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Abstract

The deployment of autonomous systems in uncertain and dynamic environments has raised
fundamental questions. Addressing these is pivotal to build fully autonomous systems and
requires a systematic integration of planning and control. We first propose reactive risk signal
interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate
complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable
propositions that may model humans as well as random environmental events such as sensor
failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited
to) the Conditional Value-at-Risk, to measure the risk of violating certain spatial specifications.
Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this
purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise
a game-based approach. Third, we propose a reactive planning and control framework for
dynamical control systems under ReRiSITL specifications.

1 Introduction

Temporal logics allow to express temporal properties in a logical framework providing an expres-
sive specification language. Signal temporal logic (STL) is a predicate-based temporal logic that
offers many appealing advantages [1]. In particular, STL allows to impose quantitative temporal
properties, e.g., combinations of surveillance (“visit regions A, B, and C every 10− 60 sec”), safety
(“always between 5− 25 sec stay at least 1 m away from D”), and many others. Indeed, there is a
rich body of literature on the control of dynamical systems under STL specifications, e.g., [2–4].

However, a key obstacle to deploying such control frameworks in real-world settings is to account
for uncertain and dynamic environments. In particular, objects of interests may be estimated by
simultaneous localization and mapping algorithms and be described as probability distributions,
see e.g., [5] and [6], so that one may want to consider risk. Also, random events such as sensor
failures or humans requesting assistance play an increasing role. While there has been recent work
addressing some of these challenges, e.g., [7–10], there exists no reactive and risk-aware planning
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and control framework with formal correctness guarantees. We claim that no one has rigorously
addressed the reactive planning problem for systems under STL specifications. Towards addressing
this shortcoming, we leverage ideas from formal methods, risk theory, control theory, game theory,
and timed automata theory.

1.1 Related Work

For the control under STL specifications, mixed integer linear programs [2, 11, 12] have been pre-
sented that encode the STL specification at hand. Nonconvex optimization programs [3, 13] and
reinforcement learning approaches [14, 15] have further been proposed and particularly use the
quantitative semantics associated with an STL specification [16]. A timed automata-based planning
framework has been presented in our previous work [17] where we decompose the STL specifica-
tion into STL subspecifications. Feedback control laws that implement such STL subspecifications,
which are timed transitions, have appeared in [4, 18–24].

Linear temporal logic (LTL) is a proposition-based temporal logic, less expressive than STL, that
allows to impose qualitative temporal properties. Existing control approaches leverage automata-
based synthesis [25–27]. Metric interval temporal logic (MITL) is a proposition-based temporal logic
with quantitative temporal properties [28], hence more expressive than LTL but less expressive than
STL. An MITL specification can be translated into a language equivalent timed automaton [28].
If the accepted language of this automaton is not empty [29], the MITL specification is satisfiable.
For point-wise MITL semantics, a tool to perform this translation has been presented in [30]. Point-
wise semantics, however, do not guarantee the satisfaction of the MITL specification in continuous
time. The procedure of [28], for continuous-time semantics, is complex and not compositional. The
results from [31,32] are more intuitive and present a compositional way to construct a timed signal
transducer for an MITL specification. The authors in [33] have proposed a way to control timed
automata by reformulating it as a timed two player game, played between controllable (the system)
and uncontrollable (environment) events, see also [34–36].

The underlying assumption in these previous works is that the environment is perfectly known.
For LTL, this assumption has been relaxed in [5, 6, 37]. Specifically, [5] and [6] assume that the
environment is modeled as a semantic map. Target beliefs in surveillance games and Markov de-
cisions process-based approaches are presented in [38] and [39]. Probabilistic computational tree
logic and distribution temporal logic [40] account for state distributions and can take chance con-
straints into account, but only consider qualitative temporal properties and do not consider risk
measures [41,42]. The works in [43] and [44] consider the generalized reactivity(1) fragment, which
explicitly accounts for dynamic environments. For STL, the works in [7] and [9] consider chance
constraints, whereas [8] and [45] already incorporate risk measures without, however, considering
random environmental events. Such events have been considered for STL in [10]. The proposed
reactive control strategy in [10] has been evaluated empirically, but without providing formal guar-
antees. A reactive counter-example guided framework was proposed in [46] where, however, the
risk of violating certain spatial specifications is not considered. Furthermore, only bounded spec-
ifications are considered while the STL specification is not allowed to explicitly depend on the
environment.
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1.2 Contributions

In this paper, our first contribution is to propose reactive risk signal interval temporal logic
(ReRiSITL). Compared with STL, ReRiSITL has two distinct features and hence generalizes STL.
First, ReRiSITL specifications may contain uncontrollable propositions that allow to model hu-
mans, or in general other agents, and environmental events such as sensor failures or communication
dropouts. Second, ReRiSITL allows to incorporate risk measures by considering risk predicates so
that the risk of violating certain spatial specifications can be taken into account. Such risk pred-
icates can take different risk measures into account, as for instance the conditional value-at-risk
(CVaR). Our second contribution is an algorithm that allows to check if such an ReRiSITL specifi-
cation is satisfiable. To do so, we abstract the ReRiSITL specification into a timed signal transducer
using and adapting the results from [32] and then following a game-based strategy similarly to [33].
The third contribution is a planning and control framework for dynamical control systems under
ReRiSITL specifications. The main elements here are a well defined timed abstraction of the control
system that relies on existing feedback control laws as presented in [18–24]. We then propose to
use a combination of a game-based approach, graph search techniques, and replanning. We remark
that our approach is, to the best of our knowledge, the first to incorporate past temporal operators
and we hereby establish a connection between monitoring and reactive control.

Structure. Section 2 presents ReRiSITL and the problem formulation. Section 3 presents the
algorithm to check if an ReRiSITL specification is satisfiable. Sections 4 and 5 propose the planning
and control framework for dynamical control systems under ReRiSITL specifications. Simulations
and conclusions are provided in Sections 7 and 8.

2 Preliminaries and Problem Formulation

True and false are encoded as > := ∞ and ⊥ := −∞ with B := {>,⊥}. Let R, Q, and N be
the real, rational, and natural numbers, respectively, while R≥0 (R>0) and Q≥0 (Q>0) denote their
respective nonnegative (positive) subsets. For t ∈ R≥0 and I ⊆ R≥0, let t⊕ I and t	 I denote the
Minkowski sum and the Minkowski difference of t and I, respectively. For two sets X and Y, we
use the notation F(X ,Y) to denote the set of all measurable functions that map from X to Y. An
element f ∈ F(X,Y ) is hence a function f : X → Y.

Let (Ω,BΩ, PΩ) be a probability space where Ω is the sample space, BΩ is the Borel σ-algebra
of Ω, and PΩ : BΩ → [0, 1] is a probability measure. A vector of random variables is a measurable
function X : Ω → Rñ defined on a probability space (Ω,BΩ, PΩ) where ñ ∈ N. We can associate
the probability space (Rñ,BRñ , PX) with X with probability measure PX : BRñ → [0, 1] defined as

PX(B) := PΩ(X−1(B))

for Borel sets B ∈ BRñ and where X−1(B) := {ω ∈ Ω|X(ω) ∈ B} is the inverse image. Let
µ̃ := EV [X] and Σ̃ be the expected value and covariance matrix of X, respectively, while N (µ̃, Σ̃)
denotes the multivariate normal distribution. We remark that all important symbols that have
been or will be introduced in this paper are summarized in Table 1.

2.1 Reactive Risk Signal Interval Temporal Logic

To define reactive risk signal interval temporal logic (ReRiSITL), let

h : Rn × Rñ → R

3



Symbol Meaning

F(X ,Y) Set of all measurable functions mapping from a set X into a set Y.

x, s
The function x : R≥0 → Rn denotes a deterministic signal, while the element s ∈
F(R≥0,B|M

uc|) denotes a random signal.

X, µ̃, Σ̃
The function X : Ω → Rñ denotes a random variable with expected value µ̃ ∈ Rñ and
covariance matrix Σ̃ ∈ Rñ×ñ.

h The function h : Rn × Rñ denotes predicate functions.

MRi, Muc, M
MRi: set of risk predicates, Muc: set of uncontrollable propositions, M : set of risk predicates
and uncontrollable propositions.

µRi, µuc The element µRi ∈MRi is a risk predicate, while the element µuc ∈Muc is an uncontrollable
proposition.

R, β, γ,
The function R : F(Ω,R) → R denotes a risk measure, β is a risk level, and γ is a risk
threshold.

(x, s,X, t) |= φ Semantics of an ReRiSITL specification φ indicating that x, s, and X satisfy φ at time t.

AP Set of (atomic) propositions for MITL specifications.

BC
The function BC, e.g., applied as BC(AP ), denotes the set of all Boolean combinations
(negations, conjunctions, disjunctions) over AP .

Tr, Tr−1 The transformation ϕ = Tr(φ) transforms an ReRiSITL specification φ into an MITL spec-
ification ϕ; Tr−1 is the inverse.

TSTϕ, TSTφ Timed signal transducers for the MITL specification ϕ and the ReRiSITL specification φ.

RA, RAC , RAC
The functions RA, RAC , RAC , e.g., applied as RA(TSTφ), are different versions of the
region automaton of TSTφ.

dp, dµ
The plan dp : R≥0 → BC(AP ) is constructed for a specification φ, dµ is simply its projection
to M via Tr−1.

π, π̂, W
The functions π and π̂ are different versions of the controllable predecessor for Algorithm 2
providing the winning condition W .

Xm, XEV
m , XVaR

m , XCVaR
m The sets XEV

m , XVaR
m , XCVaR

m are risk constrained sets that are determinized into the set Xm.

µdet, Mdet, M̂
The element µdet ∈Mdet is a deterministic predicate; M̂ is the set of deterministic predicates
and uncontrollable propositions.

TSTθ, TST
m
θ Timed signal transducers for the ReSITL specification θ and the product automaton.

Table 1: Summary of the most important notation used throughout the paper.
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be a measurable function, referred to as the predicate function, where n, ñ ∈ N. Let

x : R≥0 → Rn

be a deterministic signal and let

X : Ω→ Rñ

be a vector of random variables defined on the probability space (Ω,BΩ, PΩ).1 At time t, the
probability space (R,BR, Ph) can be associated with h(x(t),X), a random variable, where Ph is
derived from the probability space (Rñ,BRñ , PX).

We consider risk predicates for ReRiSITL based on risk measures as advocated in [41,42] towards
an axiomatic risk assessment. A risk measure

R : F(Ω,R)→ R

allows to exclude behavior which is deemed more risky than other behavior. We are interested
in R(−h(x(t),X)) to argue about the risk of violating h(x(t),X) ≥ 0. The truth value of a risk
predicate µRi : Rn × Rñ → B at time t is obtained as

µRi(x(t),X) :=

{
> if R(−h(x(t),X)) ≤ γ
⊥ otherwise

(1)

for a risk threshold γ ∈ R. There are various choices of R(·), see [42] for an overview. We consider
the expected value (EV), the Value-at-Risk (VaR), and the Conditional Value-at-Risk (CVaR). The
expected value of −h(x(t),X), denoted by EV [−h(x(t),X)], provides a risk neutral risk measure.
More risk averse are the VaR and the CVaR as in [41]. The VaR of −h(x(t),X) for β ∈ (0, 1) is
defined as

V aRβ(−h(x(t),X)) := min(d ∈ R|Ph(−h(x(t),X) ≤ d) ≥ β),

i.e., the worst case 1− β probability quantile.

