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Integral-Input-to-State Stability of Switched
Nonlinear Systems Under Slow Switching

Shenyu Liu

Abstract—In this article we study integral-input-to-state
stability (ilSS) of nonlinear switched systems with jumps.
We demonstrate by examples that ilSS is not always pre-
served under slow enough dwell time switching, and then
we present sufficient conditions for iISS to be preserved
under slow switching. These conditions involve, besides a
sufficiently large dwell time, some additional properties of
comparison functions characterizing ilSS of the individual
modes. When the sufficient conditions that guarantee iISS
are only partially satisfied, we are then able to conclude
weaker variants of iISS, also introduced in this work. As an
illustration, we show that switched systems with bilinear
zero-input-stable modes are always iISS under sufficiently
large dwell time.

Index Terms—Switched systems, stability analysis, non-
linear systems, Lyapunov methods.

[. INTRODUCTION

SWITCHED system is a dynamical system that consists of
A several subsystems and a logical rule, called a switching
signal, which governs the switching between these subsystems.
Due to their significance both in theory development and in
practical applications (see, e.g., the book [ 1] or the survey [2] and
the references therein), switched systems have received a great
deal of attention in the last couple of decades. Nevertheless,
the study of switched systems is still a challenging topic in
the modern engineering literature because a switched system
does not necessarily inherit the properties of its subsystems in
general. For example, even if all the subsystems are stable, the
switched system may still be unstable. Additional assumptions
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are needed to guarantee stability, either on the dynamics of
all the subsystems—such as assuming the existence of a com-
mon Lyapunov function, which gives stability under arbitrary
switching [1, Th. 2.1] (the converse is also true under some mild
assumptions, see [3])—or on the switching signals, such as not
allowing the switches to happen too often [4], [5], or a mix of
the two.

When the subsystems are nonlinear and there are external
inputs, input-to-state stability (ISS) [6] and integral-input-to-
state stability (iISS) [7] can be used for the stability analysis.
When all the subsystems are ISS with some mild assumptions,
it has been shown using a Lyapunov function approach that the
switched system is ISS as well under dwell time switching or
average dwell time switching [5], [8], [9]; that is, the switching
cannot happen too frequently.

However, regarding the iISS counterpart, it is not trivial to
identify the assumptions that the subsystems need to meet (in
addition to iISS) to ensure the iISS property for the switched
system.

Indeed, we have observed in our recent work [10] that some
switched systems with iISS subsystems are never iISS no matter
how long the dwell time is. We showed that for such switched
systems, bounds on the norm of the initial state and input
energy have to be known prior to determining how slow the
switching should be so that the switched system is iISS. We
will also provide another example in this article to emphasize
this problem. Unlike the one in [10], the best we can do in this
example is to derive an ilSS-like estimate on the solution with
some offsets; in other words, under any dwell time switching and
when there are no inputs, the solution of the switched system may
not converge to the equilibrium but only to a neighborhood of
it. Those observations suggest that we may only conclude some
weaker versions of iISS when analyzing a switched system under
slow switching, even if all its subsystems are iISS. On the other
hand, there are still “good” switched nonlinear systems which
inherit the iISS property from their subsystems; for example,
switched bilinear systems which will also be discussed in this
article. With that being said, this article aims to fill in the gap in
the study of iISS of switched nonlinear systems with three main
objectives as follows.

1) Define some weaker variants of iISS for switched nonlin-
ear systems under slow switching.

2) Derive sufficient conditions so that the switched systems
admit those weaker variants of iISS properties.

3) Show that when all the sufficient conditions hold, the
switched system is iISS under slow switching.

For more information, see http://creativecommons.org/licenses/by/4.0/
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We briefly mention some relevant research here. ISS for
switched systems is also studied in [11] and [12] and the very
recent work [13], just to name a few. ISS for hybrid systems
is first studied in [14] and ISS for impulsive systems is studied
in [15] and [16]; those studies can be generalized to switched
systems. In terms of iISS results for switched systems, a converse
theorem for iISS of switched systems is proposed in [17] while
iISS is studied in the hybrid system framework in [18]. State-
dependent switching is studied in [19] and [20] to guarantee
iISS of switched systems. Some connections between ISS and
iISS for switched systems are discussed in [21], and further
characterizations of iISS for switched systems are presented by
the same authors in [22]. A weaker variant of iISS, quasi-iISS
which depends on the switching signal, is introduced in our
recent work [10] and we have shown that under some mild
assumptions, a switched system with all iISS subsystems is
guaranteed to be quasi-ilSS under slow switching. In this work
we prove that those assumptions in fact guarantee uniform quasi-
iISS with respect to all switching signals with the same dwell
time condition. In addition, we identify other conditions which,
when combined with the sufficient conditions for quasi-ilSS,
imply that the switched system is iISS.

This article is organized as follows: Basic notations are in-
troduced and the switched systems as well as variants of iISS
are defined in Section II. Section III provides two examples of
switched systems where iISS cannot be achieved by any dwell
time switching, which shows why we need some weaker variants
of iISS. Our main results are then stated in Section IV and
they are proven in Section V after some supporting lemmas are
provided. With these results, the earlier examples are revisited in
Section VI and a result on switched bilinear systems is derived.
Section VII contains some remaining discussions and future
work, followed by the conclusion in Section VIII.

Il. PRELIMINARIES
A. Notations

We use the convention that N = {0, 1,--- } is the set of all
natural numbers including 0 and Ny = N\{0}. We denote the
maximum between a and b by a V b, and the minimum between
a and b by a A b. For convenience, we also use \/i-_, a; (resp.
Ai—; a;) to denote the maximum (resp. minimum) in the set
{al, ey an}.

We say « € PD (positive definite) if a : [0, 00) — [0, 00)
is continuous and «(0) =0, a(s) >0 for all s > 0. Some
notations of comparison functions from [23] are adopted here.
We say x € K if x € PD and it is strictly increasing. We
say v € Koo if v € K and limg_,o y(s) = 0co. We say v € L
if v is nonincreasing and lim,_,, y(s) = 0. We say § € KL
if 8:]0,00) x [0,00) — [0,00) is such that for any fixed ¢,
B(-,t) € K and for any fixed s, 5(s,-) € L.

B. Switched Systems

Let P C N, be a set of either finite or infinite cardinality.
For all p € P, let the vector fields f,(z,u) : R" x R"™ — R"
be locally Lipschitz, uniformly with respecttop € P and assume
they have the common equilibrium property that f,,(0,0) = 0.

The differential equations
&= fp(w,u), peP ey

where x(t) € R"™ is the state variable of the system and u(t) €
U C R™ is the input variable, are the dynamics of the subsys-
tems or modes of the switched system. We consider the input
u being measurable, locally essentially bounded and we denote
the set of such input functions taking values in U by M. For
all pairs (p, q) € P2, define the jump maps g, o(x) : R — R"
which are continuous in 2, uniformly with respect to (p, q) € P>
and assume that they have the common equilibrium property
that g, 4(0) = 0. Let ¥ be the set of all left-continuous map-
pings (which are also measurable) from [0, 00) to P, called
switching signals. For each switching signal o € 3, define the
orderedset {t1,t2, -+ } =T (0) :={t € Rug:0(tT) #o(t)}
with o (t7) := lim,. ; o(s); in other words, T (o) is the collec-
tion of times when switches occur. Note that by this definition
we have assumed that there is no switch at the initial time
to = 0. Define the class of switching signals with some dwell
time Tp > 0

S(rp) ={0 €T : |tix1 — ti| > 7p Vti,tiz1 € T(0)}. (2)

Note that ¥(7p) is a more regular set of switching signals com-
pared to X as the positive dwell time 7p prevents accumulated
switches and chattering. For a given o € X(7p), a switched
system is defined by

E(t) = foq(x(t), u(t) if t & T (o)
x(t+) = ga(t),o’(t‘*')(x(t)) ift € T(U)

We denote the solution of (3) with initial state zq, input u, and
switching signal o by z(-; 2o, u,c). When xq,u,c are clear
from the context, the solution is also abbreviated by x(-). Note
that by definition of (3), z(+; zo, u, o) obeys some differential
equation when there is no switch, and it jumps when there is a
switch. When there are no state jumps, i.e., all g,, , functions are
identity functions, (3a) is sufficient to describe the dynamics of
the switched system. In this case we say that the switched system
is jump-free. In general the jump maps g, , could be functions
of states and inputs so when there are jumps, the magnitude of
the jumps could also depend on the input, which is discussed in
the framework of hybrid systems in [14] or impulsive systems
in [15]. The presence of inputs in the jump map would require
additional care in treating u(t;) for ¢; € T (o) when defining
iISS. Our work can be easily extended to that more general
framework; nevertheless, for the clarity of presentation we focus
on the framework of (3) and the simpler stability definitions
which are introduced in the next subsection.

(3a)
(3b)

C. Stability Definitions

We start by defining iISS for switched systems.

