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When is a Matrix of Dimension 3 Similar to a Metzler

Matrix?

Application to Interval Observer Design

Frédéric Mazenc, ∗ Olivier Bernard, †

Abstract

A simple necessary and sufficient condition ensuring that a real matrix of dimension 3 is similar to
a Metzler matrix is exhibited. When this condition is satisfied, a construction of the transfer matrix is
given. This construction is used to design an interval observer for a family of continuous-time systems.
An example is provided with interval observer design for the love dynamics in the case of limit cycles.

1 Introduction

The family of the Metzler matrices play a crucial role in many circumstances, as explained and illustrated
for instance in the contributions [15], [7], [9], [10], [16], [1]. In particular, they are crucial in the theory of
the positive systems and they can be used to establish stability results for both continuous and discrete-time
systems [20], [23], [4], [9], possibly with delay [12], [25]. Moreover, they play a prominent role in the theory
of the interval observers, initiated in [11] and developed and applied in recent contributions, as for instance
[8], [19], [5] and [2].

However, most of the matrices are not Metzler, which drastically limits the domain of application of the
theories based on Metzler matrices. In order to overcome this limitation, in [18], we have shown how, for
any matrix A ∈ Rn×n with n ∈ N, one can construct a function P : [0,∞) → Rn×n of class C1, bounded
with a bounded inverse and a constant Metzler matrix M ∈ Rn×n such that

Ṗ (t) = MP (t)− P (t)A (1)

for all t ≥ 0. A constant function P can be found in particular cases, notably when all the eigenvalues of
A are real numbers. Indeed, in this case, the Jordan form of the matrix A is Metzler. This function P is
especially useful when one wants to transform a linear system into a linear cooperative system: it yields the
time-varying change of coordinates Z = P (t)X which transforms the system

Ẋ(t) = AX(t) (2)

into the cooperative system

Ż(t) = MZ(t). (3)

The fundamental message of this result is that any linear time-invariant continuous-time system of any
dimension can be transformed into a time-invariant cooperative system. A similar message is given in the
paper [19] for discrete-time systems.

Since time-invariant changes of coordinates are simpler than time-varying ones, an interesting question
is whether for a given real matrix A there exists a time-invariant change of coordinates which transforms (2)
into a cooperative system (3), i.e. whether A is similar to a Metzler matrix M .
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For matrices of dimension 2, an answer to this question is given in the literature: from the main result
of the paper [17], one can deduce that a matrix A ∈ R2×2 is similar to a Metzler matrix if and only if its
eigenvalues are real numbers. For matrices of larger dimension, no similar result exists and not many results
available in the literature shed light on this problem, even for matrices in R3×3. The most significant one is
that some Metzler matrices of dimension 3 have two complex eigenvalues. This is the case for instance of
the matrix

U =

 0 0 1
1 0 0
0 1 0

 (4)

whose eigenvalues are
{

1, −1+i
√

3
2 , −1−i

√
3

2

}
.

These remarks motivate the present work. Our aim is to determine a condition ensuring that a matrix in
R3×3 is similar to a Metzler matrix. Let us recall that when all the eigenvalues of a matrix of dimension 3
are real numbers, then we know that such a change of coordinates exists since the Jordan form of the matrix
is Metzler. We deduce from the properties of U that when 2 of its eigenvalues are not real, then in some
cases, such a change of coordinates exists. But it is unknown whether it always exists. We will prove that
the answer is no and we will give a necessary and sufficient condition guaranteeing that a matrix A ∈ R3×3

is similar to a Metzler matrix. This condition can be easily checked and, when it is satisfied, we will provide
with the construction of an invertible matrix P ∈ R3×3 and of a Metzler M ∈ R3×3 such that M = PAP−1.
This implies that the result we propose can be straightforwardly used to solve the problems requiring Metzler
forms. We also give a necessary and sufficient condition guaranteeing that A is similar to a matrix whose off
diagonal entries are positive, which can also be easily checked. Our result complement [6] which proposed a
technique making possible for controllable pairs (A,C) to find matrices P , L or appropriate dimension such
that P (A+ LC)P−1 is Metzler.

The paper is organized as follows. Preliminary results are given in Section 2. The main result is stated
and proved in Section 3. Section 4 is devoted to an interval observer designed, which uses the main result
as key tool. An illustrative example is given in Section 5. Concluding remarks are drawn in Section 6.