Remark 1. Note that V aRβ(−h(x(t),X)) ≤ γ is equivalent to Ph(−h(x(t),X) ≤ γ) ≥ β so that
our framework includes chance constraints as for instance used in [9].

The CVaR of −h(x(t),X) for a risk level β is given by

CV aRβ(−h(x(t),X)) := EV [−h(x(t),X))| − h(x(t),X)) > V aRβ(−h(x(t),X))],

i.e., the conditional expected value of −h(x(t),X) relative to −h(x(t),X) being greater than or
equal to the VaR. Let now MRi denote a set of risk predicates.

Let Muc be a set of uncontrollable propositions µuc and s ∈ F(R≥0,B|M
uc|) be a random

Boolean signal corresponding to the truth values of the propositions in Muc over time.2 Define also
the projection of s onto µuc ∈Muc as projµuc(s) : R≥0 → B, i.e., the truth value of µuc over time.

1We remark that X can be assumed to be a stochastic process X(t). To avoid further technical complexity, this
is not followed in this paper.

2The proposition µuc is labeled uncontrollable because s is assumed to be a random signal generated by an
unknown underlying stochastic process, as highlighted by the notation s ∈ F(R≥0,B|M

uc|).
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Define the set of risk predicates and uncontrollable propositions as

M := MRi ∪Muc.

For µ ∈M , the syntax of ReRiSITL is now given as

φ ::= > | µ | ¬φ | φ′ ∧ φ′′ | φ′UIφ′′ | φ′U Iφ′′ (2)

where φ′ and φ′′ are ReRiSITL formulas and where UI and U I are the future and past until
operators. We restrict the time interval I to belong to the nonnegative rationals, i.e., I ⊆ Q≥0.
Additionally, we require that I is not a singleton, i.e., I is not allowed to be of the form I := [a, a] for
a ∈ Q≥0. Note that the former assumption is not restrictive, while the latter excludes punctuality
constraints. We remark that these assumptions are commonly made [28]. Also define

φ′ ∨ φ′′ := ¬(¬φ′ ∧ ¬φ′′) (disjunction),

FIφ := >UIφ (future eventually),

F Iφ := >U Iφ (past eventually),

GIφ := ¬FI¬φ (future always),

GIφ := ¬F I¬φ (past always).

We say that an ReRiSITL formula φ is in positive normal form if no negation occurs within φ [11].
Let (x, s,X, t) |= φ denote the satisfaction relation as defined next.

Definition 1 (ReRiSITL Semantics). We recursively define the continuous-time semantics of
ReRiSITL as

(x, s,X, t) |= µRi iff R(−h(x(t),X)) ≤ γ,
(x, s,X, t) |= µuc iff projµuc(s)(t) = >,
(x, s,X, t) |= ¬φ iff ¬((x, s,X, t) |= φ),

(x, s,X, t) |= φ′ ∧ φ′′ iff (x, s,X, t) |= φ′ ∧ (x, s,X, t) |= φ′′,

(x, s,X, t) |= φ′UIφ
′′ iff ∃t′′ ∈ t⊕ I such that (x, s,X, t′′) |= φ′′ ∧ ∀t′ ∈ (t, t′′),(x, s,X, t′) |= φ′,

(x, s,X, t) |= φ′U Iφ
′′ iff ∃t′′ ∈ t	 I such that (x, s,X, t′′) |= φ′′ ∧ ∀t′ ∈ (t, t′′),(x, s,X, t′) |= φ′.

Remark 2. Quantitative semantics can be defined similarly to [16] to determine how well x, s,
and X satisfy φ at time t. Here, one has to consider γ−R(−h(x(t),X)) and projµuc(s)(t) for risk
predicates and uncontrollable propositions, and recursively apply the operations from [16, Def. 10].

Example 1. Consider the workspace in Fig. 1 with regions R1, R2, O1, and O2 described by a
normal distribution

X :=
[
XT

R1 XT
R2 XT

O1 XT
O2

]T ∼ N (µ̃, Σ̃)

with expected value and covariance according to

µ̃ :=
[
8 8 2 4 5 7 5 5

]T
Σ̃ := diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 1: Overview of the workspace in Example 1.

Consider also the following ReRiSITL specification

φ := F(0,5)µ
Ri
R1 ∧G[0,∞)

(
µRi
O1 ∧ µRi

O2 ∧
(
F (0,1)µ

uc =⇒ F(0,3)µ
Ri
R2

))
where µRi

R1 and µRi
R2 encode the probability of reaching the regions R1 and R2 using the VaR, µRi

O1

and µRi
O2 encode the risk of colliding with obstacles O1 and O2 using the CVaR, and µuc is an

uncontrollable proposition. The specification φ encodes to reach R1 within 5 time units with prob-
ability of at least 0.8, while always having a risk of colliding with obstacles O1 and O2 lower than
0. Furthermore, whenever the uncontrollable proposition µuc, e.g., encoding a human requesting
assistance, was true within the last 1 time unit, it should follow that R2 is reached within 3 time
units with probability 0.8. We emphasize the use of the past operator F (0,1) in φ that specifies a
form of reactive monitoring. In particular, the predicate functions are

hRi
R1(x(t),X) := ε− ‖x(t)−XR1‖2

hRi
R2(x(t),X) := ε− ‖x(t)−XR2‖2

where ε := 0.5 and RR1() and RR2() encode the VaR with βR1 = βR2 := 0.8 and γR1 = γR2 := 0.
Recall that, according to Remark 1, the risk predicate µRi

R1 using VaR encodes the probability that
hRi
R1(x(t),X) ≥ 0 is greater than 0.8. Let also

hRi
O1(x(t),X) := ‖x(t)−XO1‖2 − ε
hRi
O2(x(t),X) := ‖x(t)−XO2‖2 − ε

where the risk measures RO1() and RO2() encode the CVaR with βO1 = βO2 := 0.9 and γO1 =
γO2 := 0.

To define satisfiability of an ReRiSITL specification, we need to take into account that propo-
sitions in Muc are uncontrollable. We first define what a nonanticipative strategy is. A strategy

xna : F(R≥0,B|M
uc|)→ F(R≥0,Rn)

is nonanticipative if: for any t ≥ 0 and for any two signals s, s′ ∈ F(R≥0,B|M
uc|) with s(τ) = s′(τ)

for all τ ∈ [0, t], it holds that xna(s)(τ) = xna(s′)(τ) for all τ ∈ [0, t]. This means that xna(s)
takes, at time t, only current and past values of s into account, i.e., s(τ) where τ ≤ t. This makes
sense under the assumption that s(t) can only be observed at time t.
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Definition 2 (ReRiSITL Satisfiability). For a given X, an ReRiSITL formula φ is said to be
satisfiable if ∀s ∈ F(R≥0,B|M

uc|), there exists a nonanticipative strategy xna : F(R≥0,B|M
uc|) →

F(R≥0,Rn) s.t. (xna(s), s,X, 0) |= φ.

Later in the paper, we will replace risk predicates by deterministic predicates as originally used in
STL. For a given constant c ∈ R, the truth value of such a deterministic predicate µdet : Rn×Rñ → B
at time t is obtained as

µdet(x(t), µ̃) :=

{
> if h(x(t), µ̃) ≥ c
⊥ otherwise.

(3)

where we have replaced X in h by its expected value µ̃.
If now all risk predicates µRi ∈ MRi are replaced by deterministic predicates µdet, then φ is

called a reactive signal interval temporal logic (ReSITL) formula. If uncontrollable propositions µuc

are excluded, i.e., Muc = ∅, then φ is called a risk signal interval temporal logic (RiSITL) formula.
If all risk predicates are replaced by deterministic predicates and Muc = ∅, then φ reduces to an
SITL formula as in [1].

Abbreviation Features

ReRiSITL Predicates MRi, Uncontrollable Propositions Muc

RiSITL Predicates MRi

ReSITL Uncontrollable Propositions Muc

SITL Deterministic Predicates Mdet only

2.2 From MITL to Timed Signal Transducer

We next define metric interval temporal logic (MITL) [28] which has the advantage that it can
be translated into a timed signal transducer [32]. We later interpret ReRiSITL formulas as MITL
formulas and make use of this translation. Instead of predicates and uncontrollable propositions,
MITL considers (controllable) propositions p ∈ AP where AP is a set of atomic propositions. The
MITL syntax is hence

ϕ ::= > | p | ¬ϕ | ϕ′ ∧ ϕ′′ | ϕ′UIϕ′′ | ϕ′U Iϕ′′ (4)

where ϕ′ and ϕ′′ are MITL formulas. Let

d : R≥0 → B|AP |

be a Boolean signal corresponding to truth values of p ∈ AP over time. Define again the projection
of d onto p ∈ AP as projp(d) : R≥0 → B and let (d, t) |= ϕ be the satisfaction relation. The
continuous-time semantics of an MITL formula [32, Sec. 4] are defined as (d, t) |= p iff projp(d)(t) =
> while the other operators are as in Definition 1. An MITL formula ϕ is satisfiable if ∃d ∈
F(R≥0,B|AP |) such that (d, 0) |= ϕ. Note that the symbols ϕ and φ are used to distinguish
between MITL and ReRiSITL formulas, respectively.

The translation of ϕ into a timed signal transducer is summarized next and follows [32]. Let

c :=
[
c1 . . . cO

]T ∈ RO≥0

8



be a vector of O clock variables that obey the continuous dynamics ċo(t) := 1 with co(0) := 0 for
o ∈ {1, . . . , O}. Discrete dynamics occur at instantaneous times in form of clock resets. Let

r : RO≥0 → RO≥0

be a reset function such that r(c) = c′ where either c′o = co or c′o = 0. With a slight abuse of
notation, we use r(co) = co and r(c0) = 0. Clocks evolve with time when visiting a state of a timed
signal transducer, while clocks may be reset during transitions between states. We define clock
constraints as Boolean combinations of conditions of the form co ≤ k and co ≥ k for some k ∈ Q≥0.
Let Φ(c) denote the set of all clock constraints over clock variables in c.

Definition 3 (Timed Signal Transducer [32]). A timed signal transducer is a tuple

TST := (S, s0,Λ,Γ, c, ι,∆, λ, γ,A)

where S is a finite set of states, s0 is the initial state with s0 ∩ S = ∅, Λ and Γ are a finite sets of
input and output variables, respectively, ι : S → Φ(c) assigns clock constraints over c to each state,
∆ is a transition relation so that δ = (s, g, r, s′) ∈ ∆ indicates a transition from s ∈ S∪s0 to s′ ∈ S
satisfying the guard constraint g ⊆ Φ(c) and resetting the clocks according to r; λ : S∪∆→ BC(Λ)
and γ : S ∪∆ → BC(Γ) are input and output labeling functions where BC(Λ) and BC(Γ) denote
the sets of all Boolean combinations over Λ and Γ, respectively, and A ⊆ 2S∪∆ is a generalized
Büchi acceptance condition.