Definition 1: The switched system (3) is iISS under slow
switching if there exist a dwell time 7p > 0 and functions
8" € KL and v*, x* € I, such that

(2(t:20,0,0)] < B* (o], £) + 7 ( / X*(IU(T)I)dT> @)

forallt > 0,20 € R",u € My andall 0 € X(7p).
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The phrase “under slow switching” indicates that we only ask
the iISS property to hold for sufficiently large 7. Note that our
definition of iISS is uniform with respect to the switching signal
in the sense that 5*,~+* are independent of 0. When there are no
switches, the above definition reduces to the classical ilSS notion
for a nonswitched system [7], which can also be characterized
by an iISS-Lyapunov function.

Lemma 2.1: The system

&= f(z,u)

is iISS if and only if there exist a C* function V : R™ — [0, 00)
and functions a € PD, a1, s € K, x € K satisfying

ar(lz]) < V(z) < as(lz|) Ve eR"” (5)
and

VV(z)- f(z,u) < —a(V(z)) + x(Ju]) YeeR" uel.
(6)
Note that (6) is different from the more standard ilSS-
Lyapunov function condition

VV(x) - f(z,u) < —allz]) + x(|ul)

where « is evaluated on |z|, not V' (z). Nevertheless, in the proof
of [7, Th. 1] it is shown that the two conditions are equivalent,
and hence we will always use (6) when defining iISS-Lyapunov
functions.

Next, we introduce two weaker variants of iISS.

Definition 2: The switched system (3) is quasi-ilSS (qilSS)
under slow switching if for all §;,do > 0 there exist a dwell
time 7p > 0 and functions $* € KL and v*, x* € I, such that
the estimate (4) holds for all ¢ > 0, 2o € R™ with |z¢| < 41,
u € My with [;° x*(Ju()|)dr < bz and all o € 5(7p).

Definition 3: The switched system (3) is integral-input-to-
state practically stable (ilSpS) under slow switching if for each
03 > 0 there exist a dwell time 7 > 0 and functions 5* € KL,
~*,and x* € K, such that

(2t 20w, 0)| < B*(jwol, £) + 7° ( / x*<|u<f>>d7) I’

@)
forallt > 0,29 € R",u € My,andall o € X(7p).

The qilISS property is inspired by “quasi-disturbance-to-error
stability” (qDES) in the work [24], and the prefix “quasi” means
the nonlinear estimates are not global but depend on initial condi-
tions and magnitude of inputs. Analogously, the prefix “quasi” is
here intended in a similar way as the prefix “semiglobal” defined
in the work [25] and [26], where the system is nonswitched. The
iISpS property is inspired by “input-to-state practical stability”
(ISpS) in the work [27], and the qualifier “practical” refers
to the presence of an offset term. Note that we also use the
phrase “under slow switching” in the definitions of qilSS and
iISpS, which indicates that we only ask the estimates to hold for
sufficiently large dwell time 7p.

The following proposition regarding iISS, qilSS, and iISpS
can be stated.

Proposition I1.2: The switched system (3) is iISS under slow
switching if and only if it is both qiISS and iISpS under slow
switching.

Proof: The implication from iISS under slow switching to
qiISS and iISpS under slow switching is clear. To show the other
direction, we start by assuming that the system (3) is both qiISS
and iISpS under slow switching. Pick 1, 2,5 > 0 with 5 <
1. Note that iISpS implies the existence of 5] € KL, v}, x} €
K and 7p, > 0, such that for all ¢ > 0, g € R", u € My and
all o € X(7p,)

(2t 20,4, 0)| < B (1o, £) + 7 ( / x’{(lu(T))dT> 5y

(8)
while qiISS implies the existence of 55 € KL and 7po > 0, such
that

|$(t;$0,0,0’)| < B§(|x0\,t) vVt >0, ‘LL'()‘ <dy,0 € E(TD2).

©)
Consider the family of systems defined by parametrized
triplets S := {(o, fi,9p.q) 1 0 € (7D, VTD,),i € P,(p,q) €
P2}, Note that since switching signals with dwell time condition
are uniformly incrementally bounded [28, Definition 2.2], strong
global uniform asymptotic stability under zero input (0-GUAS)
and strong iISS, defined by [28, Definition 2.1], are, respectively,
equivalent to 0-GUAS andiISS for & as discussed in that work. !
We next show that G is both uniformly bounded energy input
bounded state (UBEBS) (which is also defined by [28, Defi-
nition 2.1]) and 0-GUAS. To this end, G being UBEBS can be
directly concluded from (8), by noticing that 35 (s, t) < S5 (s,0)
which is class K in s. Meanwhile when u = 0, (8) also implies
that |z(t; z0,0,0)| < Bi(|zol,t) + d3.Let T := T'(s), such that
Bi(s,T) < 61 — d3. Then

|x(T(|zo|); £0,0,0)| < d1 Vag € R",0 € X(1p,). (10)

Because all f;, g, 4 are independent of ¢ and time shift does
not change the slow switching nature of o, the combination
of (9) and (10) implies that G is 0-GUAS. Now because f;’s
satisfy the conditions listed in [22, Lemma 1], they satisfy [22,
Assumption 1], which is the same as [28, Assumption 1]; on
the other hand, g, ,’s can be verified to satisfy Assumption
2 by directly using the assumptions that they are continuous
uniformly over (p, q) € P? and g, ,(0) = 0. As a result, from
[28, Proposition 2.3 and Th. 3.1] we conclude that & is iISS.
Because our switched system (3) is a particular realization of the
family of systems &, it is therefore iISS under slow switching.ll

Remark 1: Recall that we have assumed the Lipschitzness of
fi(z,u) to be uniform over 7 € P and the continuity of g, ,(z)
to be uniform over (p, q) € P2. Those assumptions are critical
for Proposition 1.2, and they are automatically satisfied if P
is a finite set. In fact it can be shown that those uniformity
assumptions are not necessary for concluding all the other results
in this work. Nevertheless, while those assumptions make the
augments in this article slightly conservative, Proposition 1.2
helps us streamline the proofs.

In the Section I'V we point out the need for considering the two
weaker variants of iISS through two examples of switched sys-
tems, in which, while all the subsystems are iISS, the switched
systems are not iISS, no matter how large 7p is. These examples

"We thank Professor Hernan Haimovich for pointing us to the work [28] and
the helpful discussions about the proof of Proposition II.2.
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F % At for 0 to increase by g; in other words
At At
A m : 2
L ‘; — = |0(7)|dT < / — 7
g = -, o TP

< 2At - At

(@) ®) © ~ 1+p(lz(0))? T 2mp
Fig. 1. Solution trajectories of (13). Solid curve for o = 1 and dashed Thus we have At > 7p, which means we can always find a

curve for o = 2.

also illustrate the mechanisms of how iISS may be destroyed by
switching.

IIl. MOTIVATING EXAMPLES

Example 1: Consider the two-dimensional jump-free
switched system with two modes
i ! Apx + 1,2 (11
t=——-=Apr+u, p=1,
T+ 2" P

where

—01 -1 —01 -2
! ( 2 0.1)’ 2 ( 1 0.1) (12)

This example is already mentioned in our earlier work [10],
where it was shown that both subsystems are iISS (but not
ISS). Meanwhile, it is already discussed in [1, Sec. 3.2] that
the switched linear system with the modes

13)

has no common Lyapunov function and for some particular
switching signals the solution will diverge, as shown in Fig. 1(c).
When u = 0, it is observed that the vector fields of the subsys-
tems of (11) are the same as the vector fields of (13) except that
the magnitude is scaled by ﬁ; hence the solution trajectories
of (11) when u = 0 will be the same as the trajectories of (13)
up to a time reparameterization. We now claim that the switched
system generated by (11) is not iISS under slow switching. Let
us initially consider the unforced version of system (11). By a
coordinate change of (11) into polar form we have

T =Apx, p=1,2

Ty  T1Tp — T1do

0 = — arctan — =
dt T z? + 23
24222 . _
@ =1
P52
SR - ST )
@ +eP) BT
in either case we always have |9 | < ﬁ Note that in order

to achieve a divergent solution trajectory as the one in Fig. 1(c),
we need the switches to occur when the state is on either axis;
in other words, a switch occurs every time when 6 increases
by 5. We also observe that for this divergent trajectory, there
exists p € Koo, such that |z(t)| > p(|z(0)|) for all ¢ > 0. Now
forany 7p > 0, we pick the initial condition, such that |z(0)| >

p 4/ (477’3 — 1) vV 0) and it is on an axis. Suppose it requires

switching signal o € () yet the solution is exactly as the
one in Fig. 1(c) and it is divergent. Hence the switched system
generated by (11) is notiISS under slow switching. Note that this
fact can also be argued by picking an input with large but finite
integral and only a very small support near ¢ = 0 and showing
that this input leads to an “initial” state with arbitrarily large
magnitude; hence by a similar argument we can again find a
divergent solution.

