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A Feasibility Governor for Enlarging the Region of
Attraction of Linear Model Predictive Controllers

Dominic Liao-McPherson, Terrence Skibik, Torbjørn Cunis, Ilya Kolmanovsky, and Marco M. Nicotra

Abstract—This paper proposes a method for enlarging the re-
gion of attraction of Linear Model Predictive Controllers (MPC)
when tracking piecewise-constant references in the presence
of pointwise-in-time constraints. It consists of an add-on unit,
the Feasibility Governor (FG), that manipulates the reference
command so as to ensure that the optimal control problem
that underlies the MPC feedback law remains feasible. Offline
polyhedral projection algorithms based on multi-objective linear
programming are employed to compute the set of feasible states
and reference commands. Online, the action of the FG is com-
puted by solving a convex quadratic program. The closed-loop
system is shown to satisfy constraints, be asymptotically stable,
exhibit zero-offset tracking, and display finite-time convergence
of the reference.

I. INTRODUCTION

Model Predictive Control [1]–[3] (MPC) defines a feedback
policy as the solution of a receding horizon optimal control
problem (OCP). MPC is widely used in applications; it enables
high-performance control while systematically enforcing state
and control constraints and is supported by a robust theoretical
literature. Stability guarantees are typically obtained by incor-
porating “terminal ingredients” into the OCP. For example,
adding a terminal penalty and an invariant set based terminal
constraint is sufficient to guarantee asymptotic stability and
constraint satisfaction [4], [5]; the closed-loop region of at-
traction (ROA) is then the set of all states from which it is
possible to reach the terminal set within the prediction horizon.

Many practical applications of MPC require the capability to
track non-zero steady state references and to safely transition
between them. However, if the change in the reference is large
the system may not be able to reach the new terminal set within
the prediction horizon, resulting in infeasibility and failure
of the MPC controller. The obvious strategy for avoiding
infeasibility is increasing the size of the ROA. This can be
done by enlarging the terminal set or increasing the prediction
horizon. Unfortunately, the maximum size of the terminal set
is fixed by the constraints [6], and increasing the prediction
horizon increases the computational footprint of the controller.

Another strategy is to treat aspects of the terminal set, e.g.,
size, location, or shape, as optimization variables and use these
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additional degrees of freedom to enlarge the feasible set. This
approach has been applied to economic operation of nonlinear
systems with terminal state constraints [7] and regulation of
linear systems using terminal set constraints [8]. It has also
been applied to reference tracking problems for linear systems
[9], [10] using various parameterizations of the terminal sets.
Computing a contractive sequence of terminal sets offline
which are incorporated into the OCP to enlarge the ROA is
proposed in [11]. The major disadvantage of these approaches
is that they require redesigning the OCP and increasing the
computational complexity of the controller.
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Fig. 1. A block diagram of the control architecture. Given a reference r, the
Feasibility Governor manipulates the auxiliary reference v to ensure that the
primary MPC controller is able to produce a valid control input u.

In this paper, we propose the Feasibility Governor (FG), an
add-on unit in the tradition of reference/command governors
[12], [13], that modifies the reference signal to ensure that the
terminal set remains reachable within the prediction horizon.
The FG does not require any modifications to the existing
MPC controller, exhibits finite time convergence to the desired
reference, and expands the ROA of the MPC controller to all
states that can reach the terminal set of any steady state admis-
sible reference. It also takes advantage of offline polyhedral set
manipulation tools [14], [15] to limit online complexity and
minimize conservatism. The proposed control architecture is
illustrated in Figure 1.

There is existing literature on avoiding infeasibility in MPC
using reference manipulation. The dual-mode controller in
[16] features a recovery mode that simultaneously computes a
modified reference and control input. This approach converges
in finite-time but is invasive and may reduce performance.
An FG like algorithm is proposed in [17] and is used as an
intermediate design stage in the construction of a piecewise
affine control law that combines a governor and explicit MPC
controller into a single unit. This approach suffers from the
well known complexity limitations of explicit MPC [18] as
the dimension of the state, prediction horizon, and number
of constraints increases. This paper shows that the FG can
be scaled to larger systems/longer horizons, and provides a
more detailed treatment of both the theoretical properties of the
governor, including using under-approximation of the feasible

ar
X

iv
:2

01
1.

01
92

4v
1 

 [
m

at
h.

O
C

] 
 3

 N
ov

 2
02

0



2

set, and the computation of the terminal and feasible sets.
A governor-like algorithm using ellipsoidal terminal sets is
proposed in [19] and can be considered a special case of
the FG that uses a specific reference parameterization and
conservative inner approximation of the feasible set. In [20]
the authors propose a suboptimal continuous-time analog of
the governor in [19]. Finally, a spatial governor is proposed
in [21]. It is specific to precision machining applications
and adjusts the velocity profile passed to a path tracking
MPC controller to ensure recursive feasibility of constraints
representing manufacturing error tolerances.

The layout of the paper is as follows: Section II contains the
problem setting and control objectives. Section III describes
the primary MPC controller. Section IV introduces the FG,
including implementation details, and summarizes its theoret-
ical properties which are then proven rigorously in Section V.
Finally, Section VI illustrates the utility of the FG through
simulation studies and Section VII offers some conclusions
and perspectives on future work.

A. Notation

For vectors a and b, (a, b) = [aT bT ]T . The identity
and zero matrices are denoted IN ∈ RN×N and 0N×M ∈
RN×M , respectively with the subscripts absent whenever the
dimensions are clear from context. Given M ∈ Rm×n and
U ⊆ Rn, Ker M = {x | Mx = 0}, MU = {Mx | x ∈ U},
M−1U = {x | Mx ∈ U}, and IntU denotes the interior of U .
Set addition/subtraction is defined as U±V = {u±v | (u, v) ∈
U × V} and for λ ∈ R, λU = {λu | u ∈ U}. Positive
(semi) definiteness of a matrix P ∈ Rn×n is denoted by
(P � 0) P � 0; and ‖x‖P =

√
xTPx for x ∈ Rn. Consider

x ∈ Rn, y ∈ Rm and a set Γ ⊆ Rn+m, the projection of
Γ onto x is the image ΠxΓ where Πx = [In 0n×m], i.e.,
x = Πx[xT , yT ]T . The slice (or cross-section) operation is
Sy(Γ, x) = {y | (x, y) ∈ Γ}. For x ∈ Rn, and δ ≥ 0,
Bδ(x) = {y | ‖y − x‖ ≤ δ} For a sequence {xk} ⊆ Rn
and a set Γ ⊆ Rn we write that xk → Γ as k → ∞, if and
only if limk→∞ infy∈Γ ‖y−xk‖ = 0. Our use of comparison
functions, i.e., class K,K∞ and KL functions follows [22].