A run of a TST over an input signal d : R≥0 → B|Λ| is an alternation of time and discrete steps
resulting in an output signal y : R≥0 → B|Γ|. A time step of duration τ ∈ R>0 is denoted by

(s, c(t))
τ−→ (s, c(t) + τ)

with d(t + t′) |= λ(s), y(t + t′) |= γ(s), and c(t + t′) |= ι(s) for each t′ ∈ (0, τ). A discrete step at
time t is denoted by

(s, c(t))
δ−→ (s′, r(c(t))))

for some transition δ = (s, g, r, s′) ∈ ∆ such that d(t) |= λ(δ), y(t) |= γ(δ), and c(t) |= g. Each run
starts with a discrete step from the initial configuration (s0, c(0)). Formally, a run of a TST over
d is a sequence

(s0, c(0))
δ0−→ (s1, r0(c(0)))

τ1−→ (s1, r0(c(0)) + τ1)
δ1−→ . . . .

Due to the alternation of time and discrete steps, the signals d(t) and y(t) may be a concatenation
of sequences consisting of points and open intervals. We associate a function q : R≥0 → S ∪∆ with
a run as q(0) := δ0, q(t) = s1 for all t ∈ (0, τ1), . . .; A is a generalized Büchi acceptance condition
so that a run over d(t) is accepting if, for each A ∈ A, inf(q) ∩ A 6= ∅ where inf(q) contains the
states in S that are visited, in q, for an unbounded time duration and transitions in ∆ that are
taken, in q, infinitely many times. The language of TST is

L(TST ) := {d ∈ F(R≥0,R|Λ|)
∣∣TST has an accepting run over d(t)}

The synchronous behavior of two timed signal transducers TST1 and TST2 is defined by their
synchronous product TST1||TST2. The input-output behavior of TST1 being the input of TST2

9



(a) Timed signal transducer for
U(0,∞)

(b) Timed signal transducer for
F(0,b)

(c) Timed signal transducer for ¬

(d) Timed signal transducer for ∧
(e) Formula tree for ϕ := F(0,5)¬p1 ∨ (p2U(0,∞)p3 ∧ F(0,15)p4).

Figure 2: Figs. 2a-2d show timed signal transducers for the basic temporal operators U(0,∞) and
F(0,b) and the Boolean operators ¬ and ∧. Note that the variables d, d1, and d2 here are used as
generic input symbols, while y is a generic output symbol. Fig. 2e shows the formula tree for the
MITL formula ϕ := F(0,5)¬p1 ∨ (p2U(0,∞)p3 ∧ F(0,15)p4). To construct the timed signal transducer
TSTϕ for ϕ from the formula tree, the synchronous product operation || and the input-output
composition operation B need to be applied to the basic timed signal transducers of the blocks in
the formula tree as indicated in Fig. 2e.

is denoted by their input-output composition TST1 B TST2, see [32] and [17, Def. 2 and 3] for
definitions.

We can now summarize the procedure of [32]. First, it is shown that every MITL formula ϕ
can be rewritten using only the temporal operators U(0,∞), U (0,∞), F(0,b), and F (0,b) for rational
constants b [32, Proposition 4.5] using the rewriting rules in [32, Lemmas 4.1, 4.2, 4.3, and 4.4].
Second, timed signal transducers for U(0,∞), U (0,∞), F(0,b), and F (0,b) are proposed, see Figs. 2a
and 2b for examples of U (0,∞) and F(0,b). Note that all states and transitions except for the state
indicated by the dashed circle in U(0,∞) are included in A. Timed signal transducers for negations
and conjunctions are shown in Figs. 2c and 2d. Third, the formula tree of an MITL formula ϕ
is constructed as illustrated in Fig. 2e. Fourth, input-output composition B and the synchronous
product || are used to obtain a timed signal transducer

TSTϕ := (S, s0,Λ,Γ, c, ι,∆, λ, γ,A)

with Λ := AP and Γ := {y}; TSTϕ has accepting runs over d, i.e., d ∈ L(TSTϕ), with y(0) = >
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if and only if (d, 0) |= ϕ [32, Thm. 6.7]. Note that y(0) = > (meaning that γ(δ0) = y where δ0

is the initial transition) indicates satisfaction of ϕ at time t = 0, while y(0) = ⊥, i.e., γ(δ0) = ¬y,
indicates (d, 0) 6|= ϕ.

2.3 Problem Definition

The first problem is a verification problem to check the satisfiability of an ReRiSITL formula φ
according to Definition 2.

Problem 1. Given a random variable X and an ReRiSITL formula φ as in (2), check whether or
not φ is satisfiable.

The second problem is a control problem. Let the system

ẋ(t) = f(x(t)) + g(x(t))u, x(0) := x0 (5)

where f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous and where u ∈ Rm is a
control law.

In this context, X and Muc may model the environment in which the system in (5) operates,
e.g., regions of interest and sensor failures can be modeled by X and Muc, respectively. Let now
each µm ∈MRi with m ∈ {1, . . . , |MRi|} be associated with predicate functions hm : Rn ×Rñ → R
and risk parameters Rm(·), βm, and γm. For µuc ∈Muc, let the truth value of µuc at time t ∈ R≥0

be captured by s ∈ F(R≥0,B|M
uc|), i.e., we observe projµuc(s)(t). Since s is not known beforehand,

we assume to observe s(t) at time t.

Problem 2. Given a random variable X and a satisfiable ReRiSITL formula φ as in (2), find
a nonanticipative strategy u(x(t), s, t) s.t. (x, s,X, 0) |= φ where x is the solution to (5) under
u(x(t), s, t) and where s(t) is observed at time t.

The next assumption is not explicitly used and needed for our proposed solutions to Problems 1
and 2. We will, however, refer to this assumption in some places to emphasize that computational
advantages can be obtained under it.

Assumption 1. The functions hm : Rn × Rñ → R are linear in its first argument.

3 Satisfiability of ReRiSITL Specifications

In this section, we present a solution to Problem 1. In Sections 3.1 and 3.2, we construct a timed
signal transducer TSTφ that characterizes all signals x : R≥0 → Rn and s : R≥0 → B|Muc| such
that (x, s,X, 0) |= φ. In Section 3.3, we consider if, for all s ∈ F(R≥0,B|M

uc|), there exists
a nonanticipative strategy xna : F(R≥0,B|M

uc|) → F(R≥0,Rn) such that (xna(s), s,X, 0) |= φ,
solving Problem 1.

3.1 From ReRiSITL to Timed Signal Transducer

The first goal is to abstract the ReRiSITL formula φ into an MITL formula ϕ via a transformation
Tr(·). Therefore, let us use the notation φ(M) to make explicit that the ReRiSITL formula φ
depends on the set of predicates and propositions M . The transformation Tr(·) essentially replaces
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predicates and uncontrollable propositions M in φ(M) by a set of propositions AP . For i ∈
{1, . . . , |M |}, associate with each µi ∈M a proposition pi and let AP := {p1, . . . , p|M |}. Let then

ϕ := Tr(φ(M)) = φ(AP ),

e.g., φ(M) := FI(µ1 ∧ µ2) becomes ϕ := φ(AP ) = FI(p1 ∧ p2). Let the inverse

Tr−1(ϕ) = Tr−1(Tr(φ(M))) = φ(M)

be obtained by replacing each pi ∈ AP in ϕ with the corresponding µi ∈M .
Let now TSTϕ := (S, s0,Λ,Γ, c, ι,∆, λ, γ,A) be constructed for the MITL formula ϕ according

to Section 2.2 with Λ := AP . Since we aim at satisfying the STL formula φ, we modify TSTϕ by
the following operations to account for the error induced by the abstraction from φ to ϕ via Tr.

[O1] Remove each state s ∈ S for which there exists no x ∈ Rn and no s ∈ B|Muc| so that
(x, s,X) |= Tr−1(λ(s)).3 Remove the corresponding s from A. Further remove the corre-
sponding ingoing ((s′, g, r, s) ∈ ∆ for some s′ ∈ S) and outgoing ((s, g, r, s′) ∈ ∆ for some
s′ ∈ S) transitions.

[O2] Remove each transition δ := (s, g, r, s′) ∈ ∆ for which there exists no x ∈ Rn and no s ∈ B|Muc|

so that (x, s,X) |= Tr−1(λ(δ)). Remove the corresponding δ from A.

The modified TSTϕ is denoted by

TSTφ := (Sφ, s0,Λ,Γ, c, ι,∆
φ, λ, γ,Aφ)

for which naturally Sφ ⊆ S, ∆φ ⊆ ∆, and Aφ ⊆ A. Note that it is essential to be able to check if
there exists x ∈ Rn and s ∈ B|Muc| such that (x, s,X) |= Tr−1(λ(s)) and (x, s,X) |= Tr−1(λ(δ))
in [O1] and [O2], respectively. To do so, techniques as in [47] and summarized in [48, Ch. 2],
resulting in nonlinear mixed integer programs, can be employed. Nonlinearity here is in particular
induced due to R(·). To address Problem 2 (which will also rely on operations [O1] and [O2]),
addressed in Sections 4 and 5, we will obtain computationally more efficient mixed integer linear
programs if Assumption 1 holds.

3.2 Satisfiability of RiSITL Specifications

To characterize all signals x : R≥0 → Rn and s : R≥0 → B|Muc| so that (x, s,X, 0) |= φ, we translate
TSTφ of the previous subsection, which is in essence a timed automaton when removing the output
labels, to a region automaton RA(TSTφ) [29]4; RA(TSTφ) can be used to check emptiness of
TSTφ, i.e., to analyze reachability properties of TSTφ. Since TSTφ has invariants on states ι(s)
and guards g included in transitions (s, g, r, s′) ∈ ∆φ, we have to slightly modify the algorithms
presented in [28,29]. Therefore, we associate a transition relation ⇒ over the extended state space
Sφ × RO≥0.

3We use (x, s,X) |= Tr−1(λ(s)) with a slight abuse of notation instead of (x, s,X, t) |= Tr−1(λ(s)) since
Tr−1(λ(s)) is a Boolean formula.

4We could equivalently use the computationally-efficient zone automaton, which is avoided here to keep the
discussion in the remainder simple.
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Definition 4 (Equivalent transition system of TSTφ). Let (Sφ × RO≥0,⇒) be a transition system

with (s, c)
δ
=⇒ (s′, c′) if and only if there exist t′ ∈ R≥0 and δ := (s, g, r, s′) ∈ ∆φ so that

• for all τ ∈ (0, t′), c+ τ |= ι(s),

• it holds that c′ = r(c+ t′) and c+ t′ |= g,

i.e., a combination of time and discrete transitions.

Reachability properties of the infinite state transition system (Sφ×RO≥0,⇒) (and hence of TSTφ)
can now be analyzed by its finite state region automaton RA(TSTφ) that relies on a bisimulation
relation ∼⊆ RO≥0 × RO≥0 resulting in clock regions. In fact, a clock region is an equivalence class
induced by ∼. Details are omitted and the reader is referred to [29] for details on the bisimulation ∼
and on clock regions. Let α and α′ be clock regions and assume c ∈ α and c′ ∈ α′. If (s, c)

δ
=⇒ (s′, c′)

and c ∼ c̄ for some c̄, then it holds that there is a c̄′ with c′ ∼ c̄′ so that (s, c̄)
δ
=⇒ (s′, c̄′).