Example 2: Consider the two-dimensional jump-free
switched system with two modes
& =l|z|dpr+u, p=1,2 (14)

where A,, are the same as given in (12). Both its subsystems are
iISS (in fact also ISS), which will be shown later in Section VI
and hence not repeated here. Nevertheless, we still claim that
the switched system generated by (14) is also not iISS under
slow switching. To show this, we first observe that by the same
argument as in the previous example, the solution trajectory of
(14) when v = 0 is the same as the trajectory of (13) up to a
time reparameterization. Again by coordinate change into polar
form we can show that |f| < 2|x|. For any 7p > 0, consider
the threshold ¢ = 77~ and let 2(0) be on an axis and such that
|2(0)] < c. Apply the switching signal which results in a locally
divergent solution as in Fig. 1(c) until a time s at which |z(s)| =
c. Keep the mode active at time s and let 7 > 7p be the first time,
such that (s + 7) is on an axis and |z(s + 7)| < ¢ (such a 7
exists because of how the modes behave for « = 0). We can then
treat s + 7 as the initial time and repeat the above process. Note
that for |z| < ¢, the time At needed for the state to travel from
one axis to the other satisfies

At At
T :/ 16(7)|dr < / ofa(r)|dr < 2eAt = T2
2 0 0 27p
Thus again At > 7p, and by construction our switching signal
is in X(7p). On the other hand, the resulting solution satisfies
|2(t)| = c at infinitely many times ¢, hence it cannot converge
to the origin. Therefore, the switched system generated by (14)
is also not iISS under slow switching.

In both examples we see that there is no uniform stabilizing
dwell time with respect to all initial states or inputs, and this
is the major reason why these switched systems are not iISS
under slow switching. In the first example, the convergence of
subsystem solutions is slow when the magnitude of initial state
or the integral of input is too large; in the second example, the
convergence of subsystem solutions is slow when the states are
too close to the origin. Recall that our definitions of qiISS and
iISpS exactly deal with the cases of either small initial states plus
small integral of inputs, or states sufficiently far away from the
origin. We will revisit these two examples in Section VI and it is
not to the readers’ surprise that by applying the criteria derived in
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this work, the switched system generated by (11) can be shown
to be indeed qilSS under slow switching and the switched system
generated by (14) can be shown to be indeed iISpS under slow
switching.

IV. MAIN RESULTS

Before we state the main result, we claim that a PD function
can always be lower-bounded by the product of a nondecreasing
function and a nonincreasing function. This claim will be used
in our main theorem.

Lemma IV.1: Let o be a locally Lipschitz function and o €
PD. Then there exist a locally Lipschitz nondecreasing function
p1 € PD and a locally Lipschitz nonincreasing function ps :
[0,00) = Rxg, such that a(v) > p1(v)p2(v) for all v > 0. In
particular, if lim inf,,_,,, a(v) > 0, we can let

p(v) = inf a(w), pa(v) :=1.

Otherwise if lim inf, ,~ a(v) = 0, we can let

Nyl ifv e (0,1
p1(v) = {mm 1] @(w) if v € [0,1]

a(l) ifv>1
e if v e [0,1]
p2(v) = mine(1] % ifvo> 1.

Lemma IV.1 is adopted from [7, Lemma IV.1] and its proof
is straightforward and hence omitted.

We need the following two assumptions in order to state our
main results.

Assumption 1: There exist C' functions Vj, : R™ — [0, 00)
for all modes p € P and a locally Lipschitz function a € PD
and functions aq, as € Ko, x € K, independent of p, such that

ar(lz]) < Vp(z) < ag(lz]) YeeR",peP (15)
and
VVp(2) - fp(z,u) < —a(Vp(2)) + x(Jul)
VeeR" ueUpeTP. (16)

Assumption 2: The functions V), in Assumption 1 satisfy
Va(gp.q(2)) < u(Vp(2))Vp(x) Vo eR",p,qeP  (17)

where p : [0,00) — [1,00) is a continuous and nonincreasing
function with the property that there exists 6 > 0, such that for
any s >t >0, u(s)s — u(t)t > 6(s —t).

We make some remarks regarding the two assumptions.
Compared with Lemma II.1, Assumption 1 implies that the
subsystems of the switched system are iISS. In general, the
iISS estimation functions may vary from mode to mode; that
is, instead of unique o and x, we may have «,, X, depending
on p € P. However, if the set P is finite, we can always pick
a(s) := \yep ap(s) and x(s) :== V,cp Xp(s) and the estima-
tion (16) will hold uniformly. When P has infinite cardinality,
our assumption is still valid as long as there exist a uniform lower
bound on «;, and a uniform upper bound on X, and they belong
to class PD and class /C, respectively.

On the other hand, assuming a constant gain x in the value
of Lyapunov functions when a switch occurs is a common
practice in the literature (see, e.g., [8], [9]). The idea of using

nonconstant gain p is borrowed from the work [13] and our
Assumption 2 clearly includes the case of constant gain. We
observe that when the Lyapunov functions used for subsystems
are all quadratic or polynomial functions of same degree, there is
no advantage in assuming nonconstant gain. However, in the case
when lim, |, Vp(2)/V,(x) = 1, nonconstant gain becomes
critical for deriving the desired results.

We are now ready to state the first main result of the article.

Theorem 1: Consider a switched system defined via (3) with
a set of modes P and assume both Assumption 1 and Assump-
tion 2 hold. Let 5 € KL be such that 3(s, -) is the solution to
the initial-value ordinary differential equation (ODE) problem
0 = —p1(v)p2(2v),v(0) = s, where pq, po are derived from «
as in Lemma IV.1 and o comes from Assumption 1. Define a
function A : [0, 00) X [0, 00) x [0,00) — [0, c0) by

h(s,t,e) =B (((L+¢e)u(s) —¢e)s,t). (18)
We have the following implications.
1) If
h(s,t
inf 1ims,upM <1 (19)
(E,t)E(0,00)z s—0+ S
then (3) is qiISS under slow switching.
2) If
inf  limsup (h(s,t,e) —s) <0  (20)

(e,t)€(0,00)2 500

then (3) is iISpS under slow switching.
3) If both (19) and (20) hold, then (3) is iISS under slow
switching.
Remark 2: The condition (20) can also be equivalently re-
stated as
eh(ln $,t,€)
lim sup <1

§—00

inf
(e,t)€(0,00)2
which has a similar form as (19). We also note that from
monotonicity properties of the function i (which will also be
used in the proof of Theorem 1) it can be shown that the infima
appearing in (18) and (19) are actually limits as ¢ — 0T and as
t — oo, respectively.

We would like to provide some insight about the assumptions
(19) and (20). Recall that the point of stabilizing a switched
system via slow switching is to neutralize the possible desta-
bilizing effect of switching by the stabilizing effect when the
system dwells in some modes for sufficiently long time. The
function A introduced by (18) is essentially the estimate of the
combination of these two effects for a single switch. In order
to have an overall stabilizing effect when the system switches
slowly, we need the existence of 7p > 0, such that h(s,t,e) < s
for all ¢ > 7p. This property is easily seen to be guaranteed
by the equivalent characterizations of the inequalities (19) and
(20) given in Lemma V.2 later. On the other hand, because
of the limsup functions in (19) and (20), there is no need
to compute the entire h function but only analyze its value
when s approaches to the limits when applying Theorem 1. See
Remark 4 for more discussion.

In the special case that when the switched system is jump-
free (recall that jump-free switched systems mean g, ,(z) =
x Vp, q € P), we do not need the knowledge of 3, uu at all. The
next theorem provides a more direct qualitative statement on
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iISS-related properties for jump-free switched systems which is
based only on o, avy, avs.

Theorem 2: Consider a jump-free switched system defined
via (3a) with a set of modes P and assume that Assumption 1
holds. Further assume that o, oo are C'' and there exist M >
M > 0, such that

<M VYv>0. 21

We have the following implications.
1) If liminf, o+ ©% > 0, then (3a) is qiISS under slow
switching.
2) If either
i) liminf,_, . > 0, or
i) @ € K and lim sup,,_, . (a2(v) — a1 (v)) < o0,
then (3a) is iISpS under slow switching.
3) If the assumptions in 1 and 2i, or assumptions in 1 and
2ii are satisfied, then (3a) is iISS under slow switching.

We would like to make some remarks on the assumptions
in Theorem 2. First, the assumption liminf, o+ & ( ) S0 is
sometimes called superlinearity at the origin, which means that
there exists k,! > 0, such that a(v) > kv for all v € [0,1]. It
also means zero-input local exponential stability (0-LES) of
the subsystems, and hence the first implication in Theorem 2
implies the switched system is qiISS under slow switching if all
its subsystems are iISS and 0-LES.

On the other hand, the assumption 2.1 in Theorem 2 is super-
linearity at infinity because it is equivalent to the existence of
k,l > 0, such that «(v) > kv for all v > I. When both assump-
tions 1 and 2i in Theorem 2 are true, we simply have

V(@) - fp(w,u) < —kVp(2) + x(|ul),

which means that the subsystems are all ISS with exponential
decay rate when they are unforced; hence the study in [8] in
fact directly tells us that the switched system is ISS under slow
switching. More discussion for this special case and how dwell
time can be estimated will be given in Section VII.

When a € K, it might be upper bounded and the subsystems
are only iISS but not ISS. In this case we are able to conclude
iISpS of the switched system by 2ii of Theorem 2 when the
other assumption in 2ii also holds, which requires that the gap
between a1 (v) and aa(v) be uniformly bounded for large v.

