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Finite-dimensional observer-based PI regulation control of a
reaction-diffusion equation

Hugo Lhachemi and Christophe Prieur

Abstract—This paper investigates the output feedback setpoint reg-
ulation control of a reaction-diffusion equation by means of boundary
control. The considered reaction-diffusion plant may be open-loop un-
stable. The proposed control strategy consists of the coupling of a finite-
dimensional observer and a PI controller in order to achieve the boundary
setpoint regulation control of various system outputs such as the Dirichlet
and Neumann traces. In this context, it is shown that the order of the
finite-dimensional observer can always be selected large enough, with
explicit criterion, to achieve both the stabilization of the plant and the
setpoint regulation of the system output.

Index Terms—Reaction-diffusion equation, finite-dimensional observer,
output feedback, PI control, boundary regulation control, boundary
measurement.

I. INTRODUCTION

The problem of controlling the output of a system so as to achieve
asymptotic tracking of prescribed trajectories is one of the most
fundamental problems in control theory. In the general context of
finite-dimensional linear time-invariant (LTI) control systems, the
problem of setpoint regulation control is very classical and has been
widely investigated. One possible way to solve this problem is based
on the augmentation of the state-space representation of the plant
with an integral component of the tracking error and the use of the
separation principle by exploiting separately a Luenberger observer
(which allows the estimation of the state based on the measure
only) and a stabilizing full-state feedback (see, e.g., [10]). Even if
this approach has reached a very high level of maturity for finite-
dimensional systems, its possible extension to infinite-dimensional
systems, as those considered in this paper, is still an open problem.

Infinite-dimensional systems emerge in many practical applications
due to the occurrence of delays, reaction-diffusion dynamics, or even
flexible behavior (see, e.g., [12], [16], [17] for introductory textbooks
on dedicated control theory for infinite-dimensional systems). While
many efficient control design methods have been reported for the
stabilization of distributed parameter systems, very few have been
extended to the problem of output regulation. The main reason is that
all techniques that have been developed for finite-dimensional LTI
systems cannot be easily generalized to infinite-dimensional plants.
For instance, the frequency domain approach has been generalized to
the infinite-dimensional setting, but it requires to deal with an infinite
number of poles, yielding an infinite-dimensional pole allocation
problem. The state-space approach is followed in this work.

We propose, for the first time, an output feedback control design
procedure to achieve the setpoint regulation control of reaction-
diffusions system by means of a finite-dimensional observer coupled
with a PI controller. The considered reaction-diffusion plant, which
might be unstable, is modeled by a Sturm-Liouville operator as those
classical introduced in the context of parabolic partial differential
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equation (PDE). The case of PI regulation of this system by means of
a state feedback was reported in [14] (see also [3], [4], [8], [14], [15],
[20], [24]–[26], [28] for various approaches about PI control design
for different types of PDEs). Here we go beyond by designing an
output feedback PI control strategy. Even if the proposed procedure
also applies to bounded control inputs and bounded observations, we
focus the presentation on boundary controls and boundary measure-
ments. This is because these configurations are the most interesting
for practical applications and also the most challenging since they
involve unbounded control and observation operators (see, e.g., [7] for
further explanations). We study several cases for the input-to-output
map, covering Dirichlet control inputs (easily extendable to Neumann
control inputs as discussed in conclusion) along with Dirichlet and/or
Neumann to-be-regulated outputs and measured outputs. We also
show that our procedure can be used to regulate a system output
that is distinct of the measured one. Therefore, our approach gives a
complete framework to study every associated input-to-output maps.

The proposed control design strategy consists of an adequate
integral component coupled with a finite-dimensional observer. The
design of finite-dimensional observer-based controllers for distributed
parameter plants is challenging due to the fact that the separation
principle, that is classically used for finite-dimensional systems, does
not apply for infinite-dimensional systems [2], [6], [9], [22]. Taking
advantage of spectral reduction approaches [5], [21] and using the
control architecture initially reported in [22], a LMI-based procedure
for solving this stabilization problem for reaction-diffusion PDEs was
reported in [11] in the case were the either control or observation
operator is bounded. This approach was extended in [13] to the
case were both control and observation operators are unbounded,
including both Dirichlet and Neumann settings. The present work,
taking advantage of [13], goes beyond the simple problem of closed-
loop stabilization by embracing the issue of output setpoint regulation
control. Since the designed observer only estimates a finite number
of modes of the infinite-dimensional system, there is an inherent
mismatch between the actually measured system output and its
estimation as soon as the output is to be regulated to a non-zero value.
Hence, one of the main challenges is to account for this mismatch in
the dynamics of the observer and then in the subsequent stability
analysis. An other challenge is to couple this finite-dimensional
observer with a suitable integral component, inspired by the one
described in [14] for a state-feedback, in an output feedback setting.
Our approach is based on Lyapunov direct methods and the main
results take the form of explicit sufficient conditions ensuring the both
stability and setpoint regulation control of the closed-loop plant. We
assess that these conditions are always feasible provided the order
of the observer is selected large enough. Therefore, we show in a
constructive manner that the setpoint regulation control of reaction-
diffusion PDEs can always be achieved by the coupling of a PI and
a finite-dimensional observer.

The paper is organized by considering successively different input-
output maps for the reaction-diffusion equation depending on the
selected boundary measured output, the to-be-regulated output, and
the control input. After recalling classical notations and properties for
the Sturm-Liouville operators in Section II, the case of a Dirichlet
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observation and a Dirichlet control input is considered in Section III.
Then the case of a Neumann measurement and a Dirichlet control
input is considered in Section IV. While the to-be-regulated output
and the measured output are the same in the two latter sections,
a crossed configuration is considered in Section V. The regulation
problem is solved for a Dirichlet measured output, a Neumann to-
be-regulated output, and a Dirichlet control input. This final result
completes the picture and gives a full study of the different cases
for the input-to-output map of the considered class of distributed
parameter systems. Some numerical simulations are given in Section
VI for this final result. Section VII collects some concluding remarks.

II. NOTATION AND PROPERTIES

Spaces Rn are endowed with the Euclidean norm denoted by
‖ · ‖. The associated induced norms of matrices are also denoted
by ‖ · ‖. Given two vectors X and Y , col(X,Y ) denotes the
vector [X>, Y >]>. L2(0, 1) stands for the space of square inte-
grable functions on (0, 1) and is endowed with the inner product
〈f, g〉 =

∫ 1

0
f(x)g(x) dx with associated norm denoted by ‖ · ‖L2 .