Definition 5 (Region automaton of TSTφ). The region automaton

RA(TSTφ) := (Q, q0,∆R,AR)

is the quotient system of (Sφ × RO≥0,⇒) using clock regions as equivalence classes and defined as:

• The states are q := (s, α) where s ∈ Sφ and α ∈ A where A is the set of all clock regions so
that Q := Sφ ×A.

• The initial states are q0 := (s0, α0) ∈ Q where α0 is the clock region corresponding to c(0).

• For q := (s, α) and q′ := (s′, α′), there is a transition (q, δ, q′) ∈ ∆R if and only if there is a

transition (s, c)
δ
=⇒ (s′, c′) for c ∈ α and c′ ∈ α′.

• q = (s, α) ∈ AR(i) if s ∈ Aφ(i).

Using standard graph search techniques such as the memory efficient variant of the nested
depth first search [49], here adapted to deal with the generalized Büchi acceptance condition as
in [50], we may obtain, if existent, and accepting sequence q = (q0, q1, . . .) with qj := (sj , αj) and
(qj , δj , qj+1) ∈ ∆R for each j ∈ N satisfying the generalized Büchi acceptance condition AR. In
particular, q := (qp, q

ω
s ) consists of a prefix of length p + 1 and a suffix of length s, here denoted

by qp := (q0, . . . , qp) and qs := (qp+1, . . . , qp+s). Furthermore, we require that γ(δ0) = y to indicate
that we want (d, 0) |= ϕ. We next add timings τ̄ := (τ̄p, τ̄

ω
s ) to q with τ̄p := (τ0 := 0, . . . , τp) and

τ̄s := (τp+1, . . . , τp+s) where τj ∈ R>0 for j ≥ 1 corresponds to the occurence of δj , which happens
τj time units after the occurence of δj−1. We have presented a way to find such τ̄ in [45, Sec. III.C].

By denoting Tj :=
∑j

k=0 τj , q and τ̄ can be associated with a plan given by

dp(t) :=

{
λ(δj) if t = Tj

λ(sj) if Tj < t < Tj+1

(6)

The intuition of a plan dp : R≥0 → BC(AP ) is as follows: a signal d : R≥0 → B|AP | that satisfies
the plan dp also satisfies the MITL specification ϕ at time t = 0, i.e., d(t) |= dp(t) for all t ≥ 0
implies that (d, 0) |= ϕ.
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Lemma 1. Given a signal d : R≥0 → B|AP |, there is an accepting run of TSTφ over d(t) and
(d, 0) |= ϕ if only if there exists a plan dp(t) so that d(t) |= dp(t) for all t ∈ R≥0.

Proof. ⇒: Departing from TSTφ, the infinite state transition system (Sφ × RO≥0,⇒) has, by con-
struction, the same reachable set as TSTφ, i.e, the same reachable configurations

(s0, c(0)), (s0, r(c(0))), (s1, r(c(0)) + τ1), . . . .

Since ∼ is a bisimulation relation, reachability properties of TSTφ can then equivalently be analyzed
by considering the finite state transition system RA(TSTφ) [29, Lemma 4.13]. If there hence exists
an accepting run of TSTφ over d(t) and (d, 0) |= ϕ, i.e., γ(δ0) = y, the plan dp(t) can be constructed
as described above by obtaining q and τ̄ directly from the accepting run of TSTφ over d(t). It will,
by construction, hold that d(t) |= dp(t) for all t ∈ R≥0.
⇐: If there exists a plan dp(t) so that d(t) |= dp(t) for all t ∈ R≥0, then it follows that TSTφ has

an accepting run over d(t). This follows by construction of dp(t) where q and τ̄ have been obtained
based on RA(TSTφ) (as described for the synthesis of dp(t)) and by the bisimulation relation ∼.
Removing states and transitions from TSTϕ according to operations [O1] and [O2] resulting in TSTφ
only removes behavior from TSTϕ (not adding additional behavior), i.e., L(TSTφ) ⊆ L(TSTϕ),
so that, by [32, Thm. 6.7], an accepting run of TSTφ over d(t) inducing y(0) = > results in
(d, 0) |= ϕ.

Note that there may exist an accepting run of TSTϕ over d(t) so that (d, 0) |= ϕ, while there
exists no accepting run of TSTφ over d(t) due to operations [O1] and [O2]. We can now associate
dµ : R≥0 → BC(M) with dp(t) as

dµ(t) := Tr−1(dp(t))

and, based on φ, state under which conditions dp(t) exists.

Theorem 1. There exists a plan dp(t) (and hence a plan dµ(t)) if and only if there exists x :
R≥0 → Rn and s : R≥0 → B|Muc| so that (x, s,X, 0) |= φ.

Proof. ⇒: The existence of a plan dp(t) implies, by Lemma 1, that a signal d : R≥0 → B|AP | with
d(t) ∈ dp(t) for all t ∈ R≥0 is such that (d, 0) |= ϕ. Operations [O1] and [O2] remove all states
s and transitions δ from TSTϕ that are infeasible, i.e., for which there exists no x ∈ Rn and no
s ∈ B|Muc| such that (x, s,X) |= Tr−1(λ(s)) and (x, s,X) |= Tr−1(λ(δ)), respectively. Recall that
the only difference between the semantics of φ and ϕ is the difference in µi and pi, respectively.
It follows that, based on the run of TSTϕ over d(t), we can construct a signal x : R≥0 → Rn and
s : R≥0 → B|Muc| with (x(t), s(t),X) |= dµ(t) for all t ∈ R≥0 implying that (x, s,X, 0) |= φ.
⇐: Based on x(t) and s(t), define the signal

d(t) :=
[
h>1 (x(t)) . . . h>|Mc|(x(t)) s(t)T

]T
where h>m(x) := > if Rm(hm(x,X)) ≤ γm and h>i (x) := ⊥ otherwise and that is such that
(d, 0) |= ϕ. Note that hm(x, µ̃) is the predicate function associated with µm. It follows that d
induces an accepting run of TSTφ over d(t) since the traversed states and transitions during this
run have not been removed by operations [O1] and [O2]. By Lemma 1, it follows that there hence
exists a plan dp(t).
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The next two results are straightforward consequences of the previous result.

Corollary 1. If x : R≥0 → Rn and s : R≥0 → B|Muc| are so that (x(t), s(t),X) |= dµ(t) for all
t ∈ R≥0, then it follows that (x, s,X, 0) |= φ.

Corollary 2. If Muc = ∅, i.e., φ is an RiSITL formula, then it holds that there exists a plan dp(t)
(and hence a plan dµ(t)) if and only if φ is satisfiable.

3.3 Satisfiability of ReRiSITL Specifications

The previous results can only be used to check satisfiability of RiSITL. For ReRiSITL specifications
φ, this requires to check all s ∈ F(R≥0,B|M

uc|) as in Definition 2. Let us define

s⊥ :=
[
⊥ . . . ⊥

]T ∈ B|M
uc|

and additionally impose the following assumption that all signals s ∈ F(R≥0,B|M
uc|) have to satisfy.

Assumption 2. Assume that s(t) = s⊥ for all times except on a set of measure zero, i.e., s(t) 6= s⊥

only for a countable set of times t. There exists a known lower bound ζ > 0 between events
s(t) 6= s⊥, i.e., for s(t′) = s(t′′) 6= s⊥ with t′ 6= t′′, it holds that |t′′ − t′| ≥ ζ.

Assumption 2 excludes signals s(t) exhibiting Zeno behavior, i.e., infinite changes of s(t) in
finite time, and is realistic in the sense that it allows to model instantaneous error signals such as
considered for communication dropouts or sensor failures. Assumption 2 is in particular necessary
for a game-based approach, see [33]. Furthermore, Assumption 2 is necessary for the replanning
procedure in Section 5.2.

In Algorithm 1, presented below and explained in the remainder, we summarize the steps to
check if φ is satisfiable. Line 1 in Algorithm 1 has already been explained, while line 2 is related
to Assumption 2. In particular, to model uncontrollable propositions µuc ∈ Muc according to
Assumption 2, we consider the timed signal transducer in Fig. 3. When constructing TSTϕ, we
hence model each p ∈ AP with µuc = Tr−1(p) ∈ Muc as in Fig. 3. Line 3 in Algorithm 1 then
performs [O1] and [O2] to obtain TSTφ.

Algorithm 1 Algorithm to check if φ is satisfiable.

1: Obtain the MITL formula ϕ := Tr(φ).
2: Obtain TSTϕ according to Section 2.2 and where uncontrollable propositions pi ∈ AP , i.e., pi

with Tr−1(pi) ∈M ∩Muc, are modeled as in Fig. 3.
3: Perform [O1] and [O2] to obtain TSTφ.
4: Modify TSTφ to avoid Zeno behavior.
5: Translate TSTφ into RAC(TSTφ).
6: Translate RAC(TSTφ) into RAC(TSTφ).
7: Run Algorithm 2 to obtain W .
8: Check if the conditions in Theorem 2 are satisfied.

Within the presented game-based approach, it needs to be ensured that no player (here the two
players are the controllable and uncontrollable signals x and s) wins by inducing Zeno behaviour
(see [33] for more intuition). A generic way of avoiding Zeno behavior is to add a clock c to TSTφ
and add, to each transition, the constraint c ≥ ε for a small constant ε ∈ Q>0 and the reset function
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Figure 3: Timed signal transducer for uncontrollable propositions according to Assumption 2.

r(c) := 0. This modification will affect the completeness, but not the soundness of the proposed
approach. There are minimally invasive algorithms how to avoid Zeno behavior, for instance as
in [51]. This modification of TSTφ is stated in line 4 in Algorithm 1.

Recall from Section 2.2 that an accepting run in TSTφ needs to satisfy the generalized Büchi
acceptance condition which implies having infinite length, i.e., the run is not allowed to stop
existing. The latter is necessary since we require to be able to extend each finite run in TSTφ
to an infinite run. Specifically, note that within a state s ∈ Sφ in TSTφ it may happen that, for
some s ∈ B|Muc|, there exists no x ∈ Rn such that a transition can be taken, i.e., there exists no
δ′ := (s, g′, r′, s′′) ∈ ∆φ such that (x, s,X) |= Tr−1(λ(δ′)). This means that there is no continuation
of a finite run entering the state s so that the run is not accepting. For instance, in Fig. 2b in
the bottom right state there exists no transition for projd(d) = >. To account for this, we first
modify the infinite state transition system (Sφ × RO≥0,⇒) to (Sφ × RO≥0,⇒C) by separating time
and discrete transitions.

Definition 6 (Equivalent transition system of TSTφ). Let (Sφ ×RO≥0,⇒C) be a transition system

where (s, c)
δt=⇒

C
(s′, c′) with δt ∈ {δ, t} if there is either a discrete or a time transition as follows:

1. there is a discrete transition (s, c)
δ
=⇒

C
(s′, c′) if there exists δ := (s, g, r, s′) ∈ ∆φ so that

c′ = r(c) and c |= g,

2. there is a time transition (s, c)
t
=⇒

C
(s, c′) if, for all τ ∈ (0, t), c+ τ |= ι(s).