Lastly note that if « € PD but lim,_,+, «(v) = 0, Theorem 2
does not allow us to prove iISpS under slow switching, never-
theless the first statement of Theorem 2 may still apply. In fact,
it can be shown that in this case a sufficient condition for the
switched system to also be iISpS under slow switching is that
as(v) — ay(v) converges to 0 as v — oo at a rate comparable
to the rate at which « converges to 0. We do not elaborate on
this result because these properties appear to be too restrictive;
examples satisfying such properties will be extremely artificial.

a(v)

peP (22)

V. PROOFS
A. Supporting Lemmas on Comparison Functions

In this subsection we list several lemmas which will be used
in the proof of Theorem 1. Lemma V.1 is a direct consequence
of Assumption 2. Lemma V.2 contains some straightforward

analysis observations. Corollary V.3 is a direct combination of
the two statements of Lemma V.2. Lemma V.4 is cited from [7,
Lemma IV.2]. Lemma V.5 is a result on combining two class
KCL functions and Lemma V.6 is a simple fact regarding splitting
class IC functions. The proofs of Lemma V.1, V.2, and V.5 are
provided in Appendix A.

Lemma V.1: Let h be defined as in (18) for some 8 € KL
and 1 : [0,00) — [1, 00) satisfying the properties stated in As-
sumption 2. There exists € > 0, such that for all ¢ € [0, &),
h(-,-,€) € KL.

Lemma V.2: Let h be defined as in (18) for some 8 € KL and
i [0,00) = [1, 00) satisfying the properties stated in Assump-
tion 2. Let £ > 0 be given as in Lemma V.1.

1) The inequality (19) holds if and only if there exist A €
(0,1)andeg € (0, &), such that for any b > 0, there exists
7p > 0, such that

h(s,t,e) < As

for all (s, t,e) € [0,b] x [Tp,00) % [0, 0]

2) The inequality (20) holds if and only if there exist A >
0,e0 € (0,£),suchthatforany b > 2A, there exists 7p >
0, such that

(23)

h(s,t,e) <s—A 24)

for all (s,t,g) € [b,00) X [Tp, ) X [0, &p].

Remark 3: The second statement in Lemma V.2 can also
be strengthened by stating that (20) holds if and only if there
exist Ag > 0,&9 € (0,8),suchthatforall A € (0, Agl, b > 2A,
there exists 7p > 0, such that (24) holds for all (s,t,¢) €
[b,00) X [Tp,00) x [0,0]. See the proof in the Appendix for
the details.

Remark 4: 1t is observed that the condition in Lemma V.2.1)
will hold if h(s,t, &) < cise 1t for some ¢; > 1,41 € (0,1)
and all s,e small enough and all ¢ € [0, 12t + 51] with some
61 >0, wh11e the condition in Lemma V2 2) will hold if
h(s,t,e) < s+ co — Aot for some co > 0, Ao > 0, and all e
small enough, s large enough and all ¢ € [0, 2 + 02] with
some d2 > 0. As a result, in order to check the condltlons in
Theorem 1, we only need to check whether h(s,t,¢) decays
exponentially with respect to ¢ for sufficiently small s, or it
decays linearly with respect to ¢ for sufficiently large s.

Corollary V.3: Let h be defined as in (18) for some 8 € KL
and p : [0,00) — [1, 00) satisfying the properties stated in As-
sumption 2. Let € > 0 be given as in Lemma V.1. Then both (19)
and (20) hold if and only if there exist A € (0,1),A > 0,9 €
(0,&) and 7p > 0, such that

h(s,t,e) < AsV (s —A)

for all (s,t,¢) € [0,00) X [Tp,00) X [0, 0]

By combining Corollary V.3 with Theorem 1, it is seen that
iISS switched system under slow switching is implied by the
condition (25) holding for all (s,t) € [0,00) X [Tp,00). An
inequality similar to (23) also appears in [11], where it is used as
the essential assumption to show ISS of the switched nonlinear
system. Our assumption is weaker than theirs as we do not
require (23) to hold for all s > 0. On the other hand, the bound
on h(s,t,e) in (25) is strictly larger than the bound in (23).
As discussed after Theorem 1, it is conjectured that an even

(25)
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weaker assumption that h(s,t,e) < s for some € > 0 and all v(tT) < p(o)v(t) Vte T(o). (32b)
(s,t) € (0,00) X [Tp,00) is sufficient to show iISS. We will

not discuss that assumption here. Let z: [0 o00) = [0,00) be defined by z(0) =0, z(t) =

Lemma V.4: Let o € PD and consider two functions y :
[0,00) — R being C* and z : [0, 00) — [0,00) being contin-
uous and nondecreasing, such that

y(t) < —al(y(t) +=(t) v 0) (26)
for almost all ¢ > 0. Then
y(t) < By(0) v O,t) Vv 2() (27)

where 3 € KL is the solution to the initial value ODE problem
0 = —p1(v)p2(2v), v(0) = s with pq, pa derived from « as in
Lemma IV.1.

Lemma V.5: For any 7p > 0, 51, B2 € KL, the function

B3(s,t) :== sup B2 (Bi(s,7),(t—7)V0)

T>TD

(28)

is also a class ICL function.
Lemma V.6: Let a € K and kq, ks, s1, 52 > 0. Then for any
e>0

a(kysy + kose) < a((ky +eka)s1) V a ((5’1161 + k2)52) .

(29)

The inequality (29) is inspired by [29, Lemma 10] and proven

similarly, therefore the proof is omitted. A coarser version of

Lemma V.6 with fixed € = 1 is used in our conference article

version of this work [10]. However, in this article we can get

tighter estimates on the dwell time by allowing arbitrarily small
€. See Section VII for more discussion on this.

B. Proof of Theorem 1

To show that the switched system isiISS (resp. qiISS oriISpS)
under the assumptions given in Theorem 1, we need to show
that the estimate (4) holds for all solutions [resp. the estimate
(4) holds for solutions with bounded initial state and bounded
integral of input, or the estimate (7) holds for all solutions]. In our
previous work [10], a similar but nonuniform qilSS is defined
and proven for switched systems satisfying similar assumptions.
In that work, for any chosen switching signal o, qilSS is shown
by providing an estimation of solutions. In order to make the
iISS-related properties uniform with respect to the switching
signal o € X(7p), the estimation function needs be recursively
defined as the supremum of some nested class ICL functions and
this new proof is presented in this section.

Throughout this section we will use the notation

de(s) == (1+e)u(s) —e.

This is a nonincreasing function on [0, 00) as y is nonincreasing,
and h(s,t,e) = B(pe(5)s,1).
For any zp € R",u € My and o € X(1p),
[0,00) — [0, 00) by
v(t) = Vo (x(1)).
Then from (16), (17), and the dynamics (3) we have

0(t) < —a(v(t)) + x(Ju(t)|) foralmostallt & T (o)
(32a)

(30)

define v :

€Y

fo |)dr. We see that z is absolutely continuous and
nondecreasmg Further define 3(¢) := v(t) — z(t) and y(t) :=
g(t) vV 0. We have y(0) = v(O) and y(t) <wv(t) for all £ > 0.
Thus (32a) implies (t) < —a((4(t) 4+ z(t)) V 0). Hence by
Lemma V.4 we have (t) < 6( (t) Vv 0,t —t;) V 2(t) for any
t; € T(o) and any t € (t;,t;11], where 8 € KL is constructed
from « as in Lemma V.4. Because y(t) = 4(t) or y(t) = 0, we
further conclude that

y(t) < By(F) t —ti) v 2(t) Yt € (b, tia]. (33)
In addition, (32b) implies that 7(t;) < p(v(t ))g]( )
(n(v(ti)) — 1)z(t;) and because y(t;") = y(t+) ory(t;) =

y(t7) < p(et)y(t) + (po(t:) = 1) 2(t). (G4

Combining (33) and (34), picking ¢ € (0, &¢), where 9 comes
from Lemma V.2 and applying Lemma V.6, for all t € (¢;, ;1]
we have

y(t) < B (u(vt:)y(t:) + (u(v(ts)) — 1) 2(t), t — ) V 2(t)
< B (o= (v(ta))y(ts), t — t:)
B (e = (v(t)z(t:), t —t;) V 2(t)
< B (D= (y(ti))y(ts), t —ts)
B (e 0(0)2(t:) t — ti) V 2(#)
< ﬁy(y(ti)»t =)V Ba(2(t), t — i) V 2(1)

where B, (s,t) := B(¢=(s)s,t) = h(s,t,e) and fB.(s,t):=
B(e71p-(0)s,t). We need to invoke the following Lemma at
this point.