For an integer m ≥ 1, the Sobolev space of order m is denoted by
Hm(0, 1) and is endowed with its usual norm denoted by ‖ · ‖Hm .
For a symmetric matrix P ∈ Rn×n, P � 0 (resp. P � 0) means
that P is positive semi-definite (resp. positive definite).

Let p ∈ C1([0, 1]) and q ∈ C0([0, 1]) with p > 0 and q ≥ 0. Let
the Sturm-Liouville operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) be
defined by Af = −(pf ′)′ + qf on the domain D(A) ⊂ L2(0, 1)
given by either D(A) = {f ∈ H2(0, 1) : f(0) = f(1) = 0} or
D(A) = {f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. The eigenvalues
λn, n ≥ 1, of A are simple, non negative, and form an increasing
sequence with λn → +∞ as n → +∞. Moreover, the associated
unit eigenvectors φn ∈ L2(0, 1) form a Hilbert basis. We also
have D(A) = {f ∈ L2(0, 1) :

∑
n≥1 |λn|

2| 〈f, φn〉 |2} and
Af =

∑
n≥1 λn 〈f, φn〉φn.

Let p∗, p∗, q∗ ∈ R be such that 0 < p∗ ≤ p(x) ≤ p∗ and 0 ≤
q(x) ≤ q∗ for all x ∈ [0, 1], then it holds [18]:

0 ≤ π2(n− 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ (1)

for all n ≥ 1. Assuming further than p ∈ C2([0, 1]), we have for any
x ∈ {0, 1} that φn(x) = O(1) and φ′n(x) = O(

√
λn) as n→ +∞

[18]. Finally, one can check that, for all f ∈ D(A),∑
n≥1

λn 〈f, φn〉2 = 〈Af, f〉 =

∫ 1

0

p(f ′)2 + qf2 dx. (2)

Moreover, for any f ∈ D(A), we have f(x) =
∑
n≥1 〈f, φn〉φn(x)

and f ′(x) =
∑
n≥1 〈f, φn〉φ

′
n(x) for all x ∈ [0, 1] (see, e.g., [13]).

III. DIRICHLET MEASUREMENT AND REGULATION CONTROL

We consider the reaction-diffusion system with Dirichlet boundary
observation described for t > 0 and x ∈ (0, 1) by

zt(t, x) = (p(x)zx(t, x))x + (qc − q(x))z(t, x) (3a)

zx(t, 0) = 0, z(t, 1) = u(t) (3b)

z(0, x) = z0(x) (3c)

y(t) = z(t, 0) (3d)

in the case p ∈ C2([0, 1]). Here qc ∈ R is a constant, u(t) ∈ R is the
command input, y(t) ∈ R is the measurement, z0 ∈ L2(0, 1) is the
initial condition, and z(t, ·) ∈ L2(0, 1) is the state. The control design
objective is to design a finite-dimensional observer-based controller
to achieve both stabilization and setpoint regulation control of y(t) to
some prescribed reference signal r(t). By setpoint tracking, we mean
that our objective is to ensure that y(t)→ re when t→ +∞ as soon
as r(t)→ re when t→ +∞ for any arbitrarily given re ∈ R.

A. Spectral reduction

As classically done in the context of boundary control systems
(see [7, Sec. 3.3] for details), we start by transforming the non-
homogeneous problem (3) into an equivalent homogeneous one by
introducing the change of variable:

w(t, x) = z(t, x)− x2u(t) (4)

that gives the equivalent representation:

wt(t, x) = (p(x)wx(t, x))x + (qc − q(x))w(t, x)

+ a(x)u(t) + b(x)u̇(t) (5a)

wx(t, 0) = 0, w(t, 1) = 0 (5b)

w(0, x) = w0(x) (5c)

ỹ(t) = w(t, 0) (5d)

with a, b ∈ L2(0, 1) defined by a(x) = 2p(x) + 2xp′(x) + (qc −
q(x))x2 and b(x) = −x2, respectively, ỹ(t) = y(t), and w0(x) =
z0(x) − x2u(0). Introducing the auxiliary command input v(t) =
u̇(t), we infer that

u̇(t) = v(t) (6a)
dw

dt
(t, ·) = −Aw(t, ·) + qcw(t, ·) + au(t) + bv(t) (6b)

with D(A) = {f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. We introduce
the coefficients of projection wn(t) = 〈w(t, ·), φn〉, an = 〈a, φn〉,
and bn = 〈b, φn〉. Considering classical solutions associated with
any z0 ∈ H2(0, 1) and any u(0) ∈ R such that z′0(0) = 0 and
z0(1) = u(0) (their existence for the upcoming closed-loop dynamics
is an immediate consequence of [19, Chap. 6, Thm. 1.7]), we have
w(t, ·) ∈ D(A) for all t ≥ 0 and we infer that

u̇(t) = v(t) (7a)

ẇn(t) = (−λn + qc)wn(t) + anu(t) + bnv(t) , n ≥ 1 (7b)

ỹ(t) =
∑
i≥1

φi(0)wi(t) (7c)

B. Control design

Let δ > 0 be the desired exponential decay rate for the setpoint
regulation. We fix N0 ≥ 1 so that −λn + qc < −δ < 0 for all
n ≥ N0 + 1. The integer N0, which is definitely fixed for the rest
of the control design procedure, can be interpreted as the number
of modes that will be “actively” modified by the feedback. We now
introduce an arbitrary integer N ≥ N0 + 1 which will be further
constrained later. Inspired by [22], we design as in [13] an observer
to estimate the N first modes of the plant while the state-feedback
is performed on the N0 first modes of the plant. In this framework,
the estimation of the modes ranging from N0 + 1 to N will solely
be used to improve the estimate of the system output (see (11)).

