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Reduced-Order Nonlinear Observers via Contraction
Analysis and Convex Optimization

Bowen Yi, Ruigang Wang, and Ian R. Manchester

Abstract—In this paper, we propose a new approach to
design globally convergent reduced-order observers for nonlinear
control systems via contraction analysis and convex optimization.
Despite the fact that contraction is a concept naturally suitable
for state estimation, the existing solutions are either local or
relatively conservative when applying to physical systems. To
address this, we show that this problem can be translated
into an off-line search for a coordinate transformation after
which the dynamics is (transversely) contracting. The obtained
sufficient condition consists of some easily verifiable differential
inequalities, which, on one hand, identify a very general class
of “detectable” nonlinear systems, and on the other hand, can
be expressed as computationally efficient convex optimization,
making the design procedure more systematic. Connections with
some well-established approaches and concepts are also clarified
in the paper. Finally, we illustrate the proposed method with
several numerical and physical examples, including polynomial,
mechanical, electromechanical and biochemical systems.

Index Terms—state observer, nonlinear system, contraction
analysis, convex optimization

I. INTRODUCTION

Online state estimation of dynamical systems is of both
practical and theoretical importance, since some system states
are important for the purpose of control or monitoring but
often unavailable due to technological or cost constraints.
Apart from the control community, similar problems also arise
in many other fields, e.g., time-series prediction, machine
learning and signal processing.

For linear systems, there are comprehensive results devel-
oped for observer design, see [25] for the asymptotic case,
and recent papers [10, 33] achieving finite-time convergence.
In contrast, constructive nonlinear observer is a more chal-
lenging task, which has been intensively studied for several
decades in the control community, producing more than six
research monographs on this topic [4, 5, 8, 13, 18, 32]. Despite
many efforts, there are few tools available to design globally
or semi-globally convergent observers for nonlinear control
(a.k.a. time-varying or non-autonomous) systems, with notable
exception of high-gain observers [18] and recently results
on Kazantzis-Kravaris-Luenberger (KKL) observers [6]. To
the best of our knowledge, these two methods are the most
general and systematic frameworks for nonlinear observer
design at present. In high-gain observers, a triangular form
of the system dynamics with strong differential observability
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is required to achieve semi-global convergence by high-gain
injection, which, however, is widely recognized as harmful
in engineering practice with the deleterious effect of am-
plification of unavoidable high-frequency noise [19]. KKL
observers are motivated by Luenberger’s initial idea by adopt-
ing a coordinate change in order to get a linear stable error
dynamics. Such an idea was extended to the nonlinear context
in [17, 39], later elaborated in [2, 20], and finally applied to
non-autonomous systems in [6], which provides an elegant
theoretical framework to state estimation. From the numerical
perspective, the last step in KKL observers involves online
computation of an inverse mapping of smoothing operators,
which can be formalized as non-convex online optimization,
making it a duanting task to be solved in real time, partic-
ularly for high-dimensional systems. Besides, there are some
recently developed observer design tools applicable to different
particular classes of nonlinear systems, e.g., immersion and
invariance (I&I) observer [4], and parameter estimation-based
observer [34, 47].

In this paper, we aim to provide a novel constructive
approach to nonlinear observers via contraction analysis, a
concept which was introduced to the control community in
[22], and may historically date back to [21]. Contraction,
also known as incremental exponential stability, studies the
convergence between any pairs of solutions rather than a
particular one, by studying the differential dynamics. Its
extensions to constructive nonlinear feedback are studied in
[28], see also [41] for its application in system identification.
As clearly illustrated in [22], observer design is one of
the initial motivations for contraction analysis. Indeed, using
contraction analysis in observer design is not a new idea, and
has similarities to the seminal work [24], where a coordinate
change is involved in order to get a stable error dynamics.
In [40], a technique similar to contraction analysis was used
for constructive nonlinear stochastic observers. More recently,
some necessary conditions on the existence of asymptotically
convergent observers in the original coordinate for general
nonlinear autonomous systems are proposed in [38], which
is motivated by the study of contracting flows in Riemannian
manifolds. It shows that the existence of a convergent observer
for autonomous systems implies that the system vector field
is strictly geodesically monotonic, tangentially to the output
function level sets. However, from a constructive viewpoint
the result in [38] can only guarantee local convergence, unless
imposing a totally geodesic assumption, which is generally dif-
ficult to verify for a given system. There are also some results
using contraction to design observers for specific classes of
systems, e.g., [1] for mechanical systems and [45] for port-
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Hamiltonian systems, whose nature is intrinsically local.
With these considerations, the following questions arise.

1) What can be the sufficient conditions to design a glob-
ally convergent observer for nonlinear control systems
by studying contracting flows? Though an answer has
already been partially reported in our previous work [26],
we here consider reduced-order observer design and show
that coordinate transformation provides sufficient degrees
of freedom, in this way sharpening the existing results.

2) Is it possible to translate the obtained condition into off-
line convex optimization? When designing globally con-
vergent observers, it is quite common to encounter partial
differential equations (PDEs) or inequalities, thus requir-
ing the user familiar with system structures or invoking
some physical insights. To circumvent the difficulty, we
give a convex representation in the paper, making it
possible to take advantage of powerful numerical tools.

3) Is the set of systems identified in the paper large enough?
To answer this question, we give links between the
proposed method and some well-established concepts, or
methods, including in the linear system context, strong
differential observability, I&I observers and transverse
contraction. As illustrations, we will show how to use the
proposed framework to design reduced-order observers
for several benchmark physical systems—the magnetic
levitation (MagLev) model, the cart-pendulum system,
and a biological reactor—and an academic example to
verify the results with convex constraints.

The remainder of the paper is organized as follows. In
Section II we formulate the problem of reduced-order observer
design and give some preliminaries on contraction analysis. In
Section III we start with the basic case that the observer shares
the dimension of the unknown states, and present our general
design framework. It is followed by the convex representation,
as well as the generalized result removing the dimension
constraint. In Section IV, we present further discussions on the
proposed method and compare it with some existing methods.
Some examples with simulation results are given in Section
V. The paper is wrapped up with some concluding remarks.

Caveat. An abridged conference version of the paper can
be found in [48].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notations and symbols

Notations. All mappings are smooth enough, and when clear
from the context, the arguments of mappings and the subindex
of operators will be omitted. Given a matrix P (x) and a vector
field f(x) with proper dimensions, we define the directional
derivative as ∂fP (x) =

∑
j
∂P (x)
∂xj

fj(x). For a full-rank matrix
g ∈ Rn×m (m < n), we denote the generalized inverse as
g† = [g>g]−1g> and g⊥ a full-rank left-annihilator such that
g⊥g = 0. We use | · | to denote Euclidean norms of vectors
or matrices, and Bε(A) = {x ∈ Rn| infy∈A |x− y| ≤ ε} for a
compact set A ⊂ Rn and some ε > 0. We use cl(·) to represent
the closure of a set, and Im[·] denotes the image of a given
function. Given f : Rn → R we define the differential operator
∇f := (∂f∂x )>, and use f(x)|xaxb = f(xa)− f(xb). For square

matrices A and B, the notation A � B indicates (A − B)
positive semidefinite, and we use sym{A} to represent the
symmetric part 1

2 (A+A>) of A. The set of all polynomials in
x ∈ Rn with real coefficients of degree m ∈ N+ is written as
Rm[x]. A matrix-valued function A : Rn → Rm×m�0 is called
uniformly bounded if a1I � A(x) � a2I, ∀x with some
a2 ≥ a1 > 0. λi{·}s denote the eigenvalues of square matrices.
We use φL to denote the left inverse of a mapping φ, i.e., φL◦φ
is an identity mapping.

Nomenclature. The variables x, y, u represent the unknown
state, measurable state (output) and the input, respectively,
which all live in Euclidean space, and we also write χ :=
col(x, y). For a variable (·), we assume its dimension being
n(·). For the dynamics of x, we use X(t;x0) to denote its
solution from the initial condition x0 at t = 0.

B. Problem formulation

In this paper we consider state estimation of nonlinear
control (time-varying) systems in the form of

ẋ = fx(x, y, u),

ẏ = fy(x, y, u),
(1)

with unknown state x ∈ Rnx , measured state y ∈ Rny and
input u ∈ Rnu . We sometimes compactly write as

χ̇ = f(χ, u) (2)

and nχ := nx+ny . Following the standard practice in observer
design, we assume the considered input signal u : R+ → Rnu

belonging to a set U ⊂ Lnu∞ , such that the system (1) is forward
complete. Namely, the solution exists uniquely for t ∈ [0,∞).

Problem 1. The objective is to design an observer

ξ̇ = N(ξ, y, u),

x̂ = H(ξ, y)
(3)

with ξ ∈ Rnξ the observer state, and x̂ ∈ Rnx the observer
output, guaranteeing

lim
t→∞

|x̂(t)− x(t)| = 0. (4)

If there exists a function b : Rnx × Rnx → R≥0 such that

|x̂(t)− x(t)| ≤ e−λtb(x̂(0), x(0)), b(x, x) = 0, λ > 0,

then we call (3) an exponential observer with rate λ. When
only estimating the unknown part x rather than the full
system state (x, y), we refer it as a reduced-order observer.
In particular, the case nx ≤ nξ < nχ is clearly reduced-order.

Remark 1: We consider the class of systems (1) with
the output partial states of the system. On one hand, this
coordinate simplifies the following analysis in reduced-order
observers design; on the other hand, it is quite general to cover
several observable canonical forms and plenty of physical
models, since the model ẋ = f(x, u), y = h(x) can be
transformed into (1) by finding the complementary coordinates
in many cases assuming that ∇h(x) is full rank.
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C. Preliminaries on contraction analysis

Contraction analysis allows us to obtain convergence inde-
pendent of knowledge of a particular solution [12, 22]. In con-
trast, a pre-defined solution is required in standard Lyapunov
methods, and one then needs to construct a Lyapunov function
of observation errors [36, 42]. This fact makes contraction
analysis particularly tailored for observer design. Let us recall
some definitions first.