Lemma V.7: Let B, 8, € KL, 0 € X(rp) for some 7p > 0
andlet 7 (o) = {t1, 1o, ... } be the set of switching times. Let z :
[0,00) — [0, 00) be a nonincreasing function and y : [0, 00) —
[0, 00) with the properties that for any ¢; € T (o) and any ¢ €
[titiv1)

y(t) < By(y(ts),t — i) V Bz (2(t:), t

For ¢ € N, recursively define two families of functions h; :
[0,00) x [0, 00) — [0, 00) by

hi(s,t) := By(s,t)

—t;)Vz(t). (35

hisi(5,8) == sup,or b (By(s,7), (t—7)vO) OO
and [; : [0,00) — [0, 00)
l1(s) == B.(s,0) Vs
Liv1(s) == ha (Bo(s,70) V 5,0) V 1i(s). 37

Then h; € KL and [; € K, forall ¢ € N,.. In addition, for any
1€ N, tj c T(O’) andt € (tj—o—ifl,tj—&-i]

y(t) < hily(ty), t —t;) V 1i(2(1))-

The proof of Lemma V.7 is given in Appendix B. Applying
Lemma V.7, with j = 1, we conclude that y(¢) < h;(y(t1),t —
t1) VI;(z(t)) for any t € (t;,t;11], where h;,l; are defined
in (36) and (37). In addition (33) also implies that y(t;) <

(38)
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B(y(0),t1) V z(t1). Combining these two inequalities and pre-
tending that the exact value of ¢; is unknown, we find an upper
bound for y(¢) by taking the supremum over ¢;

y(t) < sup hi(B(y(0),t1), t = t1) V hi(2(2),0) V Li(2(1))

t1>0
(39)
for any t € (t;,t;41]-

Notice that the estimation of y(¢) given in (39) is only true
when there are ¢ switches up to time ¢. In order to obtain an
estimation of y(t) for arbitrary number of switches up to any
time ¢ > 0, define

H(s,t) := lim

N
dim \_/1 hi(s,t). (40)

We claim that whenever H (s, t) is finite

y(t) < sup Hoo(B(y(0), t1), (£ = t1) V 0)

t1>0
V Hy (e7'02(0)2(2) V 2(),0) V 11 (2(t))  (41)

for all ¢ > 0. Clearly by comparing (41) with (39), in order to
show the claim it suffices to show that [;(s) < Hu, (e 1¢.(0)s V
s,0) foralli > 2 and all s > 0. This is indeed guaranteed by the
recursive definition of [; in (37), and the fact that while either
(19) or (20) hold, Lemma V.2 always implies that

B:(s,7p) = Ble ' ¢c(0)s,7p) = h(e ' $-(0)s,7p,0)
< (et (0)s,7p,e) < e Lp.(0)s.

The next Lemma tells that the function H., defined in (40)
has some K L-like properties under some assumptions.

Lemma V.8: Let h be defined as in (18) for some 8 € KL and
i [0,00) — [1,00) satisfy the properties stated in Assump-
tion 2. Let € € (0,¢¢), where g9 comes from Lemma V.2, and
recursively define a family of functions h; : [0, 00) x [0, 00) —
[0,00),7 € N as in (36) with (s, t) := h(s,t,¢). Further
define H,,(s,t) as in (40). Then there exists 3 € KL, such that
we have the following implications on H .

1) If there exist A < 1,b > 0, such that h satisfies the
inequality (23) for all (s,t) € [0,b] X [Tp,00), then
H,.(s,t) < B(s,t) forall (s,t) € [0,b] x [0, 00).

2) If there exist A > 0,b > 24, such that h satisfies
the inequality (24) for all (s,t) € [b,0) X [Tp, 0),
then H(s,t) < B(s,t) + h(b— A,0,¢) for all (s,t) €
[0,00) % [0, 00).

The proof of Lemma V.8 is also given in Appendix B. With
this lemma, we can finally finish the proof of Theorem 1.

To show qilSS when (19) holds, let 41, d2 > 0 be arbitrary.
By the first statement in Lemma V.2, (19) implies the existence
of A € (0,1), such that for

b:= 042((51) \Y 571¢5(0)62 \Y 62 (42)

there exists 7p > 0, such that (23) holds for all (s, t) € [0,b] X
[TD, 00). Thus by the first conclusion in Lemma V.8 there exists
B € KL that Hy(s,t) < (s, t) forall (s,t) € [0,b] x [0, 00).

Denote
5l(s.1) = sp F(B(s.0). (£ =) VO) @
which is class JCL by Lemma V.5. Also denote
7'(s) 1= Ble™'¢=(0)s V 5,0) V i (s) (44)

which is class . Conditions (41), (43), and (44) imply that
v(t) < y(t) +2(t) < B(0(0),) +1(2(t)) + 2(t)

for all v(0), z(t), such that the first arguments in the two H
functions in (41) are in the domain [0, b]. In addition, from (15)
and (31) we have

l2(t)] < o7 " (Vo) (2(t)) = a7 ' (v(t))
<ayt (28'(v(0), 1)) v ar ' (29(2(1) + 22(1))
<oyt (26" (eg  (lzol), 1)) v ar t (291 (2(1)) + 22(1))

where we have also used the fact that a(} ;" ;s;) <
Vi, a(ns;) for any o € K. Notice that the previously men-
tioned constraints on the first arguments in the two H ., functions
in (41) are also satisfied since we have assumed that |zo| < d;
and [, x(Ju(7)|) < 82. These assumptions imply that

By(0),t1) < y(0) = v(0) < az(|zo) < a2(d1) < b

and
e 1 .(0)2(t) V 2(t) < e - (0)62 V 62 < b

forall¢ > 0. Hence the system (3) is qiISS under slow switching
with 3 (s,1) = a; (287 (a5 (5),1)), 7" (s) = 0y | (271 (s) +
2s) and x*(s) := x(s).

To show iISpS when (20) holds, let §3 > 0 be arbitrary. By
the second statement in Lemma V.2 and Remark 3, (20) implies
the existence of Ay > 0, such that for some b > 0 satisfying

3h(b,0,¢) = a1(d3) (45)

andsome A < Ag A %,there exists 7p > 0, such that (24) holds
forall (s,t) € [b,00) X [Tp, 00). Thus by the second conclusion
in Lemma V.8, there exists 3 € KL, such that H,(s,t) <
B(s,t) + h(b,0,¢) for all (s,t) € [0,00) x [0,00). Again de-
noting 31, ~' as in (43), (44), and using (41), we conclude that

v(t) < BH((0),1) +~1(2(2)) + 2(t) + h(D,0,¢).

Following similar derivation as in the previous case we conclude
that

jz(t)] < art (387 (az " (o)), 1))
Varl (397(2(1) + 32(t)) V 6.

Because there are no constraints on z and z(t), we have proven
that the system (3) is iISpS under slow switching in this case,
with 3*(s,t) := a; (387 (agy (5),1)),77(s) := a; ' (3~1(s) +
3s) and x*(s) := x(s).

Since we have already proven that the system (3) is qilSS
and iISpS when both (19) and (20) hold, the last statement in
Theorem 1 is a direct consequence of Proposition 1.2 and this
completes the proof. |
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C. Proof of Theorem 2

Let
asoar! (v)
p(v) = v

lim sup,,_,o+

ifv>0
o' g
We first show that (17) holds for all x € R™, p,q € P. For the
nontrivial case when x # 0, recall g, ,(«) = « for a jump-free
switched system, so (15) implies that for any p,q € P

Vy(z) < aa(jz]) < az0ay! (Vp(2))

az 0 oy (Vp(x))

= W‘/}a(m) = 1(Vp(2))Vp(2).

We then show that i defined via (46) satisfies the conditions in
Assumption 2. Denoting w = ;! (v), we have

b (4t
< (22 )
_ ;12 (“2£w)v - ag(w)> ~0

(W) — ealw) fom (21),

5
o (w) = ai(w)
Hence f(v) is nonincreasing on (0, 00). Thus the limsup in
(46) is in fact lim and

where we have used the inequality

-1
g 220 (0) . ca(w)

v—0+ v w0t aq(w)

< M.

Therefore y is continuous and nonincreasing on [0,00). In
addition, (21) also implies that

n(s)s — p(t)t = az 0. (s) — az 0.y (1)

s s 1 -1
= / iag o Oél_l(T)dTZ/ Mdrz M(s —1t).
¢ dr t ayoar (7)
Hence p satisfies the conditions in Assumption 2.

To show the first implication in Theorem 2, it suf-
fices to show that (19) holds if we construct a function
B € KL from «. From Lemma IV.l we construct p;(v) =
min,ep, 1) a(w), p2(v) = 1 for all v € [0, 1]. Because of the
assumption lim sup, o+ o(v)/v > 0, the function ¢ : (0, 3] —
[0,00) defined by ((v) := p1(v)/v can be continuously ex-
tended 0 and we have ¢(v) > 0 for all v € [0, §]. Define k :=
min (o 17 ¢(s) > 0. Recall that in Theorem 1, §(s,-) is the
solution to the initial value ODE problem © = —p1(v)p2(2v),
v(0) = 5. When s < 1, v = —((v)v < —kv, and thus, by the
comparison principle we have (3(s,t) < e **s. Hence for s,
sufficiently small

h(87t>‘5) =p (¢5(S)S,t) < e_kt¢6(8)s < e_kt¢6(0)8

where recall ¢, is defined in (30). The inequality (19) can be
shown subsequently and the first implication in Theorem 2 is
proven by applying the first result in Theorem 1.