Introducing WN0(t) =
[
w1(t) . . . wN0(t)

]>, A0 =

diag(−λ1 + qc, . . . ,−λN0 + qc), B0,a =
[
a1 . . . aN0

]>, and
B0,b =

[
b1 . . . bN0

]>, we have

ẆN0(t) = A0W
N0(t) +B0,au(t) +B0,bv(t). (8)

Our objective is to introduce an integral component to achieve the
setpoint regulation control of the system output y(t). To do so, we
first consider the following classical integral component: żi(t) =
y(t) − r(t) =

∑
n≥1 φn(0)wn(t) − r(t). This zi-dynamics, which

involves all the modes wn for n ≥ 1, cannot be embedded into
the reduced model (8) that only involves the modes wn for 1 ≤
n ≤ N0. To circumvent this issue, we follow the idea developed
in [14] by introducing ξp(t) = zi(t) −

∑
n≥N0+1

φn(0)
−λn+qcwn(t)
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whose time derivative is given by ξ̇p(t) =
∑N0
n=1 φn(0)wn(t) +

α0u(t) + β0v(t)− r(t) with

α0 = −
∑

n≥N0+1

anφn(0)

−λn + qc
, β0 = −

∑
n≥N0+1

bnφn(0)

−λn + qc
. (9)

The main benefit is that the ξp-dynamics only involves the modes wn
for 1 ≤ n ≤ N0 while achieving the same equilibrium condition than
the zi-dynamics. However, in this work and in sharp contrast with the
state-feedback setting of [14], the modes wn are not measured. Hence
we need to replace them in the dynamics of the integral component
by their estimated version ŵn which will be described below. Hence,
the employed integral component is described by:

ξ̇(t) =

N0∑
n=1

φn(0)ŵn(t) + α0u(t) + β0v(t)− r(t). (10)

We now define for 1 ≤ n ≤ N the observer dynamics:

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t)

− ln

(
N∑
i=1

φi(0)ŵi(t)− α1u(t)− ỹ(t)

)
(11)

with
α1 =

∑
n≥N+1

anφn(0)

−λn + qc
(12)

and where ln ∈ R are the observer gains. We set ln = 0 for N0+1 ≤
n ≤ N . Compared to the stabilization problem studied in [13], we
introduce the additional term −α1u(t) in the observer dynamics (11).
This term is added to compensate the inherent steady-state mismatch
between the actually measured system output ỹ(t) and its estimation∑N
i=1 φi(0)ŵi(t), obtained from the observer that estimates the only

N first modes of the plant, as soon as the output is to be regulated to
a non-zero value. Note that this latter estimate of the output improves
as the dimension of the observer N increases.

We define for 1 ≤ n ≤ N the observation error as en(t) =
wn(t)− ŵn(t). Hence we have

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t) + ln

N0∑
i=1

φi(0)ei(t)

+ ln

N∑
i=N0+1

φi(0)√
λi
ẽi(t) + lnα1u(t) + lnζ(t) (13)

with ẽn(t) =
√
λnen(t) and ζ(t) =

∑
n≥N+1 φn(0)wn(t).

Hence, introducing ŴN0(t) =
[
ŵ1(t) . . . ŵN0(t)

]>, EN0(t) =[
e1(t) . . . eN0(t)

]>, ẼN−N0(t) =
[
ẽN0+1 . . . ẽN

]>, C0 =[
φ1(0) . . . φN0(0)

]
, C1 =

[
φN0+1(0)√
λN0+1

. . . φN (0)√
λN

]
, and L =[

l1 . . . lN0

]>, we obtain that

˙̂
WN0(t) = A0Ŵ

N0(t) +B0,au(t) +B0,bv(t) + LC0E
N0(t)

+ LC1Ẽ
N−N0(t) + α1Lu(t) + Lζ(t). (14)

With
ŴN0
a (t) = col(u(t), ŴN0(t), ξ(t)), (15)

L̃ = col(0, L, 0), and defining

A1 =

 0 0 0
B0,a A0 0
α0 C0 0

 , B1 =

 1
B0,b

β0

 , Br =

0
0
1

 , (16)

we deduce that
˙̂
WN0
a (t) = A1Ŵ

N0
a (t) +B1v(t)−Brr(t) + L̃C0E

N0(t)

+ L̃C1Ẽ
N−N0(t) + α1L̃u(t) + L̃ζ(t). (17)

Setting the auxiliary command input as

v(t) = KŴN0
a (t), (18)

and defining

Acl(α1) = A1 +B1K + α1L̃
[
1 0 0

]
, (19)

we obtain that
˙̂
WN0
a (t) = Acl(α1)ŴN0

a (t)−Brr(t)
+ L̃C0E

N0(t) + L̃C1Ẽ
N−N0(t) + L̃ζ(t) (20)

and, from (8) and (14),

ĖN0(t) = (A0 − LC0)EN0(t)− LC1Ẽ
N−N0(t)

− α1L
[
1 0 0

]
ŴN0
a − Lζ(t). (21)

We now define ŴN−N0(t) =
[
ŵN0+1(t) . . . ŵN (t)

]>, A2 =

diag(−λN0+1 + qc, . . . ,−λN + qc), B2,a =
[
aN0+1 . . . aN

]>,
B2,b =

[
bN0+1 . . . bN

]>. We obtain from (11) with ln = 0 for
N0 + 1 ≤ n ≤ N that

˙̂
WN−N0(t) = A2Ŵ

N−N0(t) +B2,au(t) +B2,bv(t)

= A2Ŵ
N−N0(t) +

(
B2,bK +

[
B2,a 0 0

])
ŴN0
a (t) (22)

and, using (7b) and (11),

˙̃EN−N0(t) = A2Ẽ
N−N0(t). (23)

Putting now together (20-23) while introducing

X(t) = col
(
ŴN0
a (t), EN0(t), ŴN−N0(t), ẼN−N0(t)

)
, (24)

we obtain that

Ẋ(t) = FX(t) + Lζ(t)− Lrr(t) (25)

where

F =


Acl(α1) L̃C0 0 L̃C1

−α1L
[
1 0 0

]
A0 − LC0 0 −LC1

B2,bK +
[
B2,a 0 0

]
0 A2 0

0 0 0 A2

 ,
L = col(L̃,−L, 0, 0), Lr = col(Br, 0, 0, 0).

Defining E =
[
1 0 . . . 0

]
and K̃ =

[
K 0 0 0

]
, we

obtain from (15), (18), and (24) that

u(t) = EX(t), v(t) = K̃X(t) (26)

and we can introduce

G = ‖a‖2L2E
>E + ‖b‖2L2K̃

>K̃ � gI (27)

with g = ‖a‖2L2 + ‖b‖2L2‖K‖2 a constant independent of N .
Lemma 1: (A1, B1) is controllable and (A0, C0) is observable.
Proof. From [14, Lem. 2], (A1, B1) is controllable if and only if([

0 0
B0,a A0

]
,

[
1

B0,b

])
(28)

satisfies the Kalman condition and the matrix T = 0 0 1
B0,a A0 B0,b

α0 C0 β0

 is invertible. The former condition was

assessed in [13]. Hence we focus on the latter one. Let[
ue w1,e . . . wN0,e ve

]> ∈ ker(T ). We obtain that

ve = 0, (29a)

anue + (−λn + qc)wn,e = 0, 1 ≤ n ≤ N0, (29b)
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α0ue +

