar.) For a2 = 0
this gives (φ1(a1)φ2(b2))

2 ≤ a21b
2
2. If a = αb, with α ∈ R \

{0}, then (16) becomes

(φ1(αb1)φ2(b2)− φ2(αb2)φ1(b1))
2 ≤ 0,

that is,

φ1(αb1)φ2(b2) = φ2(αb2)φ1(b1),

and for b2 6= 0 this becomes the homogeneity condition

φ1(αb1)

φ2(αb2)
=

φ1(b1)

φ2(b2)
.

As a specific example, take S = [−1/2, 1/2] and φi(s) = s2,

for all i. Then it is not difficult to show that (16) holds for

any ai, bi ∈ S, so this function is 2-content preserving on S.

We can now state the main result in this section.

Theorem 4. Suppose that A ∈ R
n×n is DT k-diagonally

stable for some k ∈ [1, n − 1]. Consider the DT nonlinear

system

x(j + 1) = Aφ(x(j)), (17)
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where φ(x) =
[

φ1(x1) . . . φn(xn)
]T

is k-content preserv-

ing on the state-space S
n of (17). For a1, . . . , ak ∈ S

n, let

y(j) = y(j; a1, . . . , ak) := ∧k
i=1x(j, a

i), (18)

where x(j, a) is the solution of (17) at time j with x(0) = a.

Then

y(j + 1) = A(k) ∧k
i=1 φ(x(j, a

i)), (19)

and this nonlinear dynamical system is diagonally stable.

Proof: By (18),

y(j + 1) = ∧k
i=1x(j + 1, ai)

= Aφ(x(j, a1)) ∧ · · · ∧ Aφ(x(j, ak))

=
[

Aφ(x(j, a1)) . . . Aφ(x(j, ak))
](k)

= A(k)
[

φ(x(j, a1)) . . . φ(x(j, ak))
](k)

,

and this proves (19). Since A is DT k-diagonally stable, there

exists D ∈ D
r×r such that (9) holds. Define V : Rr → R+

by V (z) := zTDz, and let △V (j) := V (y(j+1))−V (y(j)).
Then

△V (j) =(∧k
i=1φ(x(j, a

i)))T (A(k))TDA(k) ∧k
i=1 φ(x(j, a

i))

− (∧k
i=1x(j, a

i))TD ∧k
i=1 x(j, a

i). (20)

Definition 3 implies that:

(∧k
i=1φ(x(j, a

i)))TD ∧k
i=1 φ(x(j, a

i))

≤ (∧k
i=1x(j, a

i))TD ∧k
i=1 x(j, a

i),

and combining this with (20) gives △V (j) ≤
(∧k

i=1φ(x(j, a
i)))T ((A(k))TDA(k)−D)∧k

i=1 φ(x(j, a
i)). We

conclude that V (y(j + 1))− V (y(j)) ≤ 0, with equality only

when y(j) = 0.

Note that the existence of a D ∈ D
r×r that satisfies (9)

plays a crucial role in the proof.

Theorem 4 implies that the k-content of the parallelotope

induced by x(j, ai), i = 1, . . . , k, converges to zero asymp-

totically. For k = 2 this means that any two trajectories

of (17) converge to a line, i.e., to a one-dimensional subspace.

In particular, this ensures that the dynamics of (17) has no

nontrivial limit cycles.

Corollary 2. Consider the DT nonlinear system:

x(j + 1) = Aφ(x(j)), (21)

where A is cyclic for some ℓ ∈ [1, n − 1], and φ(x) =
[

φ1(x1) . . . φn(xn)
]T

is ℓ-content preserving on the state-

space S
n of (17). For any a1, . . . , aℓ ∈ S

n, let y(j) =
y(j; a1, . . . , aℓ) := ∧ℓ

i=1x(j, a
i). Then

y(j + 1) = A(ℓ) ∧ℓ
i=1 φ(x(j, a

i)), (22)

and if |
∏ℓ

i=1 λi(A)| < 1 then (22) is diagonally stable.

Proof: By Theorem 1, A is SRℓ with ǫℓ = 1. By

Corollary 1, A is DT diagonally stable iff A(ℓ) is Schur, that

is, iff |
∏ℓ

i=1 λi(A)| < 1. Applying Theorem 4 completes the

proof.

Example 4. Consider the DT nonlinear system (17) with n =

j
1 1.5 2 2.5 3 3.5 4 4.5 5

V
(y
(j
))

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 1. V (y(j)) as a function j ∈ [1, 5] in Example 4.

3, A =





0.1 1.9 0
0 0.05 1.95

−0.01 0 2.01



, and φi(s) = s2, i = 1, 2, 3,

that is, φ(x) =
[

x2
1 x2

2 x2
3

]T
. Let S := [−1/2, 1/2]. It is

not difficult to show that S3 is an invariant set of the dynamics.

For example, x1(j + 1) = 0.1x2
1(j) + 1.9x2

2(j). If x(j) ∈ S
3

then x2
i (j) ∈ [0, 1/4] and this implies that x1(j + 1) ∈ S.

The matrix A is not Schur, as ρ(A) = 2. However, A(2) is

Schur, and also A(2) ≥ 0, i.e. A is SR2 with ǫ2 = 1. We

use the idea described in Remark 1 to get a D such that (9)

holds. Here n = 3 and k = 2, so r =
(

n
k

)

= 3. Denote 13 :=
[

1 1 1
]T

, and let

ξ := (I −A(2))−113,

z := (I − (A(2))T )−113,

D := diag(z1/ξ1, z2/ξ2, z3/ξ3).

Fig. 1 depicts V (y(j)) = yT (j)Dy(j), as a function of j,

where y(j) := x(j, a1) ∧ x(j, a2), for the initial conditions

a1 = (1/2)13, a2 =
[

−1/2 1/2 0.4
]T

. Note that a1, a2 ∈
S
3. As expected, V (y(j)) decreases with j.

If we take a := (1/2)13, b ∈ S
3, then

y(j) = x(j, a) ∧ x(j, b)

= a ∧ x(j, b)

= (1/2)
[

x2 − x1 x3 − x1 x3 − x2

]T
,

where xi := xi(j, b). Thus, 4V (y(j)) is equal to

d1(x2 − x1)
2 + d2(x3 − x1)

2 + d3(x3 − x2)
2,

where di is the ith diagonal entry of D. Since we already know

that this function converges to zero, every trajectory converges

to the line spanned by 13.

VI. CONCLUSION

Diagonal stability is an important property of positive LTIs.

k-positive LTIs are a generalization of positive LTIs and so

a natural question is whether stable k-positive LTIs are also

diagonally stable. We showed that in general the answer is no.

We then defined the new notion of DT k-diagonal stabil-

ity and showed how it can be used to generalize the idea

that diagonal stability of an LTI implies the stability of a
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certain nonlinear dynamical system. These results admit a

clear geometric interpretation using the wedge product. We

demonstrated our results for a class of nonlinear systems that

include a cyclic matrix in their dynamics.

Due to space limitations, we focused here on DT systems.

The CT case may be an interesting topic for further research.
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