To show that 2i implies i[SpS, recall that lim,, o a(v)/v > 0
means the existence of k,l > 0, such that a(v) > kv for all

v € [l,00). Thus we can construct pi, p2, such that p;(v) =
kv, pa(v) =1 for all v >1 and a(v) > p1(v)p2(v) for all
v > 0. Because [(s,t) is the solution to the initial value
ODE problem v = —p;(v)p2(2v), v(0) = s, when the ini-
tial condition s > 1, (s, t) < se ¥ V[ for all ¢+ > 0. Pick
7p = +(In¢.(0) + In(l + 1) — Inl). By this construction we
have e *70 = m. Thus for any s > [+ 1 and t > 7p,
¢:(0)s > s > land

h(s,t,e) = B (6-(s)s,1) < a(s)se ™ VI < zil 1

Because s > [ + 1, llel < s — 1 and therefore h(s,t,e) < s —
1. Subsequently (20) can be shown and hence by the second
result in Theorem 1 the system is ilSpS under slow switching.
Next we show that 2ii implies iISpS. Because a € K, can
always be replaced by a € K while preserving (16), we can
always assume limg_,, «(s) =: M7 < o0. Since « € K, it fol-
lows that M; > 0. Now by definition (46) and the assumption

on lim sup in this case

Mo :

VL.

= limsup(p(v) — 1)v

V—00

= limsup (a2 0 oy ' (v) — v)
V—00

= hgljogp (v2(w) — a1 (w)) < 0.

As a result, for any § > 0, there exists v, such that as long
asv(t) > v, 0 < My — a(v(t)) <0 and p(v(t))v(t) —ov(t) <
M> + 6. This is guaranteed for all ¢ € [0, T with v(0) > 2v and

v

T = i since the differential inequality v = —«(v) > —M;
implies that v(¢) > v(0) — Myt > 2v — % > v. We also let v
be large enough, such that v > (2+€)1(V11\1172_?)1\41. It follows from
0= —a(v) < —M; + J that

o(T) < v(0) — T(M, — 5)

~u(My—¢)
M,

Therefore, for all s > 2v, ¢.(s)s > s > 2v. Thus the initial
condition is large enough and consequently

h(s,T,e) —s = [ (¢d:(s)s,T) — s
< ge(s)s — (2+&)(Ma +6) — s
=(14e)(u(s)—1)s—(2+¢e)(Mz+9)
(I+e)(Ma+0)— (2+¢)(Mz+9)
— (M +9).

= v(0) <0(0) = (2 + &) (M, + 6).

IN

Hence

inf inf li -
higp o (s 1) =)

<limsup ((s,T,e) —s) < —=(Mza+9) <0
§—00
so the property (20) holds and the system is iISpS by the second
result in Theorem 1.
The last implication in Theorem 2 is a direct result of the last
result in Theorem 1. |
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VI. EXAMPLES REVISITED

In this section we apply our main results to the two examples
considered in Section III to draw some conclusions about their
iISS properties.

We use the Lyapunov function V,, = /2" M,z +1—1 to
show that the subsystems (11) are iISS, where M, is the solution
to the Lyapunov equation

MpA, + A) M, + 21 = 0. 47

Denote

@ :=maxa (M), (43)

= mi M
ma a :=ming(M,)

peEP

where @ (M) is the largest singular value of M and o (M) is the
smallest singular value of M. This choice of Lyapunov func-
tions gives us the condition (15), where a3 (v) = \/av? +1 —

1, a0(v) = vav? +1 — 1. Forany v > 0, consider the function
gy : [0,00) = [0,00) by gy(a) = ¥&——= + ~L Tt canbe computed
that ¢}, (a) = —(2732;\/%1)2 <0 so the function g, (a) is de-

creasing. We thus have “2(0) =g,(a) < g,(a) = 0‘1(”) .On the
other hand, by computlng the derivative of v, as 1t is easy to
L)

see that
\f
1(v) a

Furthermore, it is not difficult to verify that ) S ar)

which finally implies \/a/a < z%gzg < 228) < @/a. Thus the

assumption (21) is satisfied. In addition

=

~

alv]2+1
alvl2+1~

a
a

i~

(V) o a2(v)

x M 1
VV xX) - T, u)= = A ztu
(@) - fp(z,w) \/M—xH<l+|x2 P )
_ [« v M, u
VaTMpz +1(1+ [22) /oMy +1
1 xTMp
=" | BNl
(Vo) + 1) (WJ”) «T Mz +
1 a
Vol@) +1) (Geadmm +1) V2

G+ V@)Vl +1)  va
@y, It is easy to

arotery X(0) = 5
compute that o/(0) = 2 > 0 so by the first implication in Theo-
rem 2, the jump-free switched system generated by (11) is qilSS
under slow switching. On the other hand, neither assumption in
the second implication in Theorem 2 applies here because « is
not superlinear at infinity (in fact it converges to 0 at infinity)
and ao(s) — a1 (s) diverges at infinity. Indeed, we have already
shown in Section III that this switched system is not iISS under
slow switching.

For completeness, we provide a numerical estimation of the
dwell time for this qilISS system with Ay, A5 given by (12).
Solving the Lyapunov (47) for M, and using the definitions

Hence we have a(v) =

(48), it is not hard to compute that @ ~ 14.98, a ~ 7.50. Hence
alv) = TIo8 (0T T)” X(v) = 547v, u(v) = 1.41. Pick zg =
(1,0)" andu()—OOOl( se ) Tset 8y := 1 = |xg|, 62 :=
0.0080 > 0.0077 = [, x )|)d7 and 1 := 0.9. It follows
from (42) that for € = 0 01 b = 3.87. In addition, with such
a choice of parameters, it is numerically computed from the
condition (23) that 7p = 46.72.

Regarding the jump-free switched system with the modes (14)
in Example 2, we pick the Lyapunov function V,, = |z|z " Mz,
where M, again solves (47). Again the assumption (15) holds
with a1 (v) = av?, as (v) = av®, where @, a are defined in (48).
Thus a?ézg = ngzg = 2 and the assumption (21) in Theorem 2
is satisfied. In addition for allz £ 0

VVp(2) - fol@,u)

f,UT
(M) T+ 2lala 0, ) (el +)

x' M, ( p +2|x[> (|x]Apx + u)

z' ( 2] —|—2|x|[> My (|z|Apz + w)

Blele” My (|| Ay + )

IN

=3z [* + 3a] x| |ul

IN

4
3, 3@ ,_ 3(V@\* 3@ ,
_2 = < _2 o )
|z + 5 lu]* < 5 - + 5 |

Hence we conclude «(v) = %(%)é,x(fu) = gv{ and each
mode (14) is iISS (in fact also ISS). Clearly this « satisfies the
assumption in 2i of Theorem 2; hence the switched system (14) is
iISpS under slow switching. On the other hand, the assumption
in the first implication in Theorem 2 does not apply because
o/(0) = 0. Indeed, we have already shown in Section III that
this switched system is not iISS under slow switching. Similarly
to what has been done for the gilSS example, let us provide a
numerical estimation of the dwell time for this iISpS system. For
this example, we have a(v) = 3 (35%g5) %, 1(v) = § = 1.99; we
also pick A :=0.001 and 63 := 2 which, it follows from (45)
that for e = 0.001, b = 10.02. With such a choice of param-
eters, it is numerically computed from the condition (24) that
™D — 7.12.

At last, we draw some conclusions on the switched bilinear
systems with inputs, generated from finitely many modes

Apz + Z By jzuj + Cpu

j=1

&= fp(z,u) = 49)
where pe P ={1,2,...,
T
(s un) €R™and A, € RV B,; € RV and
C, e R™m,
Proposition VI.1: The jump-free switched bilinear system

generated from finitely many modes (49), where A, are all
Hurwitz, is iISS under slow switching.

P} are the modes, z € R", u=
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Proof: It is known from [30] that bilinear systems with
Hurwitz matrices are iISS. For each p € P, define the iISS-
Lyapunov function V),(z) by (see, e.g., [31])

Vy(z) := In(1 + 2" Myz)

(50)

where M), solves the Lyapunov (47). Again using the nota-
tion (48), the assumption (15) is satisfied with a; (v) = In(1 +
av?), az(v) = In(1 + av?). In addition

VVp(2) - fp(2,u)

+2 ZxTBT Uj Mpx—i—QxTMpCpu

m
TRT T
—|—Zx prjMpacuj +z M,Cpu

) |z + 2" M,Cpu

1 T (AT
~Traine | & WMt M)
2 2
S Traige |
i=1
2 2
1+2 Mz | ]
+> 7 (B) ;M
j=1
2
< W(—MQ + c1 |z |ul + col@||ul)
_ 2‘1‘|2 2(61‘$|2+02|$D|u‘
1+ Myx 14z Myx

where

c1 = maxpep(37, (B My)?) 7, c
max,cp 7(M,C,). Now notice that a|z|* < xTM r <alx

Co 1=
|2

$0
|z|? o' Myx €@ 1
l+a™Mpz — a(l+a"Myz)  ae%o®@
and
cilz|? + colz|  crlx|? + calz]
142" Myx 1+ alz|?
c alz|? c c c
Y
a \1+alz| o tazl T e 2y
Hence
2Jz/? 2(c1lz® + ealz]), o
VYV, f < —
ORI 142" Myx 1+ Myx ful
Q(QVP('JC) _

< _ = 7
- aevp(QJ)

1)+2(

vk

) 2 _

—a(Vp) + x(Jul)

for all peP, where a(v) =221 y(|ju)= 2(2 +

20\;6) |u|?. In addition, by definition we see that o € PD, x € K
so we conclude that each subsystem of (49) is iISS.