N0∑
n=1

φn(0)wn,e = 0. (29c)

Defining for n ≥ N0 + 1 the quantity wn,e = − an
−λn+qc ue,

we have (−λn + qc)wn,e + anue = 0 for all n ≥ 1.
Hence (wn,e)n≥1, (λnwn,e)n≥1 ∈ l2(N) ensuring that we ,∑
n≥1 wn,eφn ∈ D(A) and Awe =

∑
n≥1 λnwn,eφn. This shows

that −Awe + qcwe + aue = 0. Moreover, from (29c) and using (9),
we infer that we(0) = 0. From the two last identities, we have that
(pw′e)

′+(qc−q)we+aue = 0, we(0) = w′e(0) = 0, and we(1) = 0.
Introducing the change of variable ze(x) = we(x)+x2ue, we deduce
that (pz′e)

′ + (qc − q)ze = 0, ze(0) = z′e(0) = 0, and ze(1) = ue.
By Cauchy uniqueness, we infer that ze = 0 hence ue = ze(1) = 0.
Thus we have we = ze−x2ue = 0 hence wn,e = 0 for all n ≥ 1. We
deduce that ker(T ) = {0}. Overall, we have shown that (A1, B1)
is controllable. Finally, the pair (A0, C0) is observable because 1)
A0 is diagonal with simple eigenvalues, 2) by Cauchy uniqueness,
φn(0) 6= 0 for all n ≥ 1. �

In the sequel we select, once for all and independely of the
dimension N of the observer, the gains K ∈ R1×(N0+2) and
L ∈ RN0 so that A1 + B1K and A0 − LC0 are Hurwitz with
eigenvalues that have a real part strictly less than −δ < 0.

C. Equilibirum condition and dynamics of deviations

We aim at characterizing the equilibrium condition of the closed-
loop system composed of the reaction-diffusion system (3), the
auxiliary command input dynamics (6a), the integral action (10), the
observer dynamics (11), and the state-feedback (18). To do so let
r(t) = re ∈ R be arbitrary. We must solve the system of equations:

0 = (−λn + qc)wn,e + anue + bnve = 0, n ≥ 1, (30a)

0 = ve = KŴN0
a,e , (30b)

0 =

N0∑
n=1

φn(0)ŵn,e + α0ue + β0ve − re, (30c)

0 = (−λn + qc)ŵn,e + anue + bnve

− ln

{
N∑
i=1

φi(0)ŵi,e − α1ue − ỹe

}
, 1 ≤ n ≤ N0, (30d)

0 = (−λn + qc)ŵn,e + anue + bnve, N0 + 1 ≤ n ≤ N, (30e)

ỹe =
∑
n≥1

φn(0)wn,e. (30f)

We first note from (30b) that ve = 0. Then, from (30a) we have
wn,e = − an

−λn+qc ue for all n ≥ N0+1. In particular, from (30e), we
have ŵn,e = wn,e = − an

−λn+qc ue for all N0+1 ≤ n ≤ N . Defining
en,e = wn,e − ŵn,e and ζe =

∑
n≥N+1 φn(0)wn,e, we obtain that

en,e = 0 for all N0 + 1 ≤ n ≤ N . Hence, from (30d), we infer that
0 = (−λn + qc)ŵn,e + anue + ln

∑N0
i=1 φi(0)ei,e + lnα1ue + lnζe

for all 1 ≤ n ≤ N0. Combining this latter identity with (30a), we
obtain that (A0 − LC0)EN0

e − Lα1ue − Lζe = 0. Invoking (12),
we note that α1ue = −

∑
n≥N+1 φn(0)wn,e = −ζe, implying that

(A0 − LC0)EN0
e = 0. Since A0 − LC0 is Hurwitz, we infer that

en,e = 0 for all 1 ≤ n ≤ N0. In particular, ŵn,e = wn,e for all
1 ≤ n ≤ N . From (30b-30d) we deduce that 0 = Acl(α1)ŴN0

a,e −
Brre + L̃ζe. Recalling that ζe = −α1ue and Acl(α1) is defined by
(19), we obtain that (A1 +B1K)ŴN0

a,e = Brre. Since A1 +B1K is
Hurwitz, we infer that ŴN0

a,e =
[
ue ŵ1,e . . . ŵN0,e ξe

]>
=

(A1 + B1K)−1Brre. This is in particular compatible with (30b)
since, based on (16), we indeed obtain that KŴN0

a,e = 0. We
note that (wn,e)n≥1, (λnwn,e)n≥1 ∈ l2(N) ensuring that we ,∑
n≥1 wn,eφn ∈ D(A) and Awe =

∑
n≥1 λnwn,eφn. Using (30a),

we obtain that −Awe + qcwe + aue + bve = 0. Introducing the

change of variable ze = we + x2ue, ze is a static solution of (3a-
3b) associated with the constant control input u(t) = ue. Denoting
by ye , ze(0) = we(0) = ỹe, we infer from (30c) while invoking
(9) that re =

∑N0
n=1 φn(0)ŵn,e + α0ue =

∑
n≥1 φn(0)wn,e = ye.

Hence, for an arbitrarily given constant reference signal r(t) = re ∈
R, the equilibirum condition of the closed-loop system is unique,
fully characterized by re, and is such that ye = re.

We can now introduce the dynamics of deviation of the different
quantities w.r.t. the equilibrium condition characterized by re ∈ R.
In particular:

∆w(t, x) = ∆z(t, x)− x2∆u(t), (31a)

∆Ẋ(t) = F∆X(t) + L∆ζ(t)− Lr∆r(t), (31b)

∆ζ(t) =
∑

n≥N+1

φn(0)∆wn(t), (31c)

∆ẇn(t) = (−λn + qc)∆wn(t) + an∆u(t) + bn∆v(t), (31d)

∆v(t) = K∆ŴN0
a (t), (31e)

∆ỹ(t) = ∆y(t) =
∑
n≥1

φn(0)∆wn(t) (31f)

with ∆wn(t) = 〈∆w(t, ·), en〉.

D. Stability analysis and regulation assessment

We define the constant M1,φ =
∑
n≥N+1

φn(0)
2

λn
, which is finite

when p ∈ C2([0, 1]) because φn(0) = O(1) as n → +∞ and (1)
hold.