Definition 1: (Contraction) Assume the nonlinear system

ẋ = f(x, t), x ∈ Rn (5)

is forward complete with the solution X(t;x0) from x(0) =
x0. The system is
• asymptotically contracting if ∀(xa, xb) ∈ Rn × Rn,

|X(t;xa)−X(t;xb)| ≤ κ(|xa − xb|, t)

holds for any t ≥ 0 and some function κ of class KL.
• contracting if the system is asymptotically contracting

with κ(a, t) = ke−λta for some k, λ > 0.
In contraction analysis we need to calculate the differential

behaviour of an infinitesimal displacement δx along the flow
X(t;x(0)) generated by (5), then obtaining the differential
dynamics

d

dt
δx =

∂f

∂x
(x, t)δx, (6)

which can be regarded as the first-order approximation along
solutions. Then, the incremental stability of (5) is characterized
by the stability of the linear time-varying (LTV) differential
dynamics (6). A central result in [22] is that if there is a
uniformly bounded metric M : Rn → Rn×n�0 , such that

Ṁ +
∂f

∂x

>
M +M

∂f

∂x
� −2λM (or ≺ 0), (7)

then the system (5) is contracting (or asymptotically con-
tracting). The interested reader may refer to [12, 22] for
comprehensive introduction.

III. MAIN RESULTS ON CONSTRUCTIVE SOLUTIONS

In this section, we study constructive solutions to Problem
1, as well as their convex representation.

A. Contracting reduced-order observers

In this subsection, we will show that Problem 1 can be
translated into contracting observers design, in which we aim
to find mappings to achieve both contraction and correctness.
Here, correctness refers to that the observer dynamics (3)
admits a particular solution ξ?(t) such that the associated
observer output H(ξ?, y) always equals to the unknown system
state x(t). To see this, assuming that Problem 1 is solvable,
thus any different solutions ξa(t), ξb(t) ∈ Rnξ guaranteeing

lim sup
t→∞

∣∣H(ξa(t), y(t))−H(ξb(t), y(t))
∣∣

≤ lim sup
t→∞

∣∣H(ξa(t), y(t))− x(t)
∣∣+
∣∣H(ξb(t), y(t))− x(t)

∣∣
=0.

Clearly, a sufficient condition to
∣∣H(ξa, y)−H(ξb, y)

∣∣→ 0 is
contraction of the observer dynamics in (3). Furthermore, in
order to guarantee (4), there should exist a particular solution
of (3) which establishes the connection between ξ and x.
Intuitively, we construct, analyze, and implement an observer
in a carefully selected ξ-coordinate, with H(·) linking these
two coordinates. It is summarized as follows.

Problem 2. (Contracting observer) Find smooth mappings
N : Rnξ × Rny × Rnu → Rnξ and H : Rnξ × Rny → Rnx

guaranteeing
C1 (contraction) the observer dynamics (3) is contracting (or

asymptotically contracting for the asymptotic case).
C2 (correctness) the partial differential equation

∂H

∂ξ
(ξ, y)N(ξ, y, u) +

∂H

∂y
(ξ, y)fy(H(ξ, y), y, u)

= fx(H(ξ, y), y, u)

(8)

holds, and Im ξ∈A[H(ξ, y)] = Rnx uniformly in y for
some open set A ⊂ Rnξ , in which the observer dynamics
(3) is invariant.1 /

Proposition 1: Assume the system states of (1) are bounded.
If we can find mappings N(ξ, y, u) and H(ξ, y) satisfying C1-
C2, then the observer (3) solves Problem 1. /

Proof 1: We only show the asymptotic case. For any (u, y),
invoking the invariance of (3) in A and the assumption that the
image space of H(·, y) is the entire Rnx , then ∀x(0) ∈ Rnx

we can always find a point ξ?(0) ∈ A such that

H(ξ?(0), y(0)) = x(0). (9)

Denote the solution of (3) as ξ?(t) from the initial condition
ξ?(0). The correctness (8) guarantees

H(ξ?(t), y(t)) = x(t), ∀t ≥ 0,

if the initial conditions satisfy (9).
Since the system (3) is asymptotically contracting and ξ?(t)

is a particular solution, we have that for any solution ξ(t)

lim
t→∞

|ξ(t)− ξ?(t)| = 0. (10)

Invoking the state boundedness assumption, we, without
loss of generality, denote x ∈ Ωx ⊂ Rnx , y ∈ Ωy ⊂ Rny and
ξ? ∈ Ωξ ⊂ A with Im (ξ,y)∈Ωξ×Ωy [H(ξ, y)] = Ωx, and all
these sets are defined bounded. There always exists a moment
T1 such that ξ(t) ∈ Bε(cl(Ωξ)) for t ≥ T1 with a small ε > 0
due to the convergence (10) and ξ?(t) ∈ Ωξ for all t ≥ 0.
Then, for t ∈ [T1,∞) we have

lim
t→∞

|x̂(t)− x(t)| = lim sup
t→∞

|H(ξ, y)−H(ξ?, y)|

≤ lim
t→∞

max
ξ∈Bε(cl(Ωξ))

|∇ξH||ξ(t)− ξ?(t)|

= 0,

where we have used the state boundedness assumption, im-
plying that |∇ξH| is bounded in the closure of Ωξ.

In the sequel, we focus on the constructive solution and
the convex representations to Problem 2, in this way solving
Problem 1.

1That is ξ(0) ∈ A implying ξ(t) ∈ A, ∀t ≥ 0 for all y ∈ Rny .
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B. General results for the case nξ = nx

We start with the basic case selecting the observer di-
mension nξ = nx. In Problem 2, it is shown that we
may consider this problem expressing the dynamics (1) in a
transformed coordinate, and then study its contraction property
by regarding (u, y) as exogenous signals. Indeed, it is well
known that the change of coordinate plays an important role
in nonlinear observer design.

Let φ : Rnx × Rny → Rnx define the transformation

(x, y) 7→ (z, y) := (φ(x, y), y).

If we guarantee that φ(·, y) is bijective from Rnx to Rnx , then
for each y there is a left inverse φL : Rnx × Rny → Rnx such
that

φL(φ(x, y), y) = x. (11)

Now the dynamics in the z-coordinate is written as

ż = β(z, y, u) (12)

with

β(z, y, u) := fz(φ
L(z, y), y, u) (13)

fz(x, y, u) = Φx(x, y)fx(x, y, u) + Φy(x, y)fy(x, y, u).

and

Φx(x, y) :=
∂φ

∂x
(x, y), Φy(x, y) :=

∂φ

∂y
(x, y). (14)

For convenience, we also use the notation Φ(χ) := ∇φ>(χ) =
[Φx(χ),Φy(χ)]. Supposing we are able to find a transforma-
tion φ(x, y) as described above such that the obtained system
(12) is asymptotically contracting for any exogenous time-
varying signals (u, y), then it is trivial to solve Problem 2
by selecting N(·) = β(·) and H(·) = φL(·).

Based on the above intuitive idea, we are now in position
to present the first main result of the paper on contracting
reduced-order observers. Its convex representation is given in
Section III-C, and the extension to the case nξ > nx will be
discussed in Section III-D.

Theorem 1: Consider the system (1), and assume that we
can find mapping φ : Rnχ → Rnx and uniformly bounded
Riemannian metric M : Rnx → Rnx×nx�0 satisfying
A1 (diffeomorphism) the mapping φy(·) := φ(·, y) defines a

diffeomorphism uniformly in y ∈ Rny ;
A2 (contraction)

∂fzM
∣∣∣
φ(χ)

+M
∂fz
∂x

[
∂φ

∂x

]−1

+

[
∂φ

∂x

]−>
∂fz
∂x

>
M ≺ 0

(15)
(or � −2λM, λ > 0 for the exponential case) with fz(·)
defined in (13), holds ∀(χ, u) ∈ Rnχ × U .

Then, there exists an nx-dimensional reduced-order observer
guaranteeing (4) globally. /

Proof 2: The assumption A1 defines a global diffeomor-
phism, and we thus, according to the global inverse theorem
[30], obtain that

∂φ

∂x
(x, y) =

[
∂φL

∂z
(z, y)

]−1

z=φ(χ)

. (16)

The dynamics of z can be written as (12). Now design an
observer (3) by selecting

N(ξ, y, u) = fz(φ
L(ξ, y), y, u), H(ξ, y) = φL(ξ, y). (17)

The correctness condition C2 can be verified trivially from
the above construction. Therefore, z(t) = φ(x(t), y(t)) is a
particular solution of the observer dynamics from z(0).

Since φ(·, y) is a diffeomorphism for any y due to A1, in
the sequel we only need to show the convergence of ξ to z.
The dynamics of them are given by

ξ̇ = N(ξ, y, u), ż = N(z, y, u),

where (u, y) are viewed as (available) exogenous signals.
Towards this end, we first need to calculate the differential
characterization along the solution of (3) with y(t) governed
by the system (1). Note that the solution y(t) = Y (t;χ0, u) is
an exogenous signal, which is independent of ξ(t). Consider
the initial conditions z(0) and ξ(0) are connected by a smooth
curve γ : [0, 1] → Rnx , such that γ(0) = z(0) and
γ(1) = ξ(0). The solution from γ(s), s ∈ [0, 1] under the
exogenous signals (u, y) is denoted as ξ(t; γ(s), y, u). Thus,
we have the differential dynamics

d

dt
δξ =

∂N

∂ξ
(ξ, y, u)δξ

=
∂fz
∂ξ

(φL(ξ, y), y, u)δξ

=
∂fz
∂x

(φL(ξ, y), y, u)
∂φL

∂z
(ξ, y)δξ

(16)
=

∂fz
∂x

(x̂, y, u)

[
∂φ

∂x
(x̂, y)

]−1

δξ,

with the infinitesimal displacement δξ = ∂ξ(t;γ(s),y,u)
∂s .