Now we want to show that the switched bilinear system is iISS
under slow switching. We start by Verifying (21) Define ¢ :
[0,00) — [0,00) by g(a) := (1 + av?)In(1 + av?) for some
v > 0. It can be computed that ¢”(a) = v*/(1 + av?®) > 0so g
is convex and fora@ > a > 0, we have g(a) < (a/a) (@) + (
a/@)g(0), which gives the inequality (1 + av?) In(1 + av?) <
(a/a)(1 + @v?)In(1 + @v?). Thus we conclude that

ab(v)  a(l+ av?) (@ +av?)  as(v)
of(v)  a(l+av?) ~ In(l+av?)  ai(v)’

Further we have %(z?gzg) = az(v)al((;jz(;))éi(’u)az(v) < 0 so the

function Z—f is decreasing and

s (v) 1 az(s)  a5(0)

ar(v) 0 an(s)  ay(0)

ISHEST

for all v > 0. As a result, the assumption of (21) holds with
M =1, M = 2. To check the remaining conditions, notice that
o(0)=2 > 0 so the assumption in the first implication of
Theorem 2 is satisfied. In addition, clearly o € K and

. . 1+ av? a
Ulgrolo (aa(v) — a1 (v)) = vlgrgl() In (1 +av2> =1In (a) < 00
so the assumption in 2ii of Theorem 2 is also satisfied. Therefore
by the third implication in Theorem 2 the switched bilinear
system is iISS under slow switching. |

VII. DIscussION AND FUTURE WORK

First of all, since the major focus of this article is to quali-
tatively determine whether a switched nonlinear system is iISS
when it switches sufficiently slowly, the quantitative value of
dwell time is not emphasized and it can be investigated in
future research. Nevertheless, we point out here that the 7p
in Corollary V.3 is a dwell time for the switched systems to
be iISS. In the special case when the assumptions in the cases
1 and 2i in Theorem 2 both hold or, equivalently, when (22)
holds for the subsystems, we have 3(s,t) = se™**, given by
Lemma V.4. Thus, taking 1 to be a constant and ignoring A, the
inequality (25) gives ((1 + &) — £)se " < As, which implies
t > w Taking e — 0 and A — 1, we see that the

infimum of dwell time is l“T", same as the lower bound on dwell
time found in [8] which is based on ISS analysis. This suggests
that our approach may also be promising for quantitatively
analyzing general switched nonlinear systems in the sense that
it can give tight results on the minimum dwell time.

Another possible future work direction is of course to extend
dwell time to average dwell time. It is observed in the literature
that linear decay rates in Lyapunov functions near the origin
(such as the assumption in 2.i in Theorem 2) are essential when
deriving the average dwell time. When this does not hold in
general, nonlinear decay rates can be transformed into linear
ones as by [32, Lemma 11], and the work [13] has formulated
average dwell time conditions for ISS of hybrid systems based on
that transformation. Using similar techniques, some promising
results are presented in [33]. The very recent article [16] also
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discusses ISS properties of impulsive systems whose decay rates
are nonlinear and the techniques used in that article may also be
extended to study ilSS-related properties of switched system
under slow switching.

We can also study sufficient conditions for iISS of switched
systems when there are unstable subsystems. Inspired by [9], the
divergence of solutions due to the unstable subsystems can be
either compensated by the convergence when the switched sys-
tem is dwelling in a stable subsystem, or the stable jumps during
switches. Reverse dwell time conditions may be concluded in
this case to guarantee overall stability of the system.

From our observations on the examples mentioned in Sec-
tion III, the major reason that the systems (11) and (14) fail to
be iISS under slow switching is due to the fact that the unforced
systems are not 0-GUAS under slow switching. We do not
really show how the interaction between input and dissipation
may affect the stability of these switched systems. In fact, it
can be inferred by [28] that a switched system is iISS under
slow switching if and only if it is both 0-GUAS and UBEBS
under slow switching, and this equivalence is also utilized in
the proof of Proposition II.2 in this article. Nevertheless, while
the above equivalence gives us some hints on how the input
may affect the stability of the switched system in addition to
the dissipation of the unforced system, “0-GUAS under slow
switching” or “UBEBS under slow switching” are not stability
properties that can be directly verified/designed for the switched
system. In our framework we want to conclude some stability
results of the switched system based on the sole knowledge of
the stability properties of the subsystems and the features of
the switching signals. Since iISS is equivalent to 0-GUAS plus
UBEBS for a single-mode system as stated in [26], our next step
can certainly be finding the sufficient conditions under which
the UBEBS property can be passed from its subsystems to the
switched system under slow switching. Meanwhile, inspired by
the literature, it is also interesting to ask whether strong iISS,
definedin [31], can be passed from its subsystems to the switched
system under slow switching.

We also realize one drawback of our criteria that they rely
on the Lyapunov functions of subsystems, which suggests that
potentially the sufficient conditions based on «, o1, v may not
be invariant with respect to the choice of Lyapunov functions.
Hence better criteria to test whether a switched system is iISS
under slow switching will be directly relying on the stability
properties of the subsystems. Certainly as discussed in this work,
we need properties stronger than iISS for all the subsystems to
hold. By a comparison between our “bad” systems (11) and (14)
and the “good” bilinear system (49), an interesting question to
ask is whether it is true that if the subsystems of a switched
system are all globally exponentially stable under zero input
and UBEBS, then the switched system is iISS. More research
can be done in this direction.

VIIl. CONCLUSION

In this article we have defined iISS, qilSS, and iISpS under
slow switching for switched nonlinear systems. We then pro-
vided two sets of sufficient conditions, such that the switched
system will have one of the aforementioned stability properties

when either set of the proposed conditions is satisfied. In ad-
dition, if a switched system satisfies both sets of the proposed
conditions, then it is iISS under slow switching. As a direct
consequence from our result, we have shown that switched
systems whose subsystems are O-input stable bilinear ones are
iISS under slow switching.

APPENDIX
A. Proofs of Lemmas in Section V-A

Proof of Lemma V.1: Tt suffices to show ¢.(s)s € K in or-
der for h(-,-,€) € KL, where ¢. is defined in (30). Clearly
©:(5)s|s=0 = 0. Without loss of generality, assume that § < 1,
where ¢ is given by Assumption 2. Set € := 1%5, then for all
e € [0,8), we have e(1 — §) < ¢. Therefore for all s > ¢t > 0,

Pe(8)s — P (t)t = (1 + ) (u(s)s — u(t)t) —e(s — 1)
>((14+¢e)d—¢e)(s—t)>0.

Thus ¢.(s)s € K and Lemma V.1 is proven. |

Proof of Lemma V.2: We start with showing the first equiva-
lence. To show necessity, pick an arbitrary b > 0. Denote § :=
1

5(1 —inf(c 1ye(0,00)2 limsup,_, o+ w) The double infi-

mum in (19) implies the existence of 1,7 > 0, such that
limsup,_,o+ 8750 < 1 — 2, which further implies the ex-

istence of b’ > 0, such that

h(3’7'1,€1)

<16 Vs e (0,0).

(51)
From the definition (18), we see that h(s, ¢, ) is increasing in &
and hence (51) still holds if €; is replaced by some &g € (0,21 A
), where & comes from Lemma V.1. Meanwhile, Lemma V.1
also implies that h(-, -, ) € KL forall e € [0, £¢]. Therefore for
any (57t7€) € [O7b/) X [Tla OO) X [0750]

h(s,t,e) < h(s,t,eq) < h(s,71,20) < (1—9)s.

We are done in this direction of the proof with A := 1 — ¢ and
Tp =71 if b < b'. For b >V and each s € [b,b], pick 7(s),
such that 2(&:7().c0) < 1 —24. Because lim;_,, h(s,t,e9) =

S
0, such 7(s) always exists. By continuity of M in s, we

have r(s) > 0, such that W <1—¢§=xforall s ¢
(s —r(s),s+r(s))N[b, bl =: B(s). Because [b,'b] is com-
pact, there is a finite subcover {B(s)}sc; with index set I C
[b,) 0] and User B(s) = [bb]. Let 75 := \/,; 7(s), then for all
s € [b/b], s € B(s) for some s € I and

h(s, t,e) < h(s, 12,60) < h(s, 7(s),e0) < A8

for all t > 75. Hence (23) holds with 7p = 71 V 7.