Theorem 1: Let p ∈ C2([0, 1]) with p > 0, q ∈ C0([0, 1]) with
q ≥ 0, and qc ∈ R. Consider the reaction-diffusion system described
by (3). Let N0 ≥ 1 and δ > 0 be given such that −λn+qc < −δ < 0
for all n ≥ N0 + 1. Let K ∈ R1×(N0+2) and L ∈ RN0 be such that
A1 +B1K and A0−LC0 are Hurwitz with eigenvalues that have a
real part strictly less than −δ < 0. For a given N ≥ N0 +1, assume
that there exist P � 0, α > 1, and β, γ > 0 such that

Θ1 =

[
F>P + PF + 2δP + αγG PL

L>P> −β

]
≺ 0, (32a)

Θ2 = 2γ

{
−
(

1− 1

α

)
λN+1 + qc + δ

}
+ βM1,φ ≤ 0. (32b)

Then, for any η ∈ [0, 1), there exists M > 0 such that, for any
z0 ∈ H2(0, 1) and u(0), ξ(0), ŵn(0) ∈ R such that z′0(0) = 0
and z0(1) = u(0), the classical solution of the closed-loop system
composed of the plant (3), the integral actions (6a) and (10), the
observer dynamics (11), and the state feedback (18) satisfies

∆u(t)2 + ∆ξ(t)2 +

N∑
n=1

∆ŵn(t)2 + ‖∆z(t)‖2H1

≤Me−2δt

(
∆u(0)2 + ∆ξ(0)2 +

N∑
n=1

∆ŵn(0)2 + ‖∆z0‖2H1

)
+M sup

τ∈[0,t]
e−2ηδ(t−τ)∆r(τ)2 (33)

for all t ≥ 0. Moreover, the above constraints are always feasible
for N large enough.

Proof. Let P � 0 and γ > 0 and consider the Lyapunov function
candidate defined by

V (∆X,∆w) = ∆X>P∆X + γ
∑

n≥N+1

λn 〈∆w, φn〉2 . (34)

with ∆X ∈ R2N+2 and ∆w ∈ D(A). The first term accounts for
the dynamics of the truncated model (25) while the series, which in
view of (2) is related to the H1 norm of the PDE trajectories, is used
to handle the modes wn for n ≥ N+1 of the PDE plant. Proceeding
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exactly as in [13] but taking into account the extra contribution of
the reference signal appearing in (25), we obtain for t ≥ 0 that

V̇ (t) + 2δV (t) ≤
[
∆X(t)
∆ζ(t)

]>
Θ1

[
∆X(t)
∆ζ(t)

]
− 2∆X(t)>PLr∆r(t) +

∑
n≥N+1

λnΓn∆wn(t)2 (35)

with Γn = 2γ
{
−
(
1− 1

α

)
λn + qc + δ

}
+ βM1,φ for n ≥ N + 1,

α > 1 and β > 0 arbitrary, and where, with a slight abuse of
notation, V̇ (t) denotes the time derivative of V (X(t), w(t)) along
the system trajectories (31). Since α > 1 we have Γn ≤ Θ2 ≤ 0 for
all n ≥ N + 1. From (32a), there exists ε > 0 such that Θ1 � −εI .
Hence the assumptions imply that V̇ (t)+2δV (t) ≤ −ε‖∆X(t)‖2−
2∆X(t)>PLr∆r(t) ≤ ‖PLr‖2

ε
∆r(t)2 where Young’s inequality

has been used to derive the latter estimate. After integration, we
obtain for any η ∈ [0, 1) the existence of a constant M1 > 0 such
that V (t) ≤ e−2δtV (0) + M1 supτ∈[0,t] e

−2ηδ(t−τ)∆r(τ)2 for all
t ≥ 0. The claimed estimate (33) easily follows from the definition
(34) of the Lyapunov function, the use of (2), Poincaré’s inequality,
and the change of variable (31a).

We now show that we can always select N ≥ N0 + 1, P � 0,
α > 1, and β, γ > 0 such that (32) holds. By the Schur complement,
Θ1 ≺ 0 is equivalent to F>P+PF+2δP+αγG+ 1

β
PLL>P> ≺ 0.

We define F = F1 + F2 where

F1 =


A1 +B1K L̃C0 0 L̃C1

0 A0 − LC0 0 −LC1

B2,bK +
[
B2,a 0 0

]
0 A2 0

0 0 0 A2

 ,
(36a)

F2 =


α1L̃

[
1 0 0

]
0 0 0

−α1L
[
1 0 0

]
0 0 0

0 0 0 0
0 0 0 0

 (36b)

with ‖F2‖ → 0, because α1 → 0, when N → +∞. We note
that A1 + B1K + δI and A0 − LC0 + δI are Hurwitz while
‖e(A2+δI)t‖ ≤ e−κ0t with κ0 = λN0+1 − qc − δ > 0. Moreover,
‖L̃C1‖ ≤ ‖L‖‖C1‖, ‖LC1‖ ≤ ‖L‖‖C1‖, with ‖C1‖ = O(1) as
N → +∞ while ‖B2,bK+

[
B2,a 0 0

]
‖ ≤ ‖b‖L2‖K‖+ ‖a‖L2

where the right-hand side is a constant independent of N . The
application of [13, Lemma in Appendix], which is a generalization
of a result found in [11], to the matrix F1 + δI gives the existence
of P � 0 such that F>1 P + PF1 + 2δP = −I and ‖P‖ = O(1)
as N → +∞. Therefore, we have F>P + PF + 2δP + αγG +
1
β
PLL>P> = −I + F>2 P +PF2 +αγG+ 1

β
PLL>P> where G

satisfies (27) and ‖L‖ =
√

2‖L‖, which is independent of N . Hence,
fixing arbitrarily α > 1 while setting β =

√
N and γ = N−1, we

infer that (32) holds for N ≥ N0 + 1 large enough. �
Remark 1: Constraints (32) are nonlinear w.r.t. the decision

variables. However, for a given value of N ≥ N0 + 1 and arbitrarily
fixing α > 1, constraints (32) become LMI conditions w.r.t. the
decision variables P � 0 and β, γ > 0. As shown in the proof of
Theorem 1, these latter LMI conditions are always feasible provided
the order of the observer N is selected large enough. Similar remarks
apply to Theorems 3 and 5. ◦