Notation. We use standard notation, which is simplified when no confusion would arise. The standard
Euclidean norm, and the induced matrix norm, are denoted by | · |. We let I denote an identity matrix
of any dimension. For a matrix M ∈ Rm×m whose entries are mi,j ∈ R, we denote by M+ the matrix
whose entries are max{0,mi,j} and by M− the matrix whose entries are max{0,−mi,j}. For two vectors,
V = [v1 ... vr]

> ∈ Rr and W = [w1 ... wr]
> ∈ Rr, we write V ≤W when, for all i ∈ {1, ..., r}, vi ≤ wi.

2 Preliminaries

2.1 Perron-Frobenius theorem

Let us recall a simplified version of Perron-Frobenius theorem [21].

Theorem 1. If A ∈ Rn×n is an irreductible nonnegative matrix, then its spectral radius µ(A) is an eigenvalue
of A and there is a vector V ∈ Rn whose components are all positive such that AV = µ(A)V .

2.2 Technical results

In this part, we give first two lemmas which show how, for any matrix in R3×3 with two complex eigenvalues,
one can prove through a constructive approach that the matrix is similar to a matrix of the form θ 0 0

0 κ ω
0 −ω κ

 ∈ R3×3.

A last lemma, which will be instrumental when we establish the main result, ends the section.

Let us establish a first a result that is devoted to matrices in R2×2.
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Lemma 1. Let us assume that the matrix

G =

[
g11 g12

g21 g22

]
∈ R2×2 (5)

admits 2 complex eigenvalues. Then

Ω =

√
−g12g21 −

(
g11 − g11

2

)2

(6)

is well-defined, positive and the matrix

P =

[
1
Ω

g22−g11
2Ωg21

0 − 1
g21

]
∈ R2×2 (7)

is well-defined, invertible and such that

PGP−1 =

[
g11+g22

2 Ω
−Ω g11+g22

2

]
. (8)

Proof. By studying the characteristic polynomial of the matrix G, one can prove that this matrix admits

two complex eigenvalues if and only if −g12g21 −
(
g11−g11

2

)2
> 0, which implies that Ω is well-defined and

positive. Moreover, the matrix P is well-defined because, due to the fact that no eigenvalue of G is real,
g21 6= 0. Then through simple calculations, one can check that the equality (8) is satisfied. This concludes
the proof.

Let us establish a second a result that is devoted to matrices in R3×3.

Lemma 2. Consider a matrix A0 ∈ R3×3 which admits complex eigenvalues. Then there are real numbers
θ, κ and ω > 0 such that the spectrum of A0 is {θ, κ+ iω, κ− iω} and there is an invertible matrix Q ∈ R3×3

such that

QA0Q
−1 = A1 (9)

with

A1 =

 θ 0 0
0 κ ω
0 −ω κ

 ∈ R3×3. (10)

Proof. We deduce from [13, p. 73] that A0 is similar to the matrix A1. One can determine an explicit
expression for Q by putting first A in a triangular form with a second diagonal block of dimension 2 and
next by taking advantage of Lemma 1.

The last result of the section is the following:

Lemma 3. Consider a matrix

A1 =

 θ 0 0
0 κ ω
0 −ω κ

 ∈ R3×3 (11)

with θ ∈ R, κ ∈ R and ω > 0. Let

A2 =

 θ−κ
ω 0 0
0 0 1
0 −1 0

 (12)

Let P ∈ R3×3 be an invertible matrix. Then PA1P
−1 a Metzler matrix if and only if PA2P

−1 is a Metzler
matrix.
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Proof. Since

A1 =

 θ − κ 0 0
0 0 ω
0 −ω 0

+ κI = ωA2 + κI (13)

and ω > 0, then
PA1P

−1 = ωPA2P
−1 + κI. (14)

This allows us to conclude.

3 Main result

In this section, we establish the main theoretical result of the work:

Theorem 2. Let A ∈ R3×3 be a matrix whose spectrum is {θ, κ+ iω, κ− iω} with θ ∈ R, κ ∈ R and ω > 0.
This matrix is similar to a Metzler matrix if and only if the inequality

θ ≥ κ+
√

3ω (15)

is satisfied. When (15) is satisfied, this matrix is similar to the Metzler matrix:

H =
1

3

 θ + 2κ θ − κ−
√

3ω θ − κ+
√

3ω

θ − κ+
√

3ω θ + 2κ θ − κ−
√

3ω

θ − κ−
√

3ω θ − κ+
√

3ω θ + 2κ

 . (16)

The matrix A is similar to a matrix whose off-diagonal entries are positive if and only if

θ > κ+
√

3ω. (17)

Remark. When the inequality (17) is satisfied, then all the off diagonal entries of H are positive.