Define a differential Lyapunov function as V (ξ, δξ) =
δξ>M(ξ)δξ, yielding

˙︷ ︷
V (ξ, δξ) = δξ>

(
∂fzM + 2sym

(
M
∂fz
∂x

(
∂φ

∂x

)−1
))

δξ

(15)
< 0

by replacing x with x̂ = φL(ξ, y), and thus we have
limt→∞ V (ξ(t), δξ(t)) = 0. Therefore, we obtain

lim sup
t→∞

|ξ(t)− z(t)|

≤ lim
t→∞

c

∫ 1

0

V (ξ(t; γ(s), y, u), δξ(t; γ(s), y, u))ds = 0,

for some c > 0. It completes the proof.
Remark 2: We adopt in the assumption A2 a Riemannian

metric δξ>M(ξ)δξ to design an observer, which is very
general for systems living in Euclidean space under some
smoothness assumption. It can be generalized using a Finsler
metric F (ξ, δξ) [12], then guaranteeing the induced distance
monotonically decreasing. It is particularly useful if system
states live in Riemannian manifolds, e.g., matrix Lie groups.

Remark 3: It is underlined here that the sufficient condition
given in Theorem 1 only relies on the existence of the mapping
φ(x, y), though the left inverse φL is needed when realizing the
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design. Assuming that we have already found φ(x, y), its left
inverse is given by the solution of the optimization φL(ξ, y) =
argminx̂∈Rnx |φ(x̂, y)−ξ|2, which may be implemented by off-
line searching for analytic solutions, or on-line searching for
numerical results, see [20] for an explicit formula.

In the above analysis, since we have used the inverse
function theorem, the correctness condition C2 is satisfied
automatically. Some further discussions about Theorem 1 will
be given in Section IV.

C. Convex sets of nonlinear contracting observers

The sufficient condition—Assumptions A1 and A2—in The-
orem 1 is clearly non-convex in general, since it depends in
a nonlinear way on the left inverse of the unknown function
φ(x, y). In this subsection, we will present some convex repre-
sentations, which are motivated by, and extend to the reduced-
order case, our previous results in [26]. Indeed, searching for
φ(·) and M(·) can be viewed as an optimization problem
on an infinite-dimensional function space. If we could obtain
convex sufficient conditions, one may verify these differential
equations and inequalities using the sum-of-square relaxation,
thus making the observer design numerically tractable.

The condition A1 needs to check the non-convex function
det{∇xφ}. We have its convex approximation below.

Lemma 1: The convex condition H1 is sufficient to A1.
H1 (the monotone condition) For any y ∈ Rny ,

∂φ

∂x
(x, y) +

[
∂φ

∂x
(x, y)

]>
� kInx , k > 0. (18)

Proof 3: Since the partial derivative operator is linear, the
inequality (18) is convex in φ(x, y). Following [41, Theorem
1] or the Hadamard’s global inverse theorem [30, Theorem 2],
we can verify the diffeomorphism of φy(·) = φ(·, y).

Apart from the convexity of H1, another benefit of the
monotonicity we imposed relies on the existing efficient algo-
rithms to calculate the inverse mapping φL when implementing
the observer, e.g., the Newton method and the ellipsoid method
[31, 41].

Now we move forward to the condition A2 and study
its convex representation. Note that the contraction analy-
sis was done in the transformed coordinate z = φ(χ), in
which the dynamics is given in (13). Its second equation
fz(χ, u) = Φ(χ)f(χ, u) shows that fz(·) is in the “image
space” of a given vector field f(χ, u). An important point is
that the relationship between φ(·) and fz(·) is linear. If we
regard fz(·) as a new decision variable, and jointly search for
the transformation φ(χ) and the mapping fz(χ, u), we may
be able to obtain a convex set of reduced-order contracting
observers.

In terms of the new decision variable fz(·) involved, we
additionally—compared with A2—require the following cor-
rectness condition, which is a variant of C2 in our design
framework. It is a linear equality constraint with respect to
φ(χ) and fz(χ, u), thus convex.
H2 (the modified correctness)

Φx(χ)fx(χ, u) + Φy(χ)fy(χ, u) = fz(χ, u) (19)

for all (χ, u) ∈ Rnχ × Rnu .
Then, regarding the convex representation of the contraction

condition A2, we have the following.
Lemma 2: Under H1, the following convex conditions H3

or H4, together with H2, imply the condition A2, i.e.,[
H2 ∧ (H3 ∨H4)

]
=⇒ A2.

H3 By restricting the transformation

φ(x, y) = Px+ ϕ(y) (20)

with a smooth mapping ϕ : Rny → Rnx , then search for
P � 0, ϕ(·), fz(·) and Q verifying

F (x, y, u) + F>(x, y, u) +Q � 0, (21)

with F (x, y, u) := ∂fz
∂x (x, y, u), and Q � 0 (or Q = 2λP

for the exponential case with λ > 0).
H4 Find φ(x, y), Q, fz(·), metric P � 0 and r > 0 verifying[

2sym(Φx − r
2F )− P − rQ Φx + r

2F
(Φx + r

2F )> P

]
� 0, (22)

with Q � 0 (or Q = 2λΦ>x P
−1Φx for contraction). /

Proof 4: The conditions (21) and (22) are state-dependent
linear matrix inequalities (LMIs), which are jointly convex in
φ (or ϕ), fz, P and quasi-convex in λ for the exponential
case. In A2, the function fz is defined as (13). In the convex
representation, we regard fz as a free mapping to be searched
for, which, thus, should satisfy the correctness condition H2.

The remainder of the proof is to verify the inequality in A2.
First, we consider the assumption H3 with the parameteriza-
tion φ(x, y) = Px+ ϕ(y), thus

Φx =
∂φ

∂x
(x, y) = P.

Then, it is straightforward to get2

(21) ⇐⇒ F + F> � −2λΦ>x P
−1Φx

⇐⇒ P−1FΦ−1
x + Φ−>x F>P−1 � −2λM

⇐⇒ ∂fzP
−1 + P−1FΦ−1

x + Φ−>x F>P−1 � −2λM

M :=P−1

⇐⇒ A2,

verifying the first convex sufficient condition in H3.
For the case in H4, the inequality (22) is equivalent to(

Φx −
r

2
F
)

+
(

Φx −
r

2
F
)>
−
∣∣∣Φx +

r

2
F
∣∣∣2
P−1

−P − rQ � 0.
(23)

As show in [41, Section III], the inequality (23) is a sufficient
condition to

Φ>x P
−1F + F>P−1Φx � −Q. (24)

Namely, using the inequalities

Φ>xMF + F>MΦx =
1

r
[|Φx +

r

2
F |2M − |Φx −

r

2
F |2M ]

2We give the details of the exponential case, and the asymptotic case follows
in a similar way.
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and −c>P−1c ≤ b>Pb− 2b>c with M = P−1 successively,
we get (24) from (23). It yields

(24) ⇐⇒ Φ>x P
−1F + F>P−1Φx � −2λΦ>x P

−1Φx

⇐⇒ P−1FΦ−1
x + Φ−>x F>P−1 � −2λP−1

⇐⇒ ∂fzP
−1 + P−1FΦ−1

x + Φ−>x F>P−1 � −2λM

M :=P−1

⇐⇒ A2,

where in the second equivalence we have used the assumption
H1 to guarantee the existence of the inverse matrix of Φx. It
completes the proof.

Remark 4: We will show, via examples, that the convex
condition H3 is quite general to cover several physical mod-
els. It enjoys another merit of simple left inverse mapping
φL(ξ, y) = P−1[ξ − ϕ(y)]. Besides, the condition H3 can
be generalized into the form φ(x, y) = P (y)x + ϕ(y), with
P (·) dependent on y. For this case, (21) becomes the convex
constraint F (x, y, u) + F>(x, y, u) + Ṗ (y) +Q � 0.

To accomplish the reduced-order observer design, we would
like to search φ(χ) and fz(χ, u) simultaneously over finite
dimensional space. Thus, we parameterize them as

φ(χ) =

q1∑
i=1

θiφi(χ), fz(χ, u) =

q2∑
i=q1+1

θifz,i(χ, u) (25)

with basis mappings φi and fz,i (i = 1, . . . , q2) smooth
enough, and q1, q2 ∈ N+ verifying q1 < q2. The role
of parameterization is to reformulate the obtained infinite
dimensional optimization over function space into a finite
dimensional convex problem, which is efficiently solvable.

We are in position to present the second main result of
the paper about a convex set of contracting reduced-order
observers, which is a constructive solution to Problem 2.

Theorem 2: Given the nonlinear system (1), for the case
nξ = nx a convex set of contracting reduced-order observers
is given by (25) together with the observer dynamics

ξ̇ = fz(x̂, y, u), x̂ = φL(ξ, y) (26)

with φL(·, y) the left inverse of φ(·, y) solving Problem 2,
where θ ∈ Θ is defined by the convex constraints H1, H2,
and either H3 or H4.

Proof 5: As already shown above, the condition H1 guaran-
tees the existence of inverse mapping φL(·) globally. Following
Theorem 1 and Lemmata 1-2, we get the claim.

D. Extension to the immersion case nξ > nx

In the previous subsections, we considered the case that the
observer dynamics shares the dimension of the systems state.
It, however, is openly recognized that by considering injective
immersion may allow to take into account a larger class
of nonlinear control systems, being widely used in observer
design with various purposes.