We now assess the setpoint regulation of the left Dirichlet trace.
Theorem 2: Under both assumptions and conclusions of Theo-

rem 1, for any η ∈ [0, 1), there exists Mr > 0 such that

|y(t)− r(t)| ≤Mre
−δt
(
|∆u(0)|+ |∆ξ(0)|+

N∑
n=1

|∆ŵn(0)|

+ ‖∆z0‖H1

)
+Mr sup

τ∈[0,t]
e−ηδ(t−τ)|∆r(τ)| (37)

for all t ≥ 0.
Proof. Recalling that ye = re, one has |y(t)− r(t)| ≤ |∆y(t)|+
|∆r(t)|. From (31f) and Cauchy-Schwarz inequality, we infer that

|∆y(t)| ≤
√∑

n≥1
φn(0)2

λn

√∑
n≥1 λn∆wn(t)2. Using now (2) we

infer the existence of a constant M2 > 0 such that |∆y(t)| ≤
M2‖∆w(t)‖H1 . The proof is completed by invoking the change of
variable (31a) and the stability result (33). �

IV. NEUMANN MEASUREMENT AND REGULATION CONTROL

We now consider the reaction-diffusion system with Neumann
boundary observation described for t > 0 and x ∈ (0, 1) by

zt(t, x) = (p(x)zx(t, x))x + (qc − q(x))z(t, x) (38a)

z(t, 0) = 0, z(t, 1) = u(t) (38b)

z(0, x) = z0(x) (38c)

y(t) = zx(t, 0) (38d)

in the case p ∈ C2([0, 1]).

A. Control design

Introducing the change of variable

w(t, x) = z(t, x)− xu(t) (39)

we obtain

wt(t, x) = (p(x)wx(t, x))x + (qc − q(x))w(t, x)

+ a(x)u(t) + b(x)u̇(t) (40a)

w(t, 0) = 0, w(t, 1) = 0 (40b)

w(0, x) = w0(x) (40c)

ỹ(t) = wx(t, 0) (40d)

with a, b ∈ L2(0, 1) defined by a(x) = p′(x) + (qc − q(x))x and
b(x) = −x, respectively, ỹ(t) = y(t)−u(t) , and w0(x) = z0(x)−
xu(0). Introducing the auxiliary command input v(t) = u̇(t), we
infer that (6) still holds but the domain of A is now replaced by
D(A) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}. Then, considering
classical solutions associated with any z0 ∈ H2(0, 1) and any u(0) ∈
R such that z0(0) = 0 and z0(1) = u(0) (their existence for the
upcoming closed-loop dynamics is an immediate consequence of [19,
Chap. 6, Thm. 1.7]), (7a-7b) is still valid while (7c) is replaced by

ỹ(t) =
∑
i≥1

φ′i(0)wi(t). (41)

Based on similar motivations than the ones reported in Section III,
we consider the integral component

ξ̇(t) =

N0∑
n=1

φ′n(0)ŵn(t) + α0u(t) + β0v(t)− r(t). (42)

with

α0 = 1−
∑

n≥N0+1

anφ
′
n(0)

−λn + qc
, β0 = −

∑
n≥N0+1

bnφ
′
n(0)

−λn + qc
(43)

and where the observation dynamics, for 1 ≤ n ≤ N , take the form:

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t)

− ln

(
N∑
i=1

φ′i(0)ŵi(t)− α1u(t)− ỹ(t)

)
(44)

with
α1 =

∑
n≥N+1

anφ
′
n(0)

−λn + qc
(45)
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and where ln ∈ R are the observer gains. We set ln = 0 for
N0 + 1 ≤ n ≤ N . Proceeding now as in Section III but with the
updated versions of the matrices C0 and C1 now given by C0 =[
φ′1(0) . . . φ′N0

(0)
]

and C1 =

[
φ′N0+1(0)

λN0+1
. . .

φ′N (0)

λN

]
while redefining ẽn(t) and ζ(t) as ẽn(t) = λnen(t) and ζ(t) =∑
n≥N+1 φ

′
n(0)wn(t), we infer that (25) holds.

Lemma 2: (A1, B1) is controllable and (A0, C0) is observable.
The proof of this Lemma is analogous to the one of Lemma 1

and is thus omitted. We select in the sequel K ∈ R1×(N0+2) and
L ∈ RN0 such that A1 +B1K and A0 − LC0 are Hurwitz.

B. Equilibirum condition and dynamics of deviations

Proceeding similarly to Section III, we can characterize the equilib-
rium condition of the closed-loop system composed of the reaction-
diffusion system (38), the auxiliary command input dynamics (6a),
the integral action (42), the observer dynamics (44), and the state-
feedback (18). In particular, setting r(t) = re ∈ R, it can be shown
that there exists a unique solution to:

0 = (−λn + qc)wn,e + anue + bnve = 0, n ≥ 1, (46a)

0 = ve = KŴN0
a,e , (46b)

0 =

N0∑
n=1

φ′n(0)ŵn,e + α0ue + β0ve − re, (46c)

0 = (−λn + qc)ŵn,e + anue + bnve

− ln

{
N∑
i=1

φ′i(0)ŵi,e − α1ue − ỹe

}
, 1 ≤ n ≤ N0, (46d)

0 = (−λn + qc)ŵn,e + anue + bnve, N0 + 1 ≤ n ≤ N, (46e)

ỹe =
∑
n≥1

φ′n(0)wn,e. (46f)

Moreover we can define we ,
∑
n≥1 wn,eφn ∈ D(A). Introducing

the change of variable ze = we+xue, ze is a static solution of (38a-
38b) associated with the constant control input u(t) = ue. Denoting
by ye , z′e(0), we also infer that ye = re, achieving the desired
reference tracking. This allows the introduction of the dynamics of
deviation of the different quantities w.r.t. the equilibrium condition
characterized by re ∈ R. We have:

∆w(t, x) = ∆z(t, x)− x∆u(t), (47a)

∆Ẋ(t) = F∆X(t) + L∆ζ(t)− Lr∆r(t), (47b)

∆ζ(t) =
∑

n≥N+1

φ′n(0)∆wn(t), (47c)

∆ẇn(t) = (−λn + qc)∆wn(t) + an∆u(t) + bn∆v(t), (47d)

∆v(t) = K∆ŴN0
a (t), (47e)

∆ỹ(t) = ∆y(t)−∆u(t) =
∑
n≥1

φ′n(0)∆wn(t). (47f)

C. Stability analysis and regulation assessment

We define, for any ε ∈ (0, 1/2], the constant M2,φ(ε) =∑
n≥N+1

φ′
n(0)

2

λ
3/2+ε
n

, which is finite when p ∈ C2([0, 1]) because we

recall that φ′n(0) = O(
√
λn) as n→ +∞ and (1) hold.