We emphasize that (Sφ×RO≥0,⇒C), (Sφ×RO≥0,⇒), and hence TSTφ have the same reachability
properties. Let now RAC(TSTφ) := (Q, q0,∆R,AR) denote the region automaton, similar to
Definition 5, but now obtained from (Sφ ×RO≥0,⇒C) instead of (Sφ ×RO≥0,⇒). The translation to
RAC(TSTφ) corresponds to line 5 in Algorithm 1.

Definition 7 (Region automaton of TSTφ). The region automaton

RAC(TSTφ) := (Q, q0,∆R,AR)

is defined as:

• The states are q := (s, α) where s ∈ Sφ and α ∈ A where A is the set of all clock regions so
that Q := Sφ ×A.

• The initial states are q0 := (s0, α0) ∈ Q where α0 is the clock region corresponding to c(0).
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• For q := (s, α) and q′ := (s′, α′), there is a transition (q, δt, q
′) ∈ ∆R where δt ∈ {δ, t} if there

is

1. either a discrete transition (s, c)
δ
=⇒

C
(s′, c′) for c ∈ α and c′ ∈ α′.

2. or a time transition (s, c)
t
=⇒

C
(s′, c′) for c ∈ α and c′ ∈ α′ where α′ is the immediate

time successor of α5.

• q = (s, α) ∈ AR(i) if s ∈ Aφ(i).

Remark 3. Defining RAC(TSTφ) based on (Sφ ×RO≥0,⇒C) by separating discrete and time tran-
sitions, and unrolling the time domain as in Definition 7, results in more states compared to
RA(TSTφ) based on (Sφ × RO≥0,⇒). This, however, now becomes necessary since uncontrollable
signals s may cause undesireable behavior at all times.

To simplify the search of an accepting run in TSTφ via RAC(TSTφ), translate now RAC(TSTφ),
which is a finite automaton with generalized Büchi acceptance condition, into an equivalent finite
automaton

RAC(TSTφ) := (Q, q0,∆R,AR)

with a Büchi acceptance condition instead, as follows:

• Q := Q× {1, . . . , |AR|}

• q0 := (q0, 1)

• ∆R := {((q, i), δt, (q′, j))|(q, δt, q′) ∈ ∆R and if q ∈ AR(i), then j = ((i + 1) mod |AR| +
1) else j = i} where AR(i) denotes the ith element of AR

• AR := (AR(1), 1).

In particular, the difference is that AR consists of several sets AR(i) of states, while AR is a single
set of states. By construction, the accepting behavior of RAC(TSTφ) and RAC(TSTφ) are the
same. This translation corresponds to line 6 in Algorithm 1 and is performed to obtain a simpler
acceptance condition that can be expressed as a fixed point expression as we will see below. In
fact, a winning condition (for a game played between s and x) is that always eventually ĀR can
be visited by each finite run of RAC(TSTφ).

Remark 4. The translation to RAC(TSTφ) may induce |Q| · |AR| states. One can avoid such a
state explosion by neglecting the acceptance condition A for all timed signal transducers in Fig. 2
except for the until operator in Fig. 2a where a Büchi acceptance condition is needed.

In the remainder, we are inspired by the work in [33]. We first introduce the main operator,

the controllable predecessor π : 2Q → 2Q. For a certain set W ⊆ Q, define

π(W ) := {q ∈ Q|∀s ∈ B|M
uc|,∃(q, δ, q′) ∈ ∆R s.t. 1) q′ ∈W, 2) ∃x ∈ Rn s.t. (x, s,X) |= Tr−1(λ(δ))}

5See [29, Def. 4.6] for the definition of a time successor. By an “immediate” time successor, we mean that the
regions α and α′ are connected.
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The intuition is that states in π(W ) will always allow to enforce a transition into W by a
suitable x in one step, no matter of the value of s. We next present Algorithm 2 to obtain the
set W from which we can force to always eventually be within AR. Algorithm 2, called in line 7
in Algorithm 1, differs from the algorithm presented in [33] by the definition of the controllable

predecessor π : 2Q → 2Q.

Algorithm 2 Calculation of the winning set W .

Input: RAC(TSTφ) and π : 2Q → 2Q

Output: W

1: W0 := Q
2: for i := 0, 1, . . . until Wi+1 = Wi do
3: H0 := ∅
4: for j := 0, 1, . . . until Hj+1 = Hj do
5: Hj+1 := π(Hj) ∪ (AR ∩ π(Wi))

6: Wi+1 := Hj

7: W := Wi

The algorithm starts with W0 := Q (line 1). For this W0, the inner loop (lines 3-5) calculates all
states Hj from which states in AR ∩ π(W0) can be reached, i.e., states in AR that can be reached
and are no deadlock states. For W1 := Hj (line 6), this inner loop is repeated until eventually
obtaining the set of states W that can always eventually be reached.

The set W tells us if we can let time pass or if a transition according to π(W ) has to be taken
in a particular state. For TSTφ restricted to W this means that, at no time, an uncontrollable
proposition s can force the system into a state from where the Büchi acceptance condition can not
be satisfied. The operator π(W ) then determines which x can be selected in case of a particular s.
Note in particular, as similarly analyzed in [33], that Wi in Algorithm 2 is monotonically decreasing
such that a fixed point, i.e., Wi+1 = Wi, is eventually reached such that Algorithm 2 terminates in
a finite number of steps.

Theorem 2. If s is according to Assumption 2, then it holds that the ReRiSITL formula φ is
satisfiable if q0 ∈W and if there exists (q0, δ0, q

′) ∈ ∆R with γ(δ0) = y.

Proof. First note that due to the use of the timed signal transducer as in Fig. 3, we account
for the form of s as in Assumption 2. Recall also from Theorem 1 that operations [O1] and
[O2] restrict the behavior of TSTφ to the signals x : R≥0 → Rn and s : R≥0 → B|Muc| with
(x, s,X, 0) |= φ. Note that RAC(TSTφ) has, by construction, the same reachable set as TSTφ.
Recall also that RAC(TSTφ) and RAC(TSTφ) are equivalent so that reachability properties of TSTφ
can equivalently be verified onRAC(TSTφ). We now need to prove that, for each s ∈ F(R≥0,B|M

uc|)
that satisfies Assumption 2, there is an accepting run in RAC(TSTφ) restricted to the states in W
that satisfies the Büchi acceptance condition. By Algorithm 2, which is guaranteed to terminate
in a finite number of steps, it is ensured that no state in W is a deadlock and can be continued to
another state in W . Specifically, it is guaranteed that for each state in W an infinite continuation
can be found that satisfies the Büchi acceptance condition, no matter how s(t) behaves. Note also
that Zeno winning conditions have been excluded by modifying TSTφ to not permit Zeno behavior.
Since q0 ∈W and since there exists (q0, δ0, q

′) ∈ ∆R with γ(δ0) = >, it follows that φ is satisfiable
in the sense of Definition 2.
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Figure 4: Overview of the proposed method to reactively plan and control a dynamical system
under ReRiSITL Specifications.

Note also that Theorem 2 is sufficient. Necessity does not hold due to the modification of TSTφ
to avoid Zeno behavior, potentially introducing conservatism.

Finally, we remark that Sections 3.1 and 3.2 use graph search techniques, while Section 3.3
follows a game-based approach. One could argue that only the game-based approach solving Prob-
lem 1 is of interest. We have, however, chosen this particular exposition of our results since we
will combine graph search techniques with a game-based approach to address Problem 2 in the
following Sections 4 and 5.

4 From ReRiSITL to ReSITL by Determinizing Risk Predicates

Fig. 4 can be used as a guide in the remainder as it shows an overview of the reactive planning
and control strategy that will be presented in Sections 4 and 5. Starting in the top right box of
Fig. 4, this section introduces the idea to determinize risk predicates in MRi and replace them
with deterministic predicates, hence converting the ReRiSITL formula φ into an ReSITL formula
θ that we then deal with in Section 5. We provide conditions under which a certain soundness
property holds which ensures that satisfaction of θ implies satisfaction of φ. Sections 4.1 and 4.2
assume that φ is in positive normal form. In the end of Section 4.2, we discuss how we can deal
with siuations where this is not the case.

4.1 Risk Constrained Sets

In the following two sections, we will define risk-tightened deterministic predicates µdet
m that will

replace the risk predicates µri
m and allow for the use of existing control methods. Note that

R(−hm(x,X)) depends on x ∈ Rn (we drop the dependence of x(t) on t in this section for
convenience). For given βm ∈ (0, 1) and γm ∈ R, define the sets

XEV
m (γm) := {x ∈ B|EV [−hm(x,X)] ≤ γm},

XVaR
m (βm, γm) := {x ∈ B|V aRβm(−hm(x,X)) ≤ γm},
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XCVaR
m (βm, γm) := {x ∈ B|CV aRβm(−hm(x,X)) ≤ γm}.

Note the set B ⊆ Rn that is supposed to be an arbitrarily large compact and convex set as will
further be explained in Section 5.3. The set B can be seen as the workspace that (5) will be forced
to remain within. The sets XEV

m (γm), XVaR
m (βm, γm), and XCVaR

m (βm, γm) define all x for which the
EV, VaR, and CVaR of −hm(x,X) is less or equal than γm, respectively. If these sets are empty,
the underlying predicate is not satisfiable. For cm ∈ R, which is a design parameter as opposed to
βm and γm, define

Xm(cm) := {x ∈ B|hm(x, µ̃) ≥ cm}

where the mean µ̃ has been used instead of X to evaluate the predicate function hm. Note that
Xm(cm) is a compact and convex set if Assumption 1 holds. If

XEV
m (γm) ⊇ Xm(cm),

XVaR
m (γm, γm) ⊇ Xm(cm),

XCVaR
m (γm, γm) ⊇ Xm(cm), or

then it holds that

x ∈ Xm(cm) =⇒ x ∈ XEV
m (γm),

x ∈ Xm(cm) =⇒ x ∈ XVaR
m (γm, γm),

x ∈ Xm(cm) =⇒ x ∈ XCVaR
m (γm, γm), or

respectively. This implies that predicates within an ReRiSITL formula φ can be determinized
by using hm(x, µ̃) ≥ cm (recall (3)) instead of R(−hm(x,X)) ≤ γm by conserving an important
soundness property (Section 4.2). For given cm, checking these set inclusions may be nonconvex.
As shown in [45, Lemma 1], when hm(x,X) is linear in x, this can be checked efficiently since the
distribution of hm(x,X) is only shifted.

Lemma 2. [45, Lemma 1] Assume that hm(x,X) = vTx+h′(X) for v ∈ Rn and for h′ : Rñ → R,
then

XEV
m (γm) ⊇ Xm(cm) iff EV [−hm(x∗,X)] ≤ γm

XVaR
m (βm, γm) ⊇ Xm(cm) iff V aRβm(−hm(x∗,X)) ≤ γm

XCVaR
m (βm, γm) ⊇ Xm(cm) iff CV aRβm(−hm(x∗,X)) ≤ γm

where x∗ := argmin
x∈Xm(cm)

vTx (a convex problem).