In this subsection, we extend our results to the case nξ >
nx. The motivation is threefold.
• Sometimes there exists observable singularity for the sys-

tem to be estimated. By increasing observer dimensions,
we may be able to guarantee the injectivity of changes
of coordinates, see [2, 37] and [8, Chapter 4].

• New mappings will appear in (19), the new degree of
freedom from which relaxes the correctness condition.

• For a given nonlinear system, it may provide a strictly
larger set, compared to the case of nξ = nx, of convergent
observers, among which we may select an optimal design
in some sense, in this way enhancing performance.3

Following the idea in Section III-A, we would like to
find φ : Rnx × Rny → Rnξ with nξ > nx. However,
two difficulties arise, namely, (i) ∇xφ(x, y) is not square,
thus the inverse function theorem not applicable; and (ii)
the image space Iξ of φ(·, y) may be only an open subset
of Rnξ , and thus the left inverse φL(·, y) is not defined
globally. A possible approach to deal with this issue is to
construct an extended left mapping φLe : Rnξ × Rny satisfying
φLe(z, y) = φL(z, y), ∀(z, y) ∈ Iξ × Rny . It is usually applied
to the case in which the transformation φ(·) has been already
known. However, it is not suitable in our situation, since our
target is to find the mapping φ(·).

In order to be able to keep consistent with the proposed
constructive method, as well as to circumvent the difficulties
above, we introduce an augmentation of the x-coordinate into
the extended system state (x,w) given by

ẇ = fw(x,w, y, u) (27)

with w ∈ Rnw , nw = nξ − nx and xe := col(x,w).4 The
following lemma indicates that the augmented state w should
not change the “detectability” of the system (1).

Lemma 3: Assume that there exists an exponential observer
for the system (1).

1) If the augmented system (27) is contracting, then there
exists an observer for the extended state (x,w).

2) Conversely, for the case that the given system is au-
tonomous (i.e. u = 0) with all states bounded, assuming
that the (x,w)-system has an exponential observer (32)
with a smooth Lyapunov function V (xe, y, ξ) such that

a1|ξ − φ(xe, y)|2 ≤ V (xe, y, ξ) ≤ a2|ξ − φ(xe, y)|2

˙︷ ︷
V (xe, y, ξ) ≤ −λV (xe, y, ξ)

with a1, a2, λ > 0, then the system (27) is contracting.
Proof 6: For the first claim, it can be proved by cascading

the existing observer with

˙̂w = fw(x̂, ŵ, y, u)

with x̂ the estimate of x from the existing observer, and
invoking the solution continuity of differential equations, and
the state boundedness.

Regarding the second claim, we consider the autonomous
case u = 0. According to [3, Proposition 4], for any
(xe, y, δxe, δy) ∈ Rnξ+ny × TRnξ+ny , the norm of infinites-
imal displacement |col(δxe, δy)| is monotonically decaying
along trajectories, tangentially to some output function level

3A similar problem—parameterizing all convergent observers for linear
time-invariant systems—was comprehensively studied in [14].

4In [7], complementary operation of full column-rank Jacobian is used to
express an observer in the preferred coordinate assuming that an observer
exists already.
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sets. That is, in our case if we fix the differential output
δy(t) ≡ 0, then the obtained LTV system δẋ

δẇ

 =

∂fx∂x (x, y, 0) 0

∂fw
∂x

(x,w, y, 0)
∂fw
∂w

(x,w, y, 0)


 δx

δw


(28)

satisfies∣∣∣∣[δx(t)
δw(t)

]∣∣∣∣2 ≤ a0 exp(−λt)
∣∣∣∣∂φe∂xe

(xe(0), y(0))

[
δx(0)
δw(0)

]∣∣∣∣2 ,
for some a0 > 0. The inequality holds for any initial condi-
tions, and thus we consider a particular one δx(0) = 0, for
which we have δx(t) = 0, ∀t ≥ 0 along (28). Then, it yields

δẇ =
∂fw
∂w

(x,w, y, 0)δw

admitting

|δw(t)|2 ≤ a0 exp(−λt)
∣∣∣∣∂φe(xe(0), y(0))

∂w
δw(0)

∣∣∣∣2
uniformly along any trajectories. It implies that the augmen-
tation dynamics (27) should be contracting.

The second claim shows the necessity to impose contraction
properties with respect to w when introducing the augmenta-
tion (27), a sufficient condition for which is to find a uniformly
bounded metric Mw : Rnw → Rnw×nw satisfying

∂fwMw+Mw
∂fw
∂w

+
∂fw
∂w

>
Mw � −2λwMw, λw > 0. (29)

Indeed, we can always find a vector field fw satisfying (29),
the simplest one among which may refer to

fw = Aw + fa(x, y, u) (30)

with Hurwitz matrix A and smooth function fa.
Now, it is straightforward to extend Theorems 1-2 to this

case. We only give here the convex variant of the latter.
Similarly, we may parameterize mappings fze : Rnξ+ny+nu →
Rnξ , φ : Rnξ+ny+nu → Rnξ and fw : Rnξ+ny+nu → Rnw , and
matrices Pe ∈ Rnξ×nξ�0 and Mw ∈ Rnw×nw�0 as

fze =

q2∑
i=q1+1

θifze,i(xe, y, u), φ =

q1∑
i=1

θiφi(xe, y)

fw =

q3∑
i=q2+1

θifw,i(xe, y, u)

(31)

for some qi ∈ N+ and qi > qj (i > j). For convenience, we
also define the gradients

Fe(xe, y, u) =
∂fze
∂xe

(xe, y, u), Φxe(xe, y) =
∂φ

∂xe
(xe, y).

Proposition 2: Consider the system (1) with a fixed augmen-
tation vector field fw satisfying (29). For the case nξ > nx a
convex set of contracting reduced-order observers is given by
(31), together with the observer dynamics

ξ̇ = fze(x̂, ŵ, y, u),

[
x̂
ŵ

]
= φL(ξ, y), (32)

with φL(·, y) the left inverse of φ(xe, y) and θ ∈ Θ defined
by the convex constraints H1′, H2′ and either H3′ or H4′.
H1′ (monotonicity) ∀y ∈ Rny

∂φ

∂xe
(x,w, y) +

[
∂φ

∂xe
(x,w, y)

]>
� kInξ , k > 0.

H2′ (correctness)

Φx(xe, y)fx(χ, u) + Φy(xe, y)fy(χ, u)

+ Φw(xe, y)fw(xe, y, u) = fze(xe, y, u)
(33)

with Φw = ∇wφ>(x,w, y, u).
H3′ By restricting φ(x,w, y) = Pecol(x,w) + ϕ(y) with ϕ :

Rny → Rnξ , and requiring

Fe(xe, y, u) + F>e (xe, y, u) +Qe � 0, (34)

with Pe � 0, and Qe � 0 (or Qe = 2λPe for the
exponential case with λ > 0).

H4′ The stronger contraction condition

2sym(Φxe −
r

2
Fe)−

∣∣Φxe +
r

2
Fe
∣∣2
P−1
e
− Pe − rQe � 0,

with r > 0, and Qe � 0 (or Qe = 2λΦ>xeP
−1
e Φxe for

contraction with rate λ > 0). /

Proof 7: The proof follows mutatis mutandis the one of
Theorem 2 and the analysis above.

In the above proposition, we fix the vector field fw and
then search for mappings φ and fze, since bi-linear operations
appear in both the correctness condition (33) and the contrac-
tion condition (29) if we regard both fw and Mw as decision
variables, making the optimization problem non-convex. Then,
we get a state-dependent bilinear matrix inequality (BMI)
problem. An alternative to maintain convexity is to fix Φw,
then providing the degree of freedom to search for the vector
field fw. It is clear that (33) relaxes the correctness condition
(19) by involving additional terms. On the other hand, the
excessive coordinates may provide more observer candidates,
thus making it possible to achieve performance enhancement
by carefully selecting among them.

Remark 5: If the augmented w-dynamics is in the form of
(30) with fa only dependent on (u, y), the proposed coordi-
nate change is similar to the so-called filtered transformation
introduced in [29]. Such a technique has been proved very
useful in adaptive observer design, i.e., estimating unknown
states under parameter uncertainty.

IV. FURTHER RESULTS AND DISCUSSIONS

In this section, we give further discussions about the main
results in Section III, and show the connections with some
existing results in the literature. Some remarks are in order.

Remark 6: For the case nξ = nx, it is sometimes unnec-
essary to require the transformation φ(·, y) a bijection from
Rnx → Rnx . A possible case is that the image space is
an open subset in Rnx , i.e., φ(Rnx , y) ⊂ Rnx . For such a
case, image extension or projection operator may be useful to
continue design [7, 37]. However, we adopt H1, on one hand,
to circumvent the possible difficulty from non-subjectivity,
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and one the other hand, to obtain a convex condition with
computational consideration.

Remark 7: The obtained reduced-order observer is given in
the z-coordinate, but the correctness can also be verified in
the original coordinate. We may write the observer (26) in the
x-coordinate, though unimplementable, which is given by

˙̂x =
∂φL

∂z
(ξ, y)fz

(
φL(ξ, y), y, u

)
+
∂φL

∂y
(ξ, y)ẏ

=

[
∂φ

∂x
(x̂, y)

]−1

fz
(
x̂, y, u

)
+
∂φL

∂y
(ξ, y)ẏ

=

[
∂φ

∂x
(x̂, y)

]−1
(
∂φ

∂x
(x̂, y)fx(x̂, y, u)

+
∂φ

∂y
(x̂, y)fy(x̂, y, u)

)
+
∂φL

∂y
(ξ, y)ẏ

= fx(x̂, y, u) + [Φ−1
x Φy]

(
fy(x̂, y, u)− fy(x, y, u)

)
,

(35)
where in the last equation we have used the fact that[

x
y

]
7→ T (x, y) :=

[
φ(x, y)
y

]
(36)

is another diffeomorphism, and thus using the inverse function
theorem again yields

∂φL

∂y
(z, y)

∣∣∣
z=φ(x,y)

= −
[
∂φ

∂x
(x, y)

]−1
∂φ

∂y
(x, y).