Theorem 3: Let p ∈ C2([0, 1]) with p > 0, q ∈ C0([0, 1]) with
q ≥ 0, and qc ∈ R. Consider the reaction-diffusion system described
by (38). Let N0 ≥ 1 and δ > 0 be given such that −λn+qc < −δ <
0 for all n ≥ N0 + 1. Let K ∈ R1×(N0+2) and L ∈ RN0 be such
that A1 + B1K and A0 − LC0 are Hurwitz with eigenvalues that
have a real part strictly less than −δ < 0. For a given N ≥ N0 + 1,

assume that there exist P � 0, ε ∈ (0, 1/2], α > 1, and β, γ > 0
such that Θ1 ≺ 0, where Θ1 is defined by (32a),

Θ2 = 2γ

{
−
(

1− 1

α

)
λN+1 + qc + δ

}
+ βM2,φ(ε)λ

1/2+ε
N+1 ≤ 0,

Θ3 = 2γ

(
1− 1

α

)
− βM2,φ(ε)

λ
1/2−ε
N+1

≥ 0.

Then, for any η ∈ [0, 1), there exists M > 0 such that, for any
z0 ∈ H2(0, 1) and u(0), ξ(0), ŵn(0) ∈ R such that z0(0) = 0
and z0(1) = u(0), the classical solution of the closed-loop system
composed of the plant (38), the integral actions (6a) and (42), the
observer dynamics (44), and the state feedback (18) satisfies (33) for
all t ≥ 0. Moreover, the above constraints are always feasible for N
large enough.

Proof. Let P � 0 and γ > 0 and consider the Lyapunov
function candidate defined by (34). Then, proceeding as in [13]
but taking into account the extra contribution of the reference
signal appearing in (25), we obtain that (35) holds for all t ≥ 0
with Γn = 2γ

{
−
(
1− 1

α

)
λn + qc + δ

}
+ βM2,φ(ε)λ

1/2+ε
n . Since

ε ∈ (0, 1/2], we have λ1/2+ε
n = λn/λ

1/2−ε
n ≤ λn/λ

1/2−ε
N+1 for all

n ≥ N + 1, hence Γn ≤ −Θ3λn + 2γ{qc + δ} ≤ Θ2 ≤ 0 for all
n ≥ N + 1 where we have used that Θ3 ≥ 0. Now the proof of the
stability estimate (33) is analogous to the one reported in the proof
of Theorem 1.

It remains to show that we can always select N ≥ N0 +1, P � 0,
ε ∈ (0, 1/2], α > 1, and β, γ > 0 such that Θ1 ≺ 0, Θ2 ≤ 0,
and Θ3 ≥ 0. To handle the constraint Θ1 ≺ 0, we proceed as in
the last part of the proof of Theorem 1. This is allowed because
‖C1‖ = O(1) as N → +∞. We set ε = 1/8 and we arbitrary fix
α > 1. Setting β = N1/8 and γ = N−3/16, we deduce the existence
of an integer N ≥ N0 + 1 large enough such that Θ1 ≺ 0, Θ2 ≤ 0,
and Θ3 ≥ 0. �

We are now in position to assess the setpoint regulation control of
the left Dirichlet trace.

Theorem 4: Under both assumptions and conclusions of Theo-
rem 3, for any η ∈ [0, 1), there exists Mr > 0 such that

|y(t)− r(t)| ≤Mre
−δt
(
|∆u(0)|+ |∆ξ(0)|+

N∑
n=1

|∆ŵn(0)|

+ ‖∆z0‖H1 + ‖A∆w0‖L2

)
+Mr sup

τ∈[0,t]
e−ηδ(t−τ)|∆r(τ)| (48)

for all t ≥ 0 where ∆w0 = ∆z0 − x∆u(0).
Proof. Recalling that ye = re, one has |y(t)− r(t)| ≤ |∆y(t)|+
|∆r(t)|. We infer from (47f) and Cauchy-Schwarz inequality that
|∆y(t)| ≤

√∑
n≥1

φ′
n(0)

2

λ2
n

√∑
n≥1 λ

2
n∆wn(t)2 + |∆u(t)|. In view

of the stability estimate (33) provided by Theorem 3, we only need
to study the term

∑
n≥1 λ

2
n∆wn(t)2. This can be done as in [14,

Proof of Theorem 2], yielding the claimed estimate (48). �

V. DIRICHLET MEASUREMENT AND NEUMANN REGULATION

CONTROL

We now consider the reaction-diffusion system described by (3a-
3c), still in the case p ∈ C2([0, 1]), but this time with the boundary
measurement ym(t) and the distinct and unmeasured output to-be-
regulated yr(t) described by:

ym(t) = z(t, 0), yr(t) = zx(t, 1). (49)

A. Control design

Using the change of variable (4), we obtain that (5a-5c) still hold
while (5d) is replaced by

ỹm(t) = w(t, 0) = z(t, 0) = ym(t), (50a)
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ỹr(t) = wx(t, 1) = zx(t, 1)− 2u(t) = yr(t)− 2u(t). (50b)

Then, considering classical solutions, (7a-7b) is still valid while (7c)
is replaced by

ỹm(t) =
∑
i≥1

φi(0)wi(t), ỹr(t) =
∑
i≥1

φ′i(1)wi(t). (51)

Based on similar motivations that the ones reported in Section III,
we consider the integral component

ξ̇(t) =

N0∑
n=1

φ′n(1)ŵn(t) + α0u(t) + β0v(t)− r(t). (52)

with

α0 = 2−
∑

n≥N0+1

anφ
′
n(1)

−λn + qc
, β0 = −

∑
n≥N0+1

bnφ
′
n(1)

−λn + qc
(53)

and where the observation dynamics, for 1 ≤ n ≤ N , takes the form:

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t)

− ln

(
N∑
i=1

φi(0)ŵi(t)− α1u(t)− ỹm(t)

)
(54)

with
α1 =

∑
n≥N+1

anφn(0)

−λn + qc
(55)

and where ln ∈ R are the observer gains. We set ln = 0 for
N0 + 1 ≤ n ≤ N . Adopting now the same definitions as the
ones used in Section III except that the matrix A1, originally

defined by (16), is now replaced by A1 =

 0 0 0
B0,a A0 0
α0 Cr 0

 where

Cr =
[
φ′1(1) . . . φ′N0

(1)
]
, we infer that (25) holds.

Lemma 3: The pair (A0, C0) is observable. If the unique solution
of (pf ′)′+ (qc− q)f = 0 with f(1) = 1 and f ′(1) = 0 is such that
f ′(0) 6= 0, then the pair (A1, B1) is controllable.