II. PROBLEM SETTING

Consider the linear time invariant (LTI) system

xk+1 = Axk +Buk (1a)
yk = Cxk +Duk (1b)
zk = Exk + Fuk, (1c)

where k ∈ N is the discrete-time index and xk ∈ Rnx , uk ∈
Rnu , yk ∈ Rny , and zk ∈ Rnz are the states, control inputs,
constrained outputs, and tracking outputs, respectively.

Assumption 1. The pair (A,B) is stabilizable.

The system (1) is subject to pointwise-in-time constraints

∀k ∈ N yk ∈ Y, (2)

where Y ⊆ Rny is a specified set of constraint.

Assumption 2. The set Y is a compact polyhedron with
representation Y = {y | Y y ≤ h} and satisfies 0 ∈ Int Y .

As detailed in [9], Assumption 1 implies that the matrix

Z =

[
I −A B 0
E F −I

]
(3)

satisfies Ker(Z) 6= {0}. As a result, is possible to introduce an
auxiliary reference v ∈ Rnv that parameterizes the equilibrium
manifold, i.e., every solution to Z [xT , uT , zT ]T = 0, asx̄vūv

z̄v

 =

GxGu
Gz

 v (4)

where GT ≡
[
GTx GTu GTz

]
is a basis for Ker(Z).

The following assumption excludes pathological cases, e.g.,
Gz = 0, that are indicative of an ill-posed problem.

Assumption 3. The matrix Gz is full rank.

Remark 1. The vector v is a minimal parameterization of the
equilibrium manifold of (1). If Gz is not full row rank, e.g.
if nz > nv , the output tracking problem is ill-posed and only
r ∈ GzRnv are achievable. If nz = nv and Gz is invertible,
the reference uniquely determines the target equilibrium and
it is possible to choose G such that r = v. If nz < nv , there
are multiple equilibria satisfying Ex̄v + Fūv = r.

Next, we introduce a design parameter ε ∈ (0, 1) and the
corresponding set of strictly steady-state admissible auxiliary
references

Vε ≡ G−1
y (1− ε)Y = {v | Gyv ∈ (1− ε)Y}, (5)

where Gy = CGx +DGu, and strictly admissible references

Rε ≡ GzVε = {Gzv | v ∈ Vε}. (6)

Remark 2. The parameter ε is used because MPC controllers
cannot stabilize points on the boundary of the feasible set.

Given Assumptions 1–2 as the only limitations to our problem
setting, we now state the control objectives of this paper.

Control Objectives: Given the LTI system (1), let Y ⊆ Rny
be a set of constraints, and let r ∈ Rnz be a target reference.
The goal of this paper is to design a full state feedback law
that achieves the following objectives:
• Safety: Ensure yk ∈ Y ∀k ≥ 0;
• Convergence: limk→∞ zk = r∗, where

r? = arg min
s∈Rε

‖s− r‖.

• Asymptotic Stability: limk→∞(xk, vk) = (x∗r , v
∗
r ) where

(x∗r , v
∗
r ) = (Gxv

∗
r , v
∗
r ) is a stable equilibrium satisfying

r∗ = Gzv
∗
r .

Remark 3. When the tracking problem is well posed, i.e.,
r ∈ Rε, we recover limk→∞ zk = r.

Remark 4. Assumption 2 restricts our setting to polyhedral
constraints which simplifies some implementation aspects. All
the theoretical results in this paper still hold under the weaker
assumption that Y is compact, convex and contains the origin
in its interior.
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III. CONTROL STRATEGY

Due to the constraints, we approach the control objectives
using a typical MPC formulation where the feedback policy
is defined using the solution to the following optimal control
problem (OCP)

min
µ
||ξN − x̄v||2P +

N−1∑
i=0

||ξi − x̄v||2Q + ||µi − ūv||2R (7a)

s.t. ξ0 = x, (7b)
ξi+1 = Aξi +Bµi, i ∈ N[0,N−1], (7c)
Cξi +Dµi ∈ Y, i ∈ N[0,N−1], (7d)

(ξN , v) ∈ T , (7e)

where N ∈ N>0 is the prediction horizon, µ = (µ0, . . . µN−1)
are the decision variables, P , Q, and R are weighting matrices,
and T ⊆ Rnx ×Rnv is the terminal set, which is assumed to
be polyhedral1, i.e.,

T = {(x, v) | Txx+ Tvv ≤ c}, (8)

and x̄v, ūv are defined in (4) and will be manipulated.

Remark 5. The terminal constraint (7e) is often written in the
equivalent form ξN ∈X (v) = Sx(T , v) = {x | (x, v) ∈ T }.

The following assumptions ensure that (7) is well-posed and
can be used to construct a stabilizing feedback law.

Assumption 4. The stage cost matrices satisfy Q = QT � 0,
with (A,Q) observable, and R = RT � 0.

Once the stage weights are defined, the terminal penalty P
and the terminal set mapping X can be obtained using a gain
K ∈ Rnu×nx and a fictitious terminal control law

κN (x, v) ≡ ūv −K(x− x̄v). (9)

Assumption 5. Given (x, v) ∈ T and the terminal control
law (9), the terminal cost matrix satisfies P = PT � 0 and

‖(A−BK)δx‖2P − ‖δx‖2P ≤ −‖δx‖2(Q+KTRK) (10)

where δx = x− x̄v .

Assumption 6. The terminal set T is invariant and constraint
admissible under (9), i.e., for all (x, v) ∈ T ,

Ax+BκN (x, v) ∈ X (v), (11a)
Cx+DκN (x, v) ∈ Y. (11b)

Remark 6. The terminal control law (9) is not used online
but is needed to synthesize P and T . A conservative choice
is K = 0, P = 0, and T = {(x̄v, v)}. Alternatively, for
any K such that A − BK is Schur, P can be obtained by
reformulating and then solving (10) as a discrete Lyapunov
equation2. Polyhedral approximations of the largest possible
set T can then be computed offline as detailed in Appendix A.

1Other representations, e.g., ellipsoidal, are admissible but more challenging
from an implementation perspective.

2Given the linear quadratic regulator K = (R+BTPB)−1(BTPA), the
discrete Lyapunov equation (10) coincides with the discrete Riccati equation
P = Q+ATPA− (ATPB)(R+BTPB)−1(BTPA).

It is only possible to compute a control action if (7) admits
a solution. The set of all parameters for which this is possible,
i.e., the feasible set, is

ΓN ≡ {(x, v) | ∃ µ : (7b)− (7e)} ⊆ Rnx × Rnv , (12)

which is the N -step backwards reachable set of T . The set of
strictly steady-state admissible equilibria is

Σ ≡ {(x, v) | x = Gxv, v ∈ Vε}. (13)

If T is polyhedral, then ΓN is polyhedral as well and can
be computed offline, see Section IV-C. Figure 2 illustrates the
various sets defined in this section.

Fig. 2. The sets used in the paper for the integrator xk+1 = xk +uk subject
to |xk| ≤ 1, |uk| ≤ 0.25 and with ε = 0.2, T = Õ0.05

∞ and N = 2

The following technical assumption is needed to guarantee
convergence and always holds when T is synthesized using
the procedure in Appendix A.