The last line of (35) verifies the invariance of the proposed
observer, i.e., x̂(t) ≡ x(t), ∀t ≥ 0, if x(0) = x̂(0), since
the last term (fy(x̂, y, u)− fy(x, y, u)) plays the role of “up-
dated (or innovation) term”. Note that, however, the observer
dynamics (35) cannot be realized due to the unavailability of
ẏ, equivalently fy(x, y, u), and we should implement it in the
z-coordinate instead.

We next show the connections among the proposed designs
and some existing results.

A. Linear time-invariant systems

It is easy to verify that the conditions either in Theorem 1
or Theorem 2 (H3) are equivalent to the detectability of linear
time-invariant (LTI) systems, summarized below.

Proposition 3: Consider the LTI system[
ẋ
ẏ

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

:=A

[
x
y

]
+

[
B1

B2

]
u (37)

with unknown state x ∈ Rnx , input u ∈ Rnu and output y ∈
Rny . The conditions A1-A2 are the necessary and sufficient
condition to the detectability of the system (37). /

Proof 8: For linear systems, we consider linear transforma-
tion in the form of

φ(x, y) = T1x+ T2y

for some matrices T1 and T2, with T1 full rank. The sufficient
part is trivial, since A1-A2 imply the existence of a linear
Luenberger observer5

ż = Fz +Dy + Eu, x̂ = T−1
1 (z − T2y)

for some matrices D,E, and F is Hurwitz. It is equivalent to
detectability in the LTI context, see for example [25, Section
III]. Regarding the necessary part, we have

Detectability of (37)

⇐⇒ ∃ L ∈ R(nx+ny)×ny s.t. λi{A+ L[0 Iny ]} ∈ C−

⇐⇒ ∃ L̃ ∈ Rnx×ny s.t. λi{A11 + L̃A12} ∈ C−

where in the second equivalence we have used [9, Lemma 1],
and λi{·}s denote eigenvalues of square matrices. Now we
select the mapping

φ(x, y) = x+ L̃y

with L̃ guaranteeing A11 + L̃A12 a Hurwitz matrix. It is
straightforward to verify that φ(·) satisfies A1-A2.

Indeed, the obtained reduced-order observer for LTI systems
is precisely the observer proposed in the pioneering paper [24,
Theorem 4, pp. 77].

B. Strongly differentially observable systems
In this subsection, we show the set of systems identified

by Theorem 1 is larger than the set of strongly differentially
observable systems. It is well known that high-gain observers
are applicable to this class of nonlinear systems. For simplicity,
we consider the single-output (ny = 1) autonomous system

ẋ = fx(x, y), ẏ = fy(x, y). (38)

Definition 2: (Strong differential observability [13]) The
single-output system (38) is strongly differentially observable,
if there exists n` ∈ N such that He`(χ) =

(
y,H>` (χ)

)>
is

an injective immersion to χ = col(x, y), where H`(χ) =
[fy(χ), Lffy(χ), . . . , Ln`−2

f fy(χ)]>.
The above definition can be equivalently expressed asHl(χ)

is an injective immersion to x uniformly in y. We have the
following.

Proposition 4: If the system (38) is strongly differentially
observable with n` = nx + ny , then the function

φ(x, y) = H`(x, y)− `Λy

satisfies A2 semi-globally, where ` > 0, Λ = [λ1, . . . , λnx ]>

with all the roots of snx + λ1s
nx−1 + . . . λnx in C−.

Proof 9: We may verify that the above construction yields
ż = fz(x, y) with

fz = `Q
(
H`(x, y)− Λy

)
+ `QΛy + b(x, y)

and

Q =


−λ1 1

...
. . .

... 1
−λnx 0 . . . 0

 , b(x, y) =


0
...
0

Lnx−1
f fy(x, y)

 .
5Here, we refer to Luenberger’s initial idea by involving a change of coor-

dinate in [24]. We adopt the qualifier “initial” since what is nowadays called
“Luenberger observer” is different from [24], see [5] for more discussions.
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We note that

∂fz
∂x

[
∂φ

∂x

]−1

=
∂β

∂z

∣∣∣∣
z=φ(x,y)

= `Q+
∂φL

∂z

∣∣∣∣
z=φ(x,y)

= `Q+
∂b

∂x

(
∂H`
∂x

)−1

.

Since Q is a Hurwitz matrix, there exists a matrix M � 0
such that MQ + Q>M = −I . By selecting a sufficiently
large ` > 0, and noting H` independent of the parameter `,
we guarantee A2 semi-globally.

Remark 8: The above result can be extended to more general
cases—multi-input and nonautonomous. Furthermore, n` =
nχ is the most widely studied case in high-gain observers.
If a given system is strongly differentially observable with
n` > nχ, we need to add an augmentation dynamics as done
in Section III-D.

C. Connections with the full-order observer in [26]

Our previous paper [26] uses a similar underlying mecha-
nism to design full-order contracting observer for the system

ẋ = f(x, u), y = h(x) x ∈ Rn, y ∈ Rny . (39)

To this end, we aim to find a coordinate change z = φ(x)
with ż = fz(x, y, u) with some function fz , which may be
non-unique, but satisfying
C1′ (correctness) fz(x, h(x), u) = Φ(x)f(x, u), with Φ :=

∂φ
∂x full rank;

C2′ (contraction) Φ>P−1F + F>P−1Φ ≺ 0, with constant
P � 0 and F := ∂

∂xf(x, y, u) and viewing (u, y) as
exogenous signals.

Then, a full-order observer in the original coordinate is
given by

˙̂x = Φ(x̂)−1f(x̂, y, u). (40)

Its extension to discrete time and sampled-data versions were
also considered in [26].

In Theorem 1 and Proposition 2 we extend the results
in [26] to the reduced-order observer design in transformed
coordinates with arbitrary dimension nξ ≥ nx, thus enlarging
the domain of applicability to more nonlinear systems. Here
are some key differences between them.

- For the full-order case in [26], the system dynamics
in the transformed z-coordinate is partially or virtually
contracting [44], since the output y is explicitly a function
of the state z. But it is not the case for the reduced-order
observer design in this paper.

- The convex condition H3, unlike the case in [26], intro-
duces a nonlinear output injection term ϕ(y), making it
quite general. Indeed, coordinate changes in the form of
φ(x) = Px + ϕ(y) are widely adopted in the field of
nonlinear observers [4].

- An advantage of the full-order design [26] is its absence
of computing the left inverse mapping, and there is no
need to guarantee the “integrability” of Φ(x).

D. Connections with I&I observers

To the best of our knowledge, the most comprehensive
design approach of nonlinear reduced-order observers until
now may refer to the I&I observers, proposed in [16] and later
elaborated in [4, Chapter 5], by means of rendering attractive
an appropriately selected invariant manifold in extended state
space. The key extra degree of freedom given in I&I observers
relies on a coordinate transformation in order to be able to get
a (generally nonlinear) asymptotically stable error dynamics.
The procedure is similar to the one done in Section III-A. In
this subsection, we will clarify the connections and differences
between the proposed designs and I&I observers. Let us recall
the main result in I&I observers.6

Proposition 5: [16] Consider the system (1) with forward
complete solutions. Suppose that there exist mappings ρ :
Rnξ×Rny → Rnξ , ϕ : Rnx×Rny → Rnξ with a left inverse
ϕL(·, y) such that the following holds.

I1 For all (y, ξ) ∈ Rny × Rnξ , det(∇ξρ) 6= 0.
I2 The system

ė =

[
∂ϕ

∂y
(x, y)fy(x, y, u)+

∂ϕ

∂x
(x, y)fx(x, y, u)

]∣∣∣∣x=x̂

x=x

+
∂ρ

∂y
[fy(x, y, u)− fy(x̂, y, u)]

(41)
is asymptotically stable at the origin uniformly in x, y
and u with x̂ := ϕL(ϕ(x, y) + e, y). Then, selecting

N(·) =
(∂ρ
∂ξ

)−1
[
∂ϕ

∂x
(x̂, y)fx(x̂, y, u)

+
∂ϕ

∂y
(x̂, y)fy(x̂, y, u) −∂ρ

∂y
(ξ, y)fy(x̂, y, u)

]
H(·) = ϕL(ρ(ξ, y), y).

makes the system (3) a convergent observer. /

We are now ready to show the connections between I&I
reduced-order observers and the proposed contracting observer
design in Section III. In order to simplify the analysis, instead
of I1 we additionally require a slightly stronger condition∣∣ det(∇ξρ)

∣∣ > ρ0, ρ0 > 0. (42)

Then we have a global inverse ρL : Rnξ × Rny → Rnξ such
that ρL(ρ(η, y), y) = η for any η ∈ Rnξ .

We have the following.
Proposition 6: Consider the system (1) admitting an I&I

observer identified in Proposition 5, assuming that the map-
pings satisfy (42) and I2 with nξ = nx. Then, a variant of
A2, namely

A2′ The LTV system d
dtδξ = ∂fz

∂x (x, y, u)
[
∂φ
∂x (x, y)

]−1

δξ

is asymptotically stable uniformly along any possible
trajectory of (x, y, u).

holds, and the given system has a contracting reduced-order
observer in the sense of Theorem 1. Furthermore, the obtained
observer exactly coincides with the I&I observer by selecting
φ(x, y) = ρL(ϕ(x, y), y).