Proof. The observability of (A0, C0) was assessed in
Lemma 1. From [14, Lem. 2], and because the pair (28)
is controllable, then (A1, B1) is controllable if and only

if the matrix T =

 0 0 1
B0,a A0 B0,b

α0 Cr β0

 is invertible. Let[
ue w1,e . . . wN0,e ve

]> ∈ ker(T ). We obtain that
ve = 0, anue + (−λn + qc)wn,e = 0 for all 1 ≤ n ≤ N0, and
α0ue+

∑N0
n=1 φ

′
n(1)wn,e = 0. Defining for n ≥ N0 +1 the quantity

wn,e = − an
−λn+qc ue, we have (−λn + qc)wn,e + anue = 0 for

all n ≥ 1. Hence (wn,e)n≥1, (λnwn,e)n≥1 ∈ l2(N) ensuring that
we ,

∑
n≥1 wn,eφn ∈ D(A) and Awe =

∑
n≥1 λnwn,eφn. This

shows that −Awe + qcwe + aue = 0. Moreover, using (53), we
also have 0 = α0ue +

∑N0
n=1 φ

′
n(1)wn,e = 2ue + w′e(1). From the

two latter identities, we infer that (pw′e)
′ + (qc − q)we + aue = 0,

w′e(0) = we(1) = 0, and w′e(1) + 2ue = 0. Introducing the
change of variable ze(x) = we(x) + x2ue, we deduce that
(pz′e)

′ + (qc − q)ze = 0, z′e(0) = z′e(1) = 0, and ze(1) = ue. From
our assumption, we infer that ue = 0 and ze = 0. Thus we have
we = ze − x2ue = 0 hence wn,e = 0 for all n ≥ 1. We deduce that
ker(T ) = {0}, showing that (A1, B1) is controllable. �

We select K ∈ R1×(N0+2) and L ∈ RN0 so that A1 +B1K and
A0 − LC0 are Hurwitz.

B. Equilibrium condition and dynamics of deviations

Proceeding as in Section III, we can characterize the equilibrium
condition of the closed-loop system composed of the reaction-
diffusion system (3a-3c) with (49), the auxiliary command input

dynamics (6a), the integral action (52), the observer dynamics (54),
and the state-feedback (18). In particular, setting r(t) = re ∈ R, it
can be shown that there exists a unique solution to :

0 = (−λn + qc)wn,e + anue + bnve = 0, n ≥ 1, (56a)

0 = ve = KŴN0
a,e , (56b)

0 =

N0∑
n=1

φ′n(1)ŵn,e + α0ue + β0ve − re, (56c)

0 = (−λn + qc)ŵn,e + anue + bnve

− ln

{
N∑
i=1

φi(0)ŵi,e − α1ue − ỹe

}
, 1 ≤ n ≤ N0, (56d)

0 = (−λn + qc)ŵn,e + anue + bnve, N0 + 1 ≤ n ≤ N,
(56e)

ỹm,e =
∑
n≥1

φn(0)wn,e, ỹr,e =
∑
n≥1

φ′n(1)wn,e. (56f)

Moreover we can define we ,
∑
n≥1 wn,eφn ∈ D(A). Introducing

the change of variable ze = we+x2ue, ze is a static solution of (3a-
3b) associated with the constant control input u(t) = ue. Denoting
by yr,e , z′e(1), we also infer that yr,e = re, achieving the desired
reference tracking. Consequently, we obtain the following dynamics
of deviations:

∆w(t, x) = ∆z(t, x)− x2∆u(t), (57a)

∆Ẋ(t) = F∆X(t) + L∆ζ(t)− Lr∆r(t), (57b)

∆ζ(t) =
∑

n≥N+1

φn(0)∆wn(t), (57c)

∆ẇn(t) = (−λn + qc)∆wn(t) + an∆u(t) + bn∆v(t), (57d)

∆v(t) = K∆ŴN0
a (t), (57e)

∆ỹm(t) = ∆ym(t) =
∑
n≥1

φn(0)∆wn(t), (57f)

∆ỹr(t) = ∆yr(t)− 2∆u(t) =
∑
n≥1

φ′n(1)∆wn(t). (57g)

C. Stability analysis and regulation assessment

The proof of the following theorem directly follows from the proofs
reported in the previous sections.

Theorem 5: Under the assumption of Lemma 3, the stability result
stated by Theorem 1 also applies to the closed-loop system composed
of the plant (3a-3c) with (49), the integral actions (6a) and (52), the
observer dynamics (54), and the state feedback (18). Moreover, for
any η ∈ [0, 1), there exists Mr > 0 such that

|yr(t)− r(t)| ≤Mre
−δt
(
|∆u(0)|+ |∆ξ(0)|+

N∑
n=1

|∆ŵn(0)|

+ ‖∆z0‖H1 + ‖A∆w0‖L2

)
+Mr sup

τ∈[0,t]
e−ηδ(t−τ)|∆r(τ)| (58)

for all t ≥ 0 where ∆w0 = ∆z0 − x2∆u(0).

VI. NUMERICAL ILLUSTRATION

We illustrate the result of Section V for Dirichlet measurement
and Neumann regulation using a modal approximation that captures
the 50 dominant modes of the reaction-diffusion PDE. We set
p = 1, q = 0, and qc = 3 for which the open-loop plant is
unstable. Selecting δ = 0.5, we obtain N0 = 1, the feedback
gain K =

[
−10.4134 −11.3747 2.3100

]
, and the observer gain

L = 1.4373. The conditions of Theorem 5 are found feasible for
N = 3. The time-domain evolution of the closed-loop system trajec-
tories are depicted in Fig. 1, confirming the theoretical predictions.
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Fig. 1. Time evolution in closed-loop with Dirichlet boundary measurement
ym(t) = z(t, 0) and Neumann boundary regulation yr(t) = zx(t, 1) for the
reaction-diffusion system (3a-3c)

VII. CONCLUSION

We proposed the design of a finite-dimensional observer-based
PI controller to achieve the both output stabilization and regula-
tion control of reaction-diffusion PDEs. Even if presented for a
Dirichlet boundary control input, the presented results easily extend
to Neumann/Robin boundary control (by modifying the change of
variable formula to obtain an homogeneous PDE, giving different
a, b ∈ L2(0, 1)). In-domain measurements can also be handled with
the same approach provided the satisfaction of adequate observability
conditions. While we have adopted in this paper an early lumping ap-
proach, future research directions for finite-dimensional PI regulation
control of reaction-diffusion PDEs may be concerned with the study
of late lumping approaches [1] in the framework of backstepping
control design for PDE-ODE cascades [23], [27].
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