Assumption 7. Σ ⊂ Int ΓN

Lemma 1. Given Assumption 1 either of the following con-
ditions are sufficient for Assumption 7 to hold.

1) Σ ⊂ Int T ;
2) (A,B) is controllable, Σ ⊆ T , and N ≥ ν, where the

controllability index ν is the smallest positive integer such
that

[
B AB · · · Aν−1B

]
is full rank.

Proof. See Appendix C.

The MPC feedback policy κ : Γn → Rnu is

κ(x, v) ≡ µ?0(x, v) (14)

where µ?(x, v) = [µ?T0 , µ?T1 , . . . , µ?TN−1]T is the minimizer of
(7), and is defined for (x, v) ∈ ΓN . The following theorem
summarizes the properties of the closed-loop system for a
constant auxiliary reference.

Theorem 1. Let Assumptions 1–6 hold and let φ(`, x, v)
denote the solution of the closed-loop dynamics

xk+1 = f(xk, v) ≡ Axk +Bκ(xk, v). (15)
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starting from the initial condition x0 = x at timestep ` ≥ 0.
Then for all (x, v) ∈ ΓN :
• (φ(`, x, v), v) ∈ ΓN , ∀` ≥ 0;
• y` ∈ Y, ∀` ≥ 0;
• lim`→∞ φ(`, x, v) = x̄v .

If, in addition, v ∈ Int V0 then x̄v is asymptotically stable.

Proof. Since the auxiliary reference v is constant for ` ≥ 0,
the statement follows from [2, Theorem 4.4.2].

Theorem 1 achieves the control objectives given v0 such that
Gzv0 = r and x0 satisfying (x0, v0) ∈ ΓN . Its main limitation,
however, lies in the fact that the OCP (7) is infeasible if
x0 cannot be steered to X (v0) within N steps. Although
increasing the prediction horizon may seem like a suitable
workaround, this solution may be inapplicable in practice since
the computational time required to solve (7) scales unfavorably
with N .

In the next section, we describe an add-on unit that expands
the closed-loop domain of attraction without extending the
prediction horizon or modifying the MPC formulation.

IV. THE FEASIBILITY GOVERNOR

The MPC feedback policy (14) is stabilizing only if the
terminal set associated with the target equilibrium is N -step
reachable from the current state. Intuitively, if the target can
be manipulated, this limitation can be overcome by selecting a
sequence of intermediate targets that are pair-wise reachable.
This paper formalizes this idea by redefining the auxiliary
reference v as a time-varying signal vk to ensure (xk, vk) ∈
ΓN , ∀k ∈ N and Gzvk = r for sufficiently large k ∈ N. The
resulting control architecture is displayed in Figure 1.

A. Governor Design

The idea behind the FG is straightfoward, minimally modify
the reference so that the MPC problem remains feasible. Draw-
ing inspiration from the command governor (CG) literature
[13], the action of the FG can be computed via the following
optimization problem.

min
v∈Vε

‖Gzv − r‖22 (16a)

s.t. (x, v) ∈ ΓN . (16b)

At time k, given a measurement xk, the FG computes a virtual
reference vk as a solution to (16) with x = xk that is passed to
the MPC controller to obtain a control action uk = κ(xk, vk).

The FG can be considered an extension of the CG and
operates on the same principle: manipulate the auxiliary ref-
erence to remain within a safe invariant set associated with
an underlying primary controller. In the case of the CG,
the invariant sets are typically slices of O∞, the maximum
constraint admissible set [6] associated with a linear feedback
law such as (9). In contrast, the FG uses slices of ΓN which are
invariant under the nonlinear MPC feedback (14). Assuming
the common choice T = O∞, the set ΓN is a superset of O∞
and grows larger as N increases, as illustrated in Figures 6
and 7. The use of a more permissive constraint set leads to

better performance, as the MPC controller is “aware” of the
constraints, which is not possible using linear feedback.

Unfortunately, if Gz does not have full column rank then
‖Gzv − r‖22 is not strongly convex and (16) will not have
a unique minimizer. This is problematic from a convergence
perspective; a mechanism for resolving degeneracies is needed.
As such, we extend (16) and define the FG feedback as

g(x, r) ≡ arg min
v∈Vε

{ψ(v, r) | (x, v) ∈ ΓN} (17)

where

ψ(v, r) ≡

{
‖Gzv − r‖22 if Gz is injective
‖v − v∗r‖22 otherwise,

(18)

and the designer can select any v∗r satisfying

v∗r ∈ V∗r ≡ arg min
v∈Vε

‖Gzv − r‖22. (19)

Note that ψ defined in this way is strongly convex is v.
The resulting feedback law is uk = κ(xk, g(xk, r)) and the

closed-loop system dynamics are

xk+1 = Axk +Bκ(xk, g(xk, r)). (20)

Since the function ψ is strongly convex, (17) is a convex
quadratic program (with a unique solution) that can be solved
reliably online.

Remark 7. If the reference is achievable, i.e., r ∈ Rε, then
G†zr ∈ V∗r , where G†z is the Moore-Penrose pseudo-inverse.

B. Properties

When combined with (14) and placed in closed-loop with
(1), the combined FG + MPC feedback policy ensures con-
straint satisfaction, renders the point (x∗r , v

∗
r ) = (Gxv

∗
r , v
∗
r )

asymptotically stable, and exhibits finite time convergence of
vk → v∗r . These results are rigorously formulated and proven
in Section V.

Moreover, the addition of the FG expands the domain of at-
traction of the closed-loop system from DMPC = Sx(ΓN , v

∗
r ),

the set of states from which it is possible to reach X (v∗r ) in
N -steps, to

DFG =
⋃
v∈Vε

Sx(ΓN , v), (21)

the set of states from which it is possible to reach X (v)
of any v ∈ Vε in N -steps. In particular, the addition of
the FG guarantees safe transitions between any r1, r2 ∈ Rε.
The differences between DMPC and DFG are illustrated in
Figure 3 for the double integrator example in Section VI-A.

Remark 8. The FG can be applied to systems with distur-
bances by noting that the essential property required by the FG
is that the feasible set ΓN of the model predictive controller is
forward invariant for any constant auxiliary reference. We can
readily replace the MPC formulation (7) with any alternative
OCP with a forward invariant feasible set. For example, the
tube MPC formulation [23, Algorithm 3.1], based on the
theory of Robustly Positive Invariant Sets [24], would be a
valid choice as it renders its feasible set disturbance invariant
[23, Theorem 3.2].
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Fig. 3. For the double integrator example in Section VI-A, the region of
attraction of the combined MPC + FG feedback law (green) is larger than
that of the MPC controller alone (yellow).

C. Implementation

In our problem setting, ΓN and Vε are polyhedral and thus
(17) is a strongly convex quadratic program (QP). Convex QPs
can be solved efficiently and reliably using active set, interior
point, proximal gradient, or generalized Newton methods. The
problem (17) typically has only a small number of variables
and many constraints. For example, the lateral vehicle example
in Section VI-B has 1 variable and around 6000 inequality
constraints. Dual active-set methods [25] can solve the FG
problems efficiently and reliably; they start from the uncon-
strained optimum and only consider a limited number of active
constraints at a time.

Implementation of the FG also requires a half-space repre-
sentation of the feasible set. Two methods for obtaining one
via polyhedral calculus are described below.

1) Block Method: The MPC OCP (7) is a QP and can be
written in the condensed form3

min.
µ

1

2
µTHµ+ µTWθ (22a)

s.t. Mµ+ Lθ ≤ b, (22b)

with parameter θ = (x, v). The feasible set (12) can therefore
be expressed as

ΓN = Πθ{(µ, θ) | Mµ+ Lθ ≤ b}. (23)

2) Recursive Method: The feasible set ΓN is the N -step
backwards reachable set of T and can be computed recur-
sively. Define the matrices

Ae =

[
A 0
0 I

]
Be =

[
B
0

]
, and Me =

[
Ae Be

]
, (24)

and the set W = {(x, v, u) | Cx + Du ∈ Y}. Then ΓN can
be computed via the recursion

Γi+1 = Πθ

(
M−1
e Γi ∩W

)
, (25)

3Expressions for the matrices in (22) are provided in Appendix B.

starting from the initial condition Γ0 = T .

There are several toolboxes available for performing polyhe-
dral calculus (e.g., projections, images, inverse images etc.). In
this paper we use and compare the MPT3 [14] and bensolve
tools [26] packages.

For both the recursive and block methods, the complexity
of computing ΓN is dominated by the projection operation.
The projection is performed offline but can quickly become
intractable, even for moderately sized systems, as all known
projection algorithms suffer from the curse of dimensionality
[27]. Thus computing ΓN can quickly become intractable
as the size of the state vector, input vector, reference, or
prediction horizon grows.

In this paper, we investigate two different methods for
computing the projections, multi-objective linear program-
ming (MOLP) [28], implemented in bensolve tools [26],
and Fourier-Motzkin elimination, implemented in the MPT3
toolbox [14]. We computed ΓN for several values of N
for the double integrator (Section VI-A) and lateral vehicle
model (Section VI-B) and recorded the execution (wall-clock)
time on a 2019 Macbook Pro (2.8 GHz i9, 32GB RAM)
running MATLAB 2019b. We observe that the MOLP method
significantly outperforms Fourier elimination in term of both
speed and reliability, as seen in Figure 4. Further, the recursive
method is marginally faster than the block method, as illus-
trated in Figures 4 and 5. Both methods display exponential
scaling in the horizon length, as expected for polyhedral
projection methods.

5 10 15 20 25 30

10
0

10
2

10
4

0 5 10 15 20 25 30

50

55

60

65

70

75

80

Fig. 4. The computational cost of computing ΓN . The MOLP projection
algorithm outperforms Fourier elimination (0.16 seconds for N = 30 vs. 2.9
hours for N = 8) and the Fourier-recursive method fails for N ≥ 5. The
number of inequalities necessary to represent ΓN eventually converges, we
hypothesize because ΓN must be contained in the state constraints which are
a simple box.
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Fig. 5. The computational cost of computing ΓN . The recursive method
marginally outperforms the block method with both displaying slow expo-
nential growth.

Our investigations confirm that projection based methods for
computing ΓN are tractable only for moderately sized systems.
One strategy for applying the FG to larger systems is to replace
ΓN with an easier to compute approximation.

D. Under-approximating the Feasible Set

In some scenarios, it may be advantageous (or necessary) to
use an approximation of the feasible set. Luckily, with some
minor modifications, a set F ⊆ ΓN can be used in place of
ΓN . In this case, the FG is re-defined as follows

g(x, v, r) ≡

{
ḡ(x, r) if (x, v) ∈ F
v else

(26a)

where

ḡ(x, r) ≡ arg min
v∈Vε

{ψ(v, r) | (x, v) ∈ F} . (26b)

At time k the auxiliary reference is then computed as vk =
g(xk, vk−1, r). The set F must satisfy the following:

Assumption 8. The set F ⊆ ΓN is closed, convex, polyhedral,
and satisfies Σ ⊂ Int F .

The idea behind (26) is that, while the slices of F are
not invariant like those of ΓN , they are strongly returnable
[29] under Assumption 8. That is, if v remains constant, the
state trajectories are guaranteed to eventually return to F due
to the properties of the MPC feedback, so the FG simply
holds v constant in the meantime. This approach preserves
the qualitative theoretical properties (convergence, safety etc.)

of the closed-loop system but, unsurprisingly, results in the
smaller domain of attraction

D̄FG =
⋃
v∈Vε

Sx(F , v) ⊆ DFG. (27)

This smaller domain of attraction is still however large enough
to guarantee safe transitions between any r1, r2 ∈ Rε.

An obvious way to generate the under-approximation is
to pick F = Γi for 0 ≤ i < N with the limit case
F = Γ0 = T . The ability to use under-approximations also
provides the flexibility to design F so as to limit the number
of inequalities, for example by picking F as a box within
ΓN or as the convex hull of a pre-specified number of points
sampled from the boundary of ΓN . This is especially important
in embedded applications with memory limitations. Finally,
obtaining under-approximations of ΓN through parallelizable
approaches, such as sampling based algorithms, is likely key
for enabling the application of the FG to higher dimensional
systems and an important direction for future work.

V. THEORETICAL ANALYSIS

This section analyzes the properties of the closed-loop
system under the combined FG and MPC feedback policy.
We consider the case from Section IV-D where the under-
approximation F is used in place of ΓN , the results in the
nominal case follow by letting F = ΓN .

The reference r is assumed constant throughout this section,
we suppress any dependencies on r to simplify the notation.

The feasible and invariant sets of the FG are

Φ ≡ F ∩ (Rnx × Vε), (28)
Λ ≡ ΓN ∩ (Rnx × Vε). (29)

Using these sets, the action of the FG can be expressed as

g(x, v) =

{
ḡ(x) (x, v) ∈ Φ

v (x, v) ∈ Λ \ Φ
(30a)

ḡ(x) = arg min
v∈Sv(Φ,x)

ψ(v, r), (30b)

where ψ is defined in (18). Then the closed-loop dynamics of
(1) under the combined FG and MPC feedback law are

vk = g(xk, vk−1) (31a)
xk+1 = f(xk, vk), (31b)
yk = h(xk, vk) (31c)

where f(x, v) = Ax+Bκ(x, v) is as defined in (15), h(x, v) ≡
Cx+Dκ(x, v), and κ is the MPC feedback law. The update
equations can then be written compactly as

(xk+1, vk+1) = T (xk, vk), (32)

where T (x, v) ≡ (f(x, v), g(f(x, v), v)).
The continuity properties of (31) are as follows.

Lemma 2. Given Assumptions 1–5, the functions f : ΓN →
Rnx in (15) and ḡ : Φ→ Vε are Lipschitz continuous.

Proof. The MPC feedback policy κ and ḡ are solution map-
pings of strongly convex multi-parametric quadratic programs
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(22) and (30b) and are thus Lipschitz continuous [18, Theorem
4]. Lipschitz continuity of f follows immediately.

Lipschitz continuity of ḡ is used only when invoking
LaSalle’s theorem to prove asymptotic stability. As such, the
assumption that F is polyhedral can be removed, provided
continuity of ḡ is maintained. Specifically, if the mapping
Sv(F , x) is continuous in the Pompeiu–Hausdorff sense4

continuity of ḡ can be proven.

A. Safety and Recursive Feasibility

The following theorem provides sufficient conditions under
which the (FG) achieves the Safety objective and proves that
the set Λ is forward invariant.

Theorem 2 (Safety & Invariance). Given Assumptions 1–6,
consider the closed-loop dynamics (31). Suppose x0 ∈ ΠxΦ,
then the sequence {(xk, vk)}∞k=0 ⊆ Λ is well defined and yk ∈
Y for all k ∈ N.

Proof. The proof is by induction. At time k = 0 if x0 ∈
ΠxΦ then (30b) is feasible and (x0, v0) ∈ Φ ⊆ Λ. Next,
assume (xk, vk) ∈ Λ, the functions f and g are both
defined on Λ and thus (xk+1, vk+1) is well defined. If
(xk+1, vk) ∈ Φ then Sv(Φ, xk+1) 6= ∅, i.e., (30b) is feasible,
and vk+1 = g(xk+1, vk) = ḡ(xk+1) ∈ Sv(Φ, xk+1), and thus
(xk+1, vk+1) ∈ Φ ⊆ Λ. Otherwise, if (xk+1, vk) /∈ Φ, (30)
yields that vk+1 = vk and thus (xk+1, vk+1) = (xk+1, vk) ∈
Λ (by Theorem 1). Therefore, by induction, (xk, vk) ∈ Λ ⊂
ΓN for all k ∈ N which implies that ∀k ∈ N yk ∈ Y
(by Theorem 1) and that the sequence {(xk, vk)}∞k=0 is well-
defined.

B. Convergence and Stability

Having established safety, we now consider convergence
and stability. We begin by introducing the Lyapunov function
candidate

V (v) ≡ ψ(v, r) ≥ 0, (33)

with ψ defined in (18) and the notation Vk = V (vk) and V ∗ =
V (v∗) where v∗ is defined in (19). The following Lemma
addresses how V evolves along solutions of (31).

Lemma 3. Given Assumptions 1–6, define the increment

∆V (x, v) = V (g(f(x, v), v))− V (v), (34)

then for all (x, v) ∈ Λ, there exists η > 0 such that

∆V (x, v) ≤ −η‖g(f(x, v), v)− v‖2. (35)

Proof. Partition the set Λ into Λ = Λ1 ∪ Λ2 where
Λ1 = {(x, v) | (f(x, v), v) ∈ Λ \ Φ} and Λ2 =
{(x, v) | (f(x, v), v) ∈ Φ}. If (x, v) ∈ Λ1 then g(f(x, v), v) =
v by (30) and (35) clearly holds.

Next the case (x, v) ∈ Λ2. Recall that V is a strongly convex
quadratic function. Thus, there exists η > 0 such that

V (v) ≥ V (v′) +∇V (v′)T (v − v′) + η‖v − v′‖2 (36)

4See [30, Section 3B] for a definition.

for all v′, v ∈ Rnv . Letting x+ = f(x, v), we have that
by (30), g(x+, v) = ḡ(x+) for all (x, v) ∈ Λ2. Moreover,
recall that optimality conditions associated with ḡ(x+) =
arg mins∈Sv(Φ,x+) V (s) are [30]

∇V (ḡ(x+))T (v − ḡ(x+)) ≥ 0, ∀v ∈ Sv(Φ, x+). (37)

Substituting v′ = ḡ(x+) and (37) into (36), and rearranging,
we obtain that, for all (x, v) ∈ Λ2

V (ḡ(f(x, v)))− V (v) ≤ −η‖ḡ(f(x, v))− v‖2 ≤ 0.

Since Λ = Λ1 ∪ Λ2 this completes the proof.

An immediate consequence is that {Vk} is non-increasing.

Corollary 1. Consider (31), under Assumptions 1–8, if x0 ∈
ΠxΦ then

V (vk+1)− V (vk) ≤ 0. (38)

The next Lemma provides a sufficient condition under
which the auxiliary reference changes.

Lemma 4. Given Assumptions 1–8, define

Bδ(Σ) ≡ {(x, v) | v ∈ Vε, ‖x−Gxv‖ ≤ δ}, (39)

where Σ = B0(Σ) = {(x, v) | x = Gxv, v ∈ Vε}. Then, there
exists δ? > 0 such that Bδ?(Σ) ⊂ Int F . Moreover, δ ∈ [0, δ?],
(x, v) ∈ Bδ(Σ), and v 6= v∗ implies that g(x, v) 6= v.

Proof. To show that (x, v) ∈ Bδ(Σ)∧ v 6= v∗ =⇒ g(x, v) 6=
v we will construct a point v′ ∈ Sv(Φ, x) such that V (v′) <
V (v). By Assumption 8, Σ ⊂ Int F and thus there exists
δ? > 0 such that Bδ(Σ) ⊂ Int F for all δ ∈ [0, δ∗]. Moreover,
because Bδ(Σ) ⊂ Int F , for any (x, v) ∈ Bδ(Σ), there exists
α = α(δ) > 0 such that Bα(v) ⊆ Sv(F , x).

Fix any δ ∈ [0, δ∗] and the corresponding α = α(δ). Then,
define the set Cα = Vε ∩ Bα(v), the ray

v′(t) = v + t(v∗ − v) t ∈ [0, 1], (40)

and assume v 6= v∗. The first step is to show that t ∈
[0, γ] =⇒ v′(t) ∈ Cα where γ = min

(
1, α
‖v−v∗‖

)
∈ (0, 1].

To prove this, recall that Vε is convex and v, v∗ ∈ Vε thus
v′(t) ∈ Vε for t ∈ [0, 1]. Moreover, ‖v′(γ)−v‖ ≤ ‖v′(α/‖v−
v∗‖)− v)‖ = α and therefore ∀t ∈ [0, γ], v′(t) ∈ Cα.

To establish that V decreases along v′(t), recall that V is
convex and therefore

V (v′(t)) = V ((1− t)v + tv∗)

≤ V (v)− t[V (v)− V ∗]

for all v ∈ Vε\v∗ and t ∈ [0, 1]. Further, using that V ∗ < V (v)
for all v ∈ Vε \ v∗ and that γ ∈ (0, 1] we conclude that

V (v′(γ)) < V (v). (41)

Thus we have constructed a point v′(γ) ∈ Cα ⊆ Sv(Φ, x)
satisfying V (v′(γ)) < V (v), this implies that

V (g(x, v)) = min
s∈Sv(Φ,x)

V (s) ≤ V (v′(γ)) < V (v). (42)

Finally, strong convexity of V combined with V (g(x, v)) <
V (v) implies that g(x, v) 6= v as claimed.
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The next lemma extends Theorem 1 to the case where v is
changing.

Lemma 5. Given Assumptions 1–6, and the system xk+1 =
f(xk, vk), the error signal ek = xk − Gxvk is input-to-state
stable (ISS) [31] with respect to the input ∆vk = vk+1 − vk,
i.e., there exist β ∈ KL and γ ∈ K such that

‖xk −Gxvk‖Q ≤ β(k, ‖x0 −Gxv0‖) + γ

(
sup
j≥0
‖∆vj‖

)
.

Moreover, γ is an asymptotic gain, i.e.,

lim sup
k→∞

‖xk −Gxvk‖Q ≤ γ
(

lim sup
k→∞

‖∆vk‖
)
. (43)

Proof. Under Assumptions 1–6, it is well known, see e.g.,
[4], that the optimal cost function of the MPC feedback law,
i.e., (7a) evaluated at the optimal solution µ∗(x, v) which we
denote by J : ΓN → R, is a Lyapunov function for the closed-
loop system, i.e., there exist α, αl, αu ∈ K such that

J(f(x, v), v)− J(x, v) ≤ −α(‖x−Gxv‖Q), (44)
αl(‖x−Gxv‖Q) ≤ J(x, v) ≤ αu(‖x−Gxv‖Q) (45)

for all (x, v) ∈ ΓN . Moreover, under our assumptions, J
is uniformly continuous [32, Prop 1] and thus there exists
σx, σv ∈ K∞ such that |J(x′, v′)−J(x, v)| ≤ σx(‖x′−x‖)+
σv(‖v′ − v‖). Hence, for any (x, v) ∈ Λ, v+ ∈ Sx(Λ, x) and
x+ = f(x, v), let ∆J = J(x+, v+)− J(x, v) then

∆J = J(x+, v)− J(x, v) + J(x+, v+)− J(x+, v) (46)

≤ −α(‖x−Gxv‖Q) + |J(x+, v+)− J(x+, v)| (47)

≤ −α(‖x−Gxv‖Q) + σv(‖v+ − v‖) (48)

which demonstrates ISS of e with respect to ∆v = v+ − v
[31, Lemma 3.5]. The existence of the asymptotic gain follows
immediately from [31, Lemma 3.8].

Corollary 2. Let Assumptions 1–5 hold, and let T : Λ→ Λ be
the operator defined in (32). Then T̃ : Φ→ Λ, the restriction
of T to Φ, is continuous and can be expressed explicitly as
T̃ (x, v) ≡ (f(x, v), ḡ(f(x, v))).

Proof. Recall that, by (30), for all (x, v) ∈ Φ

T (x, v) = (f(x, v), ḡ(f(x, v))) = T̃ (x, v).

Since f and ḡ are continuous by virtue of Lemma 2, T̃ is also
continuous.

Having assembled the required components, we are ready
to show asymptotic stability.

Theorem 3 (Asymptotic Stability). Let Assumptions 1–8 hold.
The point (x∗, v∗), where x∗ = Gxv

∗, is an asymptoti-
cally stable equilibrium of (31) and x0 ∈ ΠxΦ =⇒
limk→∞ (xk, vk) = (x∗, v∗).

Proof. First, note that, by Theorem 2, x0 ∈ ΠxΦ guarantees
that the sequence {(xk, vk)}∞k=0 ⊆ Λ is well defined. More-
over, the sequence {Vk}∞k=0 is non-increasing (Corollary 1)
and bounded from below, hence converging. By virtue of
Lemma 3, we have that there exists η > 0 such that

‖vk+1 − vk‖2 ≤ η−1|Vk+1 − Vk| → 0 (49)

as k → ∞ and thus limk→∞ ||∆vk|| = 0. Moreover, using
Lemma 5, there exists γ ∈ K such that

lim sup
k→∞

‖xk −Gxvk‖Q ≤ γ
(

lim sup
k→∞

‖∆vk‖
)
, (50)

together with the observability of (A,Q), this implies that

lim
k→∞

‖xk −Gxvk‖ = 0. (51)

Therefore, there exists t ≥ 0 such that ‖xk −Gxvk‖ ≤ δ? for
all k ≥ t and thus (xk, vk) ∈ Bδ?(Σ) for all t ≥ k, where δ?

and Bδ(Σ) are defined in Lemma 4.
By virtue of Lemma 4, Bδ∗(Σ) ⊂ Int F implying that
Bδ∗(Σ) ∩ (Rn × Vε) ⊂ Int F ∩ (Rn × Vε) ( Φ, and thus
{(xk, vk)}∞k=t ⊆ Bδ∗(Σ) ⊂ Φ. Hence, for all k ≥ t,

(xk+1, vk+1) = T̃ (xk, vk), (52)

where T̃ is defined in Corollary 2. As T̃ is continuous
(Corollary 2), and V is non-increasing along solutions of
(31) (Corollary 1), the invariance principle [33, Theorem 6.3]
implies that

(xk, vk)→M as k →∞

where M⊂ Φ denotes the largest invariant subset of

Ω = {(x, v) ∈ Φ | V (ḡ(f(x, v))− V (v) = 0}. (53)

Moreover, (51) implies that (xk, vk)→ Σ as k →∞ and thus
(xk, vk)→M∩ Σ as k →∞.

We claim thatM∩Σ = {(x∗, v∗)}; evidently, (x∗, v∗) ∈M
and (x∗, v∗) ∈ Σ. Recall thatM⊂ Ω ⊂ Φ, thus by Lemma 3,

(x, v) ∈M =⇒ ḡ(f(x, v)) = v (54)

furthermore, by virtue of Theorem 1,

(x, v) ∈ Σ =⇒ x = f(x, v) (55)

and thus

(x, v) ∈M∩ Σ =⇒ ḡ(f(x, v)) = ḡ(x) = v. (56)

Moreover, by Lemma 4, for all (x, v) ∈ Σ = B0(Σ) we have
that v 6= v∗ =⇒ g(x) 6= v and thus

(x, v) ∈ Σ and ḡ(x) = v =⇒ v = v∗. (57)

Taking the logical conjunction of right-hand sides of (56) and
(57) immediately yields the implication

(x, v) ∈M∩ Σ =⇒ v = v∗, (58)

and thus M∩Σ = {(x, v) | x = Gxv, v = v∗} = {(x∗, v∗)}
as claimed.

Lyapunov stability of (x∗, v∗) follows from Corollary 1 and
the ISS stability of the tracking error. Therefore, the sequence
{(xk, vk)}∞k=0 ⊆ Λ is well defined, x0 ∈ ΠxΦ implies that
(xk, vk) → (x∗, v∗) as k → ∞ and (x∗, v∗) is a Lyapunov
stable equilibrium point of (31).

Theorem 4 (Finite-time Convergence). Let Assumptions 1–8
hold and consider the closed-loop system (31). Then, for all
x0 ∈ ΠxΦ, there exists t ≥ 0 such that vk = v∗ for all k ≥ t.
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Proof. Thanks to Lemma 1 we know that (x∗, v∗) ∈ Σ ⊂
Int F and thus x∗ ∈ Int Sx(F , v∗) In addition, the definition
of Φ implies that Sx(Φ, v) = Sx(F , v) for all v ∈ Vε and thus
x∗ ∈ Int Sx(Φ, v∗).

Since xk → x∗ ∈ Int Sx(Φ, v∗) as k → ∞ (Theorem 3)
there exists a finite t ≥ 0 such that xt ∈ Sx(Φ, v∗). From
the definition (30), it is evident that g(x, v) = ḡ(x) = v∗ for
all x ∈ Sx(Φ, v∗) and thus vt = g(xt, vt−1) = v∗. Finally,
thanks to Theorem 1, xk ∈ Sx(Λ, v∗) implies that xk+1 =
f(xk, vk) ∈ Sx(Λ, v∗) and thus we can consider two cases,
corresponding to the partition Λ = Φ ∪ (Λ \ Φ). If xk ∈
Sx(Φ, v∗) then vk = g(xk, v

∗) = ḡ(xk) = v∗, and if xk ∈
Sx(Λ \Φ, v∗) then vk = g(xk, v

∗) = v∗ and thus vk = v∗ for
all k ≥ t.

VI. NUMERICAL EXAMPLES

A. Double Integrator
We first consider a double integrator example, which allows

us to visualize the geometries of the sets in the paper. The
system matrices are

A =

[
1 0.1
0 1

]
, B =

[
0

0.1

]
, C =

1 0
0 1
0 0

 , D =

0
0
1

 ,
E =

[
1 0

]
, and F = 0, and the sampling time is ts = 0.1.

The default constraint set is

Y1 = [−1, 1]× [−0.25, 0.25]× [−0.25, 0.25], (59)

and the MPC parameters are Q = I , R = 1, and N =
10 unless otherwise specified. The initial condition x0 =
[−1, 0]T , and reference r = 0.75 are chosen such that
x0 /∈ Sx(Γ10, G

−1
z r). For the following figures, the terminal

set is T = Õ0.01
∞ and is computed using the procedure in

Appendix A.
Figure 6 illustrates the geometries of T and Γ10. The

terminal set T is entirely contained in the feasible set, and
in both cases v is implicitly bounded by the constraints on
x1. The feasible sets form an increasing sequence of sets in
N , i.e., ΓN ⊆ ΓN+1 for all N ≥ 0. This is illustrated in
Figure 7 which uses a modified constraint set

Y2 = [−1, 1]× [−1, 1]× [−0.05, 0.05]

for clarity. The set ΓN appears to be approaching some Γ∞ ⊇
ΓN , we hypothesize that this occurs whenever Y is compact.

Figure 8 uses the original constraints (59) and displays the
responses of the closed-loop system under the MPC + FG
feedback policy. All constraints are satisfied and the auxiliary
reference converges to r in finite time as predicted by the
theory. The same dynamics are displayed in Figure 9 and
illustrates how the MPC + FG navigates Γ10. By the time
vk = r, the current state xk of the system has entered DMPC

(yellow). From here, the FG holds the auxiliary reference
constant and the MPC controller ensures that xk → x̄r as
k →∞.

Figure 10 compares the MPC + FG feedback law with N =
10 to an un-goverened MPC controller with N = N∗ = 236
where

N∗ = N∗(x0, r, T ) = inf
i
{i | (x0, G

−1
z r) ∈ Γi} (60)

Fig. 6. Terminal set T (blue) encased in feasible set Γ10 (teal) for the double
integrator with constraints Y1.

Fig. 7. Increasing the control horizon N expands the size of the feasible set
while the terminal set stays constant. Here T = Γ0 = Õ0.01

∞ with constraints
Y2.

is the smallest horizon length such that the MPC policy
is feasible for the chosen x0. Both these control laws are
also compared to a CG combined with an underlying linear
quadratic regulator (LQR). All three controllers use Q = 100I
and R = 1. The constraint set

Y3 = [−20, 20]× [−1, 1]× [−0.25, 0.25]

is chosen to illustrate what happens when the initial conditions
x0 = [−17, 0]T , and reference r = 4 are chosen far away
from each other. As displayed in Figure 10, there is ≈ 37%
increase in rise time using the FG vs the ungoverned MPC
with N = 236, but the worst case computation time for the
combined FG and MPC feedback policy, with N = 10, is over
5000 times faster than of the ungoverned MPC with N = 236,
see Table I.
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Fig. 8. Closed-loop double integrator trajectories for the MPC + FG control
law using constraints Y1.

Fig. 9. A closed-loop trajectory of the double integrator over the slices
Sx(Γ10, v) for different values of v with constraints Y1. Circle markers show
when the trajectory enters each slice and the star is the point (x∗r , v

∗
r ).

B. Lateral Vehicle Dynamics

This section applies the FG to the lateral dynamics of a
car moving forward at a constant longitudinal speed of Vx =
30m/s. The model is based on the one in [34] and roughly
represents a 2017 BMW 740i sedan.

A diagram of the bicycle model is displayed in Figure 11.
The state of the system is xT = [s ψ β ω] where s is the
lateral position of the vehicle, ψ is the yaw angle, β = ṡ/Vx
is the sideslip angle, and ω = ψ̇ is the yaw rate. The control
input is the front steering angle u = δf and the system is
subject to constraints on yT = [αf αr δf ] where αf and
αr are the front and rear slip angles. The tracking output is

0 10 20 30 40 50 60 70 80

-20

-10

0

10

0 10 20 30 40 50 60 70 80

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80

-0.2

-0.1

0

0.1

0.2

Fig. 10. Closed-loop double integrator dynamics for various control laws with
constraints Y3. The FG outperforms the CG, and although the MPC has the
best performance, its control horizon is too large for real-time applications.

TABLE I
EXECUTION TIME DATA FOR THE DOUBLE INTEGRATOR EXAMPLE.

FG(N = 10) MPC(N = 10) MPC (N = 236) CG
TAVE [ms] 0.0126 0.0884 255 0.00833

TMAX [ms] 0.063 0.345 2170 0.0369

z = s. The system matrices are

A =


0 Vx Vx 0
0 0 0 1

0 0 − 2Cα
mVx

Cα(`r−`f )
mV 2

x
− 1

0 0
Cα(`r−`f )

Izz
−Cα(`2r+`2f )

IzzVx

 , B =


0
0
Cα
mVx
Cα`f
Izz

 ,

C =

0 0 −1 − `f
Vx

0 0 −1 `r
Vx

0 0 0 0

 , D =

1
0
1

 ,

𝛿!𝑠

𝑥

𝜓

ℓ"

ℓ!

𝑉 =
𝑉#
𝑠̇

𝛽

Fig. 11. The bicycle model of the lateral vehicle dynamics.
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E = [1 0 0 0], and F = 0, where m = 2041 kg is the mass
of the vehicle, Izz = 4964 kg ·m2 is the moment of inertia
about the yaw axis, `f = 1.56 m and `r = 1.64 m are the
moment arms of the front and rear wheels relative to the center
of mass, and Cα = 246994 N/rad is the tire stiffness. The
continuous time system matrices are converted to discrete-time
using a zero-order hold (c2d in MATLAB) with a sampling
time of ts = 0.01 seconds. The constraint set is

Y = [−8◦, 8◦]× [−8◦, 8◦]× [−30◦, 30◦], (61)

which represents limits on the front and rear slip angles (to
prevent tire slip and drifting) and a mechanical limit on the
steering angle. The initial condition is x0 = 0, the target
position is r = 5 m, and the weighting matrices are Q = ETE
and R = 0.1. The terminal penalty and gain are computed
using the linear quadratic regulator and the terminal set is
T = Õ0.01

∞ , computed using the procedure in Appendix A.
Figure 12 compares the combined FG + MPC feedback law

for N = 15 with an ungoverned MPC controller with N =
N∗ = 76 where N∗ is as in (60). The rise and settling times
of the combined feedback law is comparable with that of the
ungoverned MPC controller despite a 94% reduction in worst-
case computation time, see Table II.
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Fig. 12. Closed-loop lateral vehicle dynamics responses for the FG with
N = 15 vs. an ungoverned MPC controller with N = 76, the shortest N
such that the initial problem is feasible. The performance (rise-time) of the
FG + MPC combination is only marginally slower than the ungoverned MPC
controller which needs a significantly longer horizon to ensure feasibility.

Figure 13 compares the response of the closed-loop system
for several values of N and with the CG + LQR. As expected,
the FG + MPC solution provides a faster response than the CG
+ LQR solution and the system response becomes faster as N
increases. As N → N∗ the filtering effect diminishes until the
response of the pure MPC controller is recovered.

TABLE II
EXECUTION TIME DATA FOR THE LATERAL VEHICLE DYNAMICS EXAMPLE.

FG(N = 15) MPC(N = 15) MPC(N = 75)
TAVE [ms] 1.4 0.22 11.7

TMAX [ms] 2.7 0.53 54.5
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Fig. 13. Closed-loop lateral vehicle dynamics responses for varying horizon
lengths. The FG outperforms the CG and the system responds more quickly
as N increases.

VII. CONCLUSIONS

This paper has proposed the Feasibility Governor (FG), an
add-on unit that expands the region of attraction of linear
model predictive controllers by manipulating the reference
input passed to the controller and is designed to interfere
minimally with the operation of the nominal controller. It
was shown that the FG is safe, converges in finite time,
and extends the region of attraction of MPC controllers at a
fraction of the computation cost associated with increasing the
prediction horizon. Future work includes extending the FG to
nonlinear settings, and exploring parallelizeable methods for
synthesizing inner-approximation of the feasible set to enable
to application of the FG to large scale systems.

APPENDIX

A. COMPUTING THE TERMINAL SET MAPPING

Substituting the terminal control law (9) into the open-loop
dynamics (1) and using that xv = Gxv and uv = Guv yields

xk+1 = Āxk + B̄v (62)
yk = C̄xk + D̄v ∈ Y (63)

where Ā = A−BK, B̄ = B (KGx +Gu), C̄ = C−DK, and
D̄ = D (KGx +Gu). This is a standard form in the reference
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governor literature, see e.g., [6], [12], [35], which makes use
of the maximal constraint admissible set,

O∞ = {(x, v) | C̄Ākx+

C̄
(
I − Ā

)−1 (
I − Āk

)
B̄v + D̄v ∈ Y, ∀k ≥ 0}. (64)

Since O∞ is maximal, invariant, and constraint admissible
[35, Theorem 1.1] T = O∞ is the largest possible terminal
set mapping (for a given terminal feedback law). However,
O∞ might not be representable by a finite number of linear
inequalities. Thus whenever O∞ is not finitely determined, we
replace it with

Õε∞ = O∞ ∩Oε (65)

where Oε = {(x, v) | (D̄+ C̄(I− Ā)−1B̄)v ∈ (1− ε)Y}. The
set Õε∞ can be made arbitrarily close to O∞ but is guaranteed
to be representable by a finite number of linear inequalities and
is still forward invariant and constraint admissible. Algorithms
for computing Õε∞ are well established and can be found in
[6], [36]; they yield matrices T = [Tx Tv] and a vector c,
such that

Õε∞ = {(x, v) | Txx+ Tvv ≤ c}. (66)

B. CONDENSED MATRIX DEFINITIONS

Let ⊗ denote the Kronecker product and define

Â =


I
A
A2

...
AN

 , B̂ =


0 · · · · · · 0
B 0 · · · 0

AB
. . . . . .

...
...

. . . . . . 0
AN−1B · · · AB B


Ĉ =

[
IN ⊗ Y C 0

0 Tx

]
D̂ =

[
IN ⊗ Y D

0

]
Ĥ =

[
IN ⊗Q 0

0 P

]
and T̂v =

[
0
Tv

]
Then the matrices in (22) are

H = B̂T ĤB̂ + IN ⊗R, Wx = B̂T ĤÂ, W =
[
Wx Wv

]
Wv = − (WxGx +H (1N ⊗Gu)) ,

M = ĈB̂ + D̂, L =
[
ĈÂ T̂v

]
, and b =

[
1N ⊗ h

c

]
,

where 1N is a column of N ones.

C. PROOF OF LEMMA 1

Depending on which condition of Assumption 7 is satisfied,
one of the following holds:

1) Following from (11), the terminal control law (9) ensures
constraint satisfaction ∀(x, v) ∈ T . Therefore, it follows from
(12) that T ⊆ ΓN . The statement is then proven by noting
Σ ⊂ Int T ⊆ Int ΓN .

2) Since (A,B) is controllable, there exists a deadbeat gain
matrix L such that (A − BL)ν = 0 [37]. Thus, given the
control law uk = ūv − L(xk−x̄v), the closed-loop dynamics
of (1) satisfy xk = x̄v, ∀k ≥ ν. Let O∞ denote the maximum
constraint admissible set [6] associated with the deadbeat
dynamics. It follows by definition that (x, v) ∈ O∞ ensures

yk ∈ Y , which implies O∞ ⊆ ΓN due to (12). Since (A−BL)
is Schur [37, Property 2] and v ∈ Vε, it follows from [6,
Theorem 2.1] that Σ ⊂ Int O∞ ⊆ Int ΓN .
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