We remark that in particular V aRβm(−hm(x∗,X)) and CV aRβm(−hm(x∗,X)) can be effi-
ciently computed [41, Thm. 1] and that V aRβ(−hm(x∗,X)) is obtained as a byproduct of the
calculation of CV aRβ(−hm(x∗,X)). If hm(x,X) is nonlinear, we argue that, for some func-
tion classes, numerical methods can be used to check these set inclusions, e.g., when hm(x,X) is
quadratic in x.
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4.2 Converting ReRiSITL into ReSITL Specifications

Considering the ReRiSITL formula φ that consists of the risk predicates µm ∈ MRi with m ∈
{1, . . . , |MRi|}, we transform the ReRiSITL formula φ into an ReSITL formula θ. In particular, θ
is obtained by replacing risk predicates µm ∈MRi in φ by a deterministic predicate µdet

m according
to (3). More formally and by denoting φ(MRi,Muc) instead of φ to highlight the dependence on
risk predicates MRi and uncontrollable propositions Muc, let

θ := φ(Mdet,Muc)

be a ReSITL formula with deterministic predicates

Mdet := {µdet
1 , . . . , µdet

|MRi|}.

Let now

M̂ := Mdet ∪Muc

be the set of deterministic predicates and uncontrollable propositions. Let us also associate the
semantics (x, s, µ̃, t) |= θ with an ReSITL formula θ.6 The next assumption is sufficient to ensure
soundness in the sense that (x, s, µ̃, t) |= θ implies (x, s,X, t) |= φ.

Assumption 3. For each m ∈ {1, . . . , |MRi|}, XEV
m (γm) ⊇ Xm(cm), XVaR

m (βm, γm) ⊇ Xm(cm), or
XCVaR
m (βm, γm) ⊇ Xm(cm) (depending on the type of predicate).

Example 2. By setting c := 0.35 for the VaR predicates and c := 0.9 for the CVaR predicates in
Example 1, Assumption 3 is satisfied. The red circles in Fig. 1 indicate the obtained deterministic
predicates, based on the predicate functions

hdetR1(x, µ̃) := ε− ‖x− µ̃R1‖2 − 0.35

hdetR2(x, µ̃) := ε− ‖x− µ̃R2‖2 − 0.35

hdetO1(x, µ̃) := ‖x− µ̃O1‖2 − ε− 0.9

hdetO2(x, µ̃) := ‖x− µ̃O2‖2 − ε− 0.9.

Passing in between the obstacles O1 and O2 is not possibly due to the uncertainty in X and the
risk predicates.

Increasing cm shrinks the set Xm(cm) so that Assumption 3 (verifiable by Lemma 2) poses a
lower bound on cm.

Theorem 3. Let Assumption 3 hold and φ be an ReRiSITL formula in positive normal form. If
x : R≥0 → B and s : R≥0 → B|Muc| are such that (x, s, µ̃, t) |= θ, then it follows that (x, s,X, t) |=
φ.

Proof. Due to Assumption 3, x ∈ Xm(cm) implies x ∈ XEV
m (γm), x ∈ XVaR

m (βm, γm), or x ∈
XCVaR
m (βm, γm) depending on the type of the predicate m. It is now straightforward to recursively

show on the ReRiSITL semantics in Definition 1 that (x, s, µ̃, t) |= θ implies (x, s,X, t) |= φ when
x(t) ∈ B, which holds by assumption. This follows since the semantics of ReRiSITL and ReSITL
only differ on the predicate level and since negations are excluded since φ is in positive normal
form.

6We define (x, s, µ̃, t) |= µdet
m iff hm(x(t), µ̃) ≥ cm using (3) instead of (1), while the other operators follow as in

Section 2.1.
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An important task is to pick the set of cm. In general, we may induce conservatism since
the level sets of Xm(cm) may not be aligned with the level sets of XEV

m (γm), XVaR
m (βm, γm), and

XCVaR
m (βm, γm). When linearity of hm(x,X) in x holds as in Lemma 2, conservatism can be

avoided [45, Lemma 2].
If now, however, φ is not in positive normal form, there are two ways how to handle this case.

The first way is to find cm for each m ∈ {1, . . . , |MRi|} according to [45, Lemma 2], i.e., the set
inclusion in Assumption 3 is replaced by an equality. More generally, a more elegant way is to
bring φ into positive normal form, as for instance shown in [11, Proposition 2]. This would lead to
a formula φ potentially having negations in front of some or all of the predicates, i.e., ¬µRi

m . For
those predicates, we redefine the sets XEV

m (γm), XVaR
m (βm, γm), and XCVaR

m (βm, γm) as

XEV
m (γm) := {x ∈ B|EV [−hm(x,X)] > γm}

XVaR
m (βm, γm) := {x ∈ B|V aRβm(−hm(x,X)) > γm}

XCVaR
m (βm, γm) := {x ∈ B|CV aRβm(−hm(x,X)) > γm}.

Note that only the sign of the inequality has changed compared to the definition in Section 4.1.
For cm ∈ R, we then also redefine Xm(cm) as

Xm(cm) := {x ∈ B|hm(x, µ̃) ≤ cm}.

We would now again like to establish the set inclusions as in Assumption 3 by a suitable choice of
cm with these modified definitions. Note that these inclusions can then be similarly checked as in
Lemma 2 (just reversing inequalities again).

5 Reactive Planning Under ReSITL Specifications

Following Section 4, we can obtain an ReSITL formula θ from the ReRiSITL formula φ. Motivated
by the soundness result in Theorem 3, we now propose a reactive planning and control method
that leads to a satisfaction of the ReSITL formula θ that consequently leads to the satisfaction of
the ReRiSITL formula φ (see also the top right box in Fig. 4).

In Section 5.1, we abstract the control system in (5) into a timed signal transducer TSTS (top
left box in Fig. 4). This abstraction is based on the assumption of existing logic-based feedback
control laws from Section 5.3. We then modify TSTθ into TSTm

θ (bottom box in Fig. 4), a product
automaton between TSTθ and TSTS that does not induce an exponential state explosion since
TSTθ and TSTS “align” in a suitable way due to the particular control laws in Section 5.3.7 In
Section 5.2, we then present the reactive planning method that consists of a combination of a
game-based approach and graph search techniques (boxes in the middle of Fig. 4).

In Algorithm 3 presented below, we summarize the reactive planning algorithm that is presented
in this section. In the remainder, we present and explain the steps of Algorithm 3. In line 1, abstract
the ReSITL formula θ(M̂) into an MITL formula

ϕ := Tr(θ(M̂)) = θ(AP ).

Note that we abstract θ(M̂), which depends on deterministic predicates and uncontrollable propo-
sitions M̂ (recall that M̂ := Mdet∪Muc), as opposed to φ(M) in Section 3.1 by the transformation

7TSTθ is a timed signal transducer for θ and constructed in the same way as TSTφ was obtained previously for φ.
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Tr(·). Based on ϕ, construct

TSTϕ := (S, s0,Λ,Γ, c, ι,∆, λ, γ,A)

according to Section 2.2 (Line 2 in Algorithm 3). We again assume that uncontrollable propositions
pi ∈ AP , i.e., pi with Tr−1(pi) ∈ M̂ ∩Muc, are modeled as in Fig. 3. In Line 3, perform operations
[O1] and [O2] on TSTϕ

8 to obtain the timed signal transducer

TSTθ := (Sθ, s0,Λ,Γ, c, ι,∆
θ, λ, γ,Aθ).

Note that checking [O1] and [O2] is computationally tractable if Assumption 1 holds due to the
determinization in Section 4.

Algorithm 3 Reactive planning for ReSITL formula θ.

1: Obtain the MITL formula ϕ := Tr(θ).
2: Obtain TSTϕ according to Section 2.2 and where uncontrollable propositions pi ∈ AP , i.e., pi

with Tr−1(pi) ∈ M̂ ∩Muc, are modeled as in Fig. 3.
3: Perform [O1] and [O2] to obtain TSTθ.
4: Obtain TSTS according to Section 5.1.
5: Perform [O3], [O4], and [O5] to obtain TSTm

θ .
6: Modify TSTm

θ to avoid Zeno behavior.
7: Translate TSTm

θ into RAC(TSTm
θ ).

8: Translate RAC(TSTm
θ ) into RAC(TSTm

θ ).

9: Run Algorithm 2 with the modified function π̄ : 2Q → 2Q and RAC(TSTm
θ ) as the inputs to

obtain W .
10: Calculate the initial plan dµ(t) based on RAC(TSTm

θ ) and obtain the associated control law
u(x, t) (only possible if the conditions in Theorem 2 are satisfied).

11: while s(t) = s⊥ do
12: if s(t) 6= s⊥ then
13: Recalculate dp(t) and u(x, t)

14: Apply u(x, t) to (5)

5.1 Timed Abstraction of the Dynamical Control System

In line 4 of Algorithm 3, we abstract the system in (5) into a timed signal transducer

TSTS := (S̃, S̃0, Λ̃, c̃, ∆̃, λ̃),

see top left box in Fig. 4. Note the absence of output labels, invariants, and a Büchi acceptance
condition, and that c̃ is a scalar. The transition relation ∆̃ is now based on the ability of the
system to switch in finite time, by means of a feedback control law uδ̃(x, t) between elements in

Tr−1(BC(TSTθ)) ⊆ BC(Λ̃) where Λ̃ := M and

BC(TSTθ) := {z ∈ BC(AP )|∃s ∈ Sθ, λ(s) = z}.
8The notation in [O1] and [O2] needs to be slightly modified to account for θ instead of φ. In particular, X should

be replaced with µ̃.
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It is assumed that a library of such logic-based feedback control laws uδ̃(x, t) is available, e.g., as

presented in Section 5.3. Assume that |S̃| = |Tr−1(BC(TSTθ))| and let λ̃ : S̃ → Tr−1(BC(TSTθ))
where, for s̃′, s̃′′ ∈ S̃ with s̃′ 6= s̃′′, it holds that λ̃(s̃′) 6= λ̃(s̃′′) so that each state is uniquely labelled
by λ̃, i.e., each state indicates exactly one Boolean formula from Tr−1(BC(TSTθ)). Note that TSTθ
and TSTS now “align” in a way that will allow to avoid a state space explosion when forming a
product automaton between them. A transition from s̃ to s̃′ is indicated by (s̃, g̃, 0, s̃′) ∈ ∆̃ where
g̃ is a guard that depends on (5). In particular, we assume that g̃ encodes intervals of the form
(C ′, C ′′), [C ′, C ′′), (C ′, C ′′], [C ′, C ′′], or conjunctions of them, where C ′, C ′′ ∈ Q≥0 with C ′ ≤ C ′′.