3.1 Proof of Theorem 2

3.1.1 Preliminary remarks

Since A ∈ R3×3 is a matrix whose spectrum is {θ, κ+ iω, κ− iω}, then, according to Lemma 2, it is similar
to the matrix:

A1 =

 θ 0 0
0 κ ω
0 −ω κ

 . (18)

Next, Lemma 3 prompts us to study first the matrix:

A] =

 α 0 0
0 0 1
0 −1 0

 (19)

with

α =
θ − κ
ω

. (20)

3.1.2 First part

In this part, we prove the following result:

Proposition 1. The matrix A1 defined in (18) is not similar to a Metzler matrix when the inequality

θ <
√

3ω + κ (21)

is satisfied.
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Proof. We distinguish between 2 cases.

First case: θ ≤ κ. Then α defined in (20) satisfies α ≤ 0.

Let us proceed by contradiction: let us assume that A] defined in (19) is similar to a Metzler matrix
M ∈ R3×3.

Then there is a constant d ∈ R such that the matrix

N = dI +M (22)

is nonnegative, irreductible and with positive diagonal entries. Indeed, if it was reductible, a permutation
would yield a block diagonal matrix with a block of dimension 2 associated to complex eigenvalues, which
would not be nonnegative [17]. Then Perron-Frobenius theorem ensures that the spectral radius of N ,
denoted µ(N), is an eigenvalue of N and µ(N) ≥ 0.

Now, observe that the eigenvalues of the matrix N are d+ α, d+ i and d− i because the eigenvalues of
A] are α, i,−i. As an immediate consequence,

µ(N) = d+ α (23)

because d+ α is the unique eigenvalue of N that is a real number. On the other hand, by definition,

µ(N) = max{|d+ α|,
√

1 + d2}. (24)

It follows that
d+ α = max

{
d+ α,

√
1 + d2

}
≥
√

1 + d2. (25)

As an immediate consequence,

α ≥
√

1 + d2 − d > 0, (26)

which is in contradiction with α ≤ 0.

Second case: θ ∈ (κ, κ+
√

3ω). Then α defined in (20) satisfies α ∈ (0,
√

3).

Let us proceed by contradiction: let us assume that A] in (19) is similar to a Metzler matrix M = (mij)
i.e. there is an invertible matrix P ∈ R3×3 such that PA]P

−1 = M . It follows that

PA2
]P
−1 = M2. (27)

Since

A2
] =

 α2 0 0
0 −1 0
0 0 −1

 , (28)

it follows that the trace of A2
] is α2 − 2. On the other hand, the trace of M2 is

m2
11 +m2

22 +m2
33 + 2m12m21 + 2m13m31 + 2m23m32. (29)

Since the trace of A2
] is equal to the trace of M2, the equality

α2 = m2
11 +m2

22 +m2
33 + 2m12m21 + 2m13m31 + 2m23m32 + 2 (30)

is satisfied. Since M is Metzler, 2m12m21 + 2m13m31 + 2m23m32 ≥ 0, which, in combination with (30),
implies that

α2 ≥ m2
11 +m2

22 +m2
33 + 2. (31)

On the other hand, the trace of M is equal to the trace of A], which implies that

m33 = α− (m11 +m22). (32)
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By combining (31) and (32), we obtain

α2 ≥ m2
11 +m2

22 + (α−m11 −m22)2 + 2. (33)

This inequality is equivalent to

α(m11 +m22) ≥ m2
11 +m2

22 +m11m22 + 1. (34)

Therefore m11 +m22 > 0 and
α ≥ Γ(m11,m22) (35)

with

Γ(m11,m22) =
m2

11 +m2
22 +m11m22 + 1

m11 +m22
. (36)

Now, let us study Γ. If m11m22 ≤ 0, then

Γ(m11,m22) = m11 +m22 +
1−m11m22

m11 +m22
≥ m11 +m22 +

1

m11 +m22
≥ 2. (37)