6In [16] all the transformations, i.e. ρ and ϕ, are allowed to be time-varying
functions. We here adopt the time-invariant case to simplify the presentation.
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Proof 10: For convenience, we define a new intermediate
variable as η := ϕ(x, y). Invoking (42) and the left invertibility
of ϕ(x, y), we define a mapping φL : Rnx × Rny → Rnx as

φL(z, y) := ϕL (ρ(z, y), y) ,

and with some substitutions we have

φL(z, y)
∣∣
z=φ(x,y)

= ϕL(ρ(φ(x, y), y), y) = x,

thus φL being the left inverse of the composite function φ(·).
In I2, the variable e is, indeed, the estimation error in the

η-coordinate, i.e., e = ρ(ξ, y) − ϕ(x, y). Since the mapping
ρ(·) identifies a diffeomorphism, one may equivalently define
the error in the ξ-coordinate as

ez := ξ − ρL(ϕ(x, y), y),

implying that I2 is equivalent to the uniform asymptotic
stability of the dynamics of ez with respect to the origin.

The dynamics of ez is given by

ėz = N(ξ, y, u)−
[
∂ρL

∂η

] [
∂ϕ

∂x
fx(x, y, u) +

∂ϕ

∂y
fy(x, y, u)

]
− ∂ρL

∂y
fy(x, y, u)

= N(ξ, y, u)−
[
∂ρ

∂z

]−1 [
∂ϕ

∂x
fx +

∂ϕ

∂y
fy

]
+

[
∂ρ

∂z

]−1
∂ρ

∂y
fy

=

((
∂ρ

∂z
(φ(x, y), y)

)−1

×

(
∂ϕ

∂x
fx(x, y, u) +

∂ϕ

∂y
fy(x, y, u)−

∂ρ

∂y
fy(x, y, u)

))∣∣∣∣∣
x̂

x

=

(
∂φ

∂x
(x, y)fx(x, y, u) +

∂φ

∂y
(x, y)fy(x, y, u)

) ∣∣∣∣x̂
x

= fz(x̂, y, u)− fz(x, y, u)

= fz(φ
L(φ(x, y) + ez, y), y, u)− fz(x, y, u)

=

∫ 1

0

∂fz
∂x

[
∂φ

∂x

]−1 (
φ(x, y) + µez, y, u

)
dµ · ez

(43)
where in the third equation we substitute the mapping N(·)
in I2, with x̂ = φL(φ(x, y) + ez, y).

Now we consider a line segment γ(s) between two initial
conditions ξ(0) and z(0) = φ(x(0), y(0)) defined by the
parameterization

γ(s) = sξ(0) + (1− s)z(0), s ∈ [0, 1].

We denote Z(t; γ(s), y, u) as the solution of the dynamical
system

ż = fz(φ
L(z, y), y, u)

under the exogenous signals (u, y) from the initial condition
γ(s) with s ∈ [0, 1]. We define the infinitesimal displacement
δξ as δξ = ∂Z(t;γ(s),y,u)

∂s , the dynamics of which is governed
by the system in A2′, with x(t) = φL(Z(t; γ(s), y, u), y).
From the definition of δξ, we have

ξ(0) = z(0) + δξ(0).

Invoking (43), it then yields ξ(t) ≡ z(t) + δξ(t), and noting
the uniform asymptotic stability of the ez-system, thus

|δξ(t)| ≤ κ(|δξ(0)|, t), t ≥ 0

for some function κ of class KL.
Some further discussions are in order.

1) The proposed designs—including Theorems 1-2—
provide “more constructive” solutions to the problem
of reduced-order observer design, compared with the
I&I methodology. This is because the conditions in the
proposed methods only constitute of some differential
inequalities, but enjoy sufficient degrees of freedom. In
particular, the results in Theorem 2 and Proposition 2
involve some computationally efficient convex conditions.

2) In Theorem 1, we need to search for two mappings—
the coordinate transformation φ(x, y) and the metric M ,
and in Theorem 2 we need one more mapping fz to
achieve convex relaxation. In contrast, when designing
I&I observers we need to search simultaneously for four
mappings—the coordinate change ϕ(x, y), its left inverse
ϕL(z, y), another mapping ρ and a Lyapunov function (to
show convergence).

3) If the mapping ρ(·) satisfies (42) instead of I1, as clearly
shown in the proof of Proposition 6, it is unnecessary
to introduce the mapping ρ in reduced-order observer
design. We are able to “gather” all the degrees of freedom
from ρ and ϕ in the transformation φ.

E. Connections with transverse contraction

In this subsection, we study the link between the proposed
designs and transverse contraction, a notion introduced in
[27] to analyze attractive limit cycles. It will be shown that
designing a reduced-order observer is equivalent to find a
coordinate transformation in which the system is transversely
contracting.

We slightly extend [27, Definition 1] as follows.
Definition 3: (transverse contraction) The forward complete

system (2) is said to be transversely contracting with rate
λ > 0 (or transversely asymptotically contracting) w.r.t. the
function ψ, where ψ : Rnχ → Rr (1 ≤ r < nχ), if for any
initial condition pair (χa, χb) ∈ R2nχ and input u we have

|ψ(χ(t;χa, u))− ψ(χ(t;χb, u))| ≤ e−λtb(χa, χb) (44)

for some function b(·) ≥ 0 with b(χ, χ) = 0 or

|ψ(χ(t;χa, u))− ψ(χ(t;χb, u))| ≤ κ(|χa − χb|, t) (45)

for transverse asymptotic contraction, with κ of class KL. /

It is clear that the definition in [27], tailored for orbital
stability, is a particular case of Definition 3. Considering the
simple case that a given autonomous system has a unique
attractive limit cycle represented by the function q(χ) = 0 with
q : Rnχ → Rr, we recover the above definition by choosing ψ
as q(χ). We provide a sufficient condition to achieve transverse
asymptotic contraction below. The condition is motivated by
the concept of asymptotic phase in dynamical systems and also
used in [28, Corollary 2] to verify the existence of asymptotic
invariant manifold, also similar to what we obtain as follows.

Proposition 7: Consider the system (2) forward invariant in
a compact set E := Ex × Ey . Suppose there exists a mapping
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ψ : Rnχ → Rr (1 ≤ r < nχ) with ∇ψ full rank, and a
uniformly bounded metric P (χ) ∈ Rnχ×nχ�0 such that

∂ψ

∂χ

(
∂fP + P (χ)

∂f

∂χ
+
∂f

∂χ

>
P (χ)

)
∂ψ

∂χ

>
≺ 0 (46)

holds. Then,
1) the system (2) is transversely asymptotically contracting

with respect to ψ.
2) it admits a trivial functional observer ˙̂χ = f(χ̂, u) with

respect to the function ψ.
3) if there exists a class K∞ function ρy (parameterised by

y) satisfying the injectivity |xa − xb| ≤ ρy
(
|ψ(xa, y) −

ψ(xb, y)|
)
, ∀(xa, xb) ∈ B2

ε (Ex) uniformly in y for some
ε > 0, the estimate

x̂ = ψL(ψ(χ̂), y) := argmin
η∈Bε(E)

∣∣ψ(η, y)− ψ(χ̂)
∣∣ (47)

guarantees (4). /

Its proof is given in Appendix A. We here make some
comparisons between the results in Section III and transverse
contraction.

1) The mapping (36) with φ defined in Theorem 1, is a
diffeomorphism, and thus we may rewrite the full system
dynamics in the (z, y)-coordinate as

Σz : ż = fz(z, y, u), ẏ = fy(z, y, u).

If the system (2) has a convergent reduced-order observer
in the sense of Theorem 1, the condition A2 makes the
system Σz transversely asymptotically contracting w.r.t.
the linear mapping ψ and the metric defined as

ψ =
[
Inx

∣∣∣ 0ny×ny

] [
z
y

]
, P =

[
Pz(z) Pyz(z, y)

P>yz(z, y) Py(z, y)

]
where Pz(z) defined in Theorem 1 (with a slight abuse
of notations), and Pyz and Pyy are any mappings which
guarantee P a uniformly bounded metric.

2) The system (2) in its original coordinate does not verify
transverse contraction. The main difference between The-
orem 1 and Proposition 7 is the way how we use y and
its estimate ŷ. In the latter, we do not try to make full
use of the information contained in the measured output
when designing the functional observer ˙̂χ = f(χ̂, u),
making the sufficient condition relatively conservative.
Meanwhile, transverse contraction implies the existence
of a functional observer.

3) Some definitions similar to transverse contraction have
been studied in the literature. In [12], the authors intro-
duce horizontal contraction, a notion defined on tangent
space, to study the incremental stability along specific
distributions. Here, the transverse contraction is defined
on state space. In [15] the concept of semi-contraction is
recently proposed, which can be regarded as a particular
case. In Appendix B, we give an alternative sufficient
condition to transverse contraction.

V. EXAMPLES

In this section, we use the proposed methods to design
reduced-order observers for four examples, including a nu-
merical one and three physical benchmarks.
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Fig. 1: Simulation results of the polynomial system (48)

A. A polynomial example
The first example is a polynomial system studied in [11, 26],

with full-order observers presented therein. We use this exam-
ple to show how to apply Theorem 2 to design an observer
via convex optimization. The dynamics is given by[

ẋ1

ẋ2

]
=

[
x1 − 1

3x
3
1 − x1x

2
2

x1 − x2 − 1
3x

3
2 − x2x

2
1

]
, ẏ = x1. (48)

We aim to design a reduced-order observer using H3 in The-
orem 2, with mappings P ∈ R2×2

�0 , fz and ϕ : R → R2 to be
determined. We search polynomials using a positivstellensatz
[35] as

fz1(x, y), fz2(x, y) ∈ R3[x, y], ϕ1(y), ϕ2(y) ∈ R2[y]

and select λ = 1. A reduced-order observer is found, via
Yalmip [23] and Mosek, in 0.61 seconds on a desktop with
3.00 GHz Intel Core i7-9700 CPU and 3 GB RAM. The
obtained mappings are P = diag(0.6370, 0.6369) and ϕ(y) =
col(−2.1872y,−0.6368y), with the observer given by

ξ̇ =

[
0.6370(x̂1 − 1

3 x̂
3
1 − x̂1x̂

2
2)

0.6369(x̂1 − x̂2 − 1
3 x̂

3
2 − x̂2x̂

2
1)

]
, x̂ = P−1(ξ − ϕ(y)).