For sufficiency, leteg > 0,A < 1,b > 0, 7p > 0 be such that
(23) holds for all (s, ¢,¢) € [0,b] X [Tp, o) x [0,&0]. In partic-
ular we have h(s, 7p,e0) < Asforall s € [0, ] so

h(s,t
lim sup h(s,t,¢)

s—0t s

. h(s,Tp, &
§hmsup7( 7D, €0)
s—0t S

< A.

inf
(2,£)€(0,00)?
We now show the second equivalence. To show necessity,
again pick an arbitrary b > 0. With the help of monotonicity
of h as discussed for the first equivalence, the condition (20)
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implies that there exist g9 € (0,&),71 > 0,0 > 0 and A > 0,
such that

h(s,t,e) —s < —A (52)

for all (s,t,e) € (b, 00) x [11,00) X [0,€0]. It is not hard to
see that the choice of A is not unique; there exists Ay > 0,
such that (20) implies (52) for any A € (0, Ag]. We are done
with this direction of the proof with 7p = 7 if b > /. For
b <V and each s € [b, V'], pick 7(s), such that h(s, 7(s),e9) —
s < —%A. Because limy_,o h(s,t,e9) =0 and s > b > 2A,
such 7(s) always exists. By continuity of h(s,t,&9) — s in
s, we have r(s) > 0, such that h(s, 7(s),e9) — ' < —A for
all ' € (s —r(s),s+r(s)) N[b,b] =: B(s). Because [b, V'] is
compact, there is a finite subcover {B(s)}sc; with index set
I C[b,b]andUserB(s) = [b,]. Letmy := \/ ., 7(s), then for
all s' € [b,/b], s’ € B(s) for some s € I and

h(s,t,e) < h(s, 12,60) < h(s, 7(s),60) <8 — A

for all t > 79. Hence (24) holds with 7p = 7 V 5.

For sufficiency, leteg > 0, A > 0,0 > 2A, 7p > 0 be given,
such that (24) holds for all (s,t¢,¢) € [b,00) X [Tp,0) X
[0, €0]. In particular we have h(s, Tp,gp) < s — Aforalls > b.
Thus

inf limsup h(s,t,e) — s
(e,t)€(0,00)2 s%ocp ( )

< limsup h(s,7p,&0) — s < —A
S—00
and this completes the proof. |
Proof of Lemma V.5: ?
Define

g(s,t,7) == P2 (P1(s,7),(t —7) VvV 0).

Notice that g is decreasing in 7 when 7 > (7p V t). Hence
we have [3(s,t) = sup,cir, v 9(8, ¢, 7). Continuity of
(B3 is then an immediate consequence of [34, Th. 1.4.16].
On the other hand, the supremum of monotone functions
is still monotone. We are left to show that (3(0,t) =
0, which is trivial, and lim; . f5(s,t) = 0. To this end,
we fix s>0 and let ¢ >0 be arbitrary. Pick 17" > 7p,
such that 35(31(s,T),0) < e. Further pick ¢ > T, such that
B2(B1(s,mp),t —T) <e.Thenforallt > t,7 € [rp,7p V 1],
eitherT > T'sog(s,t,7) < B2(B1(s,T),0) < e,orT € [1p, T
and ¢(s,t,7) < B2(B1(s,7p),t —T) < e. Hence B5(s,t) =
SUD e[y, rpvi] 9(8,1,7) < eforallt > tandsince ¢ is arbitrary,
lim; o B3(s,t) = 0. [ |

B. Proofs of Lemmas in Section V-B

Proof of Lemma V.7: The claim that h; € ICL is adirect result
of Lemma V.5 and the claim that [, € K., follows from the
definition (37). We now use induction on j to show (38). The base
cases when 7 € N, j = 1 are trivially given by (35). Suppose
the estimate (38) is true for all ¢ € N and all j < N. We now
want to find an upper bound on y(t) for ¢ € (t;iyn, iy N+1]-

2We thank an anonymous reviewer for suggesting this shorter alternative proof
of Lemma V.5.

Notice that there are IV switches from time ¢; 1 to time ¢ so by
induction hypothesis we have

y(t) < hn(y(tiva),t —tiv1) Vin(2(1))
< hn (By(y(ti), tivr —ti) V Ba(2(t:), tig1 — ti)
Va(tizr), t —tiv1) ViIn(2(1))
< hn (By(y(ti), tig1 — ti),t — tig1)
Vhn (Bz(2(ts), tigr — ti) V 2(tig1),t
Vin(2(t))

—tit1)

where the second inequality comes from bounding y(¢;1 ) using
(35) and it is split into two terms in the third inequality. In
addition since o € X(7p), tix1 — t; > Tp SO

hy (By(y(ti), tivs —ti),t — tig1)
< S>up hn (By(y(ti)7 T)7t - T) = hN+1(y(ti)7t)'

TZ2TD

Thus by the monotonicity of z, 3, and hy, we have

hn (Bz(2(ti) tig1 — i) V 2(tiy1),t — tiv1) VIn(2(F))
< hy (B2(2(1),7p) V 2(1),0) V In(2(t)) = In+1(2(2))-
Therefore  y(t) < hnt1(y(ti),t —ti) Vin4a1(2(t))  and

Lemma V.7 is proven by induction. |
Proof of Lemma V.8: Define

N

Hn(s,t) = \/ hi(s,t).

i=1

(53)

In order to conclude the desired properties of H,,, we need to
show uniform boundedness of H (s,t) in the domain [0,b) x
[0,00) for the first case [that is when condition (23) holds]
or in the domain [0, 00) x [0, 00) for the second case [when
conditions (24) holds]. We also need to show the properties that
Hy (s, -) eventually uniformly converges to 0 for the first case, or
itis eventually uniformly bounded from above by h(b — A, 0, €)
for the second case. We discuss the two cases individually.

1) In this case, we need to show that H..(s,t) is finite for
all (s,t) € [0,b] x [0,00) and lim;_,, Hoo(s,t) = 0 for
all s € [0, b]. To show finiteness we claim

hi(s,t) < (A" 's,0,¢) (54)
for all i € N and all (s,t) € [0,b] x [0,00). The base
case is trivial as hq(s,t) = h(s,t,e) < h(s,0,¢). When
the claim is true for the incidence ¢

hiy1(s,t) = sup h; (h(s,T,€),(t —7)V0)

T>TD

< hi(h(s,7p,€),0) < hi(rs,0) < h(A's,0,¢)

where we have used the property (23) for the second
inequality above. Thus we have proven the claim and we



5854

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 11, NOVEMBER 2022

conclude that
N

Hy(s,t) = \/ hi(s,t)

i=1

< \/ h(A1s,0,¢) < h(s,0,¢).
i=1

And hence the pointwise limit H (s, t) is finite.

To show lim;_,o, Ho(s,t) = 0, take any § > 0 and suf-
ficiently large M € N, such that h(AM~1b,0,¢) < 4.
Since limy o0 hi(s,t) = 0,forany i € N, i < M, there
exists 7;, such that h; (b, t) < ¢ forallt > 7;. Denote 7 :=
\/IL, 7. Forall (s,t) € [0,b] x [7,00), and all i € N,
either i < M so

hi(s,t) < hi(b,7) <0
or ¢ > M and by the earlier claim (54) we have
hi(s,t) < hi(b,t) < h(A7"1D,0,¢)
< h(AM71h,0,) < 6.

Hence all h;(s,-) converge to 0 uniformly and conse-
quently lim;_, o Ho(s,t) = 0. We conclude that there ex-
ists 3 € KL, such that H, (s, t) < j3(s,t) forall (s,t) €
[0,b] x [0, 00).

2) In this case we need to show that H (s, t) is finite for all
(s,t) € [0,00) x [0,00) and limy—o Huo(s,t) < h(b—
A, 0,¢) for all s > 0. To show finiteness we claim that

hi(s,t) <h|(s—(i—1)A)V(b—A),0,e| (55
for all i € Ny and all (s,¢) € [0,00) x [0,00). Again
the base case is trivial. Recall the property (24) and
notice that when s > 0 and ¢ > 7p, either s < b and
hence h(s,t,e) < h(b,7p,e) <b—A, or s >b and
h(s,t,e) < s— A.Hence when the claim is true for the
incidence ¢

hit1(s,t) = sup h; (h(s,1,¢),(t —7)V0)

< hi(h(S,TD:&'),O) <h ((s=A)V(b—A),0)
<h(((s=A)V(b—A)=(i—1)A)V (b—A),0,¢)
<h((s=iA)V(b—A),0,¢).

Thus we have proven the claim and we conclude that

N
HN(S,t) = \/ hi(s,t)

< \/h((s—(i—l)A)v(b—A),O,s)

< h(sV(b—A),0,¢)

and hence the pointwise limit H.(s, ) is finite.
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[5]

(6]
(7]

(8]
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[10]

[11]

[12]

[13]

[14]

[15]

[16]

To show limg o Hoo(s,t) < h(b— A,0,¢), fix any
s >0 and pick sufficiently large M € N, such that
s — MA <b. Since lim;_, hi(s,t) =0, for any ¢ €
N.,i < M, there exists 7;, such that h;(s,t) < h(b—
A,0,¢) for all ¢ > 7. Denote 7 := \/j]\/i1 7;. For any
t > 7and ¢ € N, either i < M so

hi(s,t) < hi(s,7) < h(b— A,0,¢)

or ¢ > M and by the earlier claim (55) we have

hi(s,t) <h((s— (i —1)A)V(b—A),0,¢)
< h((S*(M - 1)A) v (b*A),O,E) < h(b - A,O,E).

Hence for each s > 0, h;(s,t) are uniformly bounded
from above by h(b— A,0,e) when ¢>7 and thus
limy 00 Hoo(s,t) < h(b— A, 0,¢).

We conclude that there exists B(s,t) € KL, such
that H,(s,t) < B(s,t) + h(b— A,0,¢) for all (s,t) €
[0,00) % [0, 00). |
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