Now, consider the case where m11 > 0 and m22 > 0. From Γ(`, 0) = `+ 1
` ≥ 2 and Γ(0, `) ≥ 2 for all ` > 0,

we deduce that the smallest value taken by Γ in (0,+∞) × (0,+∞) is either 2 or Γ(m11,?,m22,?) where
(m11,?,m22,?) ∈ (0,+∞)× (0,+∞) is such that

∂Γ

∂m11
(m11,?,m22,?) =

∂Γ

∂m22
(m11,?,m22,?) = 0. (38)

Simple calculations give

∂Γ

∂m11
(m11,m22) =

2m11 +m22

m11 +m22
− m2

11 +m2
22 +m11m22 + 1

(m11 +m22)2
(39)

and
∂Γ

∂m22
(m11,m22) =

m11 + 2m22

m11 +m22
− m2

11 +m2
22 +m11m22 + 1

(m11 +m22)2
. (40)

These equalities and (38) imply that m11,? = m22,?. This equality and (39) and (40) give:

∂Γ

∂m11
(m11,?,m22,?) =

3

2
−

3m2
11,? + 1

4m2
11,?

=
∂Γ

∂m22
(m11,?,m22,?). (41)

Thus
∂Γ

∂m11
(m11,?,m11,?) =

3

4
− 1

4m2
11,?

. (42)

Then the equality ∂Γ
∂m11

(m11,?,m11,?) = 0 implies that m11,? = 1√
3
. Consequently, (m11,?,m22,?) =(

1√
3
, 1√

3

)
. We deduce that when m11 > 0 and m22 > 0, then

Γ(m11,m22) ≥ Γ(m11,?,m22,?) =
1
3 + 1

3 + 1
3 + 1

2 1√
3

=
√

3. (43)

Since α <
√

3, it follows that (35) is not satisfied. This yields a contradiction.

3.1.3 Second part

Let us introduce a matrix

R =

 1 0 2

1
√

3 −1

1 −
√

3 −1

 (44)

and prove the following result:
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Proposition 2. The matrix A1 defined in (18) is similar to a Metzler matrix when

θ ≥ κ+
√

3ω. (45)

The equality
RA1R

−1 = H (46)

with R defined in (44) is satisfied and H defined in (16).

Proof. One can prove the result through simple calculations. For instance, one can show that

RA1 = HR =

 θ −2ω 2κ

θ
√

3κ+ ω
√

3ω − κ
θ ω −

√
3κ −

√
3ω − κ

 . (47)

3.1.4 Conclusion of the proof

From Lemma 2, we deduce that the matrix A is similar to a Metzler matrix if and only if the matrix A1

defined in (18) with ω > 0 is similar to a Metzler matrix. Then, from the first and the second part of the
proof of Theorem 2, we can easily complete the proof, except that we must still show that the matrix A is
similar to a matrix whose off-diagonal entries are positive if and only if (17) holds. The sufficient part of
this assertion follows from the off-diagonal entries of H being positive when (17) holds. Nothing has to be
proved in the case where θ < κ+

√
3ω because the second part of the proof of Theorem 2 ensures that A is

not similar to a Metzler matrix. Thus, what remains to be studied is the limit case: θ = κ+
√

3ω.
Let us proceed by contradiction. Let us assume that θ = κ+

√
3ω and A1 is similar to a matrix F whose

off-diagonal entries are positive. Then there is a constant ε > 0 such that this property holds for any matrix
F‡ ∈ R3×3 such that |F − F‡| ≤ ε. By continuity of the eigenvalues of a matrix with respect to its entries,
we deduce that there are constants θ, κ and ω such that θ < κ+

√
3ω and the corresponding matrix A1,4 is

similar to a matrix F4 such that |F −F4| ≤ ε. It follows that A1,4 is similar to a matrix whose off-diagonal
entries are positive. This yields a contradiction with the fact that θ < κ+

√
3ω. We conclude that A1 is not

similar to a Metzler matrix.

4 Application to interval observer design

In this section, we take advantage of Theorem 2 to construct time-invariant interval observers for a family of
systems which is frequently encountered in practice. Throughout this section, we use the notation introduced
in the previous sections.

We consider the system:
ẋ(t) = (A1 +B)x(t) + w + λ(t) (48)

with x ∈ R3, where A1 ∈ R3×3 is the matrix defined in (10), B ∈ R3×3, w is a constant vector and
λ : [0,+∞)→ R3 is a continuous function. Let us observe that Λ may represent a measured nonlinear term
that depends on x(t).

Let us introduce two assumptions:

Assumption A. The eigenvalues of A are θ, κ + iω, κ − iω and the inequality θ >
√

3ω + κ holds. The
entries of the matrix B† = RBR−1 = (bi,j†) satisfy:

bi,j† ≥ κ+
√

3ω − θ , ∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)},
bi,j† ≥ κ−

√
3ω − θ , ∀(i, j) ∈ {(1, 3), (2, 1), (3, 2)}. (49)

Assumption B. Two vectors w ∈ R3 and w ∈ R3 and two continuous functions λ : [0,+∞) → R3 and
λ : [0,+∞)→ R3 such that

w ≤ w ≤ w (50)
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and
λ(t) ≤ λ(t) ≤ λ(t) , ∀t ≥ 0 (51)

are known.

We are ready to state and prove the following result:

Proposition 3. Let the system (48) satisfy Assumptions A and B. Then

ż(t) =
(
H +RBR−1

)
z(t) +R+w −R−w +R+λ(t)−R−λ(t)

ż(t) =
(
H +RBR−1

)
z(t) +R+w −R−w +R+λ(t)−R−λ(t)

x(t) = (R−1)+z(t)− (R−1)−z(t)
x(t) = (R−1)+z(t)− (R−1)−z(t)
z(t0) = R+xl(t0)−R−xs(t0)
z(t0) = R+xs(t0)−R−xl(t0),

(52)

where H is the matrix defined in (16) and R is the matrix defined in (44), is an interval observer for the
system (48), i.e. if the inequalities xs(t0) ≤ x(t0) ≤ xl(t0) hold, then the inequalities x(t) ≤ x(t) ≤ x(t) hold
for all t ≥ t0.

Proof. According to Proposition 2, the change of coordinates z(t) = Rx(t) gives:

ż(t) =
(
RA1R

−1 +RBR−1
)
z(t) +Rw +RΛ(t). (53)

This systems can be rewritten as:

ż(t) = (H +B†) z(t) +Rw +RΛ(t), (54)

where B† = RBR−1. Assumption A ensures that the matrix H + B† is Metzler. This fact, in combination
with Assumption B, ensures that{

ż = (H +B†) z(t) +R+w −R−w +R+λ(t)−R−λ(t)

ż = (H +B†) z(t) +R+w −R−w +R+λ(t)−R−λ(t),
(55)

with z ∈ R3 and z ∈ R3, is such that for initial conditions satisfying the inequalities

z(t0) ≤ z(t0) ≤ z(t0) (56)

then
z(t) ≤ z(t) ≤ z(t) (57)

for all t ≥ t0. Then arguing for instance as in the proof of [22, Theorem 4], we can conclude.

5 Example: the dynamics of love

5.1 Case study presentation

S. Rinaldi [24] proposed a model describing the love dynamics between Laura de Noves and Petrarch,
demonstrating that it leads to periodic dynamics. One of the most interesting point of this work is that the
model was calibrated and validated using data. The 23 dated poems out of the 366 poems Petrarch wrote
in the Canzoniere during 21 years were analyzed from a linguistic and lyric point of view [14]. A grade
P ∈ (−1; 1) was then assigned to each poem. The maximum grade corresponds to ecstatic love, and the
minimum stands for deep despair. There is obviously an uncertainty inherent to the quantitative estimate
of Petrarch’s mood, but also there are uncertainties in the dating of some of the poems.

On this basis, Rinaldi’s model describes the love dynamics by three variables. The love of Laura for
Petrarch is denoted L. The love of Petrarch for Laura (P ) is also related to its poetic inspiration Z. The
model writes as follows: 

L̇(t) = −α1L(t) +RL(P (t)) +Ap
Ṗ (t) = −α2P (t) +RP (L(t)) + β2AL(Z(t))

Ż(t) = −α3Z(t) + β4P (t).