We show in Fig. 1 the simulations with initial conditions
x(0) = [3 5]>, y(0) = −4 and ξ(0) = [0 0]>, where
high-frequency “measurement noise” has been added in the
output channel. It is generated by the block “Uniform Random
Number” in Matlab/Simulink, with sample time 0.001 and the
interval [−0.02, 0.02]. As we can see, the estimates converge to
their true values after a short transient stage, and the observer
is not sensitive to measurement noise.

B. Magnetic levitation system
In the second example, we study an electromechanical

system—magnetic levitation (MagLev) model, which is given
by λ̇q̇

ṗ

 =

Rk (q − c)λ+ u
1
mp

1
2kλ

2 −mg

 (49)

with λ the flux linkage, q ∈ (−∞, c) the position, considering
physical constraints, p the momenta and u the input voltage,
where R,m, c, k > 0 are some physical parameters [46]. Here,
we assume only the position y = q measurable, with unknown
states x = col(λ, p).7

7See [46] for a more challenging task of sensorless estimation, assuming
only current i := 1

k
(c− q)λ measured.
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The MagLev model is indeed a polynomial system, and
thus the convex formulations in Theorem 2 are applicable.
However, we provide an alternative of recursive searching
design. In the first step, we consider a two-dimensional system
with λ as the unknown state, and the measured state y. Then
using H3 to search for parameter P1 > 0 and mapping
ϕ1 : R → R under the constraint q < c. It is trivial to get
an admissible solution P1 = 1 and ϕ1 = 0, and we are able to
design an observer to get exponentially convergent estimate of
λ. In the second step, we regard p as the unmeasured state, y
the output and λ a “known” input, and then solve the convex
optimization in Theorem 2 again. We summarize the result
below.

Proposition 8: Consider the MagLev model (49) with q < c.
The observer

ξ̇ =

[ R
k (y − c)ξ1 + u

− `
mξ2 −

`2

my −mg + 1
2k ξ

2
1

]
, x̂ = ξ +

[
0
`y

]
(50)

with any gain ` > 0, guarantees (4) globally. /
In [45] the authors present an observer, via contraction

analysis, with only y = q measured, as done here. However,
that design only guarantees local convergence. We give the
simulation results of both the proposed observer (50) and
the full-order observer in [45] with all physical parameters
borrowed from [46], and ` = 0.5 for (50) and r0 = 5, k0 =
600 for the design in [45]. We consider the system initial
condition x(0) = [0.003, 0, 0]>, and two sets of observer
initial conditions. In the first, we assume having a good initial
guess, i.e., ξ̂(0) = [0, 0]> for the proposed observer and
x̂(0) = [0.0035, 0, 0]> for the other. As we can see, both of
them get satisfactory performance. In the second, we consider
large initial condition differences, i.e., ξ(0) = [0.010, 0.010]>

and x̂(0) = [0.006, 0.002, 0.0078]>. For this case, our pro-
posed observer states still converge to the true ones, but the
observer in [45] diverges, showing its locality.

C. Inverted pendulum on cart system

In this subsection, we consider a mechanical model of cart-
pendulum system, the model of which is given by

q̇ = Ψ(q)p, ṗ = Ψ>(q)[∇V (q)−G(q)u] (51)

with

Ψ(q) =

 √
m√

m−b2 cos2(q1)
0

−b cos(q1)
√
m
√
m−b2 cos2(q1)

1√
m

 , G =

[
0
1

]
and V (q) = a cos(q1), where q ∈ S × R is the generalized
position—the pendulum angle q1 and the horizontal position
of the car, p ∈ R2 is a momenta-like variable with Ψ(q)p
the generalized velocities, with parameters a, b,m > 0. We
assume that only y = q is measured, and the task is to estimate
the internal state x = p, equivalently the speed. It is well
known that high-gain observer is applicable to this task with a
semi-global domain of attraction by increasing the adaptation
gain. We here use H3 to obtain a globally convergent observer
without high-gain injection.

In the design, we fix P = I2 and get the transformation
φ(x, y) = x+ϕ(y), with ϕ(y) to be found. Note that Ψ(q) is

full rank, and the dynamics of y is affine in x. The condition
H3 motivates us to select ϕ(y) satisfying the PDE

∂ϕ

∂y
(y)Ψ(y) = −λI2 (52)

with λ > 0. Using the symbolic solver, we get a feasible
solution

ϕ(y) = −λ

[∫ y1
0

√
1− b2

m cos2(s)ds
b√
m

sin(y1) +
√
my2

]
. (53)

We are ready to present the observer design as follows.
Proposition 9: Consider the system (51) with q measured.

The reduced-order observer

ξ̇ = −λξ + λϕ(y) + Ψ>(y)[∇V (y)−Gu]

x̂ = ξ − ϕ(y).
(54)

guarantees limt→∞ |x̂(t)− p(t)| = 0 exponentially.
Proof 11: Since the function (53) is the solution of (52), we

thus have F> + F + 2λI2 = 0 satisfying the condition H3.
Invoking

d

dt
(φ(x, y)) =

∂ϕ

∂y
(y)Ψ(y)x+ Ψ>(y)[∇V (y) +Gu]

= −λφ(x, y) + λϕ(y) + Ψ>(y)[∇V (y) +Gu],

thus we get the observer above, such that x̂ is an exponentially
convergent estimate of p = Ψ−1q̇.

We also give the simulation results in Fig. 3 with parameters
m = 1, a = 1, b = 0.1, initial conditions ξ(0) = [0, 0]>,
p(0) = [0.4, 0.3]> and q(0) = [1

2π − 0.1,−0.1], and u(t) =
0.2 cos(t), using different adaptation gains. Clearly, a large
parameter λ implies a fast convergence speed.

D. A biological reactor

The last example is used to illustrate the case nξ > nx in
Subsection III-D. We now consider a model of reaction in [37]

ẋ = −1

k
µ(x)y, ẏ = µ(x)y, (55)

with the states (x, y) ∈ R2
>0, a parameter k > 0 and µ(·)

a non-negative smooth function such that µ(0) = 0, and we
refer the reader to [37] for the physical meanings of states and
parameters. We here adopt the non-monotonic growth function

µ(x) = rx
(

1− x

c

)
, x ∈ [0, c]

with r, c > 0 to characterize some inhibition effect of the
reactor. To simplify the presentation, we assume all the posi-
tive constants equal to one. It was shown in [37] that [y, fy]
is not injective as soon as µ(x) is non-monotonic, thus with
the need to increase the observer dimension. Here, we follow
Proposition 2 to provide a new design as follows.

Proposition 10: Consider the system (55). The observer

ξ̇ = −ξ +


ln y

2y + 1
y + y2

1
2ξ2 −

1
2 (ξ2

2 − 4(ξ3 − ξ1 + ln y))
1
2

 , x̂ = ξ4 − y

guarantees limt→∞ |x̂(t)− x(t)| = 0.



13

 
Fig. 2: The unmeasured states and their estimates from the proposed observer (50) and the structure preserving observer in
[45], which is a local design, for the MagLev model (49)

 

Fig. 3: Estimation performance of the cart-pendulum system

Proof 12: We design an augmentation ẇ = Aw + fa(y)
with A = −I3×3, the initial condition constraints w2(0) =
w3(0) = 0, w1(0) = (x(0) + y(0))2 + ln(y(0)). It should be
underscored here that such initial conditions are not used in
the observer implementation. It is straightforward to verify for
all t ≥ 0

2z4(t) = w2(t)− [(w2
2(t)− 4(w3(t)− w1(t) + ln(y(t))]

1
2 ,

with z4 := x + y. By selecting the transformation as
φ(x,w, y) = col(w, x+y) ∈ R4, it is straightforward to verify
H1′, H2′ and H3′.

Our design is compared with the high-gain observer (HGO)

proposed in [37], which is given by

ξ̇ =

 ξ2
−ξ3min(eξ1 , ξ̄1)

sat
m,M

(
eξ1 (2ξ2

2 − ξ3φ̃(ξ))
)
+

 −3`
−3`2

3`ξ31ξ≤ln ξ̄1
+ `3max(e−ξ1 , 1

ξ̄1
)

 ey
x̂ =

[
eξ1

1
2

(1− φ̃(χ))

]
, ey := ξ1 − ln y

with some parameters ξ̄1,m,M, ξ?2 , P (ξ2) := ξ2((ξ2/ξ
?
2)2 −

3ξ2/ξ
?
2 + 1) and a function

φ̃(ξ) =


− 1 if ξ2 > ξ?2 and ξ3 < −ξ2
(ξ2/ξ

?
2)2 − 3ξ2/ξ

?
2 + 1 if ξ2 ∈ (0, ξ?2 ] and ξ3 < P (ξ2)

ξ3/ξ2 otherwise.

Clearly, the HGO is much more complicated, stemmed from
Lipschitsian extensions. These two observers are compared
via simulations, with the initial conditions [0, 0, 0, 0.5]> in the
proposed contracting observer, and [1, 0.1, 0]>, together with
the gain ` = 3 for the HGO. Some simulations were done
for the cases with and without measurement noise, shown in
Fig. 4. It is well known that the convergence speed of HGOs
mainly depends on the adaptation gain ` > 0. In order to make
a fair comparison to evaluate their effects to noise, we tuned
them, via changing `, such that their convergence times are
similar. As expected, our new design overperforms the HGO,
in particular in the presence of measurement noise, since the
underlying mechanism of HGOs makes them highly sensitive
to measurement noise. We underline that the effect of noise
in the HGO becomes increasingly serious, since the studied
trajectory verifies x2(t) → 0 and ξ2 is its estimate, with
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ξ2 appearing in the denominator of φ̄(ξ). Besides, peaking
phenomenon is clearly observed in the HGO, which usually
requires some extra modification, e.g., adding saturation func-
tion or projector [18], to avoid deleterious effects.

VI. CONCLUDING REMARKS

In this paper we address the problem of reduced-order
observer design for nonlinear control systems by means of
contraction analysis and convex optimization. As we have
shown, searching for a change of coordinate—after which
the system is (transversely) contracting—plays a key role in
the constructive procedure, as well as providing sufficient
degrees of freedom to characterize “detectability” for nonlinear
systems. Then we formulate the obtained sufficient condition
into a convex optimization problem by introducing the image
as a new decision variable. We apply the main results to
linear systems and strongly differentially observable nonlinear
systems, showing generality of the proposed framework. Links
to I&I observers and transverse contraction are also clarified in
the paper. At the end, we apply the method to several academic
and practical models as illustrations.

Along this research line, the following problems are under-
way.

- If the correctness is infeasible in some sense, the pro-
posed method is still able to provide estimation with
ultimate bounded errors. It is also interesting to study
interval observers using the introduced framework.

- After getting a convex sets of contracting observers, it is
of practical interest to select the best or mix them in the
presence of unavoidable measurement noise.

- For nonlinear nonautonomous systems, the necessary
condition on the existence of an asymptotic observer is
still open. If it exists, it is natural to study the relationship
between the necessary condition and the condition A2.

- Some practical models are not uniformly observable,
but may be asymptotically estimated when the system
trajectories satisfy additional excitation conditions. It is
interesting to generalize the proposed framework to this
case.

- In the recent work [6], the exogenous input u(t) is
involved in a coordinate transformation. If we allow this
degree of freedom in the proposed method, it will defi-
nitely extend the realm of applicability. At the moment,
such a time-varying transformation in our framework
only makes sense conceptually, but with difficulty to
implement it.

APPENDIX

A. THE PROOF OF PROPOSITION 7
Invoking Wazewski theorem [5] and the fact that Euclidean

space is contractible, we obtain that the Jacobian completion
of ∇ψ(χ) is solvable, i.e., there exists a mapping g̃ : Rnχ →
Rnχ×(nχ−r) such that

det
[
∂ψ
∂χ

>
(χ) g̃(χ)

]
6= 0.

We can use Gram-Schmidt process to orthonormalize the
column vectors of

[
∇ψ(χ) g̃(χ)

]
with the standard inner

product in Euclidean space, and the obtained last (nχ − r)
vectors are denoted as g(χ). It is clear that g(χ) is uniformly
full rank, and each of its column gi(χ) verifies

gi(χ) ∈ ker
(
∂ψ

∂χ
(χ)

)
, ∀i ∈ {1, . . . , nχ − r}. (56)

Now we select an arbitrary piecewise continuous C1 path
γ : [0, 1] → Rnχ between any two point χa = γ(0) and
χb = γ(1). Consider a family of auxiliary systems

d

dt
Γ(s, t) = f(Γ(s, t), u(t)) + g(Γ(s, t))v(s, t), (57)

with Γ(s, 0) = γ(s), Γ(·) ∈ Rnχ and the control input v(s, t),
where we regard u(t) as an exogenous time-varying signal.
By calculating its differential dynamics, we have

d

dt

d

ds
Γ(s, t) = g(Γ(s, t))

d

ds
v(s, t)

+

(
∂f

∂χ
(Γ(s, t), u(t)) +

nχ−r∑
i=1

∂gi
∂χ

vi(s, t)

)
d

ds
Γ(s, t)

(58)
According to [28, Theorem 1] and the full-rank property
of g(·), there exists a differential controller d

dsv(s, t) =
δv(Γ(s, t), ddsΓ(s, t), t) such that the origin of the differential
dynamics (58) is asymptotically stable uniformly in s ∈ [0, 1]
with a quadratic Lyapunov function. Then, the controller
v(s, t) = −

∫ 1

s
δv(Γ(σ, t), ddsΓ(σ, t), t)dσ makes the close

loop incrementally asymptotically stable, thus

lim
t→∞

|Γ(1, t)− Γ(0, t)| = 0. (59)

On the other side, since Γ(1, 0) = χ̂(0) and v(1, t) = 0, we
have

Γ(1, t) = χ̂(t). (60)

We also have

d

dt

(
ψ(χ(t))− ψ(Γ(0, t)

)
=
∂ψ

∂χ
(χ(t))f(χ(t), u)

− ∂ψ

∂χ
(Γ(0, t))

(
f(Γ(0, t), u) + g(Γ(0, t)v(0, t)

)
(56)
=

∂ψ

∂χ
(χ(t))f(χ(t), u)− ∂ψ

∂χ
(Γ(0, t))f(Γ(0, t), u),

(61)
together with Γ(0, 0) = χ(0) it implying

ψ(χ(t)) = ψ(Γ(0, t)), ∀t ≥ 0. (62)

Combining (59), (60) and (62), we prove the first claim. The
claim 2) is trivial to verify by fixing χ = χ(t;χa, u) and
χ̂ = χ(t;χb, u), verifying the second claim.

Regarding the last item, invoking the forward invariance
assumption, we have ψ(χ) ∈ ψ(E) for all t ≥ 0. Recalling
the convergence (45), for any ε > 0 we can always find a
moment tε such that ψ(χ̂(t)) ∈ Bε(E), ∀t ≥ tε. In terms of
injectivity, the mapping defined in (47) guarantees

ψ(χ̂) ∈ Bε(E)
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 Fig. 4: Simulation results of the reactor model with comparison to the high-gain observer in [37]

implying

|ψL(ψ(χ̂), y)− ψL(ψ(χ), y)| ≤ ρy(|ψ(χ̂)− ψ(χ)|).

It, then, yields

|x̂(t)− x(t)| ≤ ρy
(
|ψ(χ̂(t))− ψ(χ(t))|

)
, t ≥ tε.

Combining (45), we complete the proof. �

B. AN ALTERNATIVE CONDITION TO TRANSVERSE
CONTRACTION

In this section, we give an alternative sufficient condition
to transverse contraction, by using a semi-definite Riemannian
metric W (χ). A similar problem arises in [43].

Proposition 11: Consider the system (2) forward invariant
in E under input u(t). Suppose there exists a positive semi-
definite W : Rnχ → Rnχ×nχ�0 with rank r > 0, parameterized
as W (χ) := Ψ(χ)P (χ)Ψ>(χ) with Ψ(χ) ∈ Rnχ×r and
P (χ) ∈ Rnχ×nχ both full rank.8 If the inequality

∂fW (χ) +
∂f

∂χ

>
W (χ) +W (χ)

∂f

∂χ
≺ 0 (63)

holds, and ∇Ψi(χ) = (∇Ψi(χ))> for i = 1 . . . , r, then the
given system is transversely asymptotically contracting w.r.t.
the function ψ defined by ψ(χ) =

∫ 1

0
(Ψ(sχ))>χds.

Proof 13: We choose a differential Lyapunov function

V (χ, δχ) = δχ>W (χ)δχ,

and define
δχh := Ψ(χ)Ψ(χ)†δχ,

and
δχv := [I −Ψ(χ)Ψ(χ)†]δχ.

8A positive semi-definite matrix can always be represented in such a
parameterization.

For each (χ, δχ) ∈ Rnχ × TRnχ , we have

δχ = δχh + δχv,

and then V (χ, δχ) = δχ>hW (χ)δχh, and thus V (χ, δχ) =
V (χ, δχh) The associated differential dynamics is d

dtδχ =
∂f(χ,u)
∂χ δχ, and for any nonvanishing δχ,

V̇ (χ, δχ) = δχ>(∂fW +
∂f

∂χ
W +W

∂f

∂χ

>
)δχ < 0,

thus
lim
t→∞

V (χ(t), δχ(t)) = 0. (64)

It is obvious that ∇ψ(χ) = Ψ>(χ). Consider a differential
curve γ : [0, 1] → Rnχ with γ(s) ∈ E , we parameterize two
different initial conditions as χa(0) = γ(0) and χb(0) = γ(1).
Then, it yields from (64) the following implications.

=⇒ lim
t→∞

∫ 1

0

∣∣∣∣ ddsχ(t; γ(s), u)>Ψ(χ(t; γ(s), u))

∣∣∣∣
P (·)

ds = 0

=⇒ lim
t→∞

d

ds
ψ(χ(t; γ(s), u)) = 0

=⇒ lim
t→∞

|ψ(χ(t;χa, u))− ψ(χ(t;χb, u))| = 0

where in the third implication we have used det(P (x)) 6= 0
and the boundedness of P (·). It completes the proof.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to three
reviewers for their careful reading of our manuscript, and many
thoughtful comments that helped improve its clarity.

REFERENCES

[1] N. Aghannan and P. Rouchon, An intrinsic observer for a class of
Lagrangian systems, IEEE Trans. Automatic Control, vol. 48, pp. 936–
945, 2003.



16

[2] V. Andrieu and L. Praly, On the existence of a Kazantzis-
Kravaris/Luenberger observer, SIAM J. Control and Optimization, vol.
45, pp. 432–456, 2006.
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