Definition 8 (Transitions in TSTS). There exists a transition δ̃ := (s̃, g̃, 0, s̃′) ∈ ∆̃ if, for all τ > 0
with τ |= g̃ and for all x0 ∈ Rn with (x0, s

⊥, µ̃) |= λ̃(s̃), there exists a control law uδ̃(x, t) so that
the solution x(t) to (5) is such that:

• either, for all t ∈ [0, τ), (x(t), s⊥, µ̃) |= λ̃(s̃) and (x(τ), s⊥, µ̃) |= λ̃(s̃′)

• or, for all t ∈ [0, τ ], (x(t), s⊥, µ̃) |= λ̃(s̃) and there exists τ ′ > τ such that, for all t ∈ (τ, τ ′],
(x(τ ′), s⊥, µ̃) |= λ̃(s̃′).

for which we define λ̃(δ̃) := λ̃(s̃′) in the former and λ̃(δ̃) := λ̃(s̃) in the latter case.

The two types of transitions in the above definition can be thought of as transitioning into
closed and open regions in Rn, respectively. Note that such a control law uδ̃(x, t) has to ensure
invariance and finite-time reachability properties. Note also that s⊥ is used in Definition 8 since
controlled transitions will only happen when all uncontrollable propositions are false. Finally, the
set S̃0 consists of all elements s̃0 ∈ S̃ such that (x0, s

⊥, µ̃) |= λ̃(s̃0).
According to line 5 of Algorithm 3, we next form a product automaton TSTm

θ (bottom box in
Fig. 4) of TSTθ and TSTS that avoids a state space explosion that is typically the outcome of
forming automata products. This follows since each input label of a state or transition in TSTθ
corresponds to one state label of TSTS , i.e., TSTθ and TSTS align in a way, so that TSTm

θ (defined
below and corresponding to the product of TSTθ and TSTS) has no more states than TSTθ. Our
approach relies on: 1) the removal of transitions from TSTθ, and 2) constraining guards g of
transitions in TSTθ to account for guards g̃ in TSTS . Let us, without loss of generality, assume
that each input label of a transition in TSTθ contains every literal from M̂ and does not contain
any disjunctions.9

[O3] For each transition δ := (s, g, r, s′) ∈ ∆θ for which there exists x ∈ Rn such that (x, s⊥, µ̃) |=
Tr−1(λ(δ)), remove δ if

(a) there exists no transition δ̃ := (s̃, g̃, 0, s̃′) ∈ ∆̃ with λ(s) = Tr(λ̃(s̃)), and λ(s′) =
Tr(λ̃(s̃′)), and for which (x, s⊥, µ̃) |= λ̃(δ̃) implies (x, s⊥, µ̃) |= Tr−1(λ(δ)).

Remove the corresponding δ from Aθ.

We follow two goals with operation [O3]. First, we only consider to remove transitions that
are induced by uncontrollable propositions being false, i.e., when s = s⊥. This is important as
we would like to keep transitions with s 6= s⊥ for the reactive planning. Note in particular that,

9Note that each input label of a transition in TSTθ can be converted into full disjunctive normal form. Then,
this transition can be split into several transitions, one for each disjunct, where each new input label corresponds to
exactly one of the disjuncts.
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if there exists x ∈ Rn such that (x, s⊥, µ̃) |= Tr−1(λ(δ)), then there exists no x ∈ Rn such that
(x, s, µ̃) |= Tr−1(λ(δ)) for s 6= s⊥. Second, we remove such transitions if there exists no control
law uδ̃ that can simulate the transition in the system (5).

[O4] For each transition δ0 := (s0, g, r, s
′) ∈ ∆, remove δ0 if (x0, s

⊥, µ̃) 6|= Tr−1(λ(s′)) or if there
exists no s ∈ B|Muc| such that (x0, s, µ̃) 6|= Tr−1(λ(δ0)). Remove the corresponding δ0 from
Aθ.

Operation [O4] takes care of the initial condition x0. If s0 is removed in [O4], the problem is
infeasible given the initial condition x0.

Denote next the obtained sets by Sm, ∆m, and Am for which Sm ⊆ Sθ, ∆m ⊆ ∆θ, and
Am ⊆ Aθ. We further take care of the timings including an additional clock into TSTθ. Therefore,

let cm :=
[
cT c̃

]T
and perform the operation:

[O5] For each transition δm := (s, g, r, s′) ∈ ∆m for which there exists x ∈ Rn such that (x, s⊥, µ̃) |=
Tr−1(λ(δm)), let gm = g ∧ g̃ where δ̃ := (s̃, g̃, 0, s̃′) ∈ ∆̃ with λ(s) = Tr(λ̃(s̃)), λ(s′) =
Tr(λ̃(s̃′)), and for which (x, s⊥, µ̃) |= λ̃(δ̃) implies (x, s⊥, µ̃) |= Tr−1(λ(δ)). Replace g and r
in δm with gm and rm, respectively, where rm is obtained in an obvious manner.

We emphasize that adding c̃ and g̃ is crucial to ensure correctness. Let the modified timed
signal transducer be denoted by

TSTm
θ := (Sm, s0,Λ,Γ, c

m, ι,∆m, λ, γ,Am)

and note that L(TSTm
θ ) ⊆ L(TSTθ) ⊆ L(TSTϕ).

Remark 5. The operations [O3]-[O5] result in the timed signal transducer TSTm
θ that, by con-

struction, restricts the behavior of TSTθ exactly to the behavior allowed by TSTS and corresponds
hence to a product automaton without exhibiting an exponential state space explosion.

5.2 Reactive Plan Synthesis

Based on TSTm
θ , let us now present the reactive planning method depicted in the boxes in the

middle of Fig. 4. We first derive a nominal plan dµ : R≥0 → BC(M) from TSTm
θ based on the

assumption that s(t) = s⊥ for all t ∈ R≥0. This plan is executed until s(treplan) 6= s⊥ for some
treplan ∈ R≥0, the moment when reactive and online replanning is needed. In line 6 of Algorithm
3, let TSTm

θ again be modified to not exhibit Zeno behavior and let

RAC(TSTm
θ ) := (Q, q0,∆R,AR)

be the region automaton of TSTm
θ based on (Sm × RO≥0,⇒C) and Definitions 6 and 7 (lines 7 and

8 of Algorithm 3).10 Replanning may now require to take, at an unknown time instant treplan, a
transition that is not contained within the nominal plan. Those instances may possibly require an
infeasible discontinuity in the physical state x that we need to rule out.

10Definitions 6 and 7 need to be altered to account for using TSTm
θ instead of TSTφ in an obvious manner.
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Figure 5: Illustration of Example 3 and why a modified definition of π(W ) is needed to avoid
discontinuities in x(t).

Example 3. To illustrate the aforementioned issue, consider Fig. 5. For the top left state, there
exist two transitions to the top right and the bottom left state. Assume the former transition can
be realized by the control law uδ̃(x, t). Starting from the top left state, the initial plan will consider
the transition with s = ⊥ to the top right state implying that uδ̃(x, t) is used until time t = treplan
such that 0 < x(treplan) < c. After replanning, however, the other transition with s = > to the
bottom left state has to instantaneously be taken requiring to immediately achieve x ≤ −c. Such a
discontinuity in x(t) is not realizable in (5) that only admits continuous x(t).

One way of dealing with this issue is to modify the predecessor operator. Recall therefore that
a state q ∈ Q in RAC(TSTm

θ ) consists of the elements q̄ := (s, α, i) ∈ Q ⊆ Sm ×A× {1, . . . , |Am|}
and redefine now π(W ) to

π̂(W ) := {q ∈ Q|∀s ∈ B|M
uc|,∃(q, δ, q′) ∈ ∆R s.t. 1) q′ ∈W, and 2) ∀x ∈ Rn s.t.

(x, s⊥, µ̃) |= Tr−1(λ(s)), (x, s, µ̃) |= Tr−1(λ(δ)) and (x, s⊥, µ̃) |= Tr−1(λ(s′))}

The second condition in π̂(W ) now additionally ensures that all x that satisfy the state label of
s also satisfy the state labels of the transition δ as well as the next state s′. As a consequence, an
instantaneous transition from q to q′ due to s(t) 6= s⊥ can happen without requiring that x(t) is
discontinuous. We emphasize, again, that this condition is necessary with respect to the solutions
to (5). Let W be obtained from Algorithm 2 with RAC(TSTm

θ ) and π̂ : 2Q → 2Q as the input (line
9 of Algorithm 3).

5.2.1 Initial Plan Synthesis:

For line 10 in Algorithm 3, let dp(t), as opposed to Section 3.2, now be obtained from RAC(TSTm
θ )

as follows. We find, using graph search techniques, a sequence q := (q0, q1, . . .) := (qp, q
ω
s ) satisfying

the Büchi acceptance condition AR with

qj ∈ Q ∩W

for each j ∈ N and where (qj , δt,j , qj+1) ∈ ∆R so that, for each δt,j , there exists x ∈ Rn such

that (x, s⊥, µ̃) |= Tr−1(δt,j). Note in particular the intersection with W that will ensure that
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replanning is possible whenever s(treplan) 6= s⊥ for some treplan ∈ R≥0, as elaborated on in the next
section. Additionally and for the initial transition δ0, we again require that γ(δ0) = y to indicate
(x, s, µ̃, 0) |= θ. Note in particular the restriction to qj ∈ Q ∩ W which will allow to replan if

s(treplan) 6= s⊥ for some treplan ∈ R≥0. We again find timings τ̄ := (τ0, τ1, . . .) := (τ̄p, τ̄
ω
s ) that

are associated with q. Such a plan dp(t) is guaranteed to exist if the conditions in Theorem 2 are

satisfied. Recall that Tj :=
∑j

k=0 τj , and define

dp(t) :=

{
λ(δt,j) if t = Tj

λ(sj) if Tj < t < Tj+1

(7)

We can now define the control law u(x, s, t) based on the plan dµ(t) := Tr−1(dp(t)). Recall
therefore that each transition δt,j is associated, when projecting back to TSTS , with a control law
uδ̃t,j (x, t) as explained in Section 5.1. Recall the definition of Tj and let

u(x, s, t) :=

{
uδ̃1(x, t) for t ∈ [0, T1)

uδ̃j+1
(x, t− Tj) for t ∈ (Tj , Tj+1) with j ≥ 2

and, for t = Tj with j ≥ 2, let

u(x, s, Tj) :=

{
uδ̃j+1

(x, 0) if λ̃(s̃j+1) = dµ(Tj)

uδ̃j (x, τj) if λ̃(s̃j) = dµ(Tj).

Note that u(x, s, Tj) in particular accounts for the two types of transitions in Definition 8.

Corollary 3. Assume that s(t) = s⊥ for all t ∈ R≥0, q0 ∈ W , and there exists (q0, δ0, q
′) ∈ ∆R

with γ(δ0) = y, then dp(t) as in (7) exists and u(x, s, t) results in (x, s, µ̃, 0) |= θ.

Proof. Similar to Theorem 2 and by the construction of TSTm
θ , it follows that θ is satisfiable given

that q0 ∈ W and that there exists (q0, δ0, q
′) ∈ ∆R with γ(δ0) = y. It directly follows that, in this

case, a plan dp(t) exists. Note next that by construction of TSTS and TSTm
θ , each transition δ

in TSTm
θ can be realized in (5) by an associated control law uδ̃(x, t). By the construction of the

plan dp(t) and the associated control law u(x, t), it follows trivially that u(x, s, t), build from a
sequence of such uδ̃(x, t), results in (x, s, µ̃, 0) |= θ.