(58)
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The positive real numbers αi, i = 1, 2, 3 represent the sentiment forgetting rate for each individual and
for Petrarch’s inspiration. The terms RL(P ) (resp. RP (L)) is the reaction function, which quantifies the
reaction of Laura (resp. Petrarch) to Petrarch’s (resp. Laura’s) love. The term AP (resp. AL(Z)) is the
appeal of Laura (resp. Petrarch) for Petrarch (resp. Laura). The function RP (L) is linear while the nonlinear
reaction function RL(P ) accounts for the fact that Laura feels very sorry for Petrarch when he is crossing a
despairing phase:

RL(P ) = β1P
(

1− (Pγ )2
)

, RP (L) = β4L. (59)

Finally, the decreasing function AL(Z) represents the fact that artistic inspiration ”attenuates the role of
the most basic instincts”. Rinaldi proposed a hyperbolic term, but we choose a simpler linear function:

AL(Z) = β2 − β3Z. (60)

The term AP is constant (AP = β1).
In this example, it is assumed that the reaction function of Laura for Petrarch can be evaluated from her

social behaviour, i.e. from her mood (see Figure 1b).
All the model parameters are positive. They were recalibrated to fit the available data (see Table 1), as

shown in Figure 1c). A limit cycle is rapidly reached as shown on figure 1a.

Parameter value Parameter value
α1 4.8 β1 21.3
α2 77.76 β2 333
α3 4.096 β3 29.4048
γ 0.4800 β4 0.4500

Table 1: Parameters used to simulate the love model (a recalibration was carried out to account for the
slightly different model compared to [24].)

Now the love model takes the following form:

ẋ(t) = A0x(t) + b+ ψ(t) (61)

where

A0 =

 −α1 0 0
0 −α2 −β3

0 β4 −α3

 ; b =

 β1

β2

0

 . (62)

The vector ψ(t) = [RL(P (t)) 0 0]> contains Laura’s mood, supposed to be the measured output. The
objective is now to design an interval observer so as to reconstruct the love of Laura and Petrarch, together
with the inspiration of Petrarch from ψ(t). There is obviously an uncertainty in the interpretation of the
mood of Laura, and therefore we assume that:

ψ(t) ≤ ψ(t) ≤ ψ(t) (63)

for all t ≥ 0 where ψ and ψ are two known continuous functions. In the same way, we assume uncertainty
on the vector b:

b ≤ b ≤ b, (64)

where b ∈ R3 and b ∈ R3 are two known vectors.

5.2 Observer design

Let Q denote a matrix such that QA0Q
−1 = A1, where A0 is the matrix defined in (62) and A1 is the matrix

in the canonical form (47). (Let us recall that Q can be constructed using Lemma 1). Since, with the chosen
parameter values, the spectrum of A1 is {−4.8000;−14.9424 + 3.4674i;−14.9424 − 3.4674i}, one can check
easily that that the necessary and sufficient condition of Theorem 2 is satisfied:

−4.8000 ≥ −14.9424 + 3.4674
√

3. (65)

9



As a consequence A1 is similar to a Metzler with R given by (44) as transfer matrix.

Proposition 3 gives us the interval observer:

ż(t) = Hz(t) + bH + ψH(t)
ż(t) = Hz(t) + bH + ψ

H
(t)

x(t) = ((RQ)−1)+z(t)− ((RQ)−1)−z(t)
x(t) = ((RQ)−1)+z(t)− ((RQ)−1)−z(t)
z(t0) = (RQ)+xl(t0)− (RQ)−xs(t0)
z(t0) = (RQ)+xs(t0)− (RQ)−xl(t0),

(66)

with
bH = (RQ)+b− (RQ)−b,

bH = (RQ)+b− (RQ)−b,

ψH(t) = (RQ)+ψ(t)− (RQ)−ψ(t),

ψ
H

(t) = (RQ)+ψ(t)− (RQ)−ψ(t).

(67)
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Figure 1: Simulation of the love model and interval observer estimation.

The observer is run on Figure 1c, assuming that the initial conditions are unknown but with known
bounds. Laura’s mood as measured in Figure 1b was used by the interval observer. The interval predictions
encompass the data points estimated from the analysis of Petrarque’s sonnets. The state interval prediction
is also presented on Figure 1d.
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6 Conclusion

For the real square matrices of dimension 3, we determined a necessary and sufficient condition ensuring
that a matrix is similar to a Metzler matrix. For matrices satisfying this condition, we exhibit a transfer
matrix. We have used it to build interval observers for a family of continuous-time systems with uncertain
disturbances.

Extensions of the main result of our work to matrices of dimension larger than 3 are expected and will
be the subject of further studies as long as their application to interval observer designs.
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