5.2.2 Reactive and online replanning:

If hence s(t) = s⊥ for all t ∈ R≥0, there is nothing left to do and we apply u(x, s, t) as in line 14
of Algorithm 3. If, however, s(treplan) 6= s⊥ for some treplan ∈ R≥0, we need to replan and update
our plan dµ(t) that may be violated by this particular s(treplan) (lines 12 and 13 in Algorithm
3). Assume that, at time treplan, the system is in state qj∗ . We then find an updated sequence

qreplan := (qj∗ , qj∗+1, . . .) satisfying the Büchi acceptance condition AR again with

qj ∈ Q ∩W

for each j > j∗ and where (qj , δt,j , qj∗+1) ∈ ∆R so that 1) (x(treplan), s(treplan), µ̃) |= Tr−1(δt,j∗),

and 2) for each δt,j with j > j∗ there exists x ∈ Rn such that (x, s⊥, µ̃) |= Tr−1(δt,j). If treplan = 0,
it is additionally required that γ(δt,j∗) = y. We again find timings τ̄ := (τj∗ , τj∗+1, . . .) that are
associated with qreplan. Based on this updated sequence, we recalculate dp(t) in (7) and u(x, s, t)
in an obvious manner.
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Theorem 4. Assume that s(t) is according to Assumption 2, q0 ∈W , and there exists (q0, δ0, q
′) ∈

∆R with γ(δ0) = y, then finding an initial plan dp(t) and updating u(x, s, t) in the previously
described manner in case that s(treplan) 6= s⊥ results in (x, s, µ̃, 0) |= θ.

Proof. The assumptions that q0 ∈ W and that there exists (q0, δ0, q
′) ∈ ∆R with γ(δ0) = y, again

guarantee that there exists an initial plan dp(t). Due to the properties of W and given that s(t)
is according to Assumption 2, it holds that a new plan and an updated u(x, s, t) can always be
found whenever s(treplan) 6= s⊥. Each such instantaneous transition is well defined in the sense of
not requiring a discontinuity in x(t) due to the modified definition of π(W ).

We remark that Assumption 2 is not only necessary for the game-based approach in Algorithm
2, but that the assumption is also necessary to be able to replan. Without Assumption 2, there
is no information about the value of s(t) shortly after treplan. By Assumption 2, there follows an
open time interval in which s(t) = s⊥ after treplan so that a next state can be selected whose state
label is satisfied by s⊥. Further note that Assumption 2 effectively poses an upper bound on the
frequency of times that replanning is initiated.

To conclude this section, we note that a combination of graph search techniques and a game-
based approach has been presented. The game-based approach ensures that it is always possible
to make progress towards satisfying the Büchi acceptance condition by ruling out ‘bad’ transitions,
while graph search techniques actually enforce this progress.

5.3 Feedback Control under STL Specifications

In this section, we discuss the control laws uδ̃(x, t) that are supposed to achieve the transitions

δ̃ := (s̃, g̃, 0, s̃′) ∈ ∆̃ in Definition 8 for the timed abstraction TSTS . In particular, such transitions
can be captured by the STL formulas

G[0,τ)µinv(x) ∧ Fτµreach(x) ∧G[0,τ ]µws(x), (8)

G[0,τ ]µinv(x) ∧G(τ,τ ′]µreach(x) ∧G[0,τ ′]µws(x) (9)

where µinv(x) := λ̃(s̃) and µreach(x) := λ̃(s̃′) are deterministic predicates as in (3) and where
τ ∈ R>0 with τ |= g̃, while µws(x) encodes a compact set B according to Section 4; B can be any
compact set, typically the workspace. With µinv(x), µreach(x), and µws(x), we can now associate
predicate functions hinv(x), hreach(x), and hws(x).

There is a plethora of recent works that have addressed the problem of controlling systems as
in (5) under spatio-temporal constraints as in (8) or (9). In particular [4, 20] address the control
problem by time-varying control-barrier functions and fixed time control Lyapunov functions, re-
spectively. For robotic specific problem setups, funnel control laws to solve (8) or (9) have also
appeared in [18], while optimization-based methods are presented in [19]. Another approach, rely-
ing on time-varying vector fields, has appeared in [24]. We are, purposefully and with respect to
page limitations, not presenting a specific type of feedback control law here and emphasize that our
proposed reactive planning method is agnostic to feedback control laws that can achieve the STL
specification as in (8) or (9). Note that the previously mentioned works pose certain assumptions
on the systems dynamics in (5) as well as on the form of hinv(x), hreach(x), and hws(x). We remark
that controlling systems under timed specifications of the type in (8) or (9) has recently attracted
interest in the research community so that we expect more progress in this respect.
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6 Completeness and Complexity

In summary, the presented framework consists of: 1) translating the ReRiSITL specification φ into
a ReSITL specification θ in Section 4, and 2) reactive planning under this ReSITL specifications
θ in Section 5, as summarized in Algorithm 3. The framework is sound in the sense of Theorems
3 and 4, but not necessarily complete, i.e., there may exist a solution even though we may not
find it. There are three reasons for such conservatism. First, the translation from the ReRiSITL
specification φ to the ReSITL specification θ may induce conservatism as discussed in Section 4.
Second, in line 6 of Algorithm 3, we need to modify TSTm

θ to avoid Zeno behavior. This operation
potentially induces conservatism that can, however, be reduced as also discussed previously. Third,
the construction of nonlinear control laws, presented in Section 5.3, may introduce conservatism.
This is inherent in nonlinear control and we do not view this as a drawback of our method.

The presented framework consists of several computationally expensive operations. Fortunately,
these operations can be performed offline. We focus on space complexity. First, the translation from
the MITL formula ϕ to the timed signal transducer TSTϕ induces O(|ϕ|M) clocks and 2O(|ϕ|M)

states where |ϕ| denotes the complexity of ϕ and M is related to the length of the maximum time
interval in ϕ (see [32, Theorem 6.7]). Operations [O1] and [O2], which transform TSTϕ into TSTθ,
ease the complexity by removing a considerable number of states and transitions from TSTϕ. An
exact number is in general not quantifiable as those removals depend on predicate dependencies in
the specification θ. Operations [O3] and [O4] further remove states and transitions from TSTθ to
obtain the product automaton TSTm

θ . Note that we obtain computational benefits over existing
methods that would induce additional O(|Sθ||S̃|) states. The operation RAC(TSTm

θ ) results in
an automaton with O(|Sm|len(cm)) states where len(cm) denotes the length of clock constraints
in TSTm

θ (see [29, Section 4.3]). The translation from RAC(TSTm
θ ) to RAC(TSTm

θ ) results in
an automaton with O(|Q||AR|) states, which can considerably be reduced as discussed in Remark
4. The time complexity of Algorithm 2 and graph search techniques to find a plan dp(t) follows
standard arguments. Operations [O1], [O2], [O3], and [O4] involve solving nonlinear mixed integer
programs, and in particular mixed integer linear programs when Assumption 1 holds.

7 Simulations

We consider a unicycle model with dynamics

ż = f(z) + g(z)u

and where the state is given as

z :=
[
xT xa

]T
:=
[
xx xy xa

]T
to model the two-dimensional position and orientation, respectively. Here,

u :=
[
v ω

]T
contains the translational and rotational control inputs. In particular, let

f(x) := 0.5 ·
[
−sat(xx) −sat(xy) 0

]T
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where sat(x) = x if |x| ≤ 1 and sat(x) = 1 otherwise. Furthermore, let

g(x) :=

cos(xa) 0
sin(xa) 0

0 1

 .
To obtain u(z, t), we use here the time-varying control barrier functions from [4]. In particular,
time-varying control barrier functions adapted for nonholonmic systems from [45] are used for which
no knowledge of f(z) is required.

For this system, the imposed ReRiSITL specification φ is the one given in Example 1. The
specification φ is rich enough to illustrate all theoretical findings (i.e., how to deal with risk pred-
icates, uncontrollable propositions, and past temporal operators) and yet basic enough to explain
all subtleties of φ and the reactive and risk-aware control sythesis.

Recall the determinization of risk predicates according to Section 4 in Example 2 resulting in
the ReSITL specification

θ := Tr(φ) = F(0,5)µ
det
R1 ∧G[0,∞)

(
µdet

O1 ∧ µdet
O2 ∧

(
F (0,1)µ

uc =⇒ F(0,3)µ
det
R2

))
.

for which initially (x(0), s⊥, µ̃) |= ¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 is assumed. For the construction
of TSTS in Section 5.1, we assume that we have control laws uδ̃(x, t) that can accomplish each

transition δ̃ as per Definition 8 with g̃ := [1,∞).
Setting 1: With respect to Assumption 2, we first assume that ζ := 1. Recall that ζ determines

the frequency by which the uncontrollable event µuc may occur. In this case, the set W does not
contain the element q0, i.e., q0 6∈ W , so that by Theorem 4 no plan dµ(t) is found that satisfies θ
and consequently φ. Note that this follows mainly since s(t) = projµuc(s)(t) = > may occur within

ζ time unit intervals implying that, in the worst case, µCh
R2 should always be true so that there is

no time to satisfy µCh
R1.

Setting 2: By increasing ζ, the frequency by which the uncontrollable event µuc may occur is
decreased. We set ζ := 5 and now observe that q0 ∈ W . The synthesized initial plan dµ(t) is as
follows.

dµ(t) :=


¬µdet

R1 ∧ µdet
O1 ∧ µdet

O2 ∧ ¬µdet
R2 ∧ ¬µuc t ∈ (0, 4)

µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ [4, 5.7]

¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ (5.7,∞).

However, now assume that s(1) = projµuc(1) = > so that at treplan = 1 replanning is needed. Our
revised plan then is

dµ(t) :=



¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ (0, 1)

¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ µuc t = 1

¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ (1, 2)

µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ [2, 3)

¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ ¬µdet

R2 ∧ ¬µuc t ∈ [3, 4)

¬µdet
R1 ∧ µdet

O1 ∧ µdet
O2 ∧ µdet

R2 ∧ ¬µuc t ∈ [4,∞),
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Figure 6: Unicycle model for the ReRiSTL specification φ with ζ := 5 and when an uncontrollable
event occurs.

i.e., to prepone satisfying µdet
R1 and to satisfy µdet

R2 right after and within 3 time units from when
µuc happened. The simulation results for this case are depicted in Fig. 6.

Simulations were performed on a 1.4 GHz quad-core Intel Core i5 with 8 GB RAM. Construction
of TSTθ and RAC(TSTθ) took 2.5 s and 78.5 s, respectively, while Algorithm 2 and the graph search
took 130 s and 15.5 s, respectively. All implementations are made in MATLAB, without optimizing
for performance, and can be found under [52]. A short animation can also be found in [52].

8 Conclusion

This paper has presented reactive risk signal temporal logic (ReRiSTL) as a significant extension of
signal temporal logic (STL). ReRiSTL additionally allows to consider the risk of not satisfying an
ReRiSTL specification as well as allowing to consider environmental events such as sensor failures.
We have then proposed an algorithm to check if such an ReRiSTL specification is satisfiable. Lastly,
we have proposed a reactive planning and control framework for dynamical systems under ReRiSTL
specifications by combining a game-based approach with graph search